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ABSTRACT To enhance the service quality of the unmanned aerial vehicle (UAV), the UAV-aided Internet
of Things (IoT) systems could deploy a Deep Neural Network (DNN) for performance prediction for the
users. Non-orthogonal multiple access (NOMA) is applied to such networks in order to improve spectrum
efficiency, and results in improved quality of service at the ground users under the mobility of UAV. The
outage and ergodic capacity requirements of the IoT users may not be satisfied due to some imperfect
system parameters such as hardware noise. A DNN-based algorithm for performance prediction and the
design of multiple antennas at the UAV under hardware noise is proposed. In this DNN-based UAV-NOMA,
the central controller (server) collects system parameters periodically based on observing the state of IoT
system and performs adjustments to the dynamic environment. The closed-form expressions for the outage
probability and the ergodic capacity are derived to evaluate the performance of a group of IoT users. Our
numerical results demonstrate that: i) In contrast to the traditional UAV-NOMA system, the UAV cannot
know the performance at each IoT user in order to adjust the parameters (i.e. power allocation factors) before
transmitting the signals to the devices; while the proposed DNN-based IoT system is capable of predicting
the performance; ii) The performance of the IoT users can be significantly improved by integrating more
antennas at the UAV and limiting levels of hardware noise; iii) By designing NOMA, the UAV-NOMA-based
IoT system can increase the throughput to the tune of 40% compared with the benchmark (the orthogonal
multiple access (OMA)-based IoT).

INDEX TERMS Deep neural networks, non-orthogonal multiple access (NOMA), line-of-sight (LoS),
unmanned aerial vehicles (UAVs), the Internet of Things (IoT), hardware noise.

I. INTRODUCTION
Viewed as important components in the development of the
beyond-fifth-generation (B5G)/sixth-generation (6G) com-

The associate editor coordinating the review of this manuscript and

approving it for publication was Alicia Fornés .

munications infrastructure, satellites/constellations and aerial
platforms, and their interactions with terrestrial networks
have attracted significant interest in recent years in part due
to their capability of accommodating flexible deployment and
ubiquitous access [1], [2]. To satisfy stringent service require-
ments in traditional cellular systems, the cellular-based
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unmanned aerial vehicles (UAVs) can be considered as a
new kind of user equipment and bring significant revenues
for the operators [3]. Developing UAVs is also a new way
to manage disaster zones where traditional cellular systems
cannot work effectively [4]. In these applications, UAVs
can provide services to the ground users by deploying the
Low-Altitude Platform (LAP) or the High-Altitude Platform
(HAP) [5]. On the other hand, UAVs are able to communicate
with the associated terrestrial base stations (BSs) to assist
cellular networks in applications such as aerial surveillance,
cargo delivery, monitoring, and remote sensing. As another
benefit, the ground users can maintain a stable connection
with the UAV experiencing the Line-of-Sight (LoS) link.
To implement these stable connections, the UAV can act
as a mobile relay [6], [7], or a flying base station [8], [9].
In particular, the work in [8] deployed a dense network
enabled by flying UAV-assisted base stations (BSs) to better
serve ground users, and found the optimal location of the
UAVs to maximize experiences of the users with expected
data rates under the assumption of ordered users. The model
in [9] deploys a UAV to fly cyclically along the distant
users and play the role of a flying BS to offload data for
users. UAV-assisted systems can be extended to integrate
existing systems such as mmwave communication, recon-
figurable intelligent surfaces, and Free-Space Optical (FSO)
communication. The authors in [10] developed UAV-assisted
free-space optical (FSO) communication systems to evaluate
the system performance of UAV communications. They
presented closed-form formulas of key system performance
metrics such as the outage probability, the ergodic capacity,
and the average bit error rate (BER) with various modulation
schemes. Although UAVs exhibit their advantages as flying
BSs, we still need to know how a UAV effectively allocates
its transmit power to signals transferring to the ground users
in order to improve spectrum and energy efficiency. Further,
one of the challenging issues in UAV-aided communication
networks is how to deploy UAVs to better provide reasonable
coverage to ground users.

To improve spectrum efficiency in UAV-assisted commu-
nications, non-orthogonal multiple access (NOMA) is viewed
as a promising solution to assist multi-UAV communications
networks. Mirbolouk et al studied a hybrid satellite-UAV
relay network. In this scenario, the UAV relays (URs) imple-
ment coordinated multi-point transmission to communicate
with the ground users [11]. The authors in [12] presented
(UAV)-assisted terrestrial-satellite communication systems
by employing a multiantenna multiuser UAV over mixed free
space optics (FSO)/radiofrequency (RF) channels. The RF
links related to UAV connections follow the Nakagami-m
distribution and their received signals are analyzed in terms
of outage probability, asymptotic outage probability, ergodic
capacity, effective capacity, and generalized average symbol-
error-rate with various quadrature amplitude modulation
(QAM) schemes.

Wang et al. [13] introduced a device-to-device architecture
in NOMA-UAV networks to improve the data transfer effi-

ciency by studying an algorithm of resource allocation relying
on graph theory. Li et al. [14] investigated the performance
of multiple users in a large NOMA network when UAV
relaying plays an important role to amplify the forwarded
interaction information to the ground users. Zhao et al.
[15] presented the optimal sum-rate obtained by optimizing
both resource allocation and the UAV trajectory. Budhiraja
et al. [16] explored the mobile edge computing network
relying on UAVs to minimize the energy consumption in
terms of computational power, time and trajectory. In these
aforementioned works, the design of a single-antenna UAV-
mounted BS has limited performance, while we can leverage
the evolution of multiple-antenna technology to empower
operations of the UAV. Therefore, it is importance to study
how the multiple-antenna UAV-mounted BS enhance the
system performance by considering the benefits provided
by multiple-antennas networks. Thus, researchers paid
attention to explore the performance of multiple-antenna
fitted UAV-mounted BS aided communication. For example,
a multi-input single-output (MISO) UAV-BS system was
developed in [17] and a robust power allocation approach
was introduced tominimize power consumption and optimize
trajectory and transmit beamforming vector. Further, the
authors in [18] optimized the UAV trajectory inmulti-antenna
UAV-aided systems where cognitive radio is empowered to
improve spectrum efficiency. The authors in [19] studied a
UAV-assisted multiuser communication system to enable a
multi-antenna UAV as a BS to serve multiple single-antenna
ground users. Further, both orthogonal multiple access
(OMA) and NOMA signals can be coordinated to develop a
clustering-based hybrid multiple access technique to transmit
the information to all ground users simultaneously.

The strong assumption of the perfect transmitter-receiver
hardware architecture is a common theme across the
aforementioned research efforts, however, it is utopian for
real-practical applications. In practice, I/Q imbalance (IQI),
high power amplifier (HPA) non-linearities, and oscillator
phase noises may affect the hardware of wireless transceivers
[20]. In addition, the transmit/receive signal is always
accompanied by a little degree of unaccounted-for distortion
brought on by residual hardware noise (RHN) [21]. In [22],
NOMA-assisted satellite communication with UAV relaying
is investigated. In addition, the author considered a real-life
scenario as imperfect hardware issues in UAV relaying and
ground users. Moreover, the closed-form OP is derived to
evaluate the system performance of NOMA users. In [23],
the authors expressed the exact and asymptotic formulas of
OP and the ergodic capacity of AF and DF relaying systems.
Specifically, the RHN is developed for all nodes.

A. RELATED WORKS
The aforementioned studies on UAVs crucially assumed
ideal hardware and unpredictable performance of the ground
users. To make UAV-assisted IoT systems a reality, UAV-
assisted BS with hardware noise is an active field of research.

VOLUME 11, 2023 117563



B. Vu Minh et al.: Performance Prediction in UAV-Terrestrial Networks With Hardware Noise

An UAV-assisted NOMA multi-way relaying network was
considered in [14] to evaluate the impact of the existence
of the RHN at the transceivers. In particular, the authors
derived the analytical expressions for the achievable sum-rate
to exhibit the performance of the considered networks. In
[24] considered security in UAV-assisted system when UAV
plays a role as an aerial BS and transmits the signal to a
protected zone containing the ground users in the existence
of multiple ground eavesdroppers. Their numerical results
confirmed that the hardware noise has a significant impact on
the average secrecy rate. In contrast, eavesdroppers benefit
from the imperfect hardware. In a similar work, Guo and
An studied how hardware noise affects to the performance
of the reconfigurable intelligent surface-assisted integrated
satellite-UAV-terrestrial networks [25]. However, we need
to answer how the system can predict the performance to
help the UAV-mounted BS adjust its parameters to better
serve the ground users; for example, the UAV can adjust the
power allocation coefficients to satisfy performance require-
ments at each device. Although optimization approaches
work, they would impose higher computational load on
to the UAV.

To the best of our knowledge, a few studies have been
focused on machine learning-based algorithms in UAV-
assisted IoT networks [26], [27], [28]. The authors in [26]
studied UAV-assisted IoT networks relying on mobile edge
computation, in which a Markov decision process (MDP)
scheme is deployed to characterize optimization problem of
data and energy transfer for the UAV. In particular, the MDP
model is solved to obtain the optimal strategies and further
help the UAV collect data, deliver data, and to maximize
the long-term utility of the UAV. In a similar work, Li et
al leveraged partial observable MDP problem in [27] to
model the UAVs’ flight resource allocation. In this MDP,
they described each state to demonstrate UAVs’ adopted
heights and battery levels. Tomake optimal decisions for each
state and solve the online flight resource allocation problem,
a deep reinforcement learning algorithm (Q-learning) was
employed in [28]. In this case, the proposed scheme combined
Q-learning with deep reinforcement learning is employed
to considerably minimize the data loss. The authors in [29]
developed a deep neural network (DNN) to accurately predict
the outage performance of aerial reconfigurable intelligent
surface-assisted wireless system.

B. MOTIVATIONS AND OUR CONTRIBUTIONS
Since the DNN models can precisely estimate the desired
system performance metrics from high dimensional raw data,
the UAV can leverage DNN for performance prediction in
order to expedite real-time configurations in IoT networks
even in dynamic environments and complex radio condi-
tions. This paper is motivated by the above analysis and
provides a framework to evaluate the system performance
of UAV-NOMA IoT systems with hardware noise, followed
by the deep learning evaluation of performance prediction.

FIGURE 1. System Model.

Table 1 summarizes our article and the existing studies. Our
contributions can be summarized as follows

• We design a multiple antennas UAV for applications in
Iot system to enhance the energy efficiency compared
with the normal system using multiple single-antenna
UAVs.

• Such IoT system can leverage a DNN based
UAV-NOMA framework for attaining the benefits of
such performance predication since other unsupervised
learning algorithms applied the normal operation of
a IoT network do not leverage the data that can be
achieved offline.

• We investigate performance at the ground users of both
UAV-OMA case and UAV-NOMA case in the context
of DNN based UAV system. Additionally, in contrast to
the conventional UAV-NOMA, we deal with degraded
performance under the impacts of hardware noise. Based
on analysis of received signals, we derive the closed-
form expressions for the outage probability, ergodic
capacity and throughput of two IoT devices under the
effect of LoS and NLoS probabilities. Then, we validate
these derived expressions in various scenarios to find
main parameters affecting to the system performance.

The rest of the paper is organized as follows. Section II
presents the details of the proposed system model and
assumptions. Section III analyzes the performance param-
eters including the outage probability, the throughput, and
the ergodic capacity. Section IV introduces DNN method
to predict the system performance. Section V presents the
simulation results. Finally, section VI concludes the paper.

II. SYSTEM MODEL
A. HARDWARE NOISE MODEL
The broadcast and received signals are distorted by real-world
RF transceivers that have IQ imbalances, amplifier non-
linearities, and phase noise [37]. As a result, the signal model
for these hardware flaws is modeled by

y = h(x + ηt + ηr ) + n, (1)

where x denotes the transmit signal, h denotes the channel
model, and ηt ∼ CN (0,Pκ2

t ) and ηr ∼ CN (0,Pκ2
r ) denote

the distortion noises at transmitter and receiver, respectively,
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TABLE 1. Comparison between the novelty of our work and previous papers.

P = E[x2], κt and κr are the design parameters attributed to
the level of hardware noise.

B. DNN MODEL
In the DNN model, there are three layers which as the input
layer, the multiple hidden layers and the output layer. The
function of each layer in the DNN model training may be
summed up as follows:

1) The Input Layer: Data is provided to the input layer
so that the DNN model can determine how system
parameters and performance are related. As a result,
the number of neurons in the input layer is equal to the
number of network parameters and does not serve as an
activation function.

2) The Hidden Layer: The relationship between input data
and output data is primarily calculated by many hidden
layers. Therefore, for the relation to be calculated
correctly, each connection in each hidden neuron has
a separate weight and bias. Each hidden neuron also
includes a nonlinear activation function to enhance
computational performance.

3) The Output Layer:By combining the findings of several
hidden layers, the output layer forecasts the system
performance. As a result, the output layer is made up
of just one neuron. The output layer’s neuron is similar
to the input layer’s in that it lacks an activation function.

C. SIGNAL COMMUNICATION MODEL
We study the popular IoT application of aerial BS when
a multiple-antenna UAV (denoted as R) is deployed to
provide improved performance for a group of M ground
IoT users, shown in Figure 1. We consider the scenario in
which the UAV follows a circular trajectory and hovers to
communicate with the IoT users in a sequential manner. In the
context of IoT, the system deals with several requirements.
Firstly, the UAV is dedicated to transferring signals to IoT
users belonging to a cluster and the UAV is equipped with
N antennas. Secondly, interference among devices in a
cluster must be reduced. To this end, the system aims to
guarantee the reduced latency required by the system with
the specific group of NOMA IoT users connected to the

UAV.1 As a possible solution, these M devices could be
divided into different orthogonal groups with benefit from
the mobility capability of UAVs, i.e. each group contains
two IoT users, D1, D2.2 In this scenario, the UAV-mounted
transmitter utilizes the same time-frequency resource to
simultaneously transmit the superimposed signals to IoT
users by appropriately allocating its transmit power (i.e.,
power-domain NOMA). We assume a multiple-antenna UAV
design and single-antenna ground users motivated by the
small size of IoT users. The UAV continuously flies and its
movements are characterized by a set of parameters such
as constant velocity v, a circular trajectory of radius r and
altitude h. Hereby, we assume that the ground users D1 and
D2 are located atD1 (L, 0, 0) andD2 (−L, 0, 0), respectively.
We denote ϕ as the angle of the circle of UAV location, then
the location of UAV R is represented as R(rcosϕ, rsinϕ, h).
It is noted that the IoT users are normally placed at the
ground and hence their altitude is zero. After the UAV serves
a dedicated cluster, it can move to other clusters. When we
focus on the performance analysis of a cluster, Euclidean
distances from the ground users D1, D2 to the UAV, R, can
be calculated, respectively as [39]

d1 =

√
h2 + r2 + L2 − 2rL cosϕ, (2a)

d2 =

√
h2 + r2 + L2 + 2rL cosϕ. (2b)

We assume that the Rician fading of the channel between
the UAV and terrestrial users is based on the probabilistic
LoS and non-LoS (NLoS) model, which is affected by the
density of the buildings and the distance between the UAV
and users. The probability of any user experiencing a LoS

1Abrute force search algorithm can be deployed to perform user clustering
and to maximize the overall spectral efficiency and user fairness subject to
satisfying quality of service as well as the total transmit power constraints.
The explicit procedures of user clustering is beyond the scope of our paper,
and detailed procedures can refer to [38].

2We prefer to design a smaller group containing only two IoT users due
to high complexity of SIC and worse performance with multiple users in
NOMA systems. On the other hand, a two-device NOMA setting has been
standardized in the 3GPP in Release 15 [30]. The work in [19] presented
similar system model and confirmed that UAV works well with this users
arrangement related to satisfaction of performance metrics such as outage
probability.
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link is represented as [40]:

PLoS,k =
1

1 + pe−q(θk−p)
, k ∈ {1, 2}, (3)

where p and q are constant values depending on the
surrounding environment, such as sub-urban, urban, dense-
urban and θk = arcsin

(
h
dk

)
. Obviously, the probability of

NLoS is PNLoS,k = 1 − PLoS,k .
Without loss of generality, we assume that the channel

between the UAV and the ground users is N × 1 channel
vector, i.e. hk presented as hk ∈ CN×1 where hk =[
h1k , . . . , h

n
k , . . . , h

N
k

]T
whose elements are the channel coef-

ficients and [·]T denotes the transpose operator. We denote
transmit power of the UAV by P. The channel state
information (CSI) is assumed to be perfect at each terminal.3

During this phase, the UAV simultaneously transmits the
normalized information signal x̃1 and x̃2 to D1 and D2,
respectively. The corresponding received signal at Dk can be
expressed as [14]:

yDk = hk
√
d−α
k Lk

(√
Pϖ1x̃1 +

√
Pϖ2x̃2 + η̃D

)
+ nDk , k ∈ {1, 2} , (4)

where ϖ1 and ϖ2 represent the fractions of the allocated
power to D1 and D2, respectively, with the following
constraint: ϖ1+ϖ2 = 1 and ϖ2 > ϖ1.4 It is noted that x̃1 ∼

CN (0, 1) and x̃2 ∼ CN (0, 1) are the messages dedicated
to D1 and D2, respectively, α is the path loss exponent, η̃D is
the distortion noise due to imperfect hardware at the UAV, i.e.
η̃D ∼ CN

(
0, κ2

D1
ϖ1P+ κ2

D2
ϖ2P

)
[42], κ2

D1
and κ2

D2
present

the hardware noise level for the transmitted signal at Dk ,
respectively, Lk =

(
PLoS,k + υPNLoS,k

)
in which υ denotes

the additional attenuation factor of NLoS transmission, and
nDk ∼ CN (0, INN0) is the additive complex white Gaussian
noise (AWGN) in which IN represents the 1 × N identity
matrix.

According to NOMA cooperation principle, D1 detects x̃2
having strong signal power first while treating x̃1 as noise,
then decodes x̃1 by using the SIC algorithm to subtract x̃2.
Therefore, with the help of (4), the signal-to-interference-
plus-noise-and-distortion ratio (SINDR) at D1 for signal x̃2

3The channels between the UAV and the ground devices are mostly
characterized by time-selective fading since the UAV’s mobility leads to the
Doppler spread affecting thewireless connections. To detect received signals,
the ground users estimate the channel coefficients though pilot signals. The
imperfect CSI is usually modeled as an additional complex Gaussian noise
and is described in [4].

4The decoding order of NOMA devices are decided by considering
distances from the devices to the UAV, meaning that transmit power is
allocated to the users in a distance-based fashion. The higher power could
be allocated for far the IoT device [6], [41].

can be written as:

γ̃D1,x2 =
ϖ2Pd

−α
1 L1γ1

Pd−α
1 L1γ1

[
κ2
D2

ϖ2 +

(
1 + κ2

D1

)
ϖ1

]
+ N0

=
ϖ2ρd

−α
1 L1γ1

ρd−α
1 L1γ1

[
κ2
D2

ϖ2 +

(
1 + κ2

D1

)
ϖ1

]
+ 1

, (5)

where γ1
1
= ∥h1∥2 with ∥.∥ denotes the Euclidean norm of a

vector, ρ = P
/
N0 is the average signal-to-noise ratio (SNR)

at the UAV.
The signal-to-noise-and-distortion ratio (SNDR) of decod-

ing x̃1 at D1 can be given as

γ̃D1,x1 =
ϖ1ρd

−α
1 L1γ1

ρd−α
1 L1γ1

[
κ2
D2

ϖ2 + κ2
D1

ϖ1

]
+ 1

. (6)

Next,D2 can detect x̃2 by treating x̃1 as a noise, the received
SINDR at D2 is given by

γ̃D2,x2 =
ϖ2ρd

−α
2 L2γ2

ρd−α
2 L2γ2

[
κ2
D2

ϖ2 +

(
1 + κ2

D1

)
ϖ1

]
+ 1

, (7)

where γ2
1
= ∥h2∥2.

III. PERFORMANCE ANALYSIS
In order to investigate the system performance, we first obtain
the statistical property of the UAV links.

A. CHANNEL MODEL
The wireless channels between the UAV and the ground users
are assumed to experience small-scale fading and large-scale
path loss. In general, a UAV-ground link is characterized by
the presence of a strong line-of-sight (LoS) path. Therefore,
the Rician distribution is an appropriate choice for the
UAV-to-ground channel comprised of LoS and multipath
scatterers at the ground station receiver [43]. By definition,
the probability distribution function (PDF) of the unordered
squared channel gain γi, i ∈ {1, 2} is given by a non-central
chi-square distribution with two degrees-of-freedom as [44]:

f
|hi|2 (x) = φie−Kie−φixI0

(
2
√
Kiφix

)
, (8)

where φi = (1 + Ki)
/
�i, I0 (x) is the zeroth-order modified

Bessel function of the first kind,Ki
1
= |µi|

2/2σ 2 is the Rician
factor and �i = E

{
|γi|

2}
= 1 is the normalized average

fading power.
Furthermore, we can use the following expression for

the density of the sum of N squared i.i.d. Rician random
variables, γi =

∑N
n=1

∣∣hi,n∣∣2, i ∈ {1, 2}which is given by [45,
Eq. (10)]

f
|γi|

2 (x) = φie−NKi
(

φi

NKi

)N−1
2

x
N−1
2 e−φix

× IN−1

(
2
√
NKiφix

)
, (9)

with 0 (x) is the gamma function.
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B. OUTAGE PROBABILITY
When the target rate of the ground users is determined by
the quality of service (QoS), the outage probability is an
important metric for performance evaluation. We evaluate the
outage performance of the two users below.

Firstly, the outage probability at D1 is given by

PD1 = Pr
(
γ̃D1,x2 < ε̃2 ∪ γ̃D1,x1 < ε̃1

)
= 1 − Pr

(
γ̃D1,x2 ≥ ε̃2, γ̃D1,x1 ≥ ε̃1

)
= 1 − Pr (γ1 ≥ χ̃max) , (10)

where ε̃2=2R2−1 with R2 being the target rate atD1 to detect
x2, ε̃1=2R1−1 with R1 being the target rate atD1 to detect x2,

χ̃2 =
ε̃2

ρd−α
1 L1

{
ϖ2−ε̃2

[
κ2D2

ϖ2+
(
1+κ2D1

)
ϖ1

]} ,
χ̃1 =

ε̃1

ρd−α
1 L1

{
ϖ1−ε̃1

[
κ2D2

ϖ2+κ2D1
ϖ1

]} and χ̃max =

max (χ̃2, χ̃1).
Note that (10) is derived on the condition of ϖ2 >

ε̃2

[
κ2
D2

ϖ2+

(
1+κ2

D1

)
ϖ1

]
and ϖ1>ε̃1

[
κ2
D2

ϖ2+κ2
D1

ϖ1

]
.

Proposition 1: The outage probability at D1 of a
multi-antenna relaying system with Rician fading can be
expressed as (11).

PD1 = 1 −
πe−NK1

(NK1)
N 3

(
1

NK1
,

1
NK1φ1χ̃max

)
. (11)

where 3 (x, y) is shown on the next top page and
Hm,n:s,t:i,j
p,q:u,v:e,f (·) represents the extended generalized bivariate

Fox H-function (EGBFHF) in [46].
Proof: See Appendix A
Next, the outage probability at D2 is computed by

PD2 = 1 − Pr
(
γ̃D2,x2 ≥ ε̃2

)
= 1 − Pr (γ2 ≥ χ̄2) , (13)

where χ̄2 =
ε̃2

ρd−α
2 L2

{
ϖ2−ε̃2

[
κ2D2

ϖ2+
(
1+κ2D1

)
ϖ1

]} .
Similar to PD1 , we can show PD2 is given by

PD2 = 1 −
πe−NK2

(NK2)
N 3

(
1

NK2
,

1
NK2φ2χ̄2

)
. (14)

Remark 1: The results in (11) and (14) indicate the
power allocation factors, the target rates, and SNR at
the UAV are the main contributors to the analysis of the
system performance. If the UAV has the capability to learn
parameters from environment, the system could improve the
performance at each user directly rather than the case that the
UAV transmits with fixed system parameters at the downlink.

C. SYSTEM THROUGHPUT
In this section, we move our attention to another system
performance metric, namely the throughput. When the
codewords are short (i.e., shorther than the coherence time),
the throughput could be evaluated prior to the ergodic rate.
The system throughput atD1 and D2 can be similarly derived
as [47]

τsys =
(
1 − PD1

)
R1 +

(
1 − PD2

)
R2. (15)

Remark 2: The result in (15) indicates that very high data
rates R1,R2 between the UAV and the ground users D1,D2
result in a lower successful probability of signal decoding
corresponding to a degraded system throughput. In contrast,
to enhance the successful decoding probability, lower values
of R1,R2 are required, but the system throughput cannot be
high since the transmission rates R1,R2 affect to throughput
performance directly; thus, revealing a trade-off.

D. ERGODIC CAPACITY
When the codeword is long enough (i.e., longer than the
coherence time), the ergodic rate should be further analyzed,
and the ergodic rate performance of two devices can be
determined as follows.

The ergodic capacity at D2 is calculated as

C̃2 = E
{
log2

(
1 + γ̃D2,x2

)}
=

1
ln 2

ξ̄

ζ̄∫
0

1
1 + x

[
1 − Fγ2

(
x

ξ̄ − ζ̄x

)]
dx, (16)

where ζ̄ =
ρL2
dα
2

[
κ2
D2

ϖ2 +

(
1 + κ2

D1

)
ϖ1

]
and ξ̄ =

ϖ2ρL2
dα
2

.
Proposition 2: The approximate closed-form expression

of the ergodic capacity of D2 is written as

C̃2 ≈
π2ξ̄e−NK2

2T ζ̄ ln 2(NK2)
N

T∑
t=1

√
1 − ϕ2

t

1 + 2 (ϕt)

× 3

(
1

NK2
,

ξ̄ − ζ̄2 (ϕt)

NK2φ22 (ϕt)

)
, (17)

where 2 (t) =
ξ̄ (t+1)
2ζ̄

and ϕt = cos
(
2t−1
2T π

)
.

Proof: See Appendix B.
Next, the ergodic capacity at D1 is given as

C̃1 = E
{
log2

(
1 + γ̃D1,x1

)}
=

1
ln 2

ξ̃

ζ̃∫
0

1
1 + x

[
1 − Fγ1

(
x

ξ̃ − ζ̃x

)]
dx, (18)

where ξ̃ = ρd−α
1 ϖ1 and ζ̃ = ρd−α

1

[
κ2
D2

ϖ2 + κ2
D1

ϖ1

]
.

3 (x, y) = H0,1:1,0:0,1
3,1:0,1:1,1

(
(1 − N ; 1, 1) , (0; 1, 1) , (0.5 − N ; 1, 1)

(0.5 − N ; 1, 1)

∣∣∣∣ −

(0, 1)

∣∣∣∣ (1, 1)(0, 1)

∣∣∣∣ x, y) . (12)
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FIGURE 2. A design of DNN used to predict the system performance.

By replacing new variable x =
ξ̃

2ζ̃
(t + 1) and

using Gaussian-Chebyshev quadrature [52, Eq. (25.4.38)],
an approximate closed-form ergodic capacity at D2 can be
obtained by

C̃1 ≈
π2ξ̃e−NK1

2Rζ̃ ln 2(NK1)
N

R∑
r=1

√
1 − ϕ2

r

1 + 4 (ϕr )

× 3

(
1

NK1
,

ξ̄ − ζ̄4 (ϕr )

NK1φ14 (ϕr )

)
, (19)

where 4 (t) =
ξ̃

2ζ̃
(t + 1) and ϕr = cos

(
2r−1
2R π

)
.

Remark 3: The results of the system performance evalua-
tions in (11), (14), (17) and (19) are very important to UAV
to direct such UAV flies close to or far way from the ground
users D1,D2 with respect to satisfy data requirements for
each user. In [19], the throughput of the first user in a cluster
can be maximized after guaranteeing the desired throughput
for the second user since such throughput depends on power
allocation coefficients and target symbol rates. However,
the UAV finds hard to know throughput performance to
conducting an optimization at the time that it transmits
signals. To this end, this paper introduces DNN in the next
section as a newway to predict performance for ground users.

IV. DNN-BASED PERFORMANCE PREDICTION
A. THE STRUCTURE OF THE DNN
The DNN is a feed-forward neural network, which can be
deployed at the UAV. Figure 2 depicts the DNN including one
output layer, one input layer, and multiple hidden layers, i.e.
Dhid layers. The parameters collected to the UAV correspond
to 15 neurons, and these primary system parameter settings
are given in Table 2. The output layer with one neuron
corresponds to the expected outage performance. The linear
and activation functions are used to obtain the predicted
outage probability Pout [29], [48]. The rectified linear unit
(ReLU) function in this case can be applied as an activation
function. It is noted that single hidden layer i contains
Dineu, i = 1, . . . ,Dhid neurons.

TABLE 2. Inputs for DNN testing and training.

It is assumed that the training phase is performed offline
to reduce the computational complexity, and the imple-
mentation cost can be decreased accordingly. In particular,
the training process can be conducted in two phases
corresponding to the training and prediction ones. The
adaptive moment estimation (Adam) optimization algorithm
can be deployed in the training phase since the network
can learn input-output relations offline. As a result, the
model parameters can be optimized based on the dataset.
The system can update weights during the backpropagation
procedure when computing the loss function. It would be a
simpler procedure when this phase is performed one time
and then reused several times to predict outage behavior for
the communication between the UAV and IoT users. After
the offline training model is finished, the achieved results
can be leveraged to obtain an online prediction of the outage
probability.

B. DATASET
The UAV can be initialized by collecting system parameters
for its input layer with the size of 1 × 15. In a practical
scenario, the UAV can accumulate the dataset over a long
period of time. However, the number of samples used for
simulation in this paper is sufficient to obtain high accurate
predictions for outage performance. In particular, the dataset
contains i samples of the collected data from the server where
the UAV can be connected to, i.e. input-output relationship
could be Data [i] =

[
t [i] ,P i

Dj

]
, where j ∈ {1, 2} and t [i] is

a feature vector that corresponds to the parameters listed in
Table 2. In this study, the UAV can process 105 samples, i.e.,
Data [i] , i = 1, 2, . . . , 105. The system can also divide data
into portions including the training set, ℘trn, validation set,
℘val , and test set, ℘tes (corresponding to three groups 80%,
10%, and 10% of data resource, respectively).

The exactness of such prediction can be evaluated via the
MSE, i.e.,MSE =

1
|℘tes|

∑|℘tes|−1
i=0

(
Pout − P tes

out
)2 in [29] and

[48]. The DNN can work effectively as long as the UAV is
able to determine RMSE =

√
MSE as the acceptable value.

It is noted that such an error can be propagated back through
the DNN to gradually adjust the weights and biases. Next,
we present Algorithm 1 to determine the main steps required
for training and evaluating a DNN [29], [48].

C. REAL-TIME PREDICTION
Following the offline training, the resulting DNNmodel with
weights and biases may be represented as in a compact
mapping function i.e. J (·). When the new network data is
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Algorithm 1 Procedures for the DNN: Training and
Testing
Input : The system parameters; Installation for

DNN: Dhih = 5, Dineu = 128,
RMSEth = 2 × 10−2 and learning rate
lr = 10−3

Output: A trained DNN

begin
Extracting from dataset for ℘trn, ℘val , and ℘tes
Perform DNN relying on Keras and TensorFlow
while (RMSE ≥ RMSEth) do

Changing Dhih, Dineu, lr, and the number of
epochs dynamically
Using Strn and Sval for training procedure and
save them in the validated DNN
(validatedDNN.h5)
Obtaining RMSE when set Stes into
validatedDNN.h5.

end

return trainedDNN.h5 data
end

organized as a new vector (xnew), the outcome of the DNN
model may be expressed as

Ppred
out = J (xnew) . (20)

From (20), the outage performance can be predicted by
the resulting DNN mode in a short execution time. Since the
DNN’s capacity may be improved by including additional
hidden layers or more neurons/hidden unit networks, the
parameters of the DNN can be adaptively built to obtain the
lowest error throughout the training process.

V. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we present the numerical and simulation
results to examine the performance of both NOMA-aided
and OMA-aided UAV. For summarize the main simulation
parameters in Table 3 (unless otherwise stated). Note that
we set κ = κ2

D1
= κ2

D2
, K = K1 = K2

and consider the scenario in sub-urban environment. The
derived mathematical expressions are verified to confirm
exactness of proposed expressions. In all simulation results,
we denote ‘‘ana.’’, ‘‘sim.’’ for analytical and simulation
results respectively.

Figure 3 shows the training and validation versus epochs.
As can be observed, the training’s correctness can be obtained
after 30 epochs. In addition, MSE is lower than 10−5 after
40 epochs. It means that the estimated OP is tightly close
to the test data. Next, we compare the execution time of
the Monte Carlo simulation, analytical, and DNN model
for the proposed system. Table 4 shows the execution time,
which means the time spent assessing outage performance.
As can be observed, the suggested DNNmodel takes the least
amount of time to execute the three alternatives. Thus, the

TABLE 3. Simulation Parameters.

FIGURE 3. The MSE’s convergence in validating and training the DNN.

TABLE 4. The execution time.

proposed DNN emerges as an excellent tool for evaluating
real-time outage performance.

Figure 4 depicts the outage probability versus the aver-
age transmit SNR at the UAV under different Rician fading
parameter K . As the first observation, when the quality of
channels can be improved, an increasing Rician-K coefficient
results in performance improvements. For the case with K =

5, the second device is determined as the best one among three
considered cases of K = 1, 3, 5 and hence, strong channels
support stable transmission. To confirm the correctness of the
analytical expression, we run both numerical and analytical
results obtained from (11) and (14). We observe that the
theoretical computation and Monte Carlo simulation match.
The main reason is that increasing the Rician-K factor yields
in higher SINDR providing a better outage behavior since the
channel quality of the considered system improves.
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FIGURE 4. Outage probability of D1 and D2 versus SNR and different
values of K .

FIGURE 5. Outage probability of D1 and D2 versus SNR at the UAV with
different number of antennas N , with K = 2.

Figure 5 illustrates the impact of the number of transmit
antennas at the UAV, N , on the outage probability. The
higher number of antennas at the UAV, the better the outage
probability. It can also be seen that the outage behavior of
the second device is better than that of the first device since
higher power is allocated to the second device (ϖ2 = 0.9).
This result confirms that adding more antennas at the UAV
leads to an increase in spatial degrees-of-freedom at the
receivers and further improves the outage performance. The
slopes of the curves is proportional to the number of antennas.
They reflect the diversity gain of the system.

Figure 6 demonstrates the outage probability versus the
average SNR at the UAV considering ideal and non-ideal
conditions with hardware at the UAV. We can see the outage
curves for two cases of hardware imperfection, i.e. κ = 0 and
κ = 0.05, to characterize the impact of imperfect hardware
level to NOMA and OMA approaches. We observe that the
outage probability of two IoT users become worse as the
value of parameters of κ increases. It can be concluded that
the outage probability of considered systems is limited by the
level of hardware imperfection. In addition, the gap between
the outage probability of NOMA and OMA cases becomes
large at higher level of hardware noise κ = 0.05.

Figure 7 depicts the impact of the power allocation
coefficients on the performance of two IoT devices. This case

FIGURE 6. Outage probability of D1 and D2 versus SNR with R1 = 1,
R2 = 0.5 and N = K = 2.

FIGURE 7. Outage probability of D1 and D2 versus ϖ2 with R1 = R2 = 1,
κ = 0.01 and ρ = 15 (dB).

corresponds to hardware noise κ = 0.01. We observe that the
outage probability of the first device reaches the lowest point
as ϖ2 = 0.65 regardless of value of K . This implies that the
power allocation coefficients play a crucial role in the outage
behavior rather than any other parameters. We also confirm
that higher power assigned to the second device benefits its
performance while this allocation harms the performance at
the first device. The worse performance at the first device
become significant when ϖ2 goes from 0.7 to 1. This can be
explained as follows: detecting the signal at the first device
depends on how large SINDR in (6) is. Since ϖ2 becomes
smaller, value of SINDR in (6) results in a worse outage
performance.

Figure 8 illustrates the outage performance of the proposed
UAV-based IoT system versus the location of the UAV for two
IoT users. It is assumed that the UAV maintains hardware
noise at κ = 0.01. We can see that, at ϕ = 0, the outage
probability of the first user is minimum. This is due to the fact
that when the UAV stays close to the users, the performance
would be best. We note that when r is small, changing values
of ϕ does not affect the performance much. It is because r
reflect moving area of the UAV, so small r means smaller
change in the location of the UAV. That lead to small variation
in the OP.
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FIGURE 8. Outage probability of D1 and D2 versus ϕ with ϖ2 = 0.95,
ϖ1 = 0.05, R1 = R2 = 1, κ = 0.01, N = K = 2 and ρ = 5 (dB).

FIGURE 9. The outage probability with ideal target rate of different UAV
altitude in which ϖ2 = 0.9, ϖ1 = 0.1, κ = 0.01 and K = 4.

Figure 9 presents the outage behavior of two IoT users
versus the altitude h of the UAV for different setting of
transmit antennas at the UAV. We observe that the outage
performance of both two users become worse when UAV’s
altitude is higher. This means that when the UAV flies low
enough to closely meet the users, the outage performance
can be satisfied. Moreover, the gap between the outage
probabilities of User 1 and User 2 is remarkable when the
UAV is at low altitude, but is smaller when h is large. This
can be explained as follows: increasing the altitude of UAV
leads to an increase in the probability of having LoS link,
resulting in a lower SINDR corresponding to a worse outage
probability.

Figure 10 demonstrates how DNN can predict the outage
performance of the two users. We observe that the predicted
values of the outage behavior are close to outage probabilities
obtained byMonte-Carlo and analytical simulation. Since the
outage performance of the two users depend on how the UAV
allocates transmit power to their signals, the UAV can predict
outage behavior of two users and adjust power allocation
factors to satisfy the fairness or other requirements at the
users.

Figure 11 depicts the throughput performance of two users
versus the target rates. Since the target rates R1, R2 limit
outage performance, an increase in the target rates leads to

FIGURE 10. Comparison between the predicted outage performance and
analytical simulation under different N .

FIGURE 11. System throughput at D1 and D2 versus Ri , i ∈
{
1, 2

}
with

ϖ2 = 0.95, ϖ1 = 0.05, κ = 0.01 and N = K = 2.

FIGURE 12. The ergodic capacity versus SNR with N = K = 2 and r = 0.9.

a decrease in throughput. Thus, the UAV-NOMA system is
sensitive to data rates requirements as throughput becomes
worse at the higher target rates.

Figure 12 illustrates the ergodic capacity of the two
users versus the SNR at the UAV. At lower range of
SNR, the ergodic capacity of the considered system can
be enhanced when the quality of received signal becomes
better. Unfortunately, when the SNR goes beyond 20 dB, the
ergodic capacity cannot be enhanced due to hardware noise.
It is worth noting that the first user can increase the ergodic
capacity significantly in the ideal condition of hardware κ =
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FIGURE 13. The ergodic capacity versus κ with N = 3, K = 10, r = 0.1 and
ρ = 30 (dB).

FIGURE 14. The ergodic capacity versus ϖ2 with N = K = 2, r = 0.9 and
ρ = 20 (dB).

0. Figure 13 also confirms levels of hardware noise make a
crucial impact on the ergodic capacity of both users regardless
of any change to power allocation coefficients.

Finally, Figure 14 confirms that if the system can be
determined suitable power allocation factor ϖ2, the ergodic
performance of two users showcases their optimal values
concurrently. This result also demonstrates that as more
power is assigned to the second users, the ergodic capacity
increases, which benefits the system.

VI. CONCLUSION
We have presented and provided performance analysis of
an UAV-NOMA IoT system with residual hardware noise
enhanced by a DNN approach to exhibit a new way
to allow flying BSs predict the performance of the IoT
users. In particular, we provided closed-form expressions
for evaluating the system performance including the outage
probability, the throughput, and the ergodic capacity. The
simulation results indicate that outage, throughput, and
ergodic capacity performance of the two users in a cluster
mostly depends on power allocation factors, hardware noise
level, and date rates. In addition, the maximum throughput
for the UAV-NOMA is always superior to that of the
benchmark (UAV-OMA system). Further, we highlighted in
the simulation that the benefits of DNN and user arrangement

(many clusters associated with OMA scheme while NOMA
signalling is used for users in each cluster) over conventional
methods. To deal with unpredictable performance at ground
users, the UAV can leverage a DNN to predict the user
performance and adjust parameters to satisfy the fairness and
quality of service at each user.

APPENDIX A
PROOF OF PROPOSITION 1
By replacing (9) in (10), the outage probability at D1 can be
calculated as

PD1 = 1 − Pr (γ1 ≥ χ̃max)

= 1 − φie−NKi
(

φi

NKi

)N−1
2

∞∫
χ̃max

x
N−1
2

× e−φixIN−1

(
2
√
NKiφix

)
dx

= 1 − φie−NKi
(

φi

NKi

)N−1
2

∞∫
0

H
(

x
χ̃max

− 1
)

× x
N−1
2 e−φixIN−1

(
2
√
NKiφix

)
dx, (21)

where H (x) is unit step function as H (x) =

{
1, x > 0
0, x < 0

.

To solve the integrals in PD1 , we utilize the following
transformations involving the Meijer G-function [53]

H (1 − |x|) = G1,0
1,1

(
x

∣∣∣∣ 10
)

, (22)

H (|x| − 1) = G0,1
1,1

(
x

∣∣∣∣ 10
)

, (23)

e−ax = G1,0
0,1

(
ax

∣∣∣∣ −0
)

, (24)

Iv (x) = π2−vxvG1,0
1,3

(
x2

4

∣∣∣∣ 0.5
0, −v, 0.5

)
, (25)

By expressing the relevant functions in (21) into Meijer
G-function using the above equalities in (22), (24) and (25),
PD1 is expressed as

PD1 = 1 − πφNi e
−NKi

∞∫
0

xN−1G1,0
0,1

(
φix

∣∣∣∣ −0
)

× G1,0
1,3

(
NKiφix

∣∣∣∣ 0.5
0, 1 − N , 0.5

)
G0,1
1,1

(
x

χ̃max

∣∣∣∣ 10
)
dx.

(26)

We apply the following (27), as shown at the top of the
next page, to solve integrals (26) in which Hm,n:s,t:i,j

p,q:u,v:e,f (·)

stands for the extended generalized bivariate Fox H-function
(EGBFHF) in [46]. This function can be conveniently
evaluated using mathematical software such as Mathematica
[50, Table 1] and Matlab [51, Appx A].
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∞∫
0

xλ−1Gm,0
p,q

(
ηx

∣∣∣∣ apbq
)
Gm2,n2
p2,q2

(
θxh

∣∣∣∣ cp2dq2

)
Gm3,n3
p3,q3

(
δxk

∣∣∣∣ ep3fq3

)
dx = η−λ

× H0,m:m2,n2:m3,n3
q,p:p2,q2:p3,q3

( (
1 − bq − λ; h, k

)(
1 − ap − λ; h, k

) ∣∣∣∣ (
cp2 , 1

)(
dq2 , 1

) ∣∣∣∣ (
ep3 , 1

)(
fq3 , 1

) ∣∣∣∣ θ

ηh
,

δ

ηk

)
. (27)

Base on (27), the outage probability of D1 is written as

PD1 = 1 −
πe−NKi

(NKi)N
3

(
1

NK1
,

1
NK1φ1χ̃max

)
, (28)

where 3 (x, y) is specified by (12),
This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2
Considering on (16), putting t =

2ζ̄x
ξ̄

− 1 and it means that
ξ̄ (t+1)
2ζ̄

= x. Then, we have ξ̄

2ζ̄
dt = dx, (29) can be achieved

as

C̃2 =
πξ̄e−NK2

2ζ̄ ln 2(NK2)
N

1∫
−1

1
1 + 2 (t)

× 3

(
1

NK2
,

ξ̄ − ζ̄2 (t)
NK2φ22 (t)

)
dt. (29)

It is not easy to derive a closed-form expression for
(29), thus, we aim for an accurate approximation. By using
Gaussian-chebyshev quadrature [52, Eq. (25.4.38)], we have
C̃2 is given by

C̃2 ≈
π2ξ̄e−NK2

2T ζ̄ ln 2(NK2)
N

T∑
t=1

√
1 − ϕ2

t

1 + 2 (ϕt)

× 3

(
1

NK2
,

ξ̄ − ζ̄2 (ϕt)

NK2φ22 (ϕt)

)
, (30)

where 2 (t) =
ξ̄ (t+1)
2ζ̄

and ϕt = cos
(
2t−1
2T π

)
.

This completes the proof.
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