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Abstract

Phosphoproteomics allows one to measure the activity of kinases that drive the fluxes of sig-

nal transduction pathways involved in biological processes such as immune function, senes-

cence and cell growth. However, deriving knowledge of signalling network circuitry from

these data is challenging due to a scarcity of phosphorylation sites that define kinase-kinase

relationships. To address this issue, we previously identified around 6,000 phosphorylation

sites as markers of kinase-kinase relationships (that may be conceptualised as network

edges), from which empirical cell-model-specific weighted kinase networks may be recon-

structed. Here, we assess whether the application of community detection algorithms to

such networks can identify new components linked to canonical signalling pathways. Phos-

phoproteomics data from acute myeloid leukaemia (AML) cells treated separately with

PI3K, AKT, MEK and ERK inhibitors were used to reconstruct individual kinase networks.

We used modularity maximisation to detect communities in each network, and selected the

community containing the main target of the inhibitor used to treat cells. These analyses

returned communities that contained known canonical signalling components. Interestingly,

in addition to canonical PI3K/AKT/mTOR members, the community assignments returned

TTK (also known as MPS1) as a likely component of PI3K/AKT/mTOR signalling. We drew

similar insights from an external phosphoproteomics dataset from breast cancer cells

treated with rapamycin and oestrogen. We confirmed this observation with wet-lab labora-

tory experiments showing that TTK phosphorylation was decreased in AML cells treated

with AKT and MTOR inhibitors. This study illustrates the application of community detection

algorithms to the analysis of empirical kinase networks to uncover new members linked to

canonical signalling pathways.
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Author summary

Kinases are key enzymes that regulate the transduction of extracellular signals from cell

surface receptors to changes in gene expression via a set of kinase-kinase interactions and

signalling cascades. Inhibiting hyperactive kinases is a viable therapeutic strategy to treat

different cancer types. Unfortunately for cancer therapy, kinase signalling networks are

robust to external perturbations, thus allowing tumour cells to orchestrate mechanisms

that compensate for inhibition of specific kinases. Therefore, there is a need to better

understand kinase network structure to identify new therapeutic targets. Here, we recon-

structed kinase networks from phosphoproteomics data, and compared the activity of its

kinase interactions in acute myeloid leukaemia (AML) cells. We then tested community

detection algorithms to identify kinase components associated with PI3K/AKT/mTOR

signalling, a paradigmatic oncogenic signalling cascade. We found that TTK was usually

grouped with networks derived for PI3K, AKT and mTOR kinases. Wet-lab experiments

confirmed that TTK is likely to act downstream of AKT and mTOR. We thus showed that

our methods can be used to identify potential new members of canonical kinase signalling

cascades.

Introduction

Cells respond to changes in their environment through kinase-driven biochemical pathways

that regulate the flux of signalling from cell surface receptors to changes in the expression levels

of genes involved in cell functions [1]. Signal transduction is therefore essential to the upkeep of

many biological processes including immune function [2], ageing/senescence [3], and growth,

amongst others. Conversely, the dysregulation of signalling pathways can result in a range of

different pathologies, such as metabolic syndrome, autoimmune diseases, or cancer [4,5]. Sus-

tained proliferative signalling brought about by genetic mutations or by aberrant expression or

activation of tumour suppressor genes and proto-oncogenes is a key cancer hallmark. For this

reason, kinases are one of the most widely pursued targets for cancer therapeutics.

Although approaching signalling as a set of pathways is useful to conceptualise some of its

properties, it is now recognized that signalling pathways form complex networks of interac-

tions and enzymatic reactions [6]. A network in its simplest form is a graph, where nodes rep-

resent entities of interest and edges represent pairwise interactions between such nodes [7].

Quantitative phosphoproteomics can provide new insights into these complex kinase signal-

ling networks through the measurement of kinase phosphorylation, and capture the complex-

ity of interactions within and between kinase signalling pathways at the network level [8,9].

While quantitative phosphoproteomics have been widely used to study changes in kinase activ-

ities in cancer cells [10–14], studies that incorporate quantitative phosphoproteomics with

kinase-substrate networks are fewer and relatively recent [8,9,15–17]. A problem has been the

lack of phosphorylation sites that are markers of kinase network circuitry and which therefore

allow for cell-type specific reconstruction of signalling networks from phosphoproteomics

data. To address this issue, Hijazi et al recently described a set of 6,000 phosphorylation sites

that define kinase-kinase interactions [16], from which networks may be reconstructed in a

given cellular state.

Here, we aimed to characterise novel kinase interactions in canonical cancer signalling

pathways. To do so, we construct networks of kinase-kinase relationships with edge weights

defined by the change in the levels of markers of kinase-kinase relationships in response to the

inhibition of a given kinase (as measured by quantitative phosphoproteomics). Once networks
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are constructed for each perturbation, we applied the community detection approach modu-

larity maximisation, which has been used in a wide variety of biological networks [18] and has

achieved favourable performance in comparative studies on biological networks [19]. In doing

so, our aim is to illustrate how one can use community detection techniques from network sci-

ence to analyse signalling derived from quantitative phosphoproteomics, and to demonstrate

that studying the mesoscale structure (e.g., community structure) [7,20] of the resulting net-

work can reveal novel biological insights about cancer kinase signalling pathways.

Materials and methods

Data description

We first analysed enrichment values of 1500 kinase-kinase interactions in P31/FUJ cells

treated separately with the kinase inhibitors trametinib, GDC0994, GDC0941 and AZD5363,

measured by z-score analysis as in the Kinase Substrate Enrichment Analysis (KSEA) method

[10] (these values were taken from four of the columns in the Supplementary dataset 5 pub-

lished in [16]). The kinase-kinase interactions were defined in previous work [16] based on the

existence of common putative downstream targets (PDTs), i.e. both kinases in a kinase-kinase

relationship that define a given edge act upstream of a number of phosphorylation sites. We

focus on kinase-kinase relationships inhibited by the treatments (i.e., with negative z-score val-

ues) where one has some notion of ground truth for the pathway containing the main target of

the inhibitor. That is, MAP2K1 and MAPK1/3, the respective targets of trametinib and

GDC0994, belong to the MEK/ERK pathway [21], while PIK3CA and AKT1/2, the respective

targets of GDC0941 and AZD5363, belong to the PI3K/AKT/mTOR pathway [3]. Table 1

shows summary statistics for the dataset portion that we tackle in the present paper, which

focuses on the analysis of the GDC0941 and AZD5363 treatments, while that of trametinib

and GDC0994 treated cell measurements can be found in the Supplementary Information.

Network construction

In this study, we work under the hypothesis that the inhibition of a kinase that belongs to a

pathway will result in the inhibition of its downstream kinase interactions within that pathway.

For each treatment, we constructed a network in which the edges are the pairwise kinase inter-

actions with negative z-scores (i.e., inhibited) and the nodes are the kinases that are part of

said interactions using custom-made Python scripts (made publicly available at https://github.

com/celiaccb/KinasesCommunityDetection as part of this work), resulting in four weighted

and undirected networks (i.e., without assumption on whether the kinases act upstream or

downstream of each other). Additionally, we constructed networks from the pair kinase inter-

actions with positive z-scores (i.e., upregulated), as detailed on the S3 Appendix. We adopt this

approach because the presence of a given edge (kinase-kinase interaction) in the network

would be revealed by the decrease in phosphorylation sites that define such edges as a result of

treatment with specific kinase inhibitors.

Table 1. Summary statistics for strictly negative z-scores.

Treatment No. of kinases min max μ σ
trametinib 69 -3.732 -0.000607 -0.278 0.276

GDC0941 72 -6.749 -0.00178 -0.590 0.779

AZD5363 74 -16.886 -0.00334 -0.505 0.966

GDC0994 67 -1.411 -0.00233 -0.309 0.261

https://doi.org/10.1371/journal.pcbi.1010459.t001
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Loosely speaking, a community in a network is a set of nodes that are “more densely” con-

nected to each other than they are to nodes in the rest of the network [20]. Since we are inter-

ested in capturing the kinase interactions with the highest decrease in activity (i.e., lowest z-

scores) in response to a treatment, we use the absolute value of z-scores as the weights of the

kinase-kinase edges. The weights of the kinase-kinase edges is then proportional to the extent

of inhibition that the kinase-kinase interaction represents experiences with said treatment

(compared to control).

Data available in [16] (see Data description ). The column “min” (resp., “max”) corresponds

to the smallest (resp., largest) strictly negative z-score for the corresponding treatment. The

columns μ and σ correspond to the mean and standard deviation, respectively, of strictly nega-

tive z-score values for each treatment.

Community detection

We denote by n the number of nodes in a network and by A the corresponding adjacency

matrix. In this paper, the nodes are kinases and the entries of A are the absolute value of nega-

tive z-scores (see Network construction). We use modularity maximisation to identify commu-

nities. The modularity maximisation problem can be stated as follows:

max
C2C

Xn

i;j¼1

Aij � Pij

� �
d ci; cj
� �

ð1Þ

where C is the set of all n-node partitions, A is the adjacency matrix of the observed network, P
is an expected null network under some null model, and ci is the set assignment of node i
[20,22]. This method partitions a network into sets of nodes called “communities” that have a

larger total internal edge weight than that expected in the same sets in a null network, gener-

ated from some null model.

To find locally optimal partitions for the community detection approach modularity maxi-

misation in Community detection, we use the locally greedy algorithmic heuristic Louvain

[23]. We consider both a“uniform” and “Newman-Girvan” null network [24], and choose the

uniform null network for our experiments on the basis of slightly better alignment with

“ground truth” canonical pathways (see Results) across different algorithmic runs. We use a

nondeterministic version of Louvain in which node order is randomised at the start of each

iteration. This stochasticity can yield different partitions across different runs. To compute a

“consensus partition”, we use the iterative approach in [25]. We obtain an ensemble of parti-

tions using the Louvain algorithm (the size of the ensemble is the number of algorithmic

runs), for which we compute a “co-classification matrix”. We reiterate our community detec-

tion procedure on the co-classification matrix until the new co-classification matrix resulting

from the corresponding partition ensemble is binary (typically after 1 or 2 iterations). The par-

titions we obtain are robust (e.g., to different repetitions of the consensus procedure), see S1

Appendix. We show adjacency matrices and corresponding co-classification matrices in Fig 1.

Wet-lab experiments: Phosphoproteomics analysis of kinase inhibitor-

treated cells

To experimentally verify novel computational findings, we carried out new phosphoproteo-

mics analyses following the protocol described in the S4 Appendix and previous work [16,26].

We chose the P31/Fuj cell line to validate observations related to the PI3K/AKT/mTOR path-

way because this cell line shows an increase in the activity of the PI3K/AKT/mTOR pathway

due to an inactivating mutation in the PTEN. A lipid phosphatase that negatively regulates

PLOS COMPUTATIONAL BIOLOGY Community detection identifies signalling pathways members

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010459 June 23, 2023 4 / 15

https://doi.org/10.1371/journal.pcbi.1010459


Fig 1. Results of community detection from phosphoproteomics-derived networks. Adjacency matrix (panel A)

and consensus co-classification matrix (panel B). In panel A, we show the adjacency matrix of each kinase network

ordered by their community assignment in the consensus partition. We cap the entries of the adjacency matrix at 1 to

emphasize structure. In panel B, we show the co-classification matrix of a consensus partition (see Community

detection), which takes the values 1 or 0. The colors scale with the entries of the matrices.

https://doi.org/10.1371/journal.pcbi.1010459.g001
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PI3K activity. Briefly, the P31/FUJ cell line was grown in RPMI medium supplemented with

10% FBS and 1% Pen/Strep. Cells were treated with 1 μM CFI-402257 (TTKi), MK2206

(AKTi), BYL719 (PI3Ki) or AZD8055 (MTORi) for three hours, in order to give enough time

for the TTKi CFI-402257 to reach TTK in the cell nucleus. Table 2 shows the supplier and cata-

logue number of the compounds.

After treatment, cells were lysed in urea buffer and digested with trypsin. Finally, phospho-

peptides were enriched using TiO2 and analysed in a LC-MS/MS system, which consisted of

an Ultimate 3000 ultra-high-pressure chromatography connected to a Q-Exactive Plus mass

spectrometer. Peptide identification and quantification was performed using Mascot search

engine and Pescal, respectively, as described in [26]. The mass spectrometry proteomics data

has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository

[27] with the dataset identifier PXD026039.

Results

Community structure can reflect kinase signalling pathways

The main aim of this study is to assess whether the application of community detection tech-

niques to quantitative phosphoproteomics based kinase networks can identify new members

of canonical kinase signalling pathways. For this purpose, we first assess whether known

kinases in the signalling pathway PI3K/AKT/mTOR belong to the same community. That is,

we compare the results of community detection with what we regard as “ground truth” in the

present context.

Two networks were constructed based on the edge enrichment of kinase-kinase relation-

ships (see Network construction), measured as z-scores, of AML cells treated separately with

the kinase inhibitors GDC0941 (a PIK3CA/PI3K inhibitor) and AZD5363 (AKT inhibitor).

We refer to these networks as GDC0941 and AZD5363, respectively, for the remainder of the

paper, where the superscript “–” is to emphasise that we only consider negative z-scores (i.e.,

kinase-kinase relationships that were inhibited by the compounds). Furthermore, in each net-

work we only focus on the community containing the main target of the inhibitor the cells

were treated with. For example, the communities containing PI3K kinase alpha isoform (gene

name PIK3CA) and AKT1/2 (AKT isoforms 1 and 2 are considered as one since they have the

same z-scores due to having the same putative downstream targets assignments) were selected

for networks GDC0941– and AZD5363– , respectively, and we denote these respective commu-

nities by GDC0941–
(PIK3CA) and AZD5363–

(AKT1/2) .

PIK3CA and AKT1/2 are two of the main members of the PI3K/AKT/mTOR signalling

pathway, which is often activated in a range of cancers and contributes to their development

[28]. Thus, we expect the selected communities in networks GDC0941– and AZD5363– to be

similar or identical in terms of content, and a reflection of the kinase interactions in this path-

way. We found that the communities GDC0941–
(PIK3CA) and AZD5363–

(AKT1/2) share 24

kinases (blue nodes in Fig 2A and 2B) while CDK2 is part of the community AZD5363–
(AKT1/

2) (yellow node in Fig 2A) but not GDC0941–
(PIK3CA). Six other kinases were part of

Table 2. Additional information on the compounds used.

Name Intended Target Supplier Catalog No.

CFI-402257 TTK MedChemExpress HY-101340

MK2206 AKT Selleckchem S1078

BYL719 PI3K Selleckchem S2814

AZD8055 mTOR Selleckchem S1555

https://doi.org/10.1371/journal.pcbi.1010459.t002
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GDC0941–
(PIK3CA) but not AZD5363–

(AKT1/2) (purple nodes in Fig 2B), four of which we attri-

bute to MAP2K1 signalling (further discussed in S2 Appendix). Of note, PIK3CA, AKT1/2,

mTOR and RPS6KB1, which are well known members of the canonical PI3K/AKT/mTOR sig-

nalling pathway [28], are present in both communities, which is concomitant with the fact that

the edges between these kinases have large weight values (see heatmaps in Fig 2A and 2B) in

both networks (i.e. their activity is highly decreased in response to both inhibitors).

Thus, the community detection algorithm used in this study returned the PI3K/AKT/

mTOR canonical signalling pathway, suggesting that this approach can identify biologically

meaningful associations. We stress, however, that community detection alone is hypothesis

generating and not sufficient for the unambiguous identification of novel members in said

pathways, for which we delineate further steps in the next two sections.

TTK is a likely downstream target of PI3K/AKT/mTOR signalling

We next investigated which of the kinases placed in the communities AZD5363–
(AKT1/2) and

GDC0941–
(PIK3CA) are most likely to act downstream of PI3K/AKT/mTOR signalling. To do

so, we narrowed the list of 24 kinases assigned to both the GDC0941–
(PIK3CA) and

AZD5363–
(AKT1/2) communities (see Community structure can reflect kinase signalling

Fig 2. Identification of canonical and non-canonical kinases in PI3K/AKT networks. A. Kinase interactions of the selected communities in network AZD5363– .

Abbreviations: SC; selected community. On the left hand side of panel A the nodes and edges within the community AZD5363–
(AKT1/2) are depicted, in which the yellow

nodes represent kinases present in AZD5363–
(AKT1/2) but not GDC0941–

(PIK3CA) , and the blue ones represent the nodes present in both communities. B. Kinase

interactions of the selected communities in network GDC0941–
(PIK3CA) . On the left hand side of panel B the nodes and edges within the community

GDC0941–
(PIK3CA)are depicted, in which the yellow nodes represent kinases present in GDC0941–

(PIK3CA) but not in AZD5363–
(AKT1/2), and the blue ones represent the

nodes that are present in both communities. The heatmaps on the right hand of panel A and B show the weights of the edges between well-known members of the PI3K/

AKT/mTOR pathway in each of the communities, in which a grey cell indicates that interaction is not present in that community. C. Kinase interactions and community

strength show TTK is likely to be downstream of PI3K/AKT/mTOR signalling. The venn diagram shows the intersections between the PIK3CA, AKT1/2 and MTOR

edges/kinase interactions in the AZD5363–
(AKT1/2) community, in which six kinases have direct interactions with PIK3CA, AKT1/2 and MTOR. In panel B, the

community strength (i.e. the sum of the weight of the edges between a node and other nodes in its community) of each of the said six kinases in the AZD5363–
(AKT1/2)

and GDC0941–
(PIK3CA) communities is depicted.

https://doi.org/10.1371/journal.pcbi.1010459.g002
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pathways) based on two criteria. First, we discarded all kinases that do not have a direct edge

with all three kinases PIK3CA, AKT1/2 and mTOR in the AZD5363– network. If a kinase does

not have a direct relationship with all three kinases in PI3K/AKT/mTOR signalling (see Net-

work construction) it is more likely to act downstream of some but not all kinases, since it

either means that the kinase does not share downstream targets with PI3K, AKT and mTOR,

or that the relationship is not included in the network because its activity is unchanged or

increased in response to the different inhibitors.

We found that, in addition to the known PI3K/AKT/mTOR pathway members AKT1/2,

mTOR and RPS6KB1, six kinases have direct edges with PIK3CA, AKT1/2 and mTOR in the

AZD5363–
(AKT1/2) community, as shown in Fig 2C. Secondly, we computed the community

strength (CS) (i.e., the sum of the weight of the edges between a node and other nodes in its

community) of said kinases in GDC0941–
(PIK3CA) and AZD5363–

(AKT1/2) (see Fig 2C). Interest-

ingly, TTK had the highest absolute CS by far out of the six selected kinases in both communi-

ties, as well as the third highest absolute CS of all kinases in GDC0941–
(PIK3CA) and the fourth

highest absolute CS of the AZD5363–
(AKT1/2) kinases, meaning its interactions with the other

kinases in both communities have the highest decrease in activity in response to both PIK3CA

and AKT1/2 inhibition. We observed similar results on breast cancer cells treated with rapa-

mycin and oestrogen, as detailed on the S2 Appendix under the supporting information.

These results strongly suggest that TTK is likely associated with PI3K/AKT/mTOR signalling

across different types of cancers.

The Citron Rho-interacting (CIT) kinase has the second highest absolute CS in

AZD5363–
(AKT1/2) but the fourth highest absolute CS in GDC0941–

(PIK3CA). The AZD5363

inhibitor has previously been shown to significantly decrease the activity of kinases ROCK1

and ROCK2 [29], which share with CIT the upstream effectors RHOA and RHOC [30]. There-

fore, we propose that AZD5363 might decrease CIT activity to a higher degree than GDC0941

through the inhibition of RHOA and RHOC, although the validity of this hypothesis needs to

be further investigated.

PRKACA has the third highest absolute CS in AZD5363–
(AKT1/2) and the third highest abso-

lute CS in GDC0941–
(PIK3CA). Moody et al previously found that PRKACA drives resistance to

HER2 inhibitors in breast cancer by promoting cell survival through the inactivation of the

pro-apoptotic protein BAD, a mode of action shared with AKT. Additionally, they observed

that increased expression of PRKACA did not salvage phosphorylation of AKT or mTOR [31].

Based on these observations, PRKACA may also be a downstream target of PI3K/AKT/mTOR

signalling in some contexts.

Phosphoproteomics analysis provides supporting evidence for TTK being

phosphorylated downstream of PI3K/AKT/mTOR signalling

As shown in the previous section, the kinase TTK–a mitotic kinase also known as MPS1 –was

found to be in the same community as PI3K, AKT and mTOR, suggesting that TTK may be

upstream or downstream of the PI3K/AKT/mTOR pathway. To validate this finding, the cell

line P31/FUJ was treated with 1 μM CFI-402257 (a highly specific small molecule inhibitor of

TTK [32], thereafter named TTKi), MK2206 (AKTi), BYL719 (PI3Ki) or AZD8055 (mTORi)

for 3h, and further subjected to phosphoproteomics analysis by mass spectrometry, following

the protocol described in the S4 Appendix and previous work [16].

This analysis led to the identification and quantification of more than 8,000 phosphopep-

tides in biological and technical replicates (Fig 3A). As volcano plots in Fig 3B show, at the

same threshold of statistical significance (adjusted p-value< 0.1), the MTORi caused the high-

est impact on the phosphoproteome (654 increased and 598 decreased phosphopeptides),
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Fig 3. TTK and PI3K/AKT/mTOR pathway inhibitors impact common phosphorylation pathways. A. Summary of results of

phosphoproteomics experiment. Venn diagrams show phosphopeptides commonly decreased or increased by the kinase inhibitors. B. Impact

on the phosphoproteome as a function of the kinase inhibitors. Phosphopeptides increased or decreased significantly are highlighted in purple

or sky blue, respectively. FDR values are p-values adjusted for multiple testing using the Benjamini-Hochberg method. C. Enrichment of

hallmark gene sets from the Molecular Signature Database (MSigDB) considering phosphopeptides decreased (left panel) or increased (right

panel) as a function of the compound treatments.

https://doi.org/10.1371/journal.pcbi.1010459.g003
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whereas the TTKi only increased 3 and decreased 9 phosphosites compared to the control con-

dition (Fig 3B). Treatments with PI3Ki and AKTi impacted more than 150 phosphorylation

sites each. The larger impact on protein phosphorylation of PI3K/AKT/mTOR compared to

TTK inhibition, suggests that TTK is unlikely to be upstream of the PI3K pathway.

We found 7 and 4 phosphorylation sites commonly decreased or increased by all the kinase

inhibitors, respectively (Fig 3A). Across the 7 phosphosites decreased, we highlight the double

phosphorylated RPS6KB1 at T444 and S447, located in an autoinhibitory domain [33], the

CDK1-mediated phosphorylation of CHAMP1 required for the attachment of spindle micro-

tubules to the kinetochore [34] and the inhibition by phosphorylation of TLK1, which follows

the generation of DNA double-stranded breaks during S phase as a DNA damage checkpoint

(Fig 4D) [35]. These observations are consistent with the known roles of the PI3K pathway

and the TTK mitotic kinase in the cell-cycle regulation and indicate a functional relationship

between the two.

Furthermore, several markers of PI3K pathway activity, including multiple phosphorylation

sites in AKT1/2, 4EPB1/2, PRAS40, GSK3A/B, MYC, were inhibited by PI3Ki, AKTi, MTORi

but not by TTKi (Fig 4A), implying that TTK is not directly upstream of the PI3K pathway.

Interestingly, we also found that the AKTi and mTORi significantly decreased the phosphory-

lation of TTK at S824 and S436 (Fig 4B), whose function are to regulate the activity of TTK in

controlling cytoskeletal reorganisation [36]. Moreover, a pathway analysis using hallmark gene

sets revealed an enrichment of the PI3K/AKT/mTOR signalling in phosphoproteins that

decreased as a result of PI3Ki, AKTi or mTORi treatment, but not by TTKi (Fig 4C). In con-

trast, hallmark genes with roles in the G2M checkpoint and the mitotic spindle were enriched

in phosphoproteins decreased by TTK as well as PI3K pathway inhibitors. Taken together,

these observations are consistent with the finding obtained with the community detection

algorithm and suggest that TTK phosphorylation and at least some TTK functions are down-

stream of the PI3K/AKT/mTOR network.

Discussion

Studying the effects of kinase pathways dysregulation and over-activation on carcinogenesis

has led to a better understanding of cancer biology and the development of therapies that tar-

get oncogenic kinase signalling. However, intrinsic and acquired resistance to treatments with

kinase inhibitors and other drugs, which occur in most patients, is estimated to be responsible

for 90% of cancer deaths [37]. Acquired resistance may occur through target modification, in

which the drug target acquires further mutations that result in reduced drug binding, thus

reducing the effectiveness of the treatment [38] or by the rewiring of kinase networks so that

cancer cells use parallel or downstream pathways to proliferate [39]. The discovery of new

members of oncogenic pathways, such as that of TTK and potentially PRKACA in the PI3K/

AKT/mTOR pathway in this study, may help the identification of alternative targets for cancer

treatment.

The two main aims of this study were first to assess whether it is possible to define sub-clus-

ters of kinases that represent individual kinase signalling pathways by applying community

detection algorithms to networks derived from empirical markers of kinase-kinase activity,

and secondly, to assess whether such an approach can be used to identify new kinase members

associated with canonical signalling pathways. Our study differs from most previous works on

quantitative phosphoproteomics-based kinase network analysis, which focused on the predic-

tion of kinase interactions using publicly available kinase-substrate databases, such as Phos-

phoSitePlus, Signor or Phospho.ELM (which draw information from systematic literature

mining) [10,14]. A prior study [15] focused on identifying kinases that mediate crosstalk
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Fig 4. Phosphoproteomics of cells treated with kinase inhibitors supports a link between TTK and PI3K/AKT/mTOR signalling. Dot plots denote relative intensities

of phosphosites as a function of treatment with the named kinase inhibitors, grouped by those linked to PI3K pathway activity (A), on TTK (B), decreased exclusively by

the TTK inhibitor (C) or commonly decreased across all the treatments (D). FDR values are p-values adjusted for multiple testing using the Benjamini-Hochberg

method.� FDR< 0.1, � � FDR< 0.05, � � � FDR< 0.01, n = 4.

https://doi.org/10.1371/journal.pcbi.1010459.g004
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between different signalling pathways downstream of the activation of a receptor kinase. To do

so, Narushima et al investigated a kinase-substrate network where interactions between dis-

tinct kinases are unweighted. Our study shows that, by harnessing newly available large scale

phosphoproteomics datasets [16], community detection algorithms may also be used to iden-

tify new members of canonical signalling pathways.

Common limitations with many community detection algorithms include a “resolution

limit” [40] and “near degeneracy” [41] [42] of the quality function. In the present analysis,

communities were identified using modularity maximization at a single scale (or resolution)

and a consensus partition was obtained by combining different locally optimal partitions using

the approach in [25]. Appealing features of modularity maximization that may be useful in

future investigations of mesoscale structure in kinase-substrate networks are that it has been

generalized to weighted, directed, and time-dependent networks, and that it incorporates a

user-specified “null model” that can be tailored to the application at hand.

One could extend this analysis by investigating communities at multiple scales, to identify

smaller sets of densely connected kinases, and using other approaches to consensus clustering

(e.g., that consider different null models) [43]. One could also consider different algorithms

for optimising the quality function (e.g., Leiden [44]), or other community detection methods

for a comparative analysis (e.g., random walk based approaches [45] [19]).

Overall, our study demonstrates that the study of community structure has the potential to

reveal novel biological insights about cancer kinase signalling pathways. We found that (1)

community assignments align well with established canonical pathways, (2) communities can

reveal new components of known pathways, (3) wet lab experiments can validate the member-

ship of the identified kinase to the known pathway, and provide evidence for whether it is acti-

vated downstream or upstream from it (i.e. TTK is likely downstream of PI3K/AKT/mTOR

based on our results).

Future research in this field could include the application of network science techniques to

investigate further questions in cell signalling, such as the relationship between kinase meso-

scale network structure and an individual’s response to cancer treatment, where the latter

might be measured by the proportion of cancer cells that cease to proliferate or decrease in via-

bility post treatment. In the present paper, we investigated communities, which are the most

commonly studied type of mesoscale structure. To try and gain further insights, one could also

identify motifs in kinase networks [46] [47] and other types of mesoscale structure in networks

that comprise different types of connections and/or exhibit temporal variation [48]. Ulti-

mately, the hope is that such research can provide insights into the mechanisms of biochemical

pathways and, as a result, improve our understanding of individual drug responses and

advance methods for drug response prediction.
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