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Abstract
An intra-step block Falkner method whose coefficients depend on a parameter ω and the step
length h is presented in this study for solving numerically second-order delay differential
equations with oscillatory solutions. In the development of the method, the collocation and
interpolation techniques were employed. The investigation of the properties of the method
has shown that it is zero-stable and consistent, and consequently, convergent. The application
of the method to some standard problems from the scientific literature show that it produced
very accurate results.
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1 Presentation

This paper is targeted at finding numerical approximations for second-order Delay Differen-
tial Equations (DDEs) whose structure is given as

y′′(t) = f (t, y(t), y(t − τ)), a ≤ t ≤ b, τ ≥ 0,
y(t0) = y0, y′(t0) = y′

0,

y(t) = ϕ(t), t ≤ a,

(1)

where τ is the delay argument and ϕ is the primary function. We assume that the first
derivative is absent in the differential equation, that the true solution shows an oscillatory or
periodic behavior whose frequency can be estimated in advance, and f : R × R2d → Rd is
a sufficiently smooth function where d is the dimension of the system.

By large, real-life phenomena aremodelled usingOrdinaryDifferential Equations (ODEs).
However, these equations do not plainly address certain situations where the states of the
current system depend on both the current and the previous state of the system. To make
these models more reliable, DDEs are utilized to portray these phenomena, providing a good
realistic simulation of them. The major difference between ODEs and DDEs is that while
the solutions of ODEs are considered at the present state, the solutions of DDEs contain
in addition the past state. There are numerous applications that are notably described with
DDEs, a list of which can be found in Rasdi et al. [1], Abdulganiy et al. [2] and Ahmad et
al. [3], among others.

In general, different approaches have been used to solve DDEs semi analytically and
numerically. Such methods include the Variational Iteration Method (Khader [4]), the Ado-
mian Decomposition Method (Ogunfiditimi [5]), Runge–Kutta Methods (Ismail et al. [6]),
Block methods that use different interpolation polynomials such as Lagrange, Neville and
Hermite to compute the delay term (Ken and Ismail [7] and Majid et al. [8]), Block meth-
ods with the delay term calculated with the initial function rather than using interpolation
(Akinfenwa et al. [9], and Abdulganiy et al. [2]).

These methods are applied so that Eq. (1) is transformed into an equivalent system of first-
order equations. In any case, a more demanding memory storage during execution and even
a more complex computer code for the method, particularly the subroutine needed to supply
starting values required for suchmethods, and the large dimension of the emerging first-order
system are some of the limitations to reformulate a second-order Differential Equation as a
system of first-order Differential Equations.

Consequently, techniques for the direct integration of Eq. (1) have been proposed. Among
such methods are the explicit Runge–Kutta–Nyström methods (Papageorgiou and Famelis
[10]), one-step blockmethods (Rasdi et al. [1]), the direct two-point blockmethod of Adams–
Moulton type (Seong and Majid [11]), a spline collocation method (El-safty [12]), and the
Adomian decomposition method (Evans and Raslan [13]). Most of these methods do not
perform well in case of oscillatory solutions according to Ehigie et al. [14], due to the
particular nature of the solutions.

Falkner developed amultistepmethod to solve second-order Initial Value Problems (IVPs)
directly. The explicit and implicit forms of Falkner methods are due to Falkner [15] and
Collatz [16] respectively. Whereas Ramos et al. [17, 18] presented some modification to
the traditional Falkner methods whose basis functions are either polynomials or rational
functions, trigonometrically-fitted Falkner-type methods that exploit the fact that the solution
of the IVP is periodic were presented by Li and Wu [19], and also by Ehigie and Okunuga
[20]. A number of fitted approaches have appeared in the recent literature (see Fang et al.
[21], Jator et al. [22, 23], Ramos and Vigo-Aguiar [24], and Abdulganiy et al. [25, 26]). Only
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a few works in the literature such as those by Ahmad et al. [3, 27], Ismail et al. [28] and Senu
et al. [29] have considered the use of an adapted method to numerically integrate Eq. (1),
hence the motivation for the present study.

The current work presents a Trigonometrically Fitted Intra-Step Block Falkner (TFIBF)
method using themultistep collocation technique for the direct integration of Eq. (1) assuming
that the solution presents an oscillatory or periodic behavior, where the frequency can be
estimated in advance. We assume that the exact solution can be approximated by a linear
combination of polynomials and trigonometric terms. The need to gain more order in the
approach while maintaining excellent stability prompted the use of the intra-step strategy.
Intra-step formulaswere first presented to circumvent the limitation of theDahlquist barrier in
such a way that the customary linear multistep formulas were enhanced by considering intra-
step points between some grid points in the formulation process (Gupta [30], Alkasassbeh et
al. [31]). Albeit these formulas retain both higher-order and superb stability features, intra-
step methods suffer from the need to formulate predictors for the estimation of the corrector
at intra-step points, making themethodologymore tiresome and inefficient (Lambert [32]). In
this paper, a blockwise implementation approach is embraced as a swap for the conventional
stepwise execution to bypass the shortage of the predictor-corrector mode.

The rest of the article is arranged as follows: the formulation of the TFIBF is detailed in
Sect. 2. The essential elements of the TFIBF are studied in Sect. 3. Whereas some numerical
experiments are provided in Sect. 4 to exemplify the superb performance of the method,
Sect. 5 contains the conclusions.

2 Formulation of the TFIBF

For the derivation of themethod, wewill consider y(t) as a scalar function, that is, we take the
dimension d = 1. This is not a drawback, since the method can be applied in a component-
wisemode to solve a system. The primary formulas of the Trigonometrically Fitted Intra-Step
Block Falkner (TFIBF) method in this study (with a parameter ω incorporated as u = ωh)
are of the form{

yn+1 = yn + hy′
n + h2(β0 (u) fn + βμ (u) fn+μ + β1 (u) fn+1)

hy′
n+1 = hy′

n + h2(β̄0 (u) fn + β̄μ (u) fn+μ + β̄1 (u) fn+1),
(2)

while the secondary formulas are given as{
yn+μ = yn + μhy′

n + h2(β1
0 (u) fn + β1

μ (u) fn+μ + β1
1 (u) fn+1)

hy′
n+μ = hy′

n + h2(β̄1
0 (u) fn + β̄1

μ (u) fn+μ + β̄1
1 (u) fn+1),

(3)

where μ = 1
2 is the intra-step point and β j , β̄ j , β

1
j , β̄

1
j are coefficients to be dis-

tinctively determined, that depend on the parameter ω and on the step-size h =
tn+1 − tn . Customarily, yn+ j , y′

n+ j , fn+ j are approximate values of y
(
tn+ j

)
, y′(tn+ j ), and

f
(
tn+ j , y(tn+ j ), y(tn+ j − τ)

)
.

The true solution y(t) is considered to be locally approximated on the interval
[
tn, tn+1

]
by a solution γ (t) of the form

γ (t) = ξ0 + ξ1t + ξ2t
2 + ξ3 sin(ωt) + ξ4 cos(ωt), (4)

where the coefficients ξi will be obtained demanding that the following system of equations
is satisfied
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⎧⎨
⎩

γ (tn) = yn

γ ′(tn) = y′
n

γ ′′(tn+ j ) = fn+ j , j = 0, μ, 1.
(5)

This system can be written in matrix form as

�	 = 
, (6)

where

� =

⎡
⎢⎢⎢⎢⎣
1 tn tn2 sin (ω tn) cos (ω tn)

0 1 2 tn cos (ω tn) ω − sin (ω tn) ω

0 0 2 − sin (ω tn) ω2 − cos (ω tn) ω2

0 0 2 − sin
(
ω tn+μ

)
ω2 − cos

(
ω tn+μ

)
ω2

0 0 2 − sin
(
ω tn+1

)
ω2 − cos

(
ω tn+1

)
ω2

⎤
⎥⎥⎥⎥⎦, 	 =

⎡
⎢⎢⎢⎣

ξ0
ξ1
ξ2
ξ3
ξ4

⎤
⎥⎥⎥⎦, 
 =

⎡
⎢⎢⎢⎢⎣

yn
y
′
n
fn

fn+μ

fn+1

⎤
⎥⎥⎥⎥⎦ .

Equation (6) is solved for the coefficients ξi , i = 0(1)4, with the aid of Crammer’s rule.
Each ξi is calculated as ξi = det(�i )

det(�)
, where �i is found after substituting the i-th column of

� with 
. This results in⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0 = χ

2u2(− sin(u)+2 sin(u/2))

ξ1 =

(
u

(
fntn + fn+1tn − 2 y′

n

)
sin (u/2) − h ( fn − fn+1) cos (u/2)

+u
(
fn+1/2tn − y′

n

)
sin (u) − h

((− fn + fn+1/2
)
cos (u) − fn+1/2 + fn+1

))

u(− sin(u)+2 sin(u/2))

ξ2 = (− fn− fn+1) sin(u/2)+sin(u) fn+1/2
2 sin(u)−4 sin(u/2)

ξ3 = − h2
(
( fn− fn+1) cos

( utn+1/2
h

)
+(− fn+ fn+1/2) cos

(
utn+1

h

)
+cos

( utn
h

)
( fn+1− fn+1/2)

)
u2(sin(u)−2 sin(u/2))

ξ4 = h2
(
( fn− fn+1) sin

( utn+1/2
h

)
+(− fn+ fn+1/2) sin

(
utn+1

h

)
+sin

( utn
h

)
( fn+1− fn+1/2)

)
u2(sin(u)−2 sin(u/2))

(7)

where
χ = ((

( fn + fn+1) tn2 − 4 y′
ntn + 4 yn

)
u2 + 2 h2 ( fn − fn+1)

)
sin (u/2)

+2 hutn ( fn − fn+1) cos (u/2) + (− fn+1/2tn2 + 2 y′
ntn − 2 yn

)
u2

+2 h2
(− fn+ fn+1/2

)
sin (u)+2 h

((− fn+ fn+1/2
)
cos (u)− fn+1/2+ fn+1

)
utn .

We then substitute the value of each ξi specified by Eq. (7) into Eq. (4) to obtain the
continuous formula as follows

γ (t, u) = yn + hy′
n + h2

(
β0 (t, u) fn + βμ (t, u) fn+μ + β1 (t, u) fn+1

)
, (8)

wherewehave included explicitlyu intoγ (t, u) to highlight the dependenceon this parameter.

123



A trigonometrically fitted intra-step block Falkner method... Page 5 of 19    36 

2.1 Specific formulation of the TFIBF

The continuous formula in Eq. (8) and its first derivative are evaluated at t = {
tn+1, tμ

}
to

get the two principal formulas and the two complimentary formulas in the form of Eqs. (2)
and (3), respectively, to form the block method TFIBF. It is emphasized that when u → 0,
the coefficients of the TFIBF may suffer substantial cancellations affecting the calculations.
In this situation, the expansion of the coefficients in Taylor’s series is usually considered (see
Lambert [32]).

The coefficients of the four formulas of the block TFIBF together with their series expan-
sions up to the eight order are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0(u) =
(−u2−4

)
sin(u/2)−2 cos(u)u+2 cos(u/2)u+2 sin(u)

2u2(−2 sin(u/2)+sin(u))

= 1
6 + u2

480 + 19u4
483840 + 17u6

19353600 + 29u8
1362493440 + O(h10)

βμ(u) = − u sin(u)+2 cos(u)−2
2u(2 sin(u/2)−sin(u))

= 1
3 − u2

720 − u4
80640 − u6

9676800 − u8
1226244096 + O(h10)

β1(u) = − cos(u/2)u2+2 sin(u/2)u−4 (cos(u/2))2−u2+4
4 u2(cos(u/2))2−4 u2

= − u2
1440 − 13u4

483840 − u6
1290240 − 251u8

12262440960 + O(h10)

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̄0(u) = u sin(u/2)+cos(u)−1
u(2 sin(u/2)−sin(u))

= 1
6 + u2

720 + u4
80640 + u6

9676800 + u8
1226244096 + O(h10)

β̄μ(u) = − u sin(u)+2 cos(u)−2
u(2 sin(u/2)−sin(u))

= 2
3 − u2

360 − u4
40320 − u6

4838400 − u8
613122048 + O(h10)

β̄1(u) = cos(u)+u sin(u/2)−1
u(2 sin(u/2)−sin(u))

= 1
6 + u2

720 + u4
80640 + u6

9676800 + u8
1226244096 + O(h10)

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1
0 (u) =

(−u2−16
)
sin(u/2)−4 cos(u)u+4 cos(u/2)u+8 sin(u)

8u2(−2 sin(u/2)+sin(u))

= 7
96 + 7 u2

7680 + 71 u4
3870720 + 53 u6

123863040 + 23 u8
2179989504 + O(h10)

β1
μ(u) = − u2 sin(u)+4 cos(u)u+16 sin(u/2)−8 sin(u)−4 u

8u2(2 sin(u/2)−sin(u))

= 1
16 − u2

2304 − u4
276480 − u6

34406400 − u8
4459069440 + O(h10)

β1
1 (u) = u sin(u/2)+4 cos(u/2)−4

8u(2 sin(u/2)−sin(u))

= − 1
96 − 11 u2

23040 − 19 u4
1290240 − 247 u6

619315200 − 1013 u8
98099527680 + O(h10)

(11)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̄1
0 (u) = −−u sin(u/2)+4 cos(u/2)−2 cos(u)−2

2u(2 sin(u/2)−sin(u))

= 5
24 + 19 u2

5760 + 23 u4
322560 + 263 u6

154828800 + 1033 u8
24524881920 + O(h10)

β̄1
μ(u) = − u sin(u)+2 cos(u)−2

2u(2 sin(u/2)−sin(u))

= 1
3 − u2

720 − u4
80640 − u6

9676800 − u8
1226244096 + O(h10)

β̄1
1 (u) = u sin(u/2)+4 cos(u/2)−4

2u(2 sin(u/2)−sin(u))

= − 1
24 − 11 u2

5760 − 19 u4
322560 − 247 u6

154828800 − 1013 u8
24524881920 + O(h10)

(12)

Remark 1 It is noted here that taking limit when u → 0 in the coefficients in (9)–(12), the
block hybrid Falkner method obtained using a polynomial basis is recovered.

3 Essential elements of the TFIBF

The essential elements of the TFIBFwhich include the local truncation error, zero- and linear
stability, convergence, and region of absolute stability are addressed in this section.

3.1 Local truncation error and consistency of TFIBF

The theory of linear operators in Lambert [32] is employed to establish the Local Truncation
Error (LTE) of all the formulas in the TFIBF. Since the formulas in (2) and (3) are of
the type of generalized multistep methods, we consider the associated difference operators
L [y (tn) ; h], L′

[y (tn) ; h] to the principal formulas and Lμ [y (tn) ; h], L′
μ [y (tn) ; h], to

the complimentary ones, defined respectively as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [y (tn) ; h] = y (tn + h) −
(

y(tn) + hy′ (tn) + h2β0(u)y′′ (tn)
+h2βμ(u)y′′ (tn + μh) + h2β1(u)y′′ (tn + h)

)

L′
[y (tn) ; h] = hy′ (tn + h) −

(
hy′ (tn) + h2β̄0(u)y′′ (tn)

+h2β̄μ(u)y′′ (tn + μh) + h2β̄1(u)y′′ (tn + h)

)

Lμ [y (tn) ; h] = y (tn + μh) −
(

y(tn) + μhy′ (tn) + h2β1
0 (u)y′′ (tn)

+h2β1
μ(u)y′′ (tn + μh) + h2β1

1 (u)y′′ (tn + h)

)

L′
μ [y (tn) ; h] = hy′ (tn + μh) −

(
hy′ (tn) + h2β̄1

0 (u)y′′ (tn)
+h2β̄1

μ(u)y′′ (tn + μh) + h2β̄1
1 (u)y′′ (tn + h)

)
.

(13)

We use Taylor’s series and expand the above formulas in powers of h, after substitut-
ing the coefficients defined in Eqs. (9)–(12) into the corresponding formula above, with the
assumption that y (t) is a sufficiently differentiable function. After some simplifications, the
local truncation errors for each of the formulas in (13) are given, respectively, by

LT E =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h5
720

(
y(5) (tn) + ω2y(3) (tn)

) + O
(
h6

)
− h6

2880

(
y(6) (tn) + ω2y(4) (tn)

) + O
(
h7

)
h5
1440

(
y(5) (tn) + ω2y(3) (tn)

) + O
(
h6

)
h5
384

(
y(5) (tn) + ω2y(3) (tn)

) + O
(
h6

)
(14)
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Remark 2 It is emphasized that the order p of each formula in the TFIBF is at least p = 3.

Theorem 1 If the exact solution of the problem (1) is a linear combination of the basis
function

{
1, t, t2, sin(ωt), cos(ωt)

}
, then the local truncation errors of the formulas in the

TFIBF vanish.

Proof Solving the differential equation y(5) (t) + ω2y(3) (t) = 0 results in the following
fundamental set of solutions

{
1, t, t2, sin(ωt), cos(ωt)

}
, and thus the required result follows

immediately. ��

3.1.1 Consistency

Remark 3 Following the definition by Lambert [32], a numerical approach for solving (1) is
consistent if it has an order greater than one. Thus, the TFIBF is consistent.

3.2 Stability analysis

The TFIBF given in (2)–(3) can be reformulated as follows

(A1 ⊗ I )ϒn+1 = (A0 ⊗ I )ϒn + h2(B0 ⊗ I )Fn + h2(B1 ⊗ I )Fn+1 (15)

with ϒn+1 = (yn+μ, yn+1, hy′
n+μ, hy′

n+1)
T , ϒn = (yn−1+μ, yn, hy′

n−1+μ, hy′
n)

T , Fn+1 =
( fn+μ, fn+1, h f ′

n+μ, h f ′
n+1)

T and Fn = ( fn−1+μ, fn, h f ′
n−1+μ, h f ′

n)
T , I is the 4 × 4 unit

matrix, ⊗ denotes the Kronecker product of matrices. A0, A1, B0 and B1 are 4× 4 matrices
containing the coefficients of the formulas and are given as follows

A0 =

⎡
⎢⎢⎣
0 1 0 1

2
0 1 0 1
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦, A1 =

⎡
⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, B0 =

⎡
⎢⎢⎣
0 β1

0 0 0
0 β0 0 0
0 β̄1

0 0 0
0 β̄0 0 0

⎤
⎥⎥⎦, B1 =

⎡
⎢⎢⎣

β1
1 β1

2 0 0
β1 β2 0 0
β̄1
1 β̄1

2 0 0
β̄1 β̄2 0 0

⎤
⎥⎥⎦ .

3.2.1 Zero-stability

The concept of zero-stability refers to the behavior of the solutions of the system in (15)
when h tends to 0. In this case, the system in (15) results in

A1ϒn+1 − A0ϒn = 0, (16)

where A1 and A0 are 4 × 4 constant matrices.

Definition 1 A given numerical integrator is zero-stable provided the modulus of the roots
of its first characteristic polynomial, (�) = det(�A1 − A0), is less than or equal to one,
and for those of modulus one, the multiplicity is at most two (see Fatunla [33]).

Proposition 2 The TFIBF is zero-stable.

Proof From the normalized first characteristic polynomial of the TFIBF, we have that

�A1 − A0 =

⎡
⎢⎢⎣

� −1 0 − 1
2

0 � − 1 0 −1
0 0 � −1
0 0 0 � − 1

⎤
⎥⎥⎦ ,
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so that the characteristic equation is (�) ≡ det(�A1 − A0) = 0, that is, �2 (� − 1)2 = 0.
Thus, TFIBF is zero-stable according to Definition 1. ��

3.2.2 Linear stability

Apply the TFIBF specified by the formulas in Eqs. (2) and (3) whose coefficients are given
in Eqs. (9)–(12) to the test equation y′′ = −λ2y and take z = λh to obtain

ϒn+1 = �(z, u)ϒn, (17)

where
ϒn+1 = (yn+μ, yn+1, hy′

n+μ, hy′
n+1)

T , ϒn = (yn−1+μ, yn, hy′
n−1+μ, hy′

n)
T , and

�(z, u) = (A1 − zB1)
−1(A0 + zB0) (18)

is the so-called amplification matrix, which determines the behavior of the TFIBF con-
cerning the stability. The amplification matrix �(z, u) for TFIBF has eigenvalues given
by (θ1, θ2, θ3, θ4) = (0, 0, 0, θ4), where θ4 (z, u) is the stability function.

Remark 4 The function θ4 (z, u) is a rational one specified by

θ4 (z, u) = �4 (z, u)

�4 (z, u)
, (19)

where

�4(z, u) = 4
√
2(u2(((z2 + 8)u2 + 8z2) cos(u/2)

−8u2 − 8z2)(−3/4uz2(u2 + z2)(cos(u/2))2

+((u4 + (−1/8z4 + 2z2)u2 + z4) sin(u/2)

+1/2uz2(u2 + z2)) cos(u/2) − (u2 + z2)

((u2 + z2) sin(u/2) − 1/4uz2)(cos(u/2) + 2)2 sin(u/2)z2)
1
2

−6(−1/3((z2 + 4)u2

+4z2uz2(cos(u/2))2 + (u2 + z2)(((z2 + 8/3)u2 + 8/3z2)

sin(u/2) + 4/3 uz2) cos(u/2)

−2/3((z2 + 4)u2 + 4 z2)(u2 + z2)

sin(u/2) + 1/6 u3z4)(cos(u/2) + 2)

�4(z, u) = 2(cos(u/2) + 2)((4u3z2 + 4uz4)(cos(u/2))2

+(((z2 − 8)u2 − 8z2) sin(u/2) − 4uz2)

(u2 + z2) cos(u/2) − 2(u2 + z2)((z2 − 4)u2 − 4z2) sin(u/2)

+1/2u3z4)

Definition 2 (Jator [34]) The region of linear stability of the TFIBF is the domain in the z−u
plane in which the spectral radius of the amplification matrix, ρ (� (z, u)), verifies

‖ρ (� (z, u)) ‖ ≤ 1.

The z − u stability region generated for TFIBF is plotted in Fig. 1, where the colored region
(blue) is the stability region for the test problem y′′ = −λ2y.
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4 Numerical examples

The proposed TFIBF in this study is executed in blockwise form without requiring starting
values or/and predictors. A written algorithm in Maple 2016.1 is developed for TFIBF.
We note that no interpolation is required for the determination of the delay term, which is
calculated as explained in [11]. The values of the fitting parameters used in the numerical
examples were taken from the referenced problems. However, the strategies for the frequency
choice considered by [24] can be explored. In the numerical investigations, we plotted the
graphs of the absolute errors between the exact solutions y(tn) and the numerical solutions
{yn} obtained using theTFIBF as ameasure of accuracy,whereas the computational efficiency
is shown through the plots of the maximum errors versus the computational time (CPU) and
the plots of the maximum errors versus the number of function evaluation (NFE) respectively
in comparison with the following methods

1. TF-NSIHM (5): An order five trigonometrically fitted hybrid method in [27],
2. TF-NSIHM (4): An order four trigonometrically fitted hybrid method in [28],
3. TF-BEHM (5): An order five trigonometrically fitted hybrid method in [3].
4. TDRK3(5): An order five trigonometrically fitted method in [29].

4.1 Example 1

As a first model, consider the DDE given by

y′′(t) = − sin(t)
2−sin(t) y(t − π), 0 ≤ t ≤ 8π,

y(0) = 2, y′(0) = 1,
(20)

Fig. 1 Linear stability region in the z − u-plane for TFIBF
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Fig. 2 Absolute errors (top left) and efficiency curves (top right and bottom) for Example 1

whose solution in closed form is given as y(t) = 2 + sin(t). Equation (20) is solved in
[27] and [29] with step sizes h = π

2i
, i = 1, 2, 3, 4, in [28] the step sizes are h = π

2i , i =
2, 3, 4, 5, while in [3] they choose h = π

4i
, i = 1, 2, 3, 4, as the integration step sizes. For

the implementation of this problem, the fitting frequency is chosen as ω = 1 (see [3, 27, 28])
and step sizes h = π

2i , i = 1, 2, 3, 4 were considered. The absolute errors of the numerical
solutions provided by the TFIBF with h = π

8 in comparison with the exact solutions are
shown in Fig. 2 (top left). The efficiency curves with the different methods considered are
plotted in Fig. 2 (top right and bottom), showing the numerical superiority of the TFIBF.

4.2 Example 2

Consider the DDE given by

y′′(t) − 1
2 y(t − π) + 1

2 y(t) = 0, 0 ≤ t ≤ 8π,

y(0) = 0, y′(0) = 1,
(21)
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Fig. 3 Absolute errors (top left) and efficiency curves (top right and bottom) for Example 2

whose exact solution is y(t) = sin(t). The fitting frequency is selected as ω = 1 as in
[3, 27, 28], and the same step lengths h = π

4i , i = 1, 2, 3, 4, as in [27, 28] are used for
comparisons. The absolute errors of the discrete solutions provided by the TFIBF with h =
π
12 in comparison with the exact solutions are shown in Fig. 3 (top left). The efficiency
curves for different methods are presented in Fig. 3 (top right and bottom), showing the good
performance of the TFIBF.

4.3 Example 3

Consider the DDE specified by

y′′(t) − y(t − π) = 0, 0 ≤ t ≤ 8π,

y(0) = 0, y′(0) = 1,
(22)

whose solution in closed form is given as y(t) = sin(t). Whereas Eq. (22) is integrated with
step sizes h = π

2i , i = 1, 2, 3, 4, the fitting frequency is selected as ω = 1. Figure4 displays
the the absolute errors of the discrete solutions provided by the TFIBF with h = π

8 as they
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Fig. 4 Absolute errors (top left) and efficiency curves (top right and bottom) for Example 3

compare with the exact solutions (top left). The efficiency curves for different methods are
shown in Fig. 4 (top right and bottom) again indicating the good performance of the TFIBF.

4.4 Example 4

Consider the non-homogeneous DDE in [10] specified by

y′′(t) = −y(t) − y(t − 3π
2 ) + 3 cos(t) + 5 sin(t), 0 ≤ t ≤ 10,

y(0) = −5, y′(0) = 3,
(23)

whose exact solution is given as y(t) = 3 sin(t)−5 cos(t). For the integration of Eq. (23), the
fitting frequency is selected as ω = 1 while the step sizes are taken as h = 1

2i
, i = 1, 2, 3, 4,

for the implementationof theTFIBFandothermethods it compared.Thevisual representation
of the absolute errors of the discrete solutions of TFIBF in comparisonwith the exact solutions
with h = 1

8 is displayed in Fig. 5 (top left). The efficiency curves for different methods are
shown in Fig. 5 (top right and bottom) again indicating the good performance of the TFIBF.
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Fig. 5 Absolute errors (top left) and efficiency curves (top right and bottom) for Example 4

4.5 Example 5

Consider the non-linear DDE in [10] specified by

y′′(t) = − 1
2 y(t) − 1

2 + y( 12 t − π
4 )2, 2 ≤ t ≤ 12,

y(2) = 0.9092974268, y′(2) = −0.4161468365,
(24)

whose exact solution is given as y(t) = sin(t). Whereas Fig. 6 (top right and bottom) shows
the advantage in terms of performance of the TFIBF over the methods in [3, 27, 28] with
step sizes chosen as h = 1

2i
, i = 1, 2, 3, 4, and the fitting frequency as ω = 1 for the

implementation, Fig. 6 (top left) reveals how the TFBIF fares with the exact solution for
h = 1

8 .
Equation (24) is solved in the interval 0 ≤ t ≤ 10π with initial conditions given as

y(0) = 0, y′(0) = 1. The results of the proposed TFIBF in comparison with the TDRK3(5)
in [29] are presented in Fig. 7 with step sizes taken as h = 1

2i
, i = 1, 2, 3, 4, 5 and the fitting

frequency as ω = 1. Whereas Fig. 7 (top left) shows how the TFBIF compares to the exact
solution for h = 1

2 , Fig. 7 (top right and bottom) shows the TFIBF’s significant advantage
over TDRK3 (5).
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Fig. 6 Absolute errors (top left) and efficiency curves (top right and bottom) for Example 5

4.6 Example 6

We consider a Bessel-type equation involving a state-dependent delay given in [35]

y′′(t) = −
(
100 + 1

4t2

)
y(t) − y

(
t − 1 − y2(t)

)
, 3 ≤ t ≤ 10,

y(t) = √
t J0(10t), t ≤ 3,

y′(t) = 1

2
√
t
[J0(10t) − 20t J1(10t)] , t ≤ 3,

(25)

where J0 and J1 are the Bessel functions of first and second kind, respectively. The exact
solution of Eq. (25) is given as y(t) = √

t J0(10t) with the initial conditions taken as y(3) �
−0.1495937357, y′(3) � 1.982031871 and the fitting frequency, ω, according to [35] is
approximately 10. While Fig. 8 (top) shows the absolute errors between the exact solutions
and the approximate results obtained by TFIBF with the step size h = 1

40 , Fig. 8 (bottom)
presents the efficiency curves of the comparison between the TFIBF and the third order Intra-
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Fig. 7 Absolute errors (top left) and efficiency curves (top right and bottom) for Example 5

step Block Falkner (IBF)methodwhose basis function is polynomial with the step sizes taken

as h = 0.1

2i
, i = 0, 1, 2, 3.

4.7 Example 7: an application to Mathieu equation

In this subsection, we apply TFIBF to solve the well-known non-linear delay differential
equation called Mathieu equation in engineering. Consider the Mathieu equation with delay
given by

y′′(t) + (μ + α cos(t))y(t) + δy3 = λy(t − τ) (26)

where μ, α, λ, δ and τ are the parameters described as follows:

μ is the simple harmonic oscillator’s frequency squared,
α is the parametric resonance amplitude,
λ is the delay amplitude,
δ is the cubic non-linearity amplitude, and
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Fig. 8 Absolute errors (top) and efficiency curves (bottom) for Example 6

τ is the time delay.

According toMorrison andRand [36], various special cases of Eq. (26) exist, depending on
which parameters are zero. In this article, we have taken τ = 2π , δ = 0, and α = μ = λ = 1,
and have taken the initial conditions as y(0) = 0, y′(0) = 1 and the fitting frequency as
ω = 1 (see [29]). The comparison of the TFIBF and one of the ODE solvers in Maple
Computer Algebra System dverk78 is shown in Fig. 9.
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Fig. 9 Absolute errors (top) and discrete solutions (bottom)between dverk78 and TFIBF with h = 1/10 for
Example 7

We remark that the dsolve command, with the options numeric and method=dverk78,
finds a numerical solution using a Runge–Kutta–Nyström pair of orders 7(8). The dverk78
method can work in arbitrary precision depending on the Digits setting and can be used
to obtain high accuracy solutions for ODE systems. The digit is set as required, so that
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tol=O(Float(1,−Digits)9/8), and the absolute error tolerance (‘abserr’) and relative error
tolerance (‘relerr’) are set to the default values, abserr=relerr=1. × 10−8.

5 Conclusion

An intra-step block Falkner methodwhose coefficients are in trigonometric form, is proposed
for the direct integration of Eq. (1). It is established that the TFIBF is consistent, zero-stable,
and convergent. The computational accuracy and efficiencyof theTFIBFare shown inFigs. 2–
8 , and in particular, the accuracy of TFIBF for the Mathieu equation is displayed in Fig. 9.
Looking at the approximate results provided by the developed method, it is evident that
it works better than other methods in the literature. Therefore, it can be considered as an
acceptable alternative to solve the type of problem considered.
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