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Abstract
In this paper, we have developed a novel three step second derivative block method and
coupled it with fourth order standard compact finite difference schemes for solving time
dependent nonlinear partial differential equations (PDEs) of physical relevance. Two well-
known problems viz. the FitzHugh–Nagumo equation and the Burgers’ equation have been
considered as test problems to check the effectiveness of the proposed scheme. Firstly, we
developed a novel block scheme and discussed its characteristics for solving initial-value
systems, such as the one resulting from the discretization of the spatial derivatives that appear
in the PDEs. Although many time integration techniques already exist to solve discretized
PDEs, our goal is to develop a numerical scheme keeping in mind saving computational time
whilemaintaining good accuracy. The proposed block scheme has been proved to beA-stable
and consistent. The method performs well for solving the stiff case of the FitzHugh–Nagumo
equation, as well as for solving the Burgers equation at different values of viscosity and time.
The numerical experiments reveal that the developed numerical scheme is computationally
efficient.
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1 Introduction

Many phenomena of physical importance are modelled by nonlinear PDEs. Since the ana-
lytical approach to obtain exact solutions of nonlinear PDEs is only applicable to a small
class of problems, and in this case, one of the possible choices to tackle the given problem is
the consideration of numerical approximations to the solution (Collatz 1966; Debnath 2012).
Developing novel efficient numerical schemes or modifying existing ones to solve these
problems is a permanent goal in this field. In this article, our work considers the approximate
solution of one-dimensional time dependent initial-boundary value PDEs of the form

ut = F(x, t, u, ux , uxx ), with a ≤ x ≤ b, t ≥ t0, (1)

along with the initial condition

u(x, t0) = g(x),

and boundary conditions as:

u(a, t) = g1(t), u(b, t) = g2(t),

where u, x and t represent the solution of the problem, and the space and time variables,
respectively. The spatial semi-discretization of the above problem results into a system of
first order ordinary differential equations in t as follows

dU

dt
= f (t,U ) and U (t0) = U0, (2)

which can then be solved by any existing time integration method, for instance, Runge–Kutta
methods or linear multi-step methods. In this article, we have considered two non-linear
time dependent PDEs viz. the FitzHugh–Nagumo equation and the Burgers’ equation, that
have a great number of practical applications. The FitzHugh–Nagumo equation is a non-
linear reaction diffusion equation arising in the field of science and technology, especially
in neurophysiology and population growth models. The Burgers’ equation is also a non-
linear PDE arising mainly in the fields of turbulence modeling and shock theory. It involves
both connective and diffusive effects. To obtain numerical solutions of FitzHugh–Nagumo
equations, some researchers have considered finite difference methods as well as compact
difference methods as in Agbavon and Appadu (2020), Akkoyunlu (2019). Moreover, the
authors in Ramos et al. (2022) used a cubic B-spline approach to obtain numerical solutions
of the FitzHugh–Nagumo equation. Similarly, for solving Burgers’ equation, many different
types of approaches have been considered in the literature, for instance, a predictor-corrector
scheme (Zhang and Wang 2012), a high order compact finite difference scheme (Yang et al.
2019), a cubic B-splines collocation method (Mittal and Jain 2012), or a Crank–Nicolson
technique (Kadalbajoo and Awasthi 2006). For over the last fifty years, compact finite differ-
ences schemes (CFDS) have been popularly used over the standard finite difference schemes
(FDS) due to their small stencil size and better accuracy (Adam 1975; Li and Visbal 2006;
Tyler 2007). But, so far, the performance of compact finite difference schemes have not been
analyzed by combining them with block methods to compute numerical solutions of time
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dependent PDEs. Compact finite difference schemes are used over the standard finite dif-
ference schemes to optimize accuracy in approximating the spatial derivatives appearing in
a given problem. Block methods are self starting methods firstly proposed by Milne (1953)
for getting approximate solution of a system of first order ordinary differential equations.
These methods provide an approximate solution for more than one point at a time and save
computational time while maintaining accuracy (Lambert 1973). For more details on block
methods and their implementations, one can consult (Lambert 1973; Ramos and Singh 2017;
Ramos et al. 2022; Shampine andWatts 1969; Singh and Ramos 2018). Our objective here is
to extend the applicability of block methods by coupling them with compact finite difference
schemes, for solving time dependent PDEs.

2 Derivation of a three step blockmethod

To approximate the solution of problem (2), we will firstly discretize the time domain [t0, tk]
into k steps of equal width h = tk−t0

k with grid points as: t0 < t1 < t2 · · · < tk . For the sake
of simplicity, we will develop the method for a scalar problem u′ = f (t, u), u(t0) = u0,
although it could be applied using a componentwise implementation for solving a system like
the one in (2). Consider a polynomial approximation to the exact solution of this problem on
the interval [tn, tn+3] as:

u(t) ≈ p(t) =
6∑

n=0

ant
n . (3)

The choice of the degree of the above polynomialmust be a compromise between the accuracy
that one wants to achieve and the complexity of the method that is obtained. In our case, the
interpolatory and collocation conditions imposed below determine that the maximum degree
of the approximation polynomial is six. Then, we have

u′(t) ≈ p′(t) =
6∑

n=1

nant
n−1 (4)

and u′′(t) ≈ p′′(t) =
6∑

n=2

n(n − 1)ant
n−2, (5)

where an ∈ R are coefficients to be determined. Note that there are seven unknown coeffi-
cients to be determined in (3) and to get them, we impose the following interpolatory and
collocation conditions

p(tn) = un, p
′(tn) = fn, p

′(tn+1) = fn+1,

p′(tn+2) = fn+2, p
′(tn+3) = fn+3,

p′′(tn) = f ′
n, p

′′(tn+3) = f ′
n+3.

Here, un+ j , fn+ j and f ′
n+ j are respectively approximation to u(tn+ j ), u′(tn+ j ) and u′′(tn+ j ).

The above conditions result in the following system of equations that can be written in matrix
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form as
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 tn t2n t3n t4n t5n t6n
0 1 2tn 3t2n 4t3n 5t4n 6t5n
0 1 2tn+1 3t2n+1 4t3n+1 5t4n+1 6t5n+1
0 1 2tn+2 3t2n+2 4t3n+2 5t4n+2 6t5n+2
0 1 2tn+3 3t2n+3 4t3n+3 5t4n+3 6t5n+3
0 0 2 6tn 12t2n 20t3n 30t4n
0 0 2 6tn+3 12t2n+3 20t3n+3 30t4n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

un
fn
fn+1

fn+2

fn+3

f ′
n

f ′
n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

The values of the seven unknowns appearing in the above system of equations have been
obtained by using the Mathematica system. The values of the unknown coefficients are not
displayed here as they are cumbersome expressions. By putting these values and changing
the variable t to tn + mh, the polynomial in (3) can be re-written as

p(tn + mh) = b0un + h(b1 fn + b2 fn+1 + b3 fn+2 + b4 fn+3) + h2(b5 f
′
n + b6 f

′
n+3), (6)

where the coefficients b′
i s are continuous functions of the variablem. In order to get complete

structure of the block method, the polynomial given in (6) has been evaluated for m = 1, 2
and 3. This results in a three step block method given by

un+1 = un + h

6480
(3463 fn + 3537 fn+1 − 783 fn+2 + 263 fn+3)

+ h2

6480
(582 f ′

n − 102 f ′
n+3)

un+2 = un + h

405
(181 fn + 459 fn+1 + 189 fn+2 − 19 fn+3) + h2

405
(24 f ′

n + 6 f ′
n+3)

un+3 = un + h

80
(39 fn + 81 fn+1 + 81 fn+2 + 39 fn+3) + h2

80
(6 f ′

n − 6 f ′
n+3) (7)

The method given above is a three-step second derivative block method that will produce
approximate solutions of the initial-value problem at the points tn+1, tn+2 and tn+3 simulta-
neously.

3 Characteristics of the blockmethod

In this section, the basic characteristics of the method (7) have been analyzed.

3.1 Error analysis, order and consistency of themethod

Firstly, consider a difference operator L j related to the three step block method given by (7)
as:

L j (u(t), h) = u(t + jh)

−Fj [h, u(t), u′(t), u′(t + h), u′(t + 2h), u′(t + 3h), u′′(t), u′′(t + 3h)]
(8)

with j = 1, 2, 3 and Fj is the corresponding right hand side of each formula. Expanding the
above expression by the usual Taylor series about the point t and combining the like terms
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in h, the local truncation errors of each formula given in (7), are obtained as

LT E1 = −97u7(t)h7

100800
+ O(h8),

LT E2 = u7(t)h7

6300
+ O(h8),

LT E3 = −9u7(t)h7

11200
+ O(h8).

The above expressions for local truncation errors suggest that the method is of order six.
Moreover, the proposed blockmethod is consistent since it has an algebraic order≥ 1 (Ramos
and Singh 2017).

3.2 Zero-stability

The stability of any numericalmethod is an important aspect that characterizes a small change
in the solution under a small perturbation in the initial conditions. The proposed blockmethod
given in (7) is said to be zero-stable if all the roots of its first characteristic polynomial have
magnitude ≤ 1 and the roots with unit modulus, if any, must be simple. Now, as h → 0, the
proposed method takes the form:

IUn − BUn−1 = 0,

where Un = (un+1, un+2, un+3)
T and Un−1 = (un−2, un−1, un)T ,

B =
⎡

⎣
0 0 1
0 0 1
0 0 1

⎤

⎦

and I being the identity matrix. The characteristic equation for the above method will be
|B − λI | = λ2(1 − λ) = 0, having characteristic roots as {0, 0, 1}. Thus, the proposed
method is zero-stable.

3.3 Linear stability analysis

The linear stability analysis of a numerical scheme can be carried out by applying it to the
Dahlquist’s test equation given by:

u′ = λu, Re(λ) < 0. (9)

Any exact solution ceλt to the above Eq. (9) will be damped out as t approaches to ∞. The
behavior of the numerical solution should also mimic the nature of the true solution for the
method to be stable. Now, applying the proposed block method to Eq. (9) and substituting
λh = h̄, the resulting difference system can be written in matrix form as:

A

⎡

⎣
un+1

un+2

un+3

⎤

⎦ = B

⎡

⎣
un−2

un−1

un

⎤

⎦ ,
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where, the matrix A is given by:

A =
⎡

⎢⎣
1 − 3537h̄

6480
783h̄
6480

102h̄2
6480 − 263h̄

6480
−459h̄
405 1 − 189h̄

405
−6h̄2
405 + 19h̄

405

− 81h̄
80

−81h̄
80 1 + 6h̄2

80 − 39h̄
80

⎤

⎥⎦ ,

and the matrix B:

B =
⎡

⎢⎣
0 0 1 + 3463h̄

6480 + 582h̄2
6480

0 0 1 + 181h̄
405 + 24h̄2

405

0 0 1 + 39h̄
80 + 6h̄2

80

⎤

⎥⎦ .

So, the final form of the method applied to the test equation results in:
⎡

⎣
un+1

un+2

un+3

⎤

⎦ = M(h̄)

⎡

⎣
un−2

un−1

un

⎤

⎦ .

Here, the matrix

M(h̄) = A−1B

is the corresponding stabilitymatrix. The eigenvalues of this stabilitymatrix are
{
0, 0, P(h̄)

}
,

where

P(h̄) = 120 + 180h̄ + 116h̄2 + 39h̄3 + 6h̄4

120 − 180h̄ + 116h̄2 − 39h̄3 + 6h̄4
.

The region of absolute stability is defined as (see Hairer and Wanner 1996):

S = {
h̄ ∈ C : |P(h̄)| < 1

}
.

Amethod is said to beA-stable if the left half of the complex plane is contained within S.
Figure1 below shows the stability region for the proposed block method, which is A-stable.

4 Compact finite difference scheme for the spatial derivatives

To get a semi-discretization of a given PDE, the spatial derivatives present in the PDE will
be approximated using standard fourth order compact finite difference schemes (for details
on compact finite difference schemes, [see Lele (1992), Li and Chen (2008), Li and Visbal
(2006), Tyler (2007) and references therein].) To do that, firstly discretize the space interval
[a, b] into N equal parts as follows:

a = x1 < x2 < · · · < xN < xN+1 = b

with a uniformmesh-size hx = xi+1−xi . Now, consider a fourth order compact discretization
of tri-diagonal nature (Li and Chen 2008) for approximating first order spatial derivatives of
u(x, t) at the interior nodes as

1

4
u′
i−1 + u′

i + 1

4
u′
i+1 = 3

4hx
(ui+1 − ui−1); i = 2, 3, ..., N ,
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Fig. 1 Stability region of the proposed method

and then to approximate the first order derivatives at the boundary points, consider one sided
boundary schemes of the same order as that of the scheme for interior nodes as follows

for i = 1

u′
1 + 3u′

2 = −17

6hx
u1 + 3

2hx
(u2 + u3) − 1

6hx
u4,

for i = N + 1,

3u′
N + u′

N+1 = 17

6hx
uN+1 − 3

2hx
(uN + uN−1) + 1

6hx
uN−2.

For more details on one sided boundary schemes, one can consult (Lele 1992). The complete
system of equations obtained above from the fourth order compact discretization of first order
derivatives can be written in matrix form as:

F1U
′ = F2U , (10)

where the matrices F1 and F2 are written as

F1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0 0 · · · 0 0 0 0
1/4 1 1/4 0 · · · 0 0 0 0
0 1/4 1 1/4 · · · 0 0 0 0
...

. . .
. . .

. . .
. . . 0 0 0 0

0 0 0 0 · · · 1/4 1 1/4 0
0 0 0 0 · · · 0 1/4 1 1/4
0 0 0 0 · · · 0 0 3 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)
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and

F2 = 1

2hx

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−17
3 3 3 −1

3 . . . 0 0 0 0
−3
2 0 3

2 0 . . . 0 0 0 0
0 −3

2 0 3
2 0 . . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 . . . 0 −3
2 0 3

2
0 0 0 0 . . . 1

3 −3 −3 17
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

Here,

U ′ = [u′
1, u

′
2, u

′
3, ..., u

′
N , u′

N+1]T and U = [u1, u2, u3, ..., uN , uN+1].
Clearly,we can approximate the first order spatial derivatives at each grid point by considering
the matrix multiplication F−1

1 F2(U ), resulting in vector U ′.
In a similar manner, the matrix system approximating the second order spatial derivatives

using the standard fourth order compact finite difference scheme as in Li and Chen (2008)
can be written as:

F3U
′′ = F4U , (11)

where the matrices F3 and F4 are given as

F3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 11 0 0 · · · 0 0 0 0
1/10 1 1/10 0 · · · 0 0 0 0
0 1/10 1 1/10 · · · 0 0 0 0
...

. . .
. . .

. . .
. . . 0 0 0 0

0 0 0 0 · · · 1/10 1 1/10 0
0 0 0 0 · · · 0 1/10 1 1/10
0 0 0 0 · · · 0 0 11 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

and

F4 = 1

h2x

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

13 −27 15 −1 . . . 0 0 0 0
6
5

−12
5

6
5 0 . . . 0 0 0 0

0 6
5

−12
5

6
5 0 . . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 . . . 0 6
5

−12
5

6
5

0 0 0 0 . . . −1 15 −27 13

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

Here,

U ′′ = [u′′
1, u

′′
2, u

′′
3, ..., u

′′
N , u′′

N+1]T

is the vector approximating the second derivatives at all the grid points which can be obtained
by computing F−1

3 F4(U ).
Using the above discretizations for the first- and second-order derivatives appearing in (1),
we get a semi-discretized form of that PDE as a system of first order ODEs. Our idea is
to use the above described compact finite difference schemes for approximating the spatial
derivatives and then solve the obtained system of ODEs using the proposed block method
(we will name this strategy as CFDBM). Since the proposed block method obtained is of
implicit nature, therefore we need the solution values of the previous block as the starting
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values to approximate the solution at next block. So, an iterative strategy as decsribed in
Amat and Busquier (2017), Petkovic et al. (2013) has to be used. For this purpose, we have
used the FindRoot command in Mathematica system.

5 Test problems

In this section, we will use the CFDBM described above to solve two well-known nonlinear
problems, viz., the FitzHugh–Nagumo equation and the Burgers’ equation. Furthermore, the
stability of the resulting differential systems has also been addressed.

5.1 FitzHugh–Nagumo equation

The FitzHugh–Nagumo equation is a well-known reaction-diffusion equation of non-linear
nature physically significant in the fields of genetics, biology, heat and mass transfer, nuclear
reactor theory and many other branches (Ramos et al. 2022). Its mathematical model can be
written as

ut = uxx + u(1 − u)(u − ν), (11a)

along with the initial condition

u(x, 0) = g(x); a ≤ x ≤ b, (11b)

and two boundary conditions as:

u(a, t) = g1(t) = u1(t) and u(b, t) = g2(t) = uN+1(t), t ≥ 0. (11c)

Here, ν represents a parameter which monitors the overall dynamics of the equation. As
a first step, the spatial derivatives appearing in (11a) will be approximated using the fourth
order compact finite difference schemes discussed in Lele (1992), Tyler (2007). Then, wewill
have uxx ≈ F−1

3 F4(U ). After semi-discretization, the system of first order ODEs obtained
from (11a)–(11c) can be written as

⎡

⎢⎢⎢⎢⎣

u′
1

u′
2

. . .

u′
N

u′
N+1

⎤

⎥⎥⎥⎥⎦
= (F−1

3 F4 − ν I )

⎡

⎢⎢⎢⎢⎣

u1
u2
. . .

uN

uN+1

⎤

⎥⎥⎥⎥⎦
+ (1 + ν)

⎡

⎢⎢⎢⎢⎣

u21
u22
. . .

u2N
u2N+1

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎣

u31
u32
. . .

u3N
u3N+1

⎤

⎥⎥⎥⎥⎦
.

So, the ODEs obtained from above system can be compactly written as:

U ′ = AU + B, (12)

where A = (F−1
3 F4 − ν I ) is a (N + 1) × (N + 1) matrix and B is a (N + 1) × 1 row vector

containing the remaining non-linear terms.

5.2 Burgers’ equation

TheBurgers’ equation is awell-known non-linear PDEhaving its applications in fluid dynam-
ics, statistical physics and many other areas. Its one-dimensional form can be written as:

ut + uux = νuxx , (12a)
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along with the initial condition

u(x, 0) = g(x); a ≤ x ≤ b, (12b)

and two boundary conditions as:

u(a, t) = g1(t) = u1(t) and u(b, t) = g2(t) = uN+1(t), t ≥ 0. (12c)

Here, x represents the space variable, t represents the time variable, ν is the kinematic
viscosity and u gives the velocity of the fluid. Similarly, as in the FitzHugh–Nagumo equation,
we will have ux = F−1

1 F2(U ) and uxx = F−1
3 F4(U ). After semi-discretization, the system

of first order ODEs obtained from (12a)–(12c) can be written as
⎡

⎢⎢⎢⎢⎣

u′
1

u′
2

. . .

u′
N

u′
N+1

⎤

⎥⎥⎥⎥⎦
= ν(F−1

3 F4)

⎡

⎢⎢⎢⎢⎣

u1
u2
. . .

uN

uN+1

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎣

u1
u2
. . .

uN

uN+1

⎤

⎥⎥⎥⎥⎦

◦ (F−1
1 F2)

⎡

⎢⎢⎢⎢⎣

u1
u2
. . .

uN

uN+1

⎤

⎥⎥⎥⎥⎦
.

Here, ′′◦′′ represents the Hadamard (element-wise) product of two matrices of same dimen-
sions. The above system can be written in a more compact form as

U ′ = AU + B, (13)

where A = ν(F−1
3 F4) is a (N +1)×(N +1)matrix and B contains the remaining non-linear

part.

5.3 Stability of the differential system

In the above subsections, we have discussed the semi-discretization process considering the
standard fourth order compact finite difference schemes and obtained a first order differential
system in the time independent variable, on which the proposed block method can be applied
to obtain a numerical solution. This section addresses the stability of the differential system
obtained in both cases, using a similar approach as inRamos et al. (2022). The implementation
of compact finite difference schemes to the considered PDEs results in a system of ODEs of
the form

U ′ = AU + B, (14)

where, A is a (N + 1) × (N + 1) matrix and B is a (N + 1) × 1 vector containing non-
homogeneous parts. The matrices for the considered PDEs can be written as

A = (A2 − ν I )

for the FitzHugh–Nagumo equation, and

A = νA2

for the Burgers’ equation where the matrix A2 is given by: A2 = F−1
3 F4.
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Fig. 2 Real parts of eigenvalues v/s N for FitzHugh–Nagumo system taking ν = 0.75

Fig. 3 Real parts of eigenvalues v/s N for Burgers’ system taking ν = 0.01

To investigate the stability of the differential system given by (14), we will linearize the
non-linear terms of the considered PDEs by assuming the constant value of u(x, t) = U j

i for
(x, t). The stability of the resulting linear differential system will imply the stability of the
non-linear differential system as discussed in Ramos et al. (2022). The eigenvalues of matrix
A will determine the stability characteristics. The differential system is said to be stable if
all the eigenvalues have either negative or zero real part. This fact has been verified for the
two considered differential systems for different values of N (number of spatial grid points).

In Figs. 2 and 3, the real parts of the eigenvalues obtained from the differential systems
of the discretized PDEs have been plotted against N . These plots show that the real parts of
the eigenvalues so obtained are all negative, thereby making the differential system stable in
both cases.
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6 Numerical experiments

This section addresses the performanceof the proposedCFDBM,byconsidering somenumer-
ical experiments. Comparisons with other methods in the existing literature have been carried
out. We have used Wolfram Mathematica 11.0 on a personal computer with 1.70 GHz Intel
i3 processor. The computations of L∞ and Lrms errors are calculated by using the usual
formulas (Erdogan et al. 2020; Jain et al. 2016)

L∞ = max
1≤i≤N+1

|ei | ;

Lrms =
(
N+1∑

i=1

e2i
N + 1

)1/2

,

where

ei = u(xi , t) −U (xi , t),

for a specific value of time t , and u(xi , t), U (xi , t) represent the analytical and numerical
solutions at point (xi , t) respectively.

6.1 Non-linear FitzHugh–Nagumo equation

6.1.1 Example 1

Consider the test problem given by (11a) taking ν = 0.75 along with the initial condition as:

u(x, 0) = 1

2
+ 1

2
tanh

(
1

2
√
2
x

)
, −10 ≤ x ≤ 10.

The analytical solution of this problem is given as:

u(x, t) = 1

2
+ 1

2
tanh

(
1

2
√
2
x − (2ν − 1)

4
t

)
,

and the boundary conditions are obtained from the exact solution.
In Table 1, we have compared the L∞ error norm for various values of N at time t = 0.2

using CFDBM with some existing data from Akkoyunlu (2019). We have achieved almost
same or even better accuracy in the numerical approximation only in a single application with
the proposed scheme whereas the scheme given in Akkoyunlu (2019) has attained similar
accuracies after 20 time steps. Therefore, smaller errors have been obtained in fewer iterations
using CFDBM, thus saving computational effort.

It is clear that for this problem CFDBM performs better than the technique in Akkoyunlu
(2019). Further, to justify the superior performanceofCFDBMover someexisting techniques,
we have compared the results for this problem using CFDBM with the results from Ahmad
et al. (2019), Jiwari et al. (2014) and Ramos et al. (2022) for N = 100 and ν = 0.01 at
different values of time. The number of time iterations used with CFDBM is the same as
used by Ramos et al. with OHBCM in Ramos et al. (2022). Tables 2 and 3 clearly show that
CFDBMis themost efficient among all the compared schemes by providingmuch smaller L∞
and Lrms errors. It is clear that CFDBM performs better than all other compared techniques
for all values of time.
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Table 1 Comparison of L∞ error for Example 1 at t = 0.2

N L∞ (CFDBM) L∞ (method in Akkoyunlu (2019))

12 1.7169 ×10−4 3.9857 ×10−4

24 1.7119 ×10−5 2.3475 ×10−5

48 1.0244 ×10−6 8.3749 ×10−6

64 3.2892 ×10−7 5.9363 ×10−6

Number of iterations 1 20

6.1.2 Example 2

Consider the test problem given by (11a) taking ν = 0.5 along with the initial condition
given in Inan et al. (2020) as:

u(x, 0) = 1

1 + exp(−x√
2
)

, 0 ≤ x ≤ 1.

The analytical solution of this problem is:

u(x, t) = 1

1 + exp( −s√
2
)
, t > 0,

where s = x + ct and c = √
2

( 1
2 − ν

)
.

In Table 4, absolute errors computed using CFDBM for some of the grid points from the
domain have been compared with some existing data from Inan et al. (2020). The errors
obtained using CFDBM are smaller than those provided by the schemes in Inan et al. (2020)
named ExpFDM and ANM.

6.2 A stiff case of the FitzHugh–Nagumo equation

Consider the stiff case of test problem of type (11a) as given in Agbavon and Appadu (2020)
written below:

ut = uxx + βu(1 − u)(u − γ ), (15)

where γ ∈ (0, 1) characterizes the overall dynamics of the equation and β > 0 represents
the natural growth rate. Consider the problem along with the initial condition given as:

u(x, 0) = 1

2
− 1

2
tanh

( √
β

2
√
2
x

)
, −10 ≤ x ≤ 10.

The analytical solution of this problem is given as:

u(x, t) = 1

2
− 1

2
tanh

( √
β

2
√
2
(x − ct)

)
, (16)

where, c = −
√

β
2 (2γ − 1).

Here, we have considered a stiff case of the FitzHugh–Nagumo equation. It has been observed
that for large values of β (say β = 5 to 10), the problem becomes stiff and is difficult to
solve it with some numerical schemes like the one in Agbavon and Appadu (2020). Firstly,
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Table 4 Comparison of absolute errors for Example 2 at time t = 0.04 for N = 10

x CFDBM ExpFDM (Inan et al. 2020) ANM (Inan et al. 2020)

0.2 1.72 ×10−8 3.00 ×10−6 2.00 ×10−7

0.4 4.63 ×10−9 1.00 ×10−5 5.00 ×10−7

0.6 1.63 ×10−9 2.00 ×10−5 7.00 ×10−7

0.8 7.26 ×10−9 4.00 ×10−5 6.00 ×10−7

Number of iterations 1 8 8

in Table 5, we have compared the numerical results obtained using CFDBM with various
finite difference schemes from Agbavon and Appadu (2020) for different values of β and
have obtained comparatively more accurate results using a larger time stepsize than the other
compared schemes as shown in the table.

In this problem, our objective is not to show the comparison between errors for small
values of β, but to highlight the fact that for larger values of β (say 5–10), the proposed
scheme still works well. Table 6 lists the L∞ error for different values of N at time t = 0.5
and for two large values of β = 5 and 10, taking h = 0.16667. It has been observed that even
for the larger values of β, the proposed scheme has resulted in considerably smaller errors.
Hence, the proposed scheme is a good alternative to handle such stiff problems.

6.3 Dynamical consistency of the proposed numerical scheme for the
FitzHugh–Nagumo equation

The dynamical consistency of a numerical scheme refers to the replicated behavior of a
numerical solution as that of the analytical solution. Approximate solutions are expected to
physically behave in the same way that exact solutions do. It has been observed that the
analytical solution given by (16) of the FitzHugh–Nagumo equation (15) has a non-negative
and bounded solution (Agbavon and Appadu 2020). In this section, we have checked the
boundedness and non-negativity of the approximate solutions obtained using CFDBM, by
solving the problem for different values of γ = 0.2, 0.4, 0.6, 0.8, 0.99 at time t = 0.5 with
N = 100 in Fig. 4.

6.4 Non-linear Burgers’ equation

6.4.1 Example 1

Consider the test problem given by (12a), along with the initial condition considered as

u(x, 0) = sin(πx); 0 ≤ x ≤ 1,

and boundary conditions are as

u(0, t) = u(1, t) = 0; t ≥ 0.

The exact solution of the problem is given
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Table 6 Error norms at time
t = 0.5, γ = 0.2 and for large
values of β

β N L∞ error

5 20 3.8486 ×10−3

40 2.3864 ×10−4

100 5.9992 ×10−6

10 20 1.6529 ×10−2

40 1.3899 ×10−3

100 3.3252 ×10−5

Fig. 4 Graphical representations of numerical and analytical solution of problem (15) for various values of γ
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u(x, t) = 2πν

∑∞
n=1 cn exp(−n2π2νt)n sin(nπx)∑∞
n=1 cn exp(−n2π2νt)n cos(nπx)

,

where

c0 =
∫ 1

0
exp

( −1

2πν
(1 − cos(πx))

)
dx,

cn = 2
∫ 1

0
exp

( −1

2πν
(1 − cos(πx))

)
cos(nπx)dx,

(n = 1, 2, 3, ...).

For this example, the performance ofCFDBMhas been comparedwith someof the existing
techniques. In Table 7, the data has been listed after solving the problem for different values
of time t , taking N = 80 as in Ramos et al. (2022). The approximate solutions computed
are compared with the approximate solutions provided by Kadalbajoo and Awasthi (2006),
Kutulay et al. (2004), Jiwari (2015), Seydaoglu (2018), Ramos et al. (2022) for ν = 0.01 and
N = 80 at different grid points and various values of time. We have used the same number
of time iterations as is used by Ramos et al. (2022), whereas the other methods used larger
number of time iterations.

A similar kind of comparison has been made in Table 8 for different values of time t ,
taking ν = 0.1. The approximate solutions computed using CFDBM are compared with the
approximate solutions computed by Kadalbajoo and Awasthi (2006), Kutulay et al. (2004),
Jiwari (2015), Özis et al. (2003) for N = 80. The last row of the tables list the absolute value
of the maximum error of each of the column, showing that the proposed method (CFDBM)
is the most competent among all the compared methods.

6.4.2 Example 2

Consider one more test problem on Burgers’ equation given by (12a) as in Kadalbajoo and
Awasthi (2006), along with the initial condition considered as

u(x, 0) = 4x(1 − x); 0 ≤ x ≤ 1.

and boundary conditions as

u(0, t) = u(1, t) = 0; t ≥ 0.

The exact solution of the problem is given by

u(x, t) = 2πν

∑∞
n=1 cn exp(−n2π2νt)n sin(nπx)∑∞
n=1 cn exp(−n2π2νt)n cos(nπx)

,

where

c0 =
∫ 1

0
exp

(−1

3ν
(3x2 − 2x3)

)
dx,

cn = 2
∫ 1

0
exp

(−1

3ν
(3x2 − 2x3)

)
cos(nπx)dx,

(n = 1, 2, 3, ...).
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The numerical results computed using CFDBM have been compared with some of the
existing data, similarly as done with the previous example. In Tables 9 and 10, the data
for the considered example has been listed after solving it using CFDBM with N = 80 at
ν = 0.01 and ν = 0.1 respectively and the results are then compared with some of the
existing techniques. CFDBM has shown superior performance than the other techniques.

7 Conclusions

The proposed block method in combination with the standard fourth order compact finite
difference scheme is a new interesting approach to effectively solve considered type of non-
linear PDEs. The proposed block method is consistent andA-stable. The differential system
obtained after implementation of compact finite differences to considered problems also turns
to be stable for various values of step sizes. Two test problems have been solved for different
parameters and it has been observed that the computed results are in good agreement with
the exact solutions. Moreover, the method has given accurate results for a stiff case of the
FitzHugh–Nagumo problem, where the corresponding compared technique has not worked.
The computed results have also been compared with some of the existing data and it has been
observed that better accuracy can be achieved in a very few time steps in comparison to some
compared existing schemes. Overall, the combined proposed method is a novel, accurate,
consistent and computationally time saving numerical scheme and can be considered as a
good alternative to solve time dependent non-linear PDEs of the considered type. In future,
its applicablility could be extended for solving second order differential systems arising in
compact discretizations of second order time dependent PDEs and may be formulated in a
variable step-size mode.
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