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Abstract: Geothermal energy is becoming essential to deal with the catastrophic effect of climate
change. Although the totality of the Earth’s crust allows the exploitation of shallow geothermal
resources, it is important to identify those areas with higher thermal possibilities. In this sense,
geophysical prospecting plays a vital role in the recognition and estimation of potential geothermal
resources. This research evaluates the geothermal conditions of a certain area located in the center
of Spain. The evaluation is mainly based on geological and geophysical studies and, in particular,
the Time Domain Electromagnetic Method and the Electrical Resistivity Tomography. Once we
analyzed the geology and the historical thermal evidence near the study area, our geophysical results
were used to define the geothermal possibilities from a double perspective. In relation to anomalous
heat gradient, the identification of a fault and the contact with impermeable granitic materials at the
depth of 180 m denotes a potential location for the extraction of groundwater. Regarding the common
ground-source heat-pump uses, the analysis has allowed the determination of the most appropriate
area for the location of the geothermal well field. Finally, the importance of accurately defining the
position of the drillings was confirmed by using software GES-CAL.

Keywords: geothermal energy; geophysical prospecting; time domain electromagnetic method;
electrical resistivity tomography; potential well field location; GES-CAL software

1. Introduction

The fight against climate change and its catastrophic effects is one of the main challenges that
currently enrolls the whole world. Efforts are therefore focused on the exploration of renewable and
clean energy sources that contribute to the gradual transition and reduction of fossil energies. Within
the broad group of environmentally friendly resources, geothermal energy constitutes a versatile and
excellent solution for electricity generation and other direct uses. The origin of the Earth’s thermal
energy is linked to the internal structure of the planet and the physical processes occurring there.
The existence of this heat has been proved through the rocks’ temperature, which increases with
depth (gradient commonly averages 3 ◦C/100 m of depth). However, gradients above the average
can be found in areas with particular geological conditions. Armstead [1] divided the Earth’s crust
into non-thermal and thermal areas, considering that the last ones are characterized by temperature
gradients greater than 40 ◦C/km depth. Focusing on very low-enthalpy geothermal resources, they
can be practically found at any point of the crust, thanks to the constant ground temperature from
depths of 8–10 m. In these systems, heat can be extracted for heating and cooling applications, using
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geothermal heat pumps. From a certain depth, the ground can store the heat even seasonally, so that
ground temperature is almost constant throughout the year. Within the common exploitation of these
resources, some areas, with specific geological and stratigraphic conditions, are especially appropriate
for the implementation of these geothermal systems.

The identification of potential geothermal areas is, nowadays, a challenging and costly task.
The principal geological parameters of a geothermal reservoir to be defined are the tectonic structures
(faults), permeability, lithology, temperature, and stress field. The most accurate way of determining
the above factors is by in situ measurements in a borehole [2], which are frequently discarded because of
technical and/or economic reasons. In this way, it is required the implementation of alternative solutions
that allow an estimation of the geothermal potential. Fortunately, some of the mentioned parameters
can be estimated from the surface, mainly by the application of geophysical methods. These techniques
represent a primary tool for investigating the surface and are applicable to a wide range of issues.
The principal application of geophysics is in prospecting for natural resources, but it is also used
in geological surveying, in engineering, or archaeological-site investigations. Since these methods
allow interpreting the ground stratigraphic and structural details at scales from tens to thousands of
meters, they constitute a useful tool in hydrogeological and geothermal prospecting [3,4]. There are
numerous methods within the term geophysics: Seismic, magnetic, gravimetric, thermal, or electric
and electromagnetic techniques are some of the major geophysical methods used for geothermal
exploration. Each one of these procedures presents a series of assets and limitations that must be
analyzed before their selection [5,6].

Numerous studies have addressed the geothermal prospecting from the application of geophysics [7].
The most widespread methods are the seismic, the electric, and the magnetic ones [8–15], but many
others can be found in the current literature. As an example of the large geophysical implementation
with geothermal purposes, the following published research is worth highlighting. Abubakar et al. [16]
used improved remote sensing techniques to identify hydrothermal alterations in the Yankari Park
(Nigeria). Arzate et al. [17] deduced the geothermal field model of Los Humeros (Mexico) from the
use of magneto-telluric soundings. Along these lines, Long et al. [18] and Volpi et al. [19] applied
similar methods to thermally define a certain area of Oregon and Italy, respectively. Hermans et al. [20]
analyzed the shallow geothermal possibilities of a sandy aquifer by using electric resistivity tomography.
As can be deduced from the above, geophysics has been deeply implemented in the geothermal
context. However, most of the existing works are mainly focused on analyzing anomalous geothermal
possibilities, without defining the final and real uses that a certain area may have as ground-source
heat-pump system. This reason, together with the fact that there is an alarming lack of geothermal
systems in the area considered here, has contributed to the development of this work. Thus, this
research is not exclusively focused on studying the anomalous geothermal resources; it also addresses
the importance of using geophysics, although low-enthalpy uses are expected.

This research firstly aims to determine the lithological composition of the ground materials by
using two different geophysical prospecting techniques. From this information, the possible ground
water geothermal use is evaluated, to finally define the most suitable area (within a certain perimeter)
for exploration of future geothermal applications. Considering the particular characteristics of the
area under study, these applications are limited to low-enthalpy geothermal uses (trough heat-pump
systems), but the possibility of finding a promising thermal anomaly in the form of a hot spring
could also be analyzable. Within the large number of geophysical techniques, this work includes
the Time Domain Electromagnetic Method (TDEM) and the Electrical Resistivity Tomography (ERT).
Beyond the analysis of anomalous geothermal activity, results of this work are also used to determine
the exact location of the well field as part of a ground-source heat-pump system. Furthermore, a specific
geothermal software is used to highlight the importance of an accurate well-field design. The following
subsections accordingly describe the geological composition of the study area, the fundamentals of the
geophysical methods implemented in the work, and the results obtained from them. Finally, discussion
and conclusion sections establish the possible geothermal applications in the mentioned area.
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2. Materials and Methods

The principal objective of this section was to determine the characteristics of the study area,
both from a geological and a thermal point of view. After this preliminary analysis, the geophysical
methods implemented in this work are thoroughly described.

2.1. Characterization of the Area under Study

The area evaluated in this work is located in the province of Segovia, at the center of Spain.
As shown in Figure 1, it is geologically constituted by mainly tertiary age materials in the Duero Basin.
The most significant lithological units are described below.
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Figure 1. Geological composition of the area under study [21].

2.1.1. Tertiary

It is predominantly characterized by an alternation of clays, silts, sand, and sandstones. Sands are
mineralogical constituted by quartz, feldspars, and micas, but also by igneous and metamorphic
fragments (shales and granites). Sands are organized as sedimentary sections of lenticular and tabular
geometry of variable thicknesses, with great variability in the vertical and horizontal layout. Clays and
silts are included in the sand levels, behaving as isolation, to a greater or lesser degree, depending on
the location.

Since it is a continental basin, in which the river sedimentation plays an important role, sands are
arranged in lenticular layers with poor level of lateral continuity. Sections are distinguished by the
frequency of the sandy layers and their permeability, but mainly by the permeability of the global matrix.
Lenticular layers of sands and gravels encompassed in a semipermeable matrix behave as a large,
heterogeneous, and anisotropic aquifer (confined or semi-confined, according to the different areas).

2.1.2. Calcareous Mesozoic

After the Tertiary, the area considered here is constituted by an alternation of dolomites,
limestones, marls, and sandstones. Only the dolomitic and limestone–dolomitic sections of the Upper
Cretaceous create aquifers of certain importance. The remaining areas are principally constituted by
low-permeability materials.
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2.1.3. Paleozoic

Gneisses and granites, considered as impermeable, are expected in those low deep areas with
high levels of erosion and fragmentation.

Once we analyzed the prevailing geology, it was also required to evaluate the evidence of existing
thermal waters in the area of study. The Geological and Mining Institute of Spain [22] allows consulting
the Spanish mineral and thermal waters, areas with proven evidence of thermal water, bottling plants,
or officially declared waters. In Figure 2, it is possible to observe the different mineral and thermal
waters close to the area under study.
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As can be graphically seen in Figure 2, there are several historical evidences near the studied area
but also declared water. More information about these waters is presented in Table 1.

Table 1. Description of the water evidences close to the study area.

Classification Description

18-Historical evidence
180 m deep spring water drilling

Lithology: clays, sands, and gravels
Water temperature: 14.7 ◦C

3-Declared water
Natural spring

Lithology: Cretaceous limestones
Water temperature: 20.8 ◦C

20-Historical evidence Unavailable additional information

21-Historical evidence
Natural spring

Lithology: carbonated Cretaceous
Water temperature: 11.7 ◦C

22-Historical evidence Unavailable additional information

23-Historical evidence Unavailable additional information
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From all of these data, it is especially remarkable the declared water number 3, in which an
anomalous thermal gradient (of above 20 ◦C) was found. The proximity of these evidences to the
studied area and the geological similarity among them mean an important starting point to justify the
geophysical prospecting tests performed at later stages.

2.2. Geophysical Prospecting

Before addressing how the field tests were carried out in the area considered here, it is important
to briefly describe the fundamentals of the geophysical methods selected in this work.

2.2.1. TDEM

At the beginning of the 1980s, the Time Domain Electromagnetic Method emerged as a very
relevant innovation in the geophysical field. The subsequent application of this method in numerous
works has allowed us to accumulate a remarkable experience in different hydrological and mining
research, underground environmental pollution, archaeology, or in the location of structures and
complex subsurface anomalies [23–25]. As this is a widespread method already presented in a large
number of published research studies, only a brief description is provided below.

TDEM is a geophysical exploration technique used to measure the electrical resistivity or conductivity
of the subsoil. The common array consists of a transmitter unit connected to a loop that receives and
sends the signal to a receiver unit. By injecting a constant current into the transmitter loop, a stable
primary magnetic field is generated in the ground. When this current is instantly stopped (also stopping
the existing magnetic field), an electromagnetic induction of electrical currents is produced in the
subsoil because of the Faraday’s Law. These currents pass through closed paths in the ground and
migrate in depth and laterally, while their intensity decreases with time, also generating a decreasing
transient secondary magnetic field on the surface. This secondary field induces a time-varying voltage
at the receiver. The way in which the voltage drops contains the information about the ground
resistivity, since the magnitude and distribution of the induced currents depend on this property. In this
context, short-time voltages provide information about the shallow resistivity, while the long-time
voltages are linked to deeper resistivities. The principal phases explained above are synthesized
in Figure 3.
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The advantage of TDEM regarding other electrical and electromagnetic methods is its low
sensitivity to the separation between transmitter (T) and receiver (R). In this way, TDEM is the only
electrical method that can be applied with a separation T/R lower than the depth of the structure that
pretends to be found. This fact allows for the improvement of the lateral resolution of the method.
However, longer distances are required for deeper prospecting to deal with noise effects [26].

In any case, the depth of prospecting in TDEM is determined, not by the T/R separation, but by
the time, since the transmitter stops emitting at the associated magnetic moment. For greater depths,
it is therefore necessary to collect the signal at later stages. It is obvious that, with short times, currents
are concentrated in the superficial layers. The first electromotive force (EMF) measurements will be
consequently more sensitive to the resistivity of the upper layers. As time passes, the current intensity
reaches greater depths, and the measured EMF is more influenced by these depths. Furthermore,
the current density decreases in the upper layers so that the electrical resistivity of these layers has low
influence on the EMF measured over long periods of time. This fact contributes to eliminate the effect
of near-surface resistivity variations, commonly the reason of losing quality in the final data obtained
by other electrical prospecting methods.

In relation to the TDEM data processing, EMF, measured as a function of time, is converted
into apparent resistivity. This resistivity is then introduced in an inversion tool which calculates the
stratification of apparent conductivities by using the Spiker algorithm (adjusting in the best possible
way to the curve of observed apparent resistivities). Specifications of the TDEM device can be found at
Appendix A, Figure A1.

2.2.2. ERT

Two-dimensional electrical resistivity tomography is a technique widely used for the characterization
of the subsoil with multiple purposes and applications. In general, its aim is the location of subsurface
complex structures and anomalies (both geological and anthropic) [27–30].

ERT consists of measuring the apparent resistivity of the ground by using a tetra-electrode
device with a constant separation “a” among electrodes. Distances between the couples of electrodes
(transmitter–receiver) are then varied by multiples of a value “n”. The basis of this method is injecting
a constant current in the ground through the transmitter electrodes and measuring the potential
difference between the receiver ones. The final result is an apparent resistivity section for several levels
in depth “n”. Data are subsequently processed by inversion mathematical algorithms. The inversion
results in real depths and resistivities image that must be verified with the geological information,
existing drillings, or geochemical or hydrological data. Through the results interpretation, a final
diagnosis is obtained.

With the purpose of finally converting the distribution of the ground real resistivity into a
geological structure, it is necessary to know and consider the typical resistivities for the different
subsoil materials and the geology in the area of study [31–33].

Data processing of this research was performed in the inversion software RES2DINV. This tool is
based on the least square’s inversion technique with smoothing restriction, using Equation (1) [34–36].

(JT J + uF)d = JT g (1)

F = fx fxT + fz fzT (2)

where fx = horizontal flattening filter; fz = vertical flattening filter; J = partial derivates matrix; JT = J
transposed matrix; u = softening factor; d = disturbance model vector; and g = discrepancy vector.

The 2D model implemented in this software divides the ground into a certain number of rectangular
blocks. The objective is to determine the real resistivity of the rectangular blocks that would produce a
pseudo-section of apparent resistivities as the ones measured in the field. Depending on the device
used, the thickness of the first layer of blocks is variable (0.5 times the space among electrodes for
Wenner and Schlumberger devices, 0.9 for the Pole–Pole, 0.3 for the Dipole–Dipole, or 0.6 for the
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Pole–Dipole). For the next deeper layer, the thickness will be increased in 10% to 25%. Layers’ depths
can also be defined by the user. Specifications of the ERT device can be found at Appendix A, Figure A2.

2.3. Field Work

Regarding TDEM prospecting, ten tests were carried out in the perimeter of the area under study.
All TDEMs were performed with a loop of 200 × 200 m and implemented the coincident loop mode.
The UTM coordinates of each TDEM is included in Table 2. Coordinates were obtained by using a
GNSS (Global Navigation Satellite System) with an accuracy of ±1 cm in planimetry. The reference
system is the European Terrestrial Reference System 1989 (ETRS 89). The use of this system allows a
perfect geo-location of the tests.

Table 2. UTM coordinates (time zone 30T) of each TDEM made in the area considered in this research.

Test X Y

TDEM-1 447,377 4,564,903
TDEM-2 447,289 4,564,603
TDEM-3 447,165 4,564,251
TDEM-4 446,949 4,564,139
TDEM-5 446,641 4,563,959
TDEM-6 446,353 4,563,763
TDEM-7 446,277 4,563,283
TDEM-8 446,637 4,562,667
TDEM-9 446,257 4,564,295
TDEM-10 448,085 4,562,743

For each TDEM, at least one register was made, using a staking of 1000 repetitions of the measurement
for each channel. In each of the mentioned registers, 73 channels were measured. However, for the size of
the loop, from channels 35 to 40, measurements were affected by the background noise, higher than the
signal to be measured. First channels were also affected by the slope, so that first and last channels
were discarded in the corresponding data processing. Figure 4 shows the TDEM equipment during the
tests in the area under study.
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Relative to the implementation of ERT, 725 m was measured in a profile distributed in the area
under study. Pole–Dipole and Schlumberger devices were used in this prospecting. Pole–Dipole was
selected considering the great depth of penetration (around 250 m in this case) and the high resolution.
The separation among electrodes was of 25 m. The beginning and ending (in UTM coordinates) of the
ERT profile are shown in Table 3. These coordinates were obtained with the previously mentioned
GNSS system.



Remote Sens. 2020, 12, 1948 8 of 17

Table 3. UTM coordinates (time zone 30T) of each TDEM made in the area considered in this research.

Profile 1 X Y

Starting point 446,708 4,564,016
Ending point 447,334 4,564,353

In Figure 5, it is possible to observe the location of the TDEM and ERT prospecting in the area
considered in this research.
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3. Results

Results derived from the 2D interpretation of the electromagnetic tests (TDEM) are shown in
Figures 6–8. Sections of iso-resistivities curves reflect the spatial variation (2D) of the apparent resistivity
in each TDEM profile. This variation is mainly due to lithological alterations corresponding to different
levels of ground materials. However, it is also possible to find sections with different resistivities in the
same lithological formation because of other external factors.
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In Figures 6–9, above, the different geo-electric unities and the materials associated are represented.
Geophysical data (resistivities) are converted into lithological information based on a series of correlation
criteria that consider previous studies in the area (geology) and previous fieldwork in similar geological
scenarios. The analysis of the geophysical prospecting brings to light the existence of three main unities:
Tertiary (clays, silts, sands, and sandstones), Mesozoic (dolomites, limestones, sands, and sandstones),
and Paleozoic (gneisses and granites). Results also evince the presence of a fault associated to the
Duratón River.

The determination of each of the geological formations is mainly based on knowing the geology
in the area (already described in Section 2.1) and the standard values of the resistivity/conductivity
typically associated to each material. In this way, standard resistivity or conductivity values (obtained
from different official databases) are the basis to connect each layer (with a specific resistivity) with a
geological formation. However, beyond this information, the experience of the geophysicist is essential
to accurately define materials of the ground. This technician is finally the key factor to achieve a
reliable interpretation of the subsoil.

4. Discussion

The area under study is located in the Duero Basin, one of the stables areas of the Earth’s crust
characterized by normal geothermal gradient (3 ◦C/100 m). In this way, the geothermal possibilities
are focused on the existence, at the appropriate depth, of permeable materials capable of containing
and allowing the movement of fluids to extract the heat from the rock. Based on previous studies from
the Geological and Mining Institute of Spain (IGME), the temperatures of the aquifers in the detrital
Tertiary of the Duero Basin (area of this research) in the depth of 0–200 m vary in the range of 12–20 ◦C.

4.1. Anomalous Geothermal Possibilities

As mentioned above, the possibility of achieving an especial use of geothermal resources (beyond
the normal use as ground-source heat-pump systems) in the area of study is limited to the existence
of particular geological formations. The geophysical tests performed here reveal that, around the
depth of 180 m, it is possible to find the contact with the impermeable granitic materials from the
Paleozoic. In order to estimate the temperature in the aforementioned level, it is convenient to consider
the average annual temperature in the area under study. This information can be found in Figure A3,
from Appendix B. As Figure A3 shows, the temperature in the area of this research is around 11.7 ◦C for
the period considered. From this value, and considering the normal geothermal gradient, the temperate
at the depth of 180 m would be of about 17.1 ◦C. This temperature could be higher, since the contact is
constituted by granitic materials (characterized by high thermal conductivities) that could provide a
higher amount of heat to the groundwater.

From the depth of 180 m, it would be interesting (from the geothermal point of view) to perform a
drilling in the location of the fault represented in Figures 6 and 9. In this position, it could be possible
to find meteorized permeable granitic materials accumulating groundwaters. Additionally, it might be
the case that deeper water flows reach the fault with higher temperatures. It should also be remembered
the documented natural spring (Table 1) in the vicinity of the study area with temperatures of above
20 ◦C and placed in similar lithology. In the case that geological formations in depth are permeable
or fractured, and if there is groundwater circulation, this water is capable of capturing the heat from
the rocks and reaching the surface through crevices or faults. Once in the surface, it could lead to the
generation of thermal waters or geysers (depending on the geothermal gradient, the groundwater
temperature). In this sense, the existence of a fault in the area under study is not in itself an indication
of anomalous geothermal activity, but if this was the case, the fault constitutes the way of using the
geothermal resource in the surface.

Based on the results obtained throughout this research, Figure 10, below, shows the location of the
area recommended for the collection of groundwater, with high possibilities of reaching an anomalous
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thermal gradient. Figure 10 also includes the exact position of the drilling to carry out the exploitation
of the geothermal resource.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 17 
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UTM coordinates of the recommended drilling (previously indicated in Figure 10) are included
in Table 4.

Table 4. UTM coordinates (time zone 30T) of the drilling suggested for the exploitation of possible
geothermal resources.

UTM Coordinates X Y

Recommended drilling 446,872 4,564,070

In the end, the existence of geothermal anomalies is judged in this work by three main factors:
the existent thermal evidence in the nearby areas, the results of the geophysical prospecting, and the
estimation of the geothermal gradient in the area under study. The subsoil materials (known from
the geophysics results) are a preliminary indication of the possible geothermal activity. However,
this information cannot be used as final evidence. In this way, the existing thermal waters with thermal
gradient above the mean value and the estimation of the geothermal gradient in the specific area of
study are also useful and necessary to make a global evaluation. It must also be mentioned that the
presence of granite formations does not guarantee the existence of geothermal anomalies. Despite this
fact, the existence of these materials is favorable for finding geothermal activity.

4.2. Ground-Source Heat-Pump Uses

Low-enthalpy geothermal energy can be used at any point of the Earth’s crust by the use of heat
pumps as ground-source or groundwater heat-pump systems. However, the geological conditions of
an area highly influence the global geothermal design and, hence, the final investment of the system.

The site under study is constituted by materials with high thermal conductivities located a few
meters from the surface, especially in the south and northwest areas. These geological formations
(limestones, dolomites, granites, etc.) make this place an ideal location for the implementation of
ground-source heat-pump systems for heating and cooling purposes.
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With the aim of highlighting the importance of the ground characterization to define the specific
drilling area, the software GES-CAL [37], designed for the calculation of low-enthalpy geothermal
systems, was used in this work. Thus, this tool is useful to compare the differences, in technical and
economic terms, between a system placed in the most appropriate area (according to the geophysical
results) and in an aleatory one.

Derived from the abovementioned information, Table 5 includes the results of GES-CAL software
in the design of three ground-source heat-pump systems in the area under study. Case 1 is planned
to be placed in the most favorable conditions in which the granite and gneiss formations are found
from the depth 50 m (profile 3 of Figure 8). Case 2 is, in turn, located in the most extended area
where the Paleozoic begins at the depth of 100 m. Finally, Case 3 considers the most unfavorable
situation in which the consolidated formations are found from the depth of around 180 m (Figure 6).
When performing the analysis of each assumption with GES-CAL, identical initial conditions are
introduced in the software, except for the ground thermal conductivity. In function of the stratigraphic
column prevailing in each case, an average value of the ground thermal conductivity was obtained by
considering the length of each layer of material and its thermal conductivity from the surface to the
depth of 150 m (common depth of the wells in shallow geothermal systems).

Table 5. Drilling length and initial investment required in the geothermal system of each case, according
to the global ground thermal conductivity.

Cases Ground Thermal
Conductivity (W/mK)

Total Drilling
Length * (m) Initial Investment (€)

Case 1 2.178 136 22,993.38
Case 2 1.920 152 25,019.23
Case 3 1.286 218 29,729.28

* Associated to a vertical double-U heat-exchanger design.

It is important to mention that the average of the ground thermal conductivity of each case
(included in Table 5) was obtained from the officially accepted thermal conductivity values for each
material, according to the “Technical Building Code” (CTE) [38].

As can be noted from the results of Table 5, the selection of an appropriate location of the
geothermal well field involves significant reductions of the global drilling length required in the system.
Additionally, the economic module of GES-CAL allows for the comparison of the initial investment
associated to each assumption. Observing Table 5 again, we see Case 1 requires an investment of
around 23% lower than the one required by Case 3.

Beyond the economic side, it is also important to consider the technical factors that could
compromise the performance of the geothermal installation. In this sense, the drilling method selected
in the geothermal well field is completely influenced by the geological formations constituting the
underground. Reverse circulation methods (associated to loosen materials) are frequently avoided in
geothermal systems due to the difficulties of holding the materials during the drilling process without
casing. In relation to the cases analyzed in this research, the stratigraphic column of Cases 2 and 3
is mainly constituted by non-consolidated materials (especially in Case 3, in which all the column is
made up of this kind of material). This fact would oblige us to use the reverse-circulation technique
when carrying out the geothermal wells of these cases, complicating the global process, but also raising
the price of the initial investment. Regarding Case 1, the presence of consolidated materials at a more
superficial level allows the implementation of rotary percussive drilling techniques. These methods
are ideal for the geothermal drilling, because casing is not needed, and the general cost is lower than
the reverse-circulation ones. It is important to clarify that GES-CAL does not provide information
about the most suitable location of the wells; this location is specifically defined from the geophysical
prospecting (distribution of the geological formations in the subsoil).
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5. Conclusions

This research has particularly exposed the applicability of the geophysical techniques, TDEM
and ERT, in the identification of potential areas for the exploitation of shallow geothermal resources.
Geophysical prospecting results have revealed the exact lithology of the ground in the area under
study. Based on this knowledge, the following statements were deduced from this work:

• The investigated area is located on the SE edge of the tertiary depression belonging to the Duero Basin.
The most superficial geological unities are principally detrital materials: clays, sands, gravels, silts,
and sandstones. More in depth, dolomites, limestones, and sandstones are found to finally reach
the Paleozoic level (gneiss and granites). Results derived from the implementation of geophysics
have allowed us to define the thickness of each layer of materials in the entire area under study.

• Regarding the exploitation of groundwater resources, the highest possibilities of locating thermal
waters were detected in the NE side of the study area. More specifically, the fault associated to the
Duratón River is considered the most favorable location to exploit the mentioned resource.

• In addition to the possible use of thermal waters, the implementation of ground-source heat-pump
systems was analyzed in this research. Even though, in all the area under study, it is possible to
install this kind of energy, the information obtained from the geophysical tests has also allowed
us to define the most appropriate location of the geothermal well field. The GES-CAL tool was
used to compare the design of the shallow geothermal system in different locations of the area.
Through this analysis, it has verified that the precise location of the geothermal wells could mean
significant economic savings, being also important to avoid possible technical problems during
the drilling process.

In conclusion, this research has proved that geophysical prospecting methods, as the ones selected
here, constitute a useful tool to firstly define the underground geological characterization, and then to
analyze the potential areas for geothermal exploitation. All of this includes the detection of possible
thermal water resources, as well as the establishment of the most suitable areas for the location of the
well field (in the case of ground-source or groundwater heat-pump systems).
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Appendix A

This Appendix specifies the technical characteristics of the device used when performing the
corresponding geophysical prospecting of this research.

• TDEM equipment

TerraTEM is the device used at the electromagnetic prospecting. It is a new transient electromagnetic
survey system that incorporates a 10 Amp transmitter and a true simultaneous 500 kHz three-component
receiver. The unit is powered by an external 24 V battery pack system allowing 6–8 h of continuous
operation. The GPS, which is mounted on the front panel, allows for geolocation information to be
automatically recorded with soundings. The user interface comprises a 15” color LCD panel and
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a touchscreen. System parameters are stored automatically with each sounding, for post-survey
quality assurance. More information about the specifications of this device are shown in Table A1.
Additionally, Figure A1 includes the mentioned device.

Table A1. Specifications of TerraTEM device.

TerraTEM

Transmitter Output 10 Amps. (max.)
Receivers 1 Channel

High-Resolution Sampling Rates 500 kHz
Data Visualization and Processing in Field Standard Software

Storage Device 1 GB Flash Disk
GPS Receiverº 12 Channels

Communications USB and RS-232 Standard
Extra Stacking Options and Gain Functions 10 Selectable Gain Settings from 1 to 8.000

Operating Temperature −10–40 ◦C
Resolution 23 nV

Transmitter Current 50 A at 6 V through to 120 V (6 kW)
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• ERT equipment

Regarding the ERT tests, Syscal Pro was the device selected. It is an all-in-one multi-node resistivity
and induce polarization sounding and profiling system. Syscal Pro gathers a 10-channels receiver and
a 250 W internal transmitter, making it the more powerful system of the Syscal range. In Figure A2
and Table A2, it is possible to observe the mentioned equipment and its principal specifications.

Table A2. Specifications of Syscal Pro device.

Syscal Pro

Transmitter max. voltage 800 V
Transmitter max. current 2.5 A, accuracy 0.2%
Transmitter max. power 250 W
Receiver max. voltage 15 V

Receiver resolution 1 microV
Electrodes Up to 4000 can be used

Data flash memory More than 21,000 readings
Serial link RS-232 data download

Power supply Two internal rechargeable 12 V, 7.2 Ah
Optional external 12 V batteries

Casing Shock resistant fiber-glass case
Operating Temperature −20–70 ◦C
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