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A B S T R A C T   

A methodology based on step-heating thermography for predicting the length dimension of small defects in 
additive manufacturing from temperature data measured on thermal images is proposed. Regression learners 
were applied with different configurations to predict the length of the defects. These algorithms were trained 
using large datasets generated with Finite Element Method simulations. The different predictive methods ob-
tained were optimized using Bayesian inference. Using predictive methods generated and based on intrinsic 
performance results, knowing the material characteristics, the defect length can be predicted from single tem-
perature data in defect and non-defect zone. Thus, the developed algorithms were implemented in a laboratory 
set-up carried out on ad-hoc manufactured parts of Nylon and polylactic acid which include induced defects with 
different sizes and thicknesses. Using the trained algorithm, the deviation of the predicted results for the defect 
size varied between 13% and 37% for PLA and between 13% and 36% for Nylon.   

1. Introduction 

Additive manufacturing (AM) is integrated within the industry to 
increase the perceived value in any of the following three areas: profit, 
risk, and time [1]. Furthermore, AM is one of the cornerstones of the 4.0 
Industry which seeks to define a methodology to induce a trans-
formation from machine dominant manufacturing to digital 
manufacturing, [2]. Non-destructive testing (NDT) is a core technology 
for quality and safety assurance of critical engineering equipment and 
product manufacturing, and is an effective means of ensuring the quality 
of both materials and control [3]. Since quality control and inspection 
are one of the main steps of additive manufacturing, NDT techniques are 
applied in different manufacturing processes, especially in those related 
to critical sectors (e.g. nuclear reactors [4]). However, the complexity of 
the geometry, together with the difficulty of finding the optimum pa-
rameters to achieve the desired end result and problems arising from 
poor process repeatability, makes it difficult to manufacture quality- 
assured parts, with implications for certification [5] and, finally, the 
absence of inspection international standards for NDT on additive 
manufactured pieces can induce important inspection limitations like 

inaccessible surfaces or specific defects generated in the layers not easily 
detectable. 

The active thermography is based on the effect that any type of 
discontinuity in the structure of materials can alter thermal diffusivity 
and cause alterations in heat flow [6]. This principle allows the detec-
tion of internal defects in materials [7], and for dimensional evaluation 
of these [8]. Also for intermediate elements in materials or construction 
elements [9]. 

So active thermography is really an NDT that can be applied for 
material evaluation and defect detection, even in AM materials [10,11], 
or polymers and/or carbon fiber reinforced plastics (CFRP) [12–18] in 
the latter case, even with portable devices [19,20] or new approaches 
like pulse-compression thermography nondestructive evaluation [21] 
which improves the defect capability with respect pulsed thermography. 
Also, thermography can be applied to extract information about the 
welding zones during the extrusion [22], and for AM metallic materials, 
for example, to detect defects for lack of fusion in selective laser melting 
processes [23], to detect corrosion [24] or for evaluating welded unions 
[25], to characterize the fatigue of the material [26] or in combination 
with other optical non-destructive techniques like shearography [27]. 
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The detectability of defects in flash thermography in low diffusivity 
materials such as additive manufacturing has been extensively studied 
[16,28] but this is not the case in easier application modalities such as 
the applied for this research: step heating [28]. This modality requires 
less equipment, is lower cost, and causes less thermal stress to the ob-
jects compared to the flash mode [28]. 

In AM, the Finite Element Method (FEM) has been used as a tool to 
predict various parameters and outcomes, such as the mechanical 
properties of the parts generated, the shape of the melting bath, the 
microstructure, and dimensions [29]. FEM methods are also useful to 
complement and optimize the cost and efficiency of the active ther-
mography processes [10,11]. In [10], numerical simulations for Step- 
heating thermography were experimentally validated. 

Different studies have addressed the application of the Finite 
Element Method (FEM) in active thermography for testing CFRP, [12], 
for thermal predictions in the manufacturing process [29], for com-
posites and metals using pulse thermography [30,31], for glass–epoxy 
composites using step phase thermography [32], in robotized devices 
[33] and for simulation of eddy current thermography in composites. 
Some of them have used well-known FEM solutions like Ansys ® [34,35] 
or Abaqus ® [11]. The thermal conductivity equations can be numeri-
cally solved using sophisticated simulation tools [36], which can be both 
deterministic and probabilistic. Therefore, FEM models can be useful for 
estimating the physical parameters in active thermography tests. Addi-
tionally, these FEM models can also be used to extract a massive set of 
data that allows to feed predictive models based on artificial intelligence 
as a starting point. 

Machine Learning/Deep Learning (ML/DL) techniques are currently 
applied in many industrial fields and these techniques have been also 
used to optimize the processes and parameters in AM [37]. In fact, it is 
trending that researchers in the field of AM are paying more and more 
attention to taking advantage of the important benefits of Artificial In-
telligence (AI) for the optimization of design tasks for process control 
[29]. 

In [38], ML/DL was applied for detecting cracks, in [4,39] to reduce 
the thermographic noise for defect detection on metallic pieces, and, in 

[29], ML was applied for the study of the evolution of the thermal field 
during direct energy deposition in stainless steels. In [40], DL was 
applied to characterize defects in composites, also using step-heating 
thermography. In [41] a DL model was applied to classify defects in 
fiberglass. 

Within the most recent state of the art, thermography has been 
combined with ML strategies in the context of AM, for example, in [11] a 
theoretical different predictive algorithm feed from simulation data was 
proposed. This study analyzed the predictive performance of some al-
gorithms for Nylon parts based on different measures of error and 
variability of the outputs without optimizing or applying experimental 
validation. That work [11] has served as the basis for this work because 
it allowed the selection of the predictive algorithms that would poten-
tially be most effective (Support Vector Machine and Gaussian Process 
Regression methods). 

The main research objectives of the work are: I) Generate a based-on 
active thermography method to measure the size of an internal defect of 
small thickness like layer defects in additively manufactured materials 
(materials with a clear lack of standardization at the quality testing 
level). II) Feed the method only with easy-to-extract temperature data 
with a simplified and well-known modality of active thermography: 
step-heating thermography. III) Validate the method under laboratory 
conditions and analyze the differences in error data as a function of flaw 
size and thickness. The presented research seeks to cover the research 
objectives and in this, a specific method (Fig. 1) for predicting the defect 
length dimension from thermal imagery was designed and validated 
using experimental data based on a simplified Step-Heating (S-H) ther-
mography modality. Thus, a Mean Square Error (MSE) optimization 
algorithm is applied to optimize the predictive model and obtain the 
most appropriate hyperparameters and this predictive model is experi-
mentally validated. Different processes are carried out which finally 
converge towards obtaining the results of deviations and predictive 
performance (Fig. 1). The reiterated FEM simulations generated many 
datasets that allowed us to train different predictive models. These 
datasets were independently generated for PLA and for Nylon, taking 
into account the physical properties and characteristics of each of them. 

Fig. 1. Methodological workflow to predict the length of the defect from the thermal data.  
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Finally, the results of the experiment were used for the validation of the 
method. This process was repeated for both Nylon and PLA to compare 
the responses of predictive methods in the two types of materials. All this 
flow work will be explained in detail in the following sections. 

2. Simulation 

In [10], the usefulness of FEM simulation for active thermography 
processes in additive manufacturing materials was demonstrated and 
validated. For that reason, in this work, a specific approach is designed 
based on FEM simulation iteration with a probabilistic component that 
serves as a basis to feed ML models. 

To simulate the thermal behavior of the additive material specimens, 
Abaqus2019® program was used and different analyses were automated 
using python. Firstly, the simulation setup and the boundary conditions 
established for the FEM analysis will be exposed. Secondly, the meth-
odology to generate the datasets from the reiterative simulation pro-
cedure will be detailed. 

2.1. Boundary conditions and simulation setup 

A solid model with the shape of a rectangular cube was prepared 
with the same dimensions as the physical specimens (Fig. 2) that will be 
experimentally tested. A tetrahedral-shaped internal defect was gener-
ated in the model with a length and width in the interval indicated in 
Table 1 which also shows the input and output variables that have been 
considered for the FEM analysis. Regarding the input variables, Table 1 
shows their baseline values, as well as the range of variation (in per-
centage) that have been studied both for the thermal properties of the 
two materials and for the dimensions of the tested specimens. In this 
way, 5,020 elements and 6,534 nodes were used to build the model. The 

type of element used was the one called in Abaqus DC3D8, which is an 8- 
node linear isoparametric transfer brick, an element capable of simu-
lating the thermal behavior of a material. A biased type of mesh was 
used that varied the size of the element used: from a resolution of 10 mm 
in the areas far from the defect, which are therefore of less interest, to a 
resolution of 1 mm in the closest ones. The size and number of elements 
with the biased mesh were established after performing a convergence 
analysis, observing that, the finer meshes did not yield better results. 
Fewer elements in the model allow for more interactions without 
increasing processing time. 

To define the thermal behavior of the material, the thermal variables 
of conductivity and specific heat, and density must be specified as 
baseline values (Table 1). To characterize the heat exchange by radia-
tion and by convection between the surface and the surrounding air, the 
baseline for emissivity (ε), and film coefficient (h) parameters also had 
to be defined, respectively. Please note that ε depends not only on the 
type of material but also on the surface finish. Furthermore, a predefined 
field was specified for all the surfaces of the solid, both internals and 
externals, to specify the ambient temperature surrounding the solid, 
which was considered to be 20 ◦C. Next, in the so-called Step-Heating (S- 
H) configuration, the upper surface of the solid was heated by means of 
an external heat energy source applied for 180 s trying to obtain the 
maximum contrast between the defect zone and the non-defect zone. 
Once this temperature is reached, the supposed external heat source is 
removed, and the solid is cooled to ambient temperature. 

The temperature distribution that appears on the surface of the solid 
during the heating and cooling steps is not theoretically uniform due to 
the presence of the defect. The lack of material in this position causes the 
area close to the defect is heated faster and the same happens during the 
cooling step. The key is to compare the surface temperature (on the side 
to which the heat source is applied) in the position over the defect, with 

Fig. 2. Geometry and measures of the specimen. A and B are 4x4 px regions of interest where the temperature is monitored (up, left). Cut specimen to visualize the 
defect (thickness of the defect 0.9 mm, defect length LD, 10 mm) (up, right) Mesh of the FEM model with the defect in its center (down). 

M. Rodríguez-Martín et al.                                                                                                                                                                                                                    



Measurement 205 (2022) 112140

4

another one far from it (B and A regions respectively in Fig. 2) at the 
moment of higher thermal contrast between the temperature of the two 
points. It allows to see how the defect affects the heating and cooling 
processes, trying to establish a relationship between the difference in 
temperatures in these surface positions (A and B) to corroborate the 
presence of the defect and also its possible size. To this end, the 
maximum contrast (ΔT max) variable was defined as the maximum dif-
ference in temperatures between the point over the defect and another 
one far from it during the studied period. This variable was measured 
throughout the whole thermal process, determining its maximum value 
and recording the time in which it occurs. The maximum temperature 
reached on the surface of the test piece, just above the defect, was also 
determined. Although this maximum temperature occurs just at the end 
of the heating stage, due to thermal inertia, the maximum (ΔTmax) value 
does not always occur at the final moment of the application of the heat 
source, being this last data considered since it is the moment of better 
visualization of the defect. 

2.2. Reiterative FEM analysis 

Once the model was defined according to all previous indications, 
the script generated by Abaqus in Python programming language was 

programmed to include the input variables (Table 1) and to obtain the 
output variables listed. An example of a visual result for the simulation is 
shown in Fig. 3. In this figure, the reader can see how the heat is 
distributed on the surface and inside the material, which justifies the 
need for additional methods to obtain measurements of the defect since 
no clear reflection of the defect on the surface is obtained. 

From the baseline values of the seven input variables (Table 1) that 
have been considered in the study and considering their ranges of 
variation, different combinations of their values based on Design of 
Experiments (DoE) were performed. With this technique, it is possible to 
approximate the space of results, whose dimension is equal to the 
number of input variables and which is also continuous and therefore 
infinite, from the results obtained from a discrete number of iterations 
and therefore from a finite number of combinations of the input 
variables. 

When using this methodology, it is of paramount importance to 
define adequately both, the number of iterations to be done and the 
methodology to define the combinations, hence, with the least number 
of iterations, the best possible approximation of the output fields can be 
obtained. In this study, the so-called Optimal Latin Hypercube (OLH) 
methodology was used, employing a total of 1,000 combinations. The 
advantage of this methodology is that the chosen combinations are 

Table 1 
Different considered features for each task, SC is the “Specimen Characteristics”, I is the “input” and O is the “output”. The feature “Defect Length” (LD) is the length of 
the quadrangular side of the defect and the feature “Defect thickness” (L_T) is the thickness of the defect. R is the “Response” and F is the “Feature”.    

FEM  Prediction Experimental  

Feature  Baseline value PLA FEM Baseline value Nylon Lower range (%) Upper range (%) 

Defect length LD(mm) I 10 10 5 15 R SC 
Defect thickness* LT(mm) I 0.6 0.6 0.3 0.9 ** SC 
Specific heat c (J/kg⋅K) I 1800 1590 − 25 % +25 % F SC 
Conductivity k (W/m2⋅K) I 0.13 0.22 − 25 % +25 % F SC 
Density ρ (kg/m3) I 1300 1100 − 25 % +25 % F SC 
Emissivity ε I 0.95 0.95 − 5% +5% F SC 
Film coef. h (W/m2/◦C) I 10.5 10.5 − 25 % +25 % F SC 
Max. temp. TM(◦C)*** O     F O 
Contrast Front Max. ΔT max(◦C) O     F O 

*Defect depth can be calculated from defect tichkness as Dd =
6
2
−

LT

2
. The minimum value is 2.55 mm. and the maximum value is 2.85 mm. 

**Defect thickness is not considered for the prediction model generations because is considered an unknown parameter. 
***TM is the maximum temperature raised in the non-defect zone for the highest contrast thermogram.  

Fig. 3. Results of FEM simulation for a defect where the different temperature area are shown.  
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spread evenly, allowing a higher order effect to be captured, having the 
disadvantage that it increases the time required to obtain the optimal 
combinations, especially when the number of combinations and the 
number of input variables is large. 

With the 1,000 combinations of output variables obtained, it is 
possible, using extrapolation and approximation techniques, to generate 
the mathematical equations that define the continuous results space for 
the ranges of the input variables studied. 

The model was simulated 1000 times, modifying, within previously 
proposed ranges of values, the input variables within the established 
ranges (Table 1). Thank to this, a database of values of the input and 
output variables was obtained, which in this study, it is used to feed the 
ML methods. 

Being a dataset generated by random inputs (within the bounds of 
Table 1), a subset of that data can still be also considered random. 
Therefore, to analyze the sensitivity of the model to different training 
data set sizes, alternative experiments can be done with a subset of 100 
or 500 data. The error parameters based on RMSE and MAE remained in 
the same order of magnitude although a larger dataset (1000) was used 
because it was considered that a larger training set size would make the 
model more reliable. 

3. ML algorithms 

With the simulation, the thermal contrast is calculated for a multi-
tude of defects of different dimensions and with different thermal 
properties. The data to feed the models are numerical, of dimension 1. 
These are obtained from the reiterative FEM simulation described in the 
last section and are used to train the predictive algorithms which allow 
predicting the defect length dimension from the thermal data (Fig. 1). 

For the generation of the prediction models, different regression 
learning algorithms were used and tested. These algorithms are fed with 
the datasets generated by reiterative FEM simulation. Different typol-
ogies of learning regression models were tested to this aim: (i) linear 
regression, (ii) Support Vector Machine (SVM), and (iii) Gaussian 
regression. These models are configurated with different hyper-
parameters and characteristics which allow to raise a better result and 
they have been used for the classification of defects in materials [3]. 

On the one hand, there exist various regression learner models: linear 
regression using a constant and linear term, linear interaction regression 
considering intercept, linear and interaction terms that applies the 
interaction between predictors, and, finally, stepwise linear regression, 
which applies a method to analyze the importance and weight of each 
variable. Please note that this last model is not as fast as the other two. 
Based on [11], linear interaction regression since was the best because it 
provided adequate performance (similar to the stepwise regression and 
better than linear regression) while consuming much less computational 
resources. 

On the other hand, SVM are flexible and customizable models with 
different kernel functions (Radial Base Function (RBF), Quadratic, 
Cubic, or Linear). However, the SVM are really non-parametric methods 
that sometimes are highly affected by outliers [42]. In this research, the 
four kernel functions were tested. Specifically, for the RBF kernel, three 
different kernel scales were included: fine, medium, and coarse. Those 
prediction errors that were less than the threshold (ε) were ignored and 
treated as equal to zero. 

Finally, the Gaussian Processes Regression (GPR) methods are based 
on the application of non-parametric kernel functions based on proba-
bilistic models (Bayesian inference) [43]. They are non-parametric 
methods that are usually more suitable for complex problems than the 
previously described standard regression methods, especially for the 
treatment of complex and noisy nonlinear functions [44] and for their 
cross-validation. Different kernel functions and basic functions can be 
used for the GPR mode: while the firsts determine the form of the prior 
mean function, the seconds determine the correlation in the response as 
a function of the distance between the predictor values. 

The evaluation of the models has been traditionally implemented by 
computing the difference between the observed values and the predicted 
value. The goodness of the regression learning models can be evaluated 
using classical statistical performance results (e.g. [11,45]) which are 
calculated from the observed and predicted values. In this research, 
three statistical error types were obtained for each model: correlation 
coefficient (R2), Mean Absolute Error (MAE), and Root Mean Square 
Error (RMSE). 

The training time is also considered a reportable parameter. Since all 
the experiments were implemented using the same workstation, the 
training time was measured for each model in order to compare the 
training speed of each algorithm. This information is useful to study the 
operability of the method, mainly its integration into industrial soft-
ware. Additionally, the distribution and morphology of the residuals 
were considered for each model. 

Once the different regression learners were applied to the data, the 
optimization of the models was implemented to obtain the maximum 
performance that each method can provide. MSE optimization based on 
Bayesian Optimization was applied to find the optimum hyper-
parameters. The optimization was applied for each studied model to 
obtain the hyperparameters and performance of each optimized model. 

4. Experimental validation 

For the experimental validation of the method, 18 ad-hoc designed 
specimens with the same shape (Fig. 2) were manufactured by 3D 
printing. Nine of them were manufactured in Polylactic Acid (PLA) and 
the other nine in Nylon (PA-12). Each specimen has the same size as the 
model generated for the FEM simulation: the thickness of 6 mm and a 
size of 100 × 100 mm. 

Different square defects were generated in the specimens with an 
empty volume in the center to simulate a lack of material in one or 
various layers. The defect is completely covered by the AM material both 
above and below. 

The sizes of the defect (LD) were within the range established in 
Table 1 (5, 10, and 15 mm). For each size, three specimens were man-
ufactured with thicknesses (LT) of 0.3, 0.6, and 0.9 mm (Table 2). That 
is, the depth of the defect is sited at the same depth from the front or 
back of faces, 2.85, 2.7, and 2.55 mm, respectively. Please note that a 
thickness of 0.3 mm is almost the minimum layer height that many 3D 
printers allow. These measures were the same for the Nylon and the PLA 
specimens. 

The specimen depth was not directly considered since the objective is 
to be able to predict different defect sizes with different thicknesses in a 
specimen of the same characteristics, simulating a layer defect during 
additive manufacturing. However, since the specimen width is constant 

Table 2 
Different manufactured specimens for this research.  

Specimen LD(mm) LT(mm) Depth from surface (mm) Material 

1 5  0.30  2.85 PA-12 
2 5  0.60  2.70 PA-12 
3 5  0.90  2.55 PA-12 
4 10  0.30  2.85 PA-12 
5 10  0.60  2.70 PA-12 
6 10  0.90  2.55 PA-12 
7 15  0.30  2.85 PA-12 
8 15  0.60  2.70 PA-12 
9 15  0.90  2.55 PA-12 
10 5  0.30  2.85 PLA 
11 5  0.60  2.70 PLA 
12 5  0.90  2.55 PLA 
13 10  0.30  2.85 PLA 
14 10  0.60  2.70 PLA 
15 10  0.90  2.55 PLA 
16 15  0.30  2.85 PLA 
17 15  0.60  2.70 PLA 
18 15  0.90  2.55 PLA  
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(6 mm), the defect depth is directly proportional to the thickness. 
All the specimens were manufactured using a 100 % filler to fit the 

thermal properties with respect to the simulations performed, which 
consider solid material. Fig. 2 shows the generic location of the defects 
in the sample and a physical realization of them. On the specimen, two 
temperature measurement 4x4 pixel regions for defect and non-defect 
area (B and A in Fig. 2 respectively) have been established, both are 
separated at 25 mm (as in the FEM simulation) which is considered 
sufficient based on the dimension of the specimen, dimension of the 
defect, thermal diffusivity of the material and also o on heat conduction 
previous FEM analysis. Each defect was generated in a specimen (one 
single defect by specimen) to avoid alterations in the heat flow. 

A validation setup is an ad-hoc experiment to obtain results that 
allow us to know the level of fitting of the predictions using ML models. 
To do this, the S-H thermography in reflection modality was applied 
using a ring of flash lamps (6 lamps of 600 W) arranged in convergent 
orientation toward the object (Fig. 4). The distance from the camera to 
the object was established at 50 cm to cover the complete target it the 
frame view and to guarantee the minima focal distance of the camera. 
The configuration of the set-up was kept constant for all experiments to 
ensure the same optical conditions and also to keep the radiated energy 
on the object constant. 

The set-up characteristics were set to reply to the thermal conditions 
of the FEM simulation. A heating sequence of 180 s was applied to all 
specimens and subsequently, a cooling sequence of 540 s was recorded 
(the same parameters that were used for the simulation). This cooling- 
heating time was applied based on trial-and-error seeking a balance 
between the efficiency of the method and its effectiveness. The fre-
quency was established at 3 fps, being sufficient for the used low- 
thermal conductivity materials [46]. The 18 specimens described in 
the materials section (9 of PLA and 9 of Nylon) were tested for the in-
ternal defect using this set-up. Environmental parameters measured in 
the laboratory using Testo probes (temperature and humidity) were 
considered in the data acquisition. Data were collected based on two 
little Regions of Interest (ROI’s) of 4x4 px, one for the defect area and the 
other for the non-defect area (Fig. 2). The mean of the pixels values was 
calculated to do the procedure more robust. 

Once the data collection was implemented, each sequence was pro-
cessed using Thermographic Signal Reconstruction (TSR) [47] in the 
heating phase and in the cooling phase, independently. As a result, the 
noise was reduced and the maximum contrast values between the defect 
area (center of the specimen) and the non-defect area were extracted. 

5. Results 

The results section will be divided into 4 subsections. The results of 
the FEM method are first exposed. Next, the predictive performance 
results for each of the regression learning methods applied are 

presented. Subsequently, the results of the optimization carried out to 
the previous methods are indicated. Finally, the experimental validation 
of the method is properly considered. 

5.1. Reiterative FEM results and Pareto analysis 

From the FEM prepared in Abaqus, the temperature–time curves 
were obtained for the measurement positions just above the defect (B 
region in Fig. 2) and far from it (A region in Fig. 2), for the two materials 
(PLA and Nylon) when heating of 180 s to achieve a thermal contrast of 
15 ◦C in the surface of materials [48]. This heating time will be also 
applied for the experimental validation. 

The maximum contrast and the times in which they appear in these 
curves are automatically extracted by means of the modified Python 
script of the model. A total of 1,000 iterations were carried out giving 
1,000 combinations of results with which the mathematical equations of 
order n that approximate the results are adjusted, where n is the number 
of input variables. From the results obtained, it is possible to carry out 
various types of analysis, such as the Pareto analysis (Fig. 4), which 
makes it possible to determine the input variables that have the greatest 
effect on the output variables. Specifically, Fig. 5 shows, from the 
highest to the lowest, the percentage of effect that the seven input var-
iables considered have on the maximum value of the Contrast Front 
curve. It can be observed that the Pareto diagram shows that the length 
of the defect causes the biggest effect over the Contrast Front maximum 
value ΔT max). These results justify the generation of the models for the 
defect length prediction based on thermal contrast. 

5.2. Predictive performance and optimization results 

The different models were trained considering all the predictor 
variables (Table 3) and using 10-fold cross-validation. The preprocess-
ing using Principal Components Analysis (PCA) was applied but gave 
notably worse results. For this reason, it was not used. Please note that 
other thermal variables such as the time required to reach the maximum 
contrast between defect and non-defect zones or the average tempera-
ture during the experiment were tested (including within the features set 
for training). As the predictive performance worsened in general terms, 
they were rejected and those that added value to the model were not 
finally considered. 

The results for each ML algorithm that provided a better predictive 
performance are reported for the PLA (Table 4), being these similar to 
the two materials studied (Nylon and PLA). For each model, three 
datasets were generated using FEM, one of 100, one of 500, and one of 
1,000, in order to feed the predictive models. 

The regression learner algorithms were trained with the three data 
sets (100, 500, and 1,000) to evaluate the evolution of performance 
while the amount of data for training increases. The results obtained 

Fig. 4. Thermographic set-up for the validation of the method (left). Converged halogen lamps (600 W) used for the experiment (right).  
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were based on 1,000 datasets generated models with higher perfor-
mance (Table 4). The predictive model of defects in Nylon follows a 
similar trend. Training the algorithms with the 100 and 500 datasets 
allowed verifying the convergence of the model because the error results 
were slightly higher for little datasets (100 and 500) than for bigger 
datasets (1,000). This can be a favorable indicator because it corre-
sponds to the expected behavior and implies that the number of training 
data favors the effectiveness and learning capability of the model. 

MAE is in the scale of the response (defect length). Therefore, it can 
be said that the mean error is of the order of mm for all algorithms 
trained. Specifically, GPR model is the one that gives the best predictive 
performance, even for small data training sets. However, training times 
are significantly longer (in the order of tens of seconds) than SVM 
models and linear regression models (in the order of a second). This 
trend is repeated in the predictive model for Nylon. In GPR models it was 
detected a slight non-linear trend between predicted and real valuesThis 
trend is repeated in the predictive model for Nylon. In GPR models it was 
detected a slight non-linear trend between predicted and real values. It is 
also possible to check how the variability of the prediction response is 
higher for large defect lengths. This could indicate the less favorable 
suitability of the method for such extreme values. Additionally, in the 
predicted vs real data, a higher error is observed for the higher values of 
defect length for all the trained models, being this compatible with [11]. 

5.3. Optimization 

In the predictive model for PLA, when the SVM was optimized using 

20 iterations, better results are not really achieved (RMSE 0.0018532, 
R2 0.79, and MAE 0.001425). However, the optimization of the GPR, 
once the optimization method has applied all the iterations, does slightly 
improve the results. The hyperparameters obtained are shown in 
Table 5. 

In the predictive model for Nylon, when the SVM was also optimized 
using 20 iterations, better results are not achieved (RMSE 0.001317, R2 
0.89, and MAE 0.0010517). However, the optimization of the GPR does 
slightly improve the results (RMSE 0.0011785, R2 0.92, MAE 
0.000949). The hyperparameters obtained are shown in Table 5. The 
models also show less favorable performance for the higher values of 
dimension length. 

5.4. Validation results 

The experimental methodology described in section 4 was applied. 
The different defects were shown in the image (an example of a PLA 
specimen is shown in Fig. 6, being the results for the other specimens 
very similar). As the reader can see, the defect is better visualized for the 
higher length defects, but although the defect when well visualized can 
be measured on the image (once it is scaled), the token measure is really 
ambiguous (due to the heat flux diffusion and limitations image reso-
lution) so the actual geometry of the defect may not be well-shown 
(Fig. 3). The average heating time to reach the maximum thermal 
contrast was 179.72 s. 

The results obtained by simulation for the fabricated specimens (ad- 
hoc manufactured for this research as the reader can see in Fig. 2-right) 
were compared with the results of the experimental test described in 
Section 2 in order to evaluate the consistency of the methods and to 
detect possible a priori errors. In Fig. 7, the reader can observe the 
similarity between the results, which is proof that the simulation 
approach is consistent prior with the physical phenomenon evaluated. 
This trend was similar to the rest of the specimens evaluated. 

Once this check had been carried out, we conducted an experimental 
study based on S-H thermography in reflection modality applied to real 

Fig. 5. Pareto diagram to visualize the weight of the different features in the maximum value of the variable ContrastFront (ΔTmax), Nylon (left), and PLA (right).  

Table 3 
ML Algorithms which raised an adequate predictive performance.  

Algorithm Description 

LRi Linear interaction regression (considering intercept, linear and 
interaction terms) that applies the interaction between predictions 

SVMc Support Vector Machine configured with Cubic kernel 
GPRs Gaussian process regression configured with a Square Exponential 

Kernel Function 
GPRr Gaussian process regression configured with a Rational Kernel Function 
GPRm Gaussian process regression configured with a Mattern 5/2 Kernel 

Function 
GPROtm Gaussian process regression ad-hoc optimized for the dataset following 

a MSE optimization process  

Table 4 
Intrinsically performance evaluation of the trained algorithms for the 1,000 sets 
of data.  

Algorithm RMSE Rsquare MAE Training time (s)* 

LRi  0.001850  0.79  0.001488  0.9810 
GPRs  0.001642  0.84  0.001292  34.265 
GPRr  0.001642  0.84  0.001292  89.183 
GPRm  0.001965  0.76  0.001367  39.740 
SVMc  0.001790  0.80  0.001410  9.6480 

*Intel Core i7-5700HQ, 2.7 GHz CPU without parallel computing. 

Table 5 
Hyperparameters obtained from the MSE optimization of the algorithms 
developed for the PLA and Nylon.  

Hyperparameter Optimized model for 
PLA 

Optimized model for 
Nylon 

Regression learner applied GPR GPR 
Basis function linear Zero 
Kernel function: Isotropic Rational 

Quadratic 
Non-isotropic mattern 
5/2 

Kernel scale 184.5 5.461 
Sigma 0.0123 0.000126 
Acquisition function Expected improvement per second plus (Matlab®) 
RMSE 0.0016812 0.001179 
RSquare 0.83 0.92 
MSE 2.826 × 10–6 1.389 × 10–6 
MAE 0.001335 0.00094944 
Training / optimization time 

(s) 
1324.9 1028.7  
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physics specimens with known size defects (Fig. 2) and thermal prop-
erties (Table 1), to record the thermal contrast and introduce it to the 
predictive models to estimate the defect length. 

In this way, once predictive algorithms were trained from the pa-
rameters generated by FEM (c, k, ρ, ε, h, TM, ΔTmax) following the steps 
indicated in the last sections, the algorithms allowed to predict the 
length dimension of the defect (LD) as a response from the maximum 
thermal contrast data (ΔTmax): f(c, k, ρ, ε, h,TM,ΔTmax)→LD. Since the 
first four parameters are really physical properties that can be known, 
the predictive method should allow the prediction of defect length from 
the measurement of two thermal parameters that can be easily measured 
with thermography: TM and ΔTmax. 

The defect length, in this experimental phase, is known for each 
physical specimen (it was a manufacturing parameter), so we were able 
to calculate the deviations between the real dimension and the ones 
provided by the predictive models based on the thermal maximum 
contrast moment. 

The deviation between the length dimension predicted by the algo-
rithm and the real length dimension (experimentally obtained) is shown 
in Table 6 and Table 7 for both Nylon and PLA materials. As can be seen, 
this deviation is greater when the thickness of the defect is smaller. In 
addition, as can be seen, the optimized model does not necessarily give 
better values, hypothetically due to the uncertainty of the experimental 
process and the anisotropy performance of the additive materials. 

6. Discussion 

The predictive algorithms have been designed to predict the length 
dimension of the square defect using only the physical characteristics of 
the material and the maximum thermal contrast from the temperature 
measures in two points when applying a step heating approach. The S-H 
thermography modality is simple and ML algorithms help to obtain a 
defect prediction without the need to use sophisticated and expensive 
techniques. So, in this research, we have on purpose simplified the 

Fig. 6. Left: Thermogram at the instant of the greatest contrast between the defect zone and the non-defect zone for PLA specimen of 0.6 mm thickness and 5 mm of 
defect length (up), 10 mm of defect length (center), and 15 mm (down). Right, contour map (30 levels) generated from each thermogram. 
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number of thermal parameters as possible and we have used the simplest 
thermographic methodology. The methods have been trained with 
different thermal parameters (applying a variability in the training 
data), which would make it robust to material characteristics. 

As a result, it is possible to predict the length dimension of the defects 

using only this data and the features of the material. For this purpose, we 
have used data from FEM simulation that adequately reproduce the 
results of the test, being the results compatible with the literature 
[10,11]. 

On the other hand, it has been shown that the results of the 

Fig. 7. Differences in the heating and cooling curves between the defect (blue) and non-defect (brown) zone for 10 mm defect length and PLA: results from FEM 
simulation (up) and from the experimental test (in raw) (down). The X-axis represents the time and the Y-axis the temperature for all plots. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Error results from the comparison between the experimental value and the predicted value for PLA. Average Error (In absolute value) for the different thickness (t) and 
length (l). AV mean average for all the tested specimens for the same defect length (AVd) and defect thickness (AVt).  

LT LD LRi SVMc GPRs GPRr GPRm GPRopt  

0.9 15  − 22.4 %  − 26.9 %  − 21.3 %  − 19.5 %  − 21.2 %  − 21.4 %  
0.9 10  0.8 %  − 7.4 %  1.3 %  1.2 %  1.5 %  2.2 %  
0.9 5  45.1 %  29.9 %  43.0 %  33.8 %  43.5 %  47.4 %  
0.6 15  − 37.3 %  − 41.2 %  − 36.2 %  − 37.3 %  − 36.1 %  − 36.6 %  
0.6 10  − 19.3 %  − 27.6 %  − 19.9 %  − 23.6 %  − 19.7 %  − 18.1 %  
0.6 5  22.1 %  8.6 %  17.8 %  8.8 %  18.5 %  24.4 %  
0.3 15  − 53.6 %  − 59.2 %  − 54.9 %  − 57.7 %  − 54.6 %  − 52.7 %  
0.3 10  − 20.1 %  − 25.7 %  − 19.2 %  − 23.6 %  − 19.1 %  − 19.2 %  
0.3 5  15.2 %  1.8 %  9.6 %  1.7 %  10.5 %  17.7 %  
AVd 0.9   22.74 %  21.40 %  21.85 %  18.17 %  22.07 %  23.65 %  
AVd 0.6   26.23 %  25.77 %  24.63 %  23.23 %  24.76 %  26.36 %  
AVd 0.3   29.60 %  28.90 %  27.89 %  27.68 %  28.05 %  29.85 %  
AVt 0.015   37.74 %  42.41 %  37.43 %  38.16 %  37.30 %  36.89 %  
AVt 0.010   13.40 %  20.24 %  13.47 %  16.16 %  13.41 %  13.17 %  
AVt 0.005   27.43 %  20.24 %  13.47 %  16.16 %  13.41 %  13.17 %  

Table 7 
Error results from the comparison between the experimental value and the predicted value for Nylon. Average Error (In absolute value) for the different thickness (t) 
and length (l). AV mean average for all the tested specimens for the same defect length (AVd) and defect thickness (AVt).  

LT LD LRi SVMc GPRs GPRr GPRm GPRopt  

0.9 15  − 33.76 %  − 19.01 %  − 20.72 %  − 20.72 %  − 20.56 %  − 21.93 %  
0.9 10  − 20.24 %  1.45 %  1.25 %  1.25 %  1.38 %  − 3.64 %  
0.9 5  − 48.81 %  − 10.07 %  − 12.96 %  − 12.96 %  − 12.59 %  − 20.96 %  
0.6 15  − 54.32 %  − 37.62 %  − 38.46 %  − 38.46 %  − 38.36 %  − 42.30 %  
0.6 10  − 35.03 %  − 4.44 %  − 8.55 %  − 8.55 %  − 8.36 %  − 14.44 %  
0.6 5  − 53.69 %  − 12.58 %  − 16.73 %  − 16.73 %  − 16.33 %  − 24.85 %  
0.3 15  − 71.64 %  − 52.16 %  − 53.93 %  − 53.93 %  − 53.82 %  − 57.60 %  
0.3 10  − 63.53 %  − 44.69 %  − 44.42 %  − 44.42 %  − 44.29 %  − 48.71 %  
0.3 5  − 55.85 %  − 17.30 %  − 21.51 %  − 21.51 %  − 21.10 %  − 29.26 %  
AVd 0.9   34.27 %  10.18 %  11.64 %  11.64 %  11.51 %  15.51 %  
AVd 0.6   47.68 %  18.21 %  21.25 %  21.25 %  21.02 %  27.20 %  
AVd 0.3   63.67 %  38.05 %  39.95 %  39.95 %  39.74 %  45.19 %  
AVt 0.015   53.24 %  36.27 %  37.70 %  37.70 %  37.58 %  40.61 %  
AVt 0.01   39.60 %  16.86 %  18.07 %  18.07 %  18.01 %  22.26 %  
AVt 0.005   52.78 %  13.31 %  17.06 %  17.06 %  16.68 %  25.02 %  
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prediction of the length dimension are more inaccurate in the defects of 
a smaller thickness (0.3 mm). This was to be expected given the lower 
detectability of these defects and the lower thermal alteration they cause 
(also considering the limitations of the speed of capture). A tendency to 
overestimate the dimension was detected in 15 mm defects. As the de-
fects are larger, the measurement zone is closer to the beginning of the 
defect, which can lead to a bias in the result due to the high influence of 
the transition zone (Fig. 3). 

Finally, the experimental results may be affected by an irregular heat 
distribution and also by the fact that the specimens are manufactured 
with 3D printing (non-uniform material), which could cause an aniso-
tropic behavior in the distribution of the heat depending on the char-
acteristics and direction of the filling process. In addition, inaccuracies 
of thermographic cameras (within the range of uncertainty indicated by 
the manufacturer), environmental factors, and possible additional re-
flections, could provide uncertainty to the final prediction outcome. 
However, since the proposed algorithms allow self-learning, if the 
experimental data are used to feed the training dataset, it is possible that 
the accuracy of the method is improved. Finally, it should be noted that 
the defects used in this work simulate defects of lack of coating but are of 
ideal shapes. Therefore, the actual defects may have a different thermal 
response and the effectiveness of the procedure may be affected by 
complex geometries. 

7. Conclusions 

This work has presented the results of a methodology based on 
artificial intelligence (ML) that uses data from repeated numerical 
simulations (FEM) to generate prediction models of the size of defects in 
AM materials based on the thermal contrast (S-H thermography) and the 
physical characteristics of the material. The creation of these models was 
justified by a cause-and-effect analysis applied to the FEM model, in 
which it was found that the length of the defect is the variable with more 
weight for the calculation of the thermal contrast by numerical 
simulation. 

These models have been applied separately to two different mate-
rials: Nylon and PLA, to firstly estimate the intrinsic performance pa-
rameters of the predictive method (RMSE, MAE, and R2) of three 
different types of predictive algorithms: linear regression, SVM, and 
Gaussian regression. 

The algorithms designed and optimized have been applied experi-
mentally to real specimens of both materials that have been ad-hoc 
manufactured including defects of different sizes (5x5, 10x10, and 
15x15 mm) and thicknesses (0.3, 0.6, and 0.9 mm). With this, it is 
possible to carry out an in-depth study of the accuracy of the method 
taking into account the factors that can affect the actual application 
(explained in the Discussion section) and not just taking into account the 
intrinsic performance of predictive models. 

The intrinsic error of the algorithms (MAE) was in the order of a 
millimeter. However, in the experimental validation, this error was 
overcome in some cases. This is to be expected since the error of the 
trained algorithms is calculated from a subset of the simulation process 
data. When experimental data are obtained and entered in the models, 
different physical phenomena cause the error for length predicted to be 
larger, although in some cases a deviation of the real results with respect 
to the predicted ones was compatible (even more favorable) with the 
intrinsic error of the models: in some cases, the predictive algorithm 
manages to predict the size of the defect with a deviation close to 1 % 
while in other cases that deviation increases significantly. In general 
terms, it can be said that the bigger the thickness of the defect, the 
greater the accuracy of the prediction. Furthermore, the prediction 
performance is less favorable for higher defect lengths. 

The proposed method could be compatible with other methods fed 
from S-H thermography to estimate the depth of the defect. The obtained 
length using this method could even be used as a predictive input 
parameter for depth defect prediction. Additionally, Futures works 

could address this issue. Furthermore, the results of this method applied 
to different internal structures and fills of additive manufacturing ma-
terials could also be addressed in future work and, also, noise could be 
considered in the FEM model to study if the final results are affected. 
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Rebollo: Data curation, Investigation, Validation, Visualization, 
Writing – original draft. D. Gonzalez-Aguilera: Funding acquisition, 
Investigation, Methodology, Project administration, Resources, Super-
vision, Writing – original draft. R. García-Martín: Funding acquisition, 
Investigation, Methodology, Resources, Supervision, Writing – original 
draft. F. Madruga: Formal analysis, Investigation, Methodology, Su-
pervision, Validation, Visualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

References 

[1] J. Coykendall, M. Cotteleer, J. Holdowsky, M. Mahto, 3D opportunity in aerospace 
and defense: Additive manufacturing takes flight, Deloitte Series Add. Manuf. 
(2014) 1. 

[2] E. Oztemel, S. Gursev, Literature review of Industry 4.0 and related technologies, 
J. Intell. Manuf. 31 (1) (2020) 127–182. 

[3] H. Chen, Z. Zhang, W. Yin, C. Zhao, F. Wang, Y. Li, A study on depth classification 
of defects by machine learning based on hyper-parameter search, Measurement 
189 (2022) 110660. 

[4] X. Zhang, J. Saniie, A. Heifetz, Spatial temporal denoised thermal source separation 
in images of compact pulsed thermography system for qualification of additively 
manufactured metals, in: in: 2021 IEEE International Conference on Electro 
Information Technology (EIT), IEEE, 2021, pp. 209–214. 

[5] D.R. Gunasegaram, A.B. Murphy, A. Barnard, T. DebRoy, M.J. Matthews, L. Ladani, 
D. Gu, Towards developing multiscale-multiphysics models and their surrogates for 
digital twins of metal additive manufacturing, Addit. Manuf. 46 (2021) 102089. 

[6] X. Maldague, Theory and practice of infrared technology for nondestructive 
testing, 2001. 

[7] F.J. Madruga, S. Sfarra, S. Perilli, E. Pivarčiová, J.M. López-Higuera, Measuring the 
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