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Abstract: One of the well-known schemes for the direct numerical integration of second-order initial-
value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the
construction of a family of adapted block Falkner methods which are frequency dependent for the
direct numerical solution of second-order initial value problems with oscillatory solutions. The
techniques of collocation and interpolation are adopted here to derive the new methods. The study
of the properties of the proposed adapted block Falkner methods reveals that they are consistent
and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order
conditions of the proposed methods are established. As may be seen from the numerical results, the
resulting family is efficient and competitive compared to some recent methods in the literature.

Keywords: adapted Falkner methods; algebraic order; block methods; oscillatory solutions; second
order initial-value-problems

1. Introduction

The numerical integration of initial value problems (IVPs) of second order ordinary
differential equations (ODEs) has attracted the attention of researchers in the field for
decades. The importance of such problems is their use in the applied sciences to model
different phenomena such as the mass movement under the action of a force, problems of
orbital dynamics, molecular dynamics, circuit theory, control theory, or quantum mechanics
among others. It turns out that most of these problems do not have closed-form solutions,
and consequently it is important to develop numerical methods that can solve them
directly. Accordingly, several numerical methods for solving second-order IVPs that
do not contain the first derivative have been investigated by Lambert and Watson [1],
Ananthakrishnaiah [2], Simos [3], Hairer et al. [4], Tsitouras et al. ([5,6]), Wang et al. ([7,8]),
Franco ([9,10]), Ramos and Patricio [11], Chen et al. [12], Shi and Wu [13], Fang et al. [14],
Senu et al. [15] among others.

Recently, some researchers have considered the direct integration of the general second
order IVPs containing the first derivative. This can be found in the works by Guo and
Yan [16], Vigo-Aguiar and Ramos [17], Jator et al. ([18,19]), Mahmoud and Osman [20],
Awoyemi [21], Liu and Wu [22], You et al. [23], Li et al. [24], Chen et al. [25], Li et al. [26],
and You et al. [27]. The implementation of some of these methods is based on a step-by-step
fashion, while others are implemented in predictor-corrector modes. In either case, the
cost of execution increases, especially, for higher-order methods. It turns out that some of
these methods do not take advantage of the oscillatory or even periodic behavior of the
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solutions. If the period is known or can be estimated in advance this could be considered
in the development of the method in order to improve its performance.

One of the numerical integrators for the general second order IVP in which the
first derivative appears explicitly is an explicit method due to Falkner [28], while the
implicit form is due to Collatz [29]. Some modifications of the Falkner methods have
appeared in the literature (see [30–33]). The adapted Falkner methods take advantage of
the special periodic feature of the solution of the IVP, and can be found in the works
by Li and Wu [34], Li [35], and Ehigie and Okunuga [36]. The use of adapted meth-
ods started with the elegant work by Gautchi [37] and later by Lyche [38]. Many ex-
tensions of these have been investigated by Franco ([39,40]), Ixaru et al. [41], Vanden
Berghe and Van Daele [42], Jator et al. [43], Jator ([18,44]), Ramos and Vigo-Aguiar [45],
Vigo-Aguiar and Ramos ([46,47]), Coleman and Duxbury [48], Coleman and Ixaru [49],
Nguyen et al. [50], Ozawa [51], Fang et al. [14], Franco and Gomez [52], Wua and
Tian [53]. Nonetheless, most of these methods have been implemented in a step-by-step
procedure. Also, in all these extensions, the basis function considered is either the set
{1, x, x2, . . . , xn, exp(ωx), exp(−ωx)} or {1, x, x2, . . . , xn, sin(ωx), cos(ωx)} .

In the current article, we propose a class of Functionally-Fitted third derivative Block
Falkner Methods (BFFM) for the direct integration of the general second order initial value
problem whose solution is oscillatory or periodic, in the latter case with the frequency
known, or that can be estimated in advance. This class, which is an adapted formulation of
the methods in Ramos and Rufai [33], uses a basis function different from what can be seen
in the reviewed literature. We emphasize that this method is different from the methods by
Jator ([18,44]); whereas our methods are implicit Falkner methods whose coefficients are
trigonometric and hyperbolic functions depending on the fitting frequency, ω, and the step
size, h, the methods by Jator ([18,44]) present trigonometric coefficients. It is important to
note here that the accuracy in estimating this frequency is crucial in adapted numerical
methods, as shown in [45].

The rest of this paper is organized as follows: the derivation of BFFM is presented in
Section 2. The analysis of the characteristics of the BFFM is discussed in Section 3 while
some numerical experiments are presented in Section 4. Finally, we give some concluding
remarks in Section 5.

2. Development of the BFFM

Consider the general second order IVP of the form

y′′ = f
(
x, y, y′

)
, y(x0) = y0, y′(x0) = y′0, x ∈ [x0, xN ] ⊂ R, (1)

whose solution is oscillatory or periodic with the frequency approximately known in
advance and f : [x0, xN ]× R2s → Rs is a smooth function that satisfies a Lipschitz condition
and s is the dimension of the system. For the development of the method, y(x) is taken
as a scalar function although as we will see in the numerical experiments, the method
may be applied in a component wise mode to solve differential systems. We now set-out
some useful definitions related with the methods in Ramos and Rufai [33], that will aid the
derivation of the BFFM.

Definition 1. The continuous formulation of the adapted k−step third derivative Falkner method
for approximating the solution of Equation (1) is defined by

ȳ(x) = αk0(x, u)yn+1 + hαk1(x, u)y′n+1 + h2
k

∑
j=0

βkj(x, u) fn+j + h3γk(x, u)gn+k, (2)

where the coefficients αk0(x, u), αk1(x, u), βkj(x, u) and γk(x, u) are functions of x and u =

ωh, being ω the frequency of the method (see [45]), and g(x, y, y
′
) = y

′′′
(x) = fx(x, y, y

′
) +

fy(x, y, y
′
)y
′
(x) + fy′(x, y, y

′
) f (x, y, y

′
).
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Definition 2. The primary formulas of the adapted k−step third derivative block Falkner method
for the numerical solution of Equation (1) are given by

yn+k = yn+1 + (k− 1)hy′n+1 + h2
k
∑

j=0
βkj(u) fn+j + h3γk(u)gn+k

hy′n+k = hy′n+1 + h2
k
∑

j=0
β̄kj(u) fn+j + h3γ̄ki(u)gn+k.

(3)

In these formulas, yn+j, y′n+j, fn+j and gn+k are numerical approximations to the
exact values y(xn+j), y′(xn+j), f (xn+j, y(xn+j), y′(xn+j)) and g(xn+j, y(xn+j), y′(xn+j)), re-
spectively, with xn+j = xn + jh discrete points on [x0, xN ] being h a fixed stepsize. The
coefficients βkj, γk and β̄kj, γ̄k depend on the parameter u and are obtained after evaluating
the fitting function I(x) in Theorem 1 and its derivative, respectively, at xn+k.

Definition 3. The (2k − 2) secondary formulas of the adapted k−step third derivative block
Falkner method for the numerical solution of Equation (1) are given by

yn+µ = yn+1 + (µ− 1)hy′n+1 + h2
k
∑

j=0
β

µ
kj(u) fn+j + h3γ

µ
k (u)gn+k

hy′n+µ = hy′n+1 + h2
k
∑

j=0
β̄

µ
kj(u) fn+j + h3γ̄

µ
k (u)gn+k,

(4)

where µ = 0, 2, 3, . . . , (k− 1).

Again, the coefficients β
µ
kj, γ

µ
k and β̄

µ
kj, γ̄

µ
k depend on u, and are obtained after evaluat-

ing the fitting function I(x) and its derivative at xn+µ, µ = 0, 2, 3, . . . , (k− 1).

Definition 4. The adapted k−step third derivative block Falkner method consists of the primary
formulas in (3) and the secondary formulas in (4), which form the BFFM.

2.1. Derivation of the BFFM

Let Ω = {π0(x), π1(x), π2(x), . . . , πk+3(x)} be a set of k + 4 linearly independent
functions. We seek an approximate solution I(x) ∈ span(Ω), called a fitted function
associated to the adapted Falkner method, which satisfies the IVP in Equation (1) at some
specified points.

The coefficients of the adapted Falkner method depend on the nature of the fitting
function I(x) accordingly on how the set Ω is chosen, which can be any of the types listed
in Nguyen et al. [50], where for any of the choices we have to take a total of k + 4 elements
to determine the adapted block Falkner method on the basis that the approximations are of
the form in (2). In order to develop the adapted Falkner methods in this paper we choose
Ω as

Ω = {1, x, . . . , xk−1} ∪ {sin(ωx), cos(ωx)} ∪ {sinh(ωx), cosh(ωx)}. (5)

To get the coefficients of the fitting function associated to the set Ω in (5), I(x) is
interpolated at the point x = xn+1, and the following collocating conditions are considered:
I′(x) at x = xn+1, I′′(x) at the points x = xn+j, j = 0, 1, . . . , k, and I′′′(x) at x = xn+k. This
leads to the following system of k + 4 equations

I(xn+1) = yn+1,

I′(xn+1) = y′n+1,

I′′(xn+j) = fn+j, j = 0, 1, . . . , k,

I′′′(xn+k) = gn+k.

(6)
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Theorem 1. Let I(x) be the fitting function associated to the set Ω in (5),

{Pi(x)}k+3
i=0 = {1, x, . . . , xk−1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)},

and the vector Λ =
(
yn+1, y′n+1, fn, fn+1, . . . , fn+k, gn+k

)T , where T denotes the transpose. Con-
sider the following square matrix of dimension k + 4 which is the matrix of coefficients of the system
in (6),

Π =



P0(xn+1) P1(xn+1) · · · Pk+3(xn+1)

P
′
0(xn+1) P

′
1(xn+1) · · · P

′
k+3(xn+1)

P
′′
0 (xn) P

′′
1 (xn) · · · P

′′
k+3(xn)

...
...

. . .
...

P
′′
0 (xn+k) P

′′
1 (xn+k) · · · P

′′
k+3(xn+k)

P
′′′
0 (xn+k) P

′′′
1 (xn+k) · · · P

′′′
k+3(xn+k)


,

and Πi obtained by replacing the i-th column of Π by the vector Λ. If we impose that I(x) satisfies
the system of k + 4 equations in (6), then it can be written as

I(x) =
k+3

∑
i=0

det(Πi)

det(Π)
Pi(x). (7)

Proof. The proof can be readily obtained, similarly to the one given in Jator [18] with slight
modifications in notations.

Remark 1. As an illustration of the theoretical result in the above theorem, the explicit form of the
matrix Π and det(Πi) are provided in the Appendix A for k = 2.

2.2. Specification of the BFFM

We emphasize that for each k, there are two primary formulas of the form in Equation (3)
and 2k− 2 secondary formulas as those in Equation (4) (which are obtained by evaluating
the fitting function in (7) at the corresponding points) that combined together form the
proposed BFFM. Hence the BFFM has 2k formulas.

As an illustration, we specified how to obtain the BFFM for k = 2 and k = 3, repectively.
For k = 2, we evaluate the fitting function in (7) and its first derivative at x = {xn+2, xn}

to obtain the two primary formulas and the two secondary formulas as

yn+2 = yn+1 + hy′n+1 + h2
2
∑

j=0
β2j(u) fn+j + h3γ2(u)gn+2

hy′n+2 = hy′n+1 + h2
2
∑

j=0
β̄2j fn+j(u) + h3γ̄2(u)gn+2

yn = yn+1 − hy′n+1 + h2
2
∑

j=0
β0

2j(u) fn+j + h3γ0
2(u)gn+2

hy
′
n = hy′n+1 + h2

2
∑

j=0
β̄0

2j(u) fn+j + h3γ̄0
2(u)gn+2.

(8)

Whereas for k = 3, we evaluate the fitting function in (7) and its first derivative at
x = xn+3 and then at x = {xn+2, xn} to obtain the two primary formulas and the four
secondary formulas, which result in the following
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yn+3 = yn+1 + 2hy′n+1 + h2
3
∑

j=0
β3j(u) fn+j + h3γ3(u)gn+3

hy′n+3 = hy′n+1 + h2
3
∑

j=0
β̄3j fn+j(u) + h3γ̄3(u)gn+3

yn+2 = yn+1 + hy′n+1 + h2
3
∑

j=0
β2

3j(u) fn+j + h3γ2
3(u)gn+3

hy′n+2 = hy′n+1 + h2
3
∑

j=0
β̄2

3j(u) fn+j + h3γ̄2
3(u)gn+3

yn = yn+1 − hy′n+1 + h2
3
∑

j=0
β0

3j(u) fn+j + h3γ0
3(u)gn+3

hy′n = hy′n+1 + h2
3
∑

j=0
β̄0

3j(u) fn+j + h3γ̄0
3(u)gn+3.

(9)

Remark 2. For small values of u, the coefficients of the BFFM may be subject to heavy cancellations.
In that case the Taylor series expansion of the coefficients is preferable (see Lambert, [54]). Specific
coefficients of the two primary formulas and their corresponding series expansion up to O

(
u16) for

k = 2 are provided in Appendix B.

Remark 3. When u→ 0, the formulas in Equations (8) and (9) reduce to the conventional third
derivative Falkner formulas for k = 2 and k = 3, respectively, in Ramos and Rufai [33].

3. Analysis of the BFFM

We discuss the basic analysis of the proposed BFFM in this section. The analysis
includes the Algebraic Order, Local Truncation Error, Consistency, Zero-Stability, Conver-
gence and Linear Stability of the BFFM.

3.1. Algebraic Order, Local Truncation Errors and Consistency of the BFFM

The purpose of this subsection is to establish the uniform algebraic order for each of
the formulas that form the BFFM and their corresponding local truncation errors with the
aid of the theory of linear operators (Lambert [54]).

3.1.1. Local Truncation Error of BFFM

Proposition 1. The local truncation error of each formula of the k−step BFFM is of the form
Ck+4hk+4(ω4yk(xn)− y(k+4)(xn)) + O(hk+5), where Ck+4 is the error constant.

Proof. Since the block Falkner formulas in Equations (3) and (4) are made up of general-
ized linear multistep formulas, we associate the Falkner formulas with linear difference
operators L[y(xn); h], L′ [y(xn); h] for the primary formulas and Lµ[y(xn); h], L′µ[y(xn); h],
µ = {0, 2, 3, . . . , k− 1}, for the secondary formulas, defined respectively by
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L[y(xn); h] =y(xn + kh)− y(xn + h)− (k− 1)hy′(xn + h)

− h2
k

∑
j=0

βkj(u)y′′(xn + jh)− h3γk(u)y′′′(xn + kh),

L′ [y(xn); h] =hy′(xn + kh)− hy′(xn + h)

− h2
k

∑
j=0

β̄kj(u)y′′(xn + jh)− h3γ̄k(u)y′′′(xn + kh),

Lµ[y(xn); h] =y(xn + µh)− y(xn + h)− (µ− 1)hy′(xn + h)

− h2
k

∑
j=0

β
µ
kj(u)y

′′(xn + jh)− h3γ
µ
k (u)y

′′′(xn + kh),

L′µ[y(xn); h] =hy′(xn + µh)− hy′(xn + h)

− h2
k

∑
j=0

β̄
µ
kj(u)y

′′(xn + jh)− h3γ̄
µ
k (u)y

′′′(xn + kh). (10)

Consider the Taylor series expansions of the right hand sides of the above for-
mulas in powers of h. It can be shown that the first non zero term is of the form
Ck+4hk+4(y(k+4)(xn)− ω4y(k)(xn)) + O(hk+5) which is the local truncation error of each
formula in the k-step BFFM .

Corollary 1. The Local Truncation Errors of the BFFM for k = 2 are given by

LTE =



h6

360

(
y(6)(xn)−ω4y(2)(xn)

)
+ O

(
h7)

23h6

1440

(
y(6)(xn)−ω4y(2)(xn)

)
+ O

(
h7)

−h6

144

(
y(6)(xn)−ω4y(2)(xn)

)
+ O

(
h7)

7h6

1440

(
y(6)(xn)−ω4y(2)(xn)

)
+ O

(
h7).

(11)

Corollary 2. The Local Truncation Errors of the BFFM for k = 3 are given by

LTE =



−h7

175

(
y(7)(xn)−ω4y(3)(xn)

)
+ O

(
h8)

−h7

450

(
y(7)(xn)−ω4y(3)(xn)

)
+ O

(
h8)

−41h7

16800

(
y(7)(xn)−ω4y(3)(xn)

)
+ O

(
h8)

−11h7

2400

(
y(7)(xn)−ω4y(3)(xn)

)
+ O

(
h8)

97h7

16800

(
y(7)(xn)−ω4y(3)(xn)

)
+ O

(
h8)

−97h7

7200

(
y(7)(xn)−ω4y(3)(xn)

)
+ O

(
h8).

(12)

Corollary 3. The order p of the k−step BFFM is p = k + 2. Hence the order of BFFM for k = 2
and k = 3 are respectively p = 4 and p = 5.

Theorem 2. When the solution of the problem in Equation (1) is a linear combination of the basis
functions {Pi(x)}k+3

i=0 , then the local truncation errors vanish.
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Proof. Solving the differential equation y(k+4)(x)−ω4y(k)(x) = 0 provides the fundamen-
tal set of solutions{

1, x, . . . , xk−1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)
}

,

which contains the basis function of the BFFM, from which the statement follows immedi-
ately.

3.1.2. Consistency of the BFFM

Remark 4. Since the order of the k−step BFFM is p = k + 2, we therefore conclude that it is
consistent (Lambert, [54] and Fatunla, [55]).

3.2. Stability of the BFFM

The BFFM specified by Equations (3) and (4) may be written as a difference system
given by

A1Yn+1 = A0Yn + h2B0Fn + h2B1Fn+1, (13)

where
Yn+1=

(
yn+1, yn+2, . . . , yn+k, hy′n+1, hy′n+2, . . . , hy′n+k

)T ,

Yn =
(
yn−k+1, . . . , yn−1, yn, hy′n−k+1, . . . , hy′n

)T ,

Fn+1 = ( fn+1, fn+2, . . . , fn+k, hgn+1, . . . , hgn+k)
T ,

Fn = ( fn−k+1, . . . , fn−1, fn, hgn−k+1, . . . , hgn)
T ,

and A0, A1, B0, B1 are 2k × 2k matrices containing the coefficients of the formulas. For
k = 2 and k = 3 those matrices are given as follows

k = 2:

A0 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

, A1 =


0 1 0 −1

1 1 0 1

0 0 0 1

0 0 1 1

,

B0 =


0 β0

20 0 0

0 β20 0 0

0 β̄0
20 0 0

0 β̄20 0 0

, B1 =


β0

21 β0
22 0 γ0

2

β21 β22 0 γ2

β̄0
21 β̄0

22 0 γ̄0
2

β̄21 β̄22 0 γ̄2

.

k = 3:

A0 =



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


, A1 =



1 0 0 −1 0 0

1 1 0 1 0 0

1 0 1 2 0 0

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 1


,



Mathematics 2021, 9, 713 8 of 22

B0 =



0 0 β0
30 0 0 0

0 0 β2
30 0 0 0

0 0 β30 0 0 0

0 0 β̄0
30 0 0 0

0 0 β̄2
30 0 0 0

0 0 β̄30 0 0 0


, B1 =



β0
31 β0

32 β0
31 0 0 γ0

3

β2
31 β2

32 β2
33 0 0 γ2

3

β31 β32 β33 0 0 γ3

β̄0
31 β̄0

32 β̄0
33 0 0 γ̄0

3

β̄2
31 β̄2

32 β̄2
33 0 0 γ̄2

3

β̄31 β̄32 β̄33 0 0 γ̄3


.

3.2.1. Zero Stability of BFFM

Definition 5. Zero stability is concerned with the stability of the difference system in the limit as
h tends to 0. Thus as h→ 0, the difference system in Equation (13) becomes

A1Yn+1 − A0Yn = 0, (14)

where A1 and A0 are 2k× 2k constant matrices.

Definition 6. (Fatunla [56]) A block method is zero-stable if the roots of the first characteristic
polynomial have modulus less than or equal to one and those of modulus one do not have multiplicity
greater than 2, i.e. the roots of ρ(R) = det[RA1 − A0] = 0 satisfy |Ri| ≤ 1 and for those roots
with |Ri| = 1, the multiplicity does not exceed 2.

Proposition 2. The BFFM is zero-stable.

Proof. We normalize Equation (14) to obtain the first characteristic equation of BFFM given
by ρk(R) = det[RA1 − A0] = 0. From our calculations, the roots Ri, i = 1, 2, . . . , k of
ρk(R) satisfy |Ri| = 1, the roots are simple. Hence for each k = 2 and k = 3, the BFFM is
zero-stable.

Remark 5. We note that the explicit form of the matrix RA1−A0 for k = 2 and k = 3, respectively,
are provided in Appendix C.

3.2.2. Convergence of BFFM

The necessary and sufficient condition for a method to be convergent is that it must
be zero-stable and consistent (Lambert, [54] and Fatunla, [55]). Since BFFM (for each k) is
both zero-stable and consistent, we therefore conclude that it is convergent.

3.2.3. Linear Stability and Region of Stability of BFFM

To analyze the linear stability of BFFM, the block method in Equation (13) is applied
to the Lambert-Watson test equation y

′′
= λ2y. After simple algebraic calculations and

letting z = λh , we obtain Yn+1 = M(z, u)Yn, where

M(z, u)=
(

A1 − B1z2
)−1(

A0 + B0z2
)

. (15)

The rational function M(z, u) is called the amplification matrix and determines the
stability of the method.

Definition 7. (Coleman and Ixaru, [49]): A region of stability is a region in the zu−plane
throughout which |ρ(z, u)| ≤ 1, where ρ(z, u) is the spectral radius of M(z, u).

Since the stability matrix depends on two parameters z and u, we plot the stability
regions in the (z, u)−plane for both k = 2 and k = 3 respectively, in Figure 1, where the
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colored regions (blue and green) are the stability regions corresponding to the test problem
y
′′
= λ2y.

Figure 1. z− u stability region of BFFM for k = 2 (left) and k = 3 (right) for the Lambert-Watson test.

Since the Lambert-Watson test does not contain the first derivative, another usual test
equation to analyze linear stability is the one given by

y
′′
= −2λy

′ − λ2y, (16)

which has bounded solutions for λ ≥ 0 that tend to zero when x → ∞. We have plotted in
Figure 2 the corresponding stability region for the BFFM for k = 2 and k = 3.

Figure 2. z− u stability region of BFFM for k = 2 (left) and k = 3 (right) for the test Equation (16).

4. Implementation and Numerical Experiments
4.1. Implementation of BFFM

The BFFM is implemented using a written code in Maple 2016.1 enhanced by the
feature f solve for both linear nonlinear problems respectively. All numerical experiments
are conducted on a Laptop with the following features

1. 64 bit Windows 10 Pro Operating System,
2. Intel (R) Celeron CPU N3060 @ 1.60 GHz processor, and
3. 4.00GB RAM memory.
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The summary of how BFFM is applied to solve initial value problems (IVPs) with
oscillatory solutions in a block by-block fashion is as follows:

Step 1: Choose N, h = (xN − x0)/N to form the grid ΓN = {x0, x1, . . . , xN} with
xi = x0 + ih. Note that N must be a multiple of k, N = mk.

Step 2: Using the difference Equation (13), n = 0, solve for the values of (y1, y2, . . . , yk)
T

and (y′1, y′2, . . . , y′k)
T simultaneously on the block sub-interval [x0, xk], as y0 and y′0 are

known from the IVP (1). As an illustration, we outline the procedure with k = 2 for the
two first block intervals, when n = 0 and n = 2, in Appendix D.

Step 3: Next, for n = k, the values of (yk+1, yk+2, . . . , y2k)
T and (y′k+1, y′k+2, . . . , y′2k)

T

are simultaneously obtained over the block sub-interval [xk, x2k], as yk and y′k are known
from the previous block.

Step 4: The process is continued for 2k, 3k, . . . , (N − 1)k to obtain the numerical
solution to (1) on the sub-intervals [x0, xk], [xk, x2k], . . . , [xN−k, xN ].

4.2. Numerical Examples

In order to examine the effectiveness of the BFFM derived in Section 2, we apply
specifically BFFM for k = 2 on some well known oscillatory problems that were solved
in the recent literature. The criteria used in the numerical investigations are two-fold, the
accuracy and the efficiency. A measure of the accuracy is investigated using the maximum
error of the approximate solution defined as Error = max1≤n≤N‖y(x)− yn‖ , where y(x)
is the exact solution and yn is the numerical solution obtained using BFFM while the
computational efficiency can be observed through the plots of the maximum errors versus
the number of function evaluations, NFE, required by each integrator. We emphasize that
the fitting frequencies used in the numerical experiments have been obtained from the
problems referenced from the literature.

4.3. Problems where the First Derivative Appears Explicitly
4.3.1. Example 1

As our first test, we consider the following general second order IVP

y′′ + ω2y = −δy′,

with initial conditions y(0) = 1 and y′(0) = − δ
2 , whose analytical solution is y(x) =

e−(
δ
2 )x cos

(
x
√

ω2 − δ2

4

)
.

We solve this problem in the interval [0,100] with ω = 1, δ = 10−3 and compare the
result of BFFM with the BNM of order 5 in Jator and Oladejo [57], BHT of order 5 and
BHTRKNM of order 3 in Ngwane and Jator [19,58]. Table 1 shows the Maximum errors
and the NFE, while the efficiency curves are presented in Figure 3.

Table 1. Data for Example 1 with ω = 1, δ = 10−3.

h BFFM BHT BHTRKNM BNM

Error NFE Error NFE Error NFE Error NFE

2 7.71× 10−8 51 2.74× 10−4 26 6.48× 10−4 26 6.46× 10−3 26

1 5.43× 10−9 101 6.34× 10−6 51 4.39× 10−5 51 1.17× 10−4 51
1
2 3.55× 10−10 201 1.16× 10−7 101 2.99× 10−6 101 1.88× 10−6 101
1
4 2.11× 10−11 401 1.85× 10−9 201 1.88× 10−7 201 2.96× 10−8 201
1
8 1.32× 10−12 801 2.92× 10−11 401 1.18× 10−8 401 4.46× 10−10 401
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Figure 3. Efficiency Curves for Example 1.

4.3.2. Example 2

Let us consider the following oscillatory system[
y
′′
1

y
′′
2

]
+

[
13 −12
−12 13

][
y1(x)
y2(x)

]
=

12ε

5

[
3 2
−2 −3

][
y
′
1

y
′
2

]
+ ε2

[
f1(x)
f2(x)

]
,

(y1(0), y2(0))
T = (ε, ε)T ,

(
y
′
1(0), y

′
2(0)

)T
= (−4, 6)T ,

with [
f1(x)
f2(x)

]
=

[ 36
5 sin(x) + 24 sin(5x)
− 24

5 sin(x)− 36 sin(5x)

]
,

and whose solution in closed form is given as[
y1(x)
y2(x)

]
=

[
sin(x)− sin(5x) + ε cos(x)
sin(x) + sin(5x) + ε cos(5x)

]
.

In our experiment, we choose the parameter value ε = 10−3 and the fitting frequency
as ω = 5. The problem is solved in the interval [0, 100]. The step sizes for the numerical
experiment are taken as h = 1

2i , i = 3, 4, 5, 6. The numerical results of BFFM in comparison
with the Block Falkner methods (BFM) of order 5 in Ramos et al. [32] and Modified Block
Falkner methods (MBFM) of order 5 in Ehigie and Okunuga [36] are displayed in Table 2
while the efficiency curves are displayed in Figure 4 respectively.

Table 2. Data for Example 2 with ω = 5, ε = 10−3.

h BFFM BFM MBFM

Error NFE Error NFE Error NFE
1
8 0.75× 10−6 601 1.26× 10−1 401 4.79× 10−5 401
1

16 2.29× 10−8 1201 2.29× 10−3 801 7.41× 10−7 801
1

32 1.82× 10−10 2401 3.80× 10−5 1601 1.15× 10−8 1601
1

64 1.48× 10−12 4801 6.03× 10−7 3201 1.82× 10−10 3201
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Figure 4. Efficiency Curves for Example 2.

4.3.3. Example 3

Consider the popular Van der Pol equation given by

y
′′
+ y = δ

(
1− y2

)
y′

with initial values

y(0) = 2 +
1
96

δ2 +
1033

552960
δ4 +

1019689
55738368000

δ2, y
′
(0) = 0.

This is a nonlinear scalar equation. In our numerical experiment, the parameter δ is
selected as δ = 10−3 and the principal frequency is chosen as ω = 1. We integrate this
problem in the interval [0, 100] . In order to compare error of different methods, we use
step lengths h = 1

2i , i = 1, 2, 3, 4. We emphasize that the analytic solution of this problem
does not exists, thus, we used a reference numerical solution which is obtained via special
perturbation approach (Anderson and Geer [59] and Verhulst [60]). The BFFM results in
comparison with the Block Falkner methods (BFM) of order 5 in Ramos et al. [32], Modified
Block Falkner methods (MBFM) of order 5 in Ehigie and Okunuga [36] and The two-stage
and three-stage Two-derivative Runge-Kutta-Nystrom Methods (TDRKN2 and TDRKN3)
of orders 4 and 5 respectively in Chen et al. [25] are displayed in Table 3 while the efficiency
curves are displayed in Figure 4 respectively. It is evident from the results in Table 3 and
Figure 5 that BFFM performs better than some of the existing methods in the literature.
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Table 3. Data for Example 3 with ω = 1, δ = 10−3.

h BFFM BFM MBFM TDRKN2 TDRKN3

Error NFE Error NFE Error NFE Error NFE Error NFE
1
2 7.41× 10−7 151 1.38× 10−2 101 1.23× 10−4 101 1.00× 10−2 603 0.75× 10−4 631
1
4 1.02× 10−8 301 2.45× 10−4 201 9.55× 10−7 201 1.00× 10−3 1202 3.98× 10−6 1230
1
8 5.25× 10−10 601 3.98× 10−6 401 9.12× 10−9 401 1.00× 10−4 2344 1.00× 10−7 2455
1
16 4.37× 10−12 1201 6.31× 10−8 801 5.25× 10−10 801 1.00× 10−5 4786 1.00× 10−9 5012

Figure 5. Efficiency Curves for Example 3.

4.4. Problems Where the First Derivative Does Not Appear Explicitly
4.4.1. Example 4

As our fourth experiment, we consider the periodically forced nonlinear IVP{
y′′ + y3 + y = (cos(x) + ε sin(10x))3 − 99ε sin(10x),

y(0) = 1, y
′
(0) = 10ε, 0 ≤ x ≤ 1000,

whose analytic solution is y(x) = cos(x) + ε sin(10x). For this problem, ω = 1 is selected
as principal frequency with parameter ε = 10−10 . Table 4 shows the performnce of BFFM
in comparison with the TFARKN by Fang et al. [14], the EFRK by Franco [39] and the
EFRKN by Franco [10] respectively. The efficiency curves of the BFFM and the other
methods used for comparisons are displayed in Figure 6.

Table 4. Data for Example 4 with ω = 1 and ε = 10−10.

BFFM TFARKN EFRK EFRKN

Error NFE Error NFE Error NFE Error NFE

0.75 × 10−9 301 2.63 × 10−2 300 1.26× 10−6 8000 7.94× 10−6 2000

1.21× 10−11 601 4.47 × 10−6 400 0.75× 10−7 14,000 0.75× 10−7 5000

6.09× 10−13 1201 3.72 × 10−8 600 0.75× 10−8 22,000 1.26× 10−8 9000

3.66× 10−14 2401 1.17× 10−13 4200 6.31× 10−9 38,000 1.00× 10−9 19,000
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Figure 6. Efficiency Curves for Example 4.

4.4.2. Example 5

As our fifth numerical experiment, we consider the following nonlinear system[
y
′′
1

y
′′
2

]
+

[
13 −12
−12 13

][
y1(x)
y2(x)

]
=

∂V
∂y

, y(0) =
[
−1
1

]
, y

′
(0) =

[
−5
5

]
,

with V(y) = y1y2(y1 + y2)
3, whose solution in closed form is given as[

y1(x)
y2(x)

]
=

[
− sin(5x)− cos(5x)
sin(5x) + cos(5x)

]
.

Table 5 and Figure 7 show the superiority of the BFFM in the interval [0, 100] over the
BNM of order 5 in Jator and oladejo [57], the BHM of order 11 in Jator and King [61] and
the fourth order ARKN in Franco [9].

Table 5. Data for Example 5 on the interval [0, 100].

BFFM BNM BHM ARKN

Error NFE Error NFE Error NFE Error NFE

2.87× 10−19 601 3.30× 10−2 2001 4.58 × 100 183 2.95× 10−3 1621

7.94× 10−21 1201 5.37× 10−4 4001 7.54× 10−8 365 8.51× 10−6 3020

7.94× 10−23 2401 8.47× 10−6 8001 2.20× 10−11 728 3.39× 10−8 6166

1.03× 10−24 4801 1.33× 10−7 16,001 4.95× 10−14 1476 2.51× 10−10 12,022

5.91× 10−26 9601 2.08× 10−9 32,001 9.15× 10−14 2910 NIL NIL
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Figure 7. Efficiency Curves for Example 5.

4.4.3. Example 6

We consider the following well known two body problem

y
′′
1(x) = −y1

r3 , y1(0) = 1, y
′
1(0) = 0

y
′′
2(x) = −y2

r3 , y2(0) = 0, y
′
2(0) = 1,

where r =
√

y2
1 + y2

2, and the solution in closed form is given by y1(x) = cos(x), y2(x) = sin(x).

Table 6 reveals the performance of our proposed BFFM in the interval 0 ≤ x ≤ 10 with
ω = 1 as it compared with the fourth order DIRKNNew of Senu et al. [15] while Figure 8
establishes the efficiency of BFFM.

Table 6. Data for Example 6 on the interval [0, 10].

BFFM DIRKNNew

Error NFE Error NFE

3.87× 10−17 121 7.49× 10−4 5000

1.02× 10−18 241 5.62× 10−7 10,000

2.78× 10−21 481 1.00× 10−9 25,000

4.69× 10−22 961 1.78× 10−10 60,000



Mathematics 2021, 9, 713 16 of 22

Figure 8. Efficiency Curves for Example 6.

5. Conclusions

In this paper, we have proposed a family of Adapted block Falkner methods using
third derivative for solving second order initial value problem with oscillatory solution
directly numerically. The methods are applied in block form as simultaneous numerical
integrators and thus, do not suffer the disadvantages of predictor-corrector mode. The
basic properties of the methods are investigated and discussed. The convergence of the
proposed methods was established and the stability regions are presented. The numerical
results on well-known second order initial value problems with oscillatory solutions show
the effectiveness of the proposed methods compared with some existing methods in the
reviewed literature. Although the proposed family of methods can be implemented with
variable steps, that aspect was not considered in the current work, but will be considered
in our future research.
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Appendix A. Specification of Entries of Matrix Π, the Determinant of Π and
Determinants of Πi

Π =



1 xn+1 sin(ω xn+1) cos(ω xn+1) sinh(ω xn+1) cosh(ω xn+1)

0 1 cos(ω xn+1)ω − sin(ω xn+1)ω cosh(ω xn+1)ω sinh(ω xn+1)ω

0 0 −ω2 sin(ω xn) −ω2 cos(ω xn) ω2 sinh(ω xn) cosh(ω xn)ω2

0 0 −ω2 sin(ω xn+1) −ω2 cos(ω xn+1) ω2 sinh(ω xn+1) cosh(ω xn+1)ω
2

0 0 −ω2 sin(ω xn+2) −ω2 cos(ω xn+2) ω2 sinh(ω xn+2) cosh(ω xn+2)ω
2

0 0 −ω3 cos(ω xn+2) ω3 sin(ω xn+2) ω3 cosh(ω xn+2) sinh(ω xn+2)ω
3


det(Π) = ω9(− cos(ω h) sinh(2 ω h) + sin(ω h) cosh(2 ω h)− sin(2 ω h) cosh(ω h) + cos(2 ω h) sinh(ω h) + sin(ω h) + sinh(ω h))

det(Π0) = −2
((
− cos(ω h)ω fn+1xn+1 +

((
y
′
n+1xn+1 − yn+1

)
ω2 − fn+1

)
sin(ω h)

)
(cosh(ω h))2 + (( cos(ω h)

)2
ω fn+1xn+1

+
(((
−y

′
n+1xn+1 + yn+1

)
ω2 + fn+1

)
sinh(ω h)−

((
y
′
n+1xn+1 − yn+1

)
ω2 + fn+1

)
sin(ω h)

)
cos(ω h)

−xn+1(sin(ω h)ω fn+1 + gn+2 sinh(ω h) + (−gn+2xn+1 + fn + fn+2) sin(ω h)−ω xn+1( fn+1 − 1/2 fn+2) cosh(ω h)

+
(((

y
′
n+1xn+1 − yn+1

)
ω2 + fn+1

)
sinh(ω h)−ω fn+2xn+1

)
(cos(ω h))2

+((− sin(ω h)ω fn+1xn+1 + gn+2xn+1 − fn − fn+2 ) sinh(ω h)
+xn+1(sin(ω h)gn+2 + ω fn+1) cos(ω h) + ω xn+1(sin(ω h)( fn + fn+2) sinh(ω h) + 1/2 fn+2)ω

7

det(Π1) = ω7
(

ω
(

y
′
n+1 sin(ω h)ω− cos(ω h) fn+1 + fn+2

)
cosh(2 ω h) +

(
−ω2y

′
n+1 cos(ω h)− sin(ω h)ω fn+1 − gn+2

)
sinh(2 ω h)

+ω
(

ω y
′
n+1 sinh(ω h) + cosh(ω h) fn+1 − fn+2

)
cos(2 ω h) +

(
− cosh(ω h)ω2y

′
n+1 −ω fn+1 sinh(ω h) + gn+2

)
sin(2 ω h)

+
(

2 ω ( fn + fn+2) sin(ω h) + ω2y
′
n+1 + 2 cos(ω h)gn+2

)
sinh(ω h)

+
(

ω2y
′
n+1 − 2 cosh(ω h)gn+2

)
sin(ω h)−ω fn+1(cosh(ω h)− cos(ω h))

det(Π2) = ω6(−ω (cos(ω xn+1) fn+2 − cos(ω xn+2) fn+1) cosh(2 ω h) + (ω sin(ω xn+2) fn+1 + gn+2 cos(ω xn+1)) sinh(2 ω h )
+(− cos(ω xn+2 )gn+2 −ω ( fn + fn+2) sin(ω xn+2)− gn+2 cos(ω xn) sinh(ω h)
+ω (cos(ω xn+1) fn − cosh(ω h) fn cos(ω xn+2) + cos(ω xn)(cosh(ω h) fn+2 − fn+1)

det(Π3) = −ω6(−ω (sin(ω xn+1) fn+2 − sin(ω xn+2) fn+1) cosh(2 ω h) + (ω ( fn − fn+1 + fn+2) cos(ω xn+2)

−gn+2(sin(ω xn) − sin(ω xn+1) + sin(ω xn+2 sinh(ω h) + (sin(ω xn+1) fn − cosh(ω h) fn sin(ω xn+2)

+ sin(ω xn)(cosh(ω h) fn+2 − fn+1ω

det(Π4) = −ω6(−ω (cosh(ω xn+1) fn+2 − cosh(ω xn+2) fn+1) cos(2 ω h) + (−ω sinh(ω xn+2) fn+1 + gn+2 cosh(ω xn+1)) sin(2 ω h)
+(− cosh(ω xn+2)gn+2 + ω ( fn + fn+2) sinh(ω xn+2)− gn+2 cosh(ω xn) sin(ω h) + ω (cosh(ω xn+1) fn

− cos(ω h) fn cosh(ω xn+2) + cosh(ω xn)(cos(ω h fn+2 − fn+1))

det(Π5) = ω6(−ω (sinh(ω xn+1) fn+2 − sinh(ω xn+2) fn+1) cos(2 ω h) + (−ω fn+1 cosh(ω xn+2) + sinh(ω xn+1) gn+2) sin(2 ω h)
+(ω ( fn + fn+2) cosh(ω xn+2)− gn+2(sinh(ω xn) + sinh(ω xn+2) ) sin(ω h) + (sinh(ω xn+1) fn

− cos(ω h) fn sinh(ω xn+2) + sinh(ω xn)(cos(ω h fn+2 − fn+1))ω

,
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Appendix B. Coefficients of the Main Methods of the BFFM for k = 2

β20 = 2 (u sin(u)+cos(u)−1) sinh(u)−sin(u)(cosh(u)−1)
ψ1(u)

= − 1
80 −

17 u4

1209600 −
68953 u8

435891456000 −
6136859 u12

14938871980032000

β21 = 1
ψ1(u)

((u sin(u) + cos(u)− 2) sinh(2 u) + (u sinh(u)− cosh(u) + 2) sin(2 u)

+(cos(u)u− sin(u)) cosh(2 u) + (− cosh(u)u + sinh(u)) cos(2 u)
− cos(u)u + cosh(u)u− sin(u) + sinh(u))

= 3
10 + 271 u4

151200 + 277219 u8

54486432000 + 50922197 u12

1867358997504000

β22 = 1
ψ1(u)

((−u + sin(u)) cosh(2 u) + (u− sinh(u)) cos(2 u) + cos(u) sinh(2 u)

− sin(2 u) cosh(u) + (−2 u sin(u)− 2 cos(u) + 1) sinh(u) + sin(u)(2 cosh(u)− 1))

= 17
80 + 403 u4

403200 + 1815161 u8

435891456000 + 265892323 u12

14938871980032000

γ2 = (u−2 sin(u)) sinh(2 u)+(−u+2 sinh(u)) sin(2 u)−2 u(cos(u) sinh(u)−sin(u) cosh(u))
uψ1(u)

= 17
80 + 403 u4

403200 + 1815161 u8

435891456000 + 265892323 u12

14938871980032000

,

where

ψ1(u) =u2 cos(u) sinh(2 u)− u2 sin(u) cosh(2 u) + u2 sin(2 u) cosh(u)

− u2 cos(2 u) sinh(u)− u2 sin(u)− u2 sinh(u) (A1)

β̄20 = 2 sin(u) sinh(u)+cos(u)−cosh(u)
ψ2(u)

= −1/48− u4

34560 −
367 u8

1341204480 −
44591 u12

58583811686400

β̄21 = − cosh(2 u) cos(u)+sinh(2 u) sin(u)−cos(2 u) cosh(u)+sin(2 u) sinh(u)−2 cosh(2 u)+2 cos(2 u)−cos(u)+cosh(u)
ψ2(u)

= 5
12 + 37 u4

12096 + 625 u8

67060224 + 141389 u12

2929190584320

β̄22 = −2 cosh(2 u) cos(u)+2 cos(2 u) cosh(u)+2 sin(u) sinh(u)+cosh(2 u)+cos(2 u)
ψ2(u)

= 29
48 + 443 u4

241920 + 913 u8

121927680 + 1867219 u12

58583811686400

γ̄2 = − (cos(u)−1) sinh(2 u)+(− cosh(u)+1) sin(2 u)+sin(u) cosh(2 u)−cos(2 u) sinh(u)+(2 cos(u)−1) sinh(u)+(−2 cosh(u)+1) sin(u)
uψ2(u)

= −1/8− 19 u4

40320 −
2207 u8

1117670400 −
81083 u12

9763968614400

where

ψ2(u) =u sin(u) + u cos(2 u) sinh(u)− u sin(2 u) cosh(u)− u cos(u) sinh(2 u)

+ u sin(u) cosh(2 u) + u sinh(u) (A2)
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Appendix C. Matrices R A1 − A0 for k = 2 and k = 3

[RA1 − A0]k=2 =



0 R− 1 0 −R

R R 0 R

0 0 0 −R− 1

0 0 R R


,

[RA1 − A0]k=3 =



0 0 R− 1 0 0 R

0 R R 0 0 R

R 0 R 0 0 2 R

0 0 0 0 0 R− 1

0 0 0 0 R R

0 0 0 R 0 R


.

Appendix D. Illustration of Step 2 of the Implementation for k = 2 When n = 0 and n = 2

For k = 2, when n = 0, the Equation (13) becomes

A1Y1 = A0Y0 + h2B0F0 + h2B1F1, (A3)

where
Y1=

(
y1, y2, hy′1, hy′2

)T ,

Y0 =
(
y−1, y0, hy′−1, hy′0

)T ,

F1 = ( f1, f2, hg1, hg2)
T ,

F0 = ( f−1, f0, hg−1, hg0)
T

Substituting for the square matrices A0, A1, B0 and B1 in Equation (A3) to obtain

y2 − hy′2 = y0 + h2
2
∑

j=0

(
β0

2j(u)y
′′
j + hγ0

2(u)y
′′′
2

)
y1 + y2 + hy′2 = h2

2
∑

j=0

(
β2j(u)y

′′
j + hγ2(u)y

′′′
2

)
−hy′1 = hy′0 + h2

2
∑

j=0

(
β̄0

2jy
′′
j (u) + hγ̄0

2(u)y
′′′
2

)
−hy′1 + hy′2 = h2

2
∑

j=0

(
β̄2jy

′′
j (u) + hγ̄2(u)y

′′′
2

)
.

(A4)

We solve Equation (A4) simultaneously to obtain the values of (y1, y2, y′1, y′2)
T on the

block sub-interval [x0, x2], as y0 and y′0 are known from the IVP (1), y′′ = f (x, y, y′) and y′′′ is
the derivative of y′′.

When n = 2, the Equation (13) becomes

A1Y3 = A0Y2 + h2B0F2 + h2B1F3, (A5)

where
Y3=

(
y3, y4, hy′3, hy′4

)T ,

Y2 =
(
y1, y2, hy′1, hy′2

)T ,

F3 = ( f3, f4, hg3, hg4)
T ,

F2 = ( f1, f2, hg1, hg2)
T
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We then substitute for the square matrices A0, A1, B0 and B1 in Equation (A5) to obtain

y4 − hy′4 = y2 + h2
2
∑

j=0

(
β0

2j(u)y
′′
j+2 + hγ0

2(u)y
′′′
4

)
y3 + y4 + hy′4 = h2

2
∑

j=0

(
β2j(u)y

′′
j+2 + hγ2(u)y

′′′
4

)
−hy′3 = hy′1 + h2

2
∑

j=0

(
β̄0

2jy
′′
j+2(u) + hγ̄0

2(u)y
′′′
4

)
−hy′3 + hy′4 = h2

2
∑

j=0

(
β̄2jy

′′
j+2(u) + hγ̄2(u)y

′′′
4

)
.

(A6)

We solve Equation (A6) simultaneously to obtain the values of (y3, y4, y′3, y′4)
T on the

block sub-interval [x2, x4], as y2 and y′2 are known from the previous block.
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