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ABSTRACT High-utility itemset mining (HUIM) is an important task in the field of knowledge data
discovery. The large search space and huge number of HUIs are the consequences of applying HUIM
algorithms with an inappropriate user-defined minimum utility threshold value. Determining a suitable
threshold value to obtain the expected results is not a simple task and requires spending a lot of time.
For common users, it is difficult to define a minimum threshold utility for exploring the right number of
HUIs. On the one hand, if the threshold is set too high then the number of HUIs would not be enough.
On the other hand, if the threshold is set too low, too many HUIs will be mined, thus wasting both time and
memory. The top-k HUIs mining problem was proposed to solve this issue, and many effective algorithms
have since been introduced by researchers. In this research, a novel approach, namely FTKHUIM (Fast top-
k HUI Mining), is introduced to explore the top-k HUIs. One new threshold-raising strategy called RTU,
a transaction utility (TU)-based threshold-raising strategy, has also been shown to rapidly increase the speed
of top-k HUIM. The study also proposes a global structure to store utility values in the process of applying
raising-threshold strategies to optimize these strategies. The results of experiments on various datasets prove
that the FTKHUIM algorithm achieves better results with regard to both the time and search space needed.

INDEX TERMS Knowledge data discovery, high-utility itemset, top-k HUIM, threshold-raising strategy.

I. INTRODUCTION
Knowledge data discovery is the data processing technique
to turn huge amounts of non-meaningful data into knowl-
edge that is appropriate for the context and use in specific
circumstances. HUIM is a significant research subject and
has been widely applied in real life in fields such as bioin-
formatics, mobile commercial planning, analyzing users’
actions and attitudes from their clicks on a website, cross-
marketing [1], [2], and so on. HUIM can be thought of
as a generalization of traditional Frequent Itemset Mining
(FIM) [3], [4], [5], [6], finding the set of items where the
frequency of occurring together is high (called FIs) in each
database. Each record contains a list of the quantity of items
that customers purchased, and each item also has a profit
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unit. FIM is only interested in the number of appearances
of items and ignores other important information. Therefore,
the results of FIM may contain frequent itemsets that have
low profits. Instead of choosing products with high frequency,
users tend to look for groups of high-profit items.

Assuming δ is the smallest utility value given by the user
(threshold), HUIM’s purpose is to discover itemsets whose
utility is not less than δ. In this, the utility of the itemset is
measured as the sum of all benefits that the retailer earns from
all items in that itemset. Several efficient algorithms have
been developed to resolve this real problem, such as Two-
Phase [7], TWU-Mining [8], HUC-Prune [9], UP-Growth,
and UP-Growth+ [10], among others. In particular, in recent
years, with the development of many new storage structures
such as UL, CUL, ECUS, and so on, as well as pruning
strategies based on these, the runtime and memory con-
sumption for HUI mining has been greatly reduced, as seen
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with approaches such as with HUP-Miner [11], d2HUP [12],
HUI-Miner [13], FHM [14], IMUP [15], EFIM [16], and
HMiner [17]. Moreover, this problem has also been expanded
to different types of databases, such as incremental databases
with EIHI [18], databases with dynamic profits [19], adding
constraints to itemsets for more meaningful HUIs such as
CoHUI [20], [21], [22], [23], itemsets with the length con-
straint FHM+ [24], or closed HUIs (CHUIs) [25], [26].
However, choosing an appropriate value δ in HUIM is not
a simple task, as it needs to be based on the properties and
apportionment of the data, which are not normally known to
the user. Determining the appropriate threshold will optimize
the processing of the HUIM algorithm because the mining
results differ greatly in size depending on the selected mini-
mum threshold value δ. If the threshold value is chosen as a
small value, a huge number of HUIs are found that cannot be
used in practice and the performance of the HUIM algorithms
is poor. Conversely, if the threshold value is chosen as a high
value, the user cannot find any HUIs. So, the top-k HUIM is
studied to solve this problem. Typical algorithms to achieve
this are TKU [27], TKO [28], REPT [29], TONUP [30],
kHMC [31], TKEH [32], THUI [33], and TKO-BPSO [34].
The top-k task has also been examined to solve the problem
of negative profits, such as TKN [35], TopHUI [36], and
so on.

Top-k HUIM is only interested in the number of k-HUIs
that need to be discovered instead of the value of δ. Using the
k parameter helps the user to limit the size of the output and
easily specify the itemsets that have themost profit. The top-k
HUIM is a current problem that has recently attracted the
interest of many researchers. Top-k HUIM algorithms can be
divided into two types: one-phase and two-phase algorithms.

Two-phase algorithms are two-step solving algorithms:
step 1, generating possible candidates that satisfy the problem
condition through the upper bounds and lower bounds values;
step 2, determining the exact utility of the candidates and
giving the final result of the problem. The execution time
of two-phase algorithms is often slow and they tend to use a
lot of memory. In contrast, the one-phase algorithms produce
candidates and accurately define their utility in just one step,
so they have better execution times and use less memory.

Mining top-k HUIs is a highly applicable problem in the
real world and there have been many efficient approaches to
solve it. In the top-k HUIM, two problems need to be solved:
i) Beginning from the user-defined value k, the algorithm
needs to increase the minimum threshold utility as quickly
as possible; ii) using pruning strategies to reduce the search
space of the problem and so reduce the unnecessary waste
of execution time and memory usage. However, in previous
works we found that increasing the threshold in the early
stages is not as effective in some cases, such as RIU, PSD,
etc. Therefore, we propose an effective strategy to increase
the threshold in the early stages, namely RTU. By using RTU
in the first stage of the mining, the minimum threshold utility
of the algorithm increases faster, and thus the set of potential
items is significantly reduced.

In addition, the use of local storage structures when the
raising-threshold strategies are applied in the previously pro-
posed approaches means that the utility values that are found
cannot be reused. When each strategy to increase the mini-
mum threshold is applied, the k highest utility values must
be redefined from the beginning, wasting a lot of search time
and decreasing the performance of the algorithm. To solve
this limitation, we recommend using a global priorityQueue
structure for storing the k highest utility values. This leads to
a faster increase of the minimum threshold utility and reduces
both the search space and execution time.

A. RESEARCH CONTRIBUTIONS
• A threshold-raising strategy is proposed for the top-k
HUIM based on the TU value. This strategy makes the
minimum threshold increase in the first steps of the
top-k HUIM.

• We apply a global structure for the remaining utility
values of the previous threshold-raising strategies that
are used as a basis for the following strategies to update
the threshold faster.

• A combination of threshold-raising and search space
pruning strategies is utilized effectively.

• The FTKHUIM algorithm is proposed, which effi-
ciently mines the top-k HUIs on both dense and sparse
databases, especially with an improved execution time.

B. ORGANIZATION
The structure of this research is organized as follows. The
second section briefly reviews related work on high-utility
itemset mining and top-k utility itemset mining. The third
section presents the basic theory, background definitions,
notations, and examples in these fields. The fourth section
shows the proposed FTKHUIM algorithm to effectively mine
top-k HUIs. The evaluation of experimental results is shown
in the fifth section, which incorporates all the effective tech-
niques for raising the threshold presented in the previous
sections. The sixth section then presents the conclusion and
some directions for future studies.

II. LITERATURE REVIEW
In this part we summarize some problems regarding HUIM,
top-k HUIM, and some of the proposed solutions, along with
their advantages and disadvantages.

A. MINING HIGH-UTILITY ITEMSETS
Many effective HUI mining algorithms have been proposed,
with great success in the data mining field. In 2005, Wu et
al. suggested the Two-Phase (Y. Liu et al., 2005) algorithm.
With this, phase 1 creates candidates with high TWU values,
and phase 2 extracts HUIs with only one more database
scan. Many other studies have also proposed mining HUIs
in two phases, such as TWU-Mining [8], HUC-Prune [9],
UP-Growth [10], etc.
However, using two-phase algorithms needs a large mem-

ory or long runtime if a vast number of candidates are created
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in order to discover only a very small number of HUIs.
To address this problem, the HUI-Miner algorithm [13] was
recommended to exploit HUIs without generating candidates.
The HUI-Miner introduced the Utility-List (UL) structure
which stores not only an itemset’s utility information (iutil),
but also keeps utility information to define if the itemset
should be truncated or not (iutil + rutil≥ε). In the FHM
algorithm [14], the EUCS table structure was proposed to
store the itemsets’ TWU values that have two items. This
algorithm uses the EUCP strategy to remove candidates con-
taining an itemset in the EUCS table whose TWU < ε to
decrease the search space. Subsequently, many studies have
also focused on developing pruning strategies to discover
HUIs effectively, such as HUP-Miner [11], d2HUP [12],
IMUP [15], EFIM [16], HMiner [17], MIP [37], and HUI-
PR [38]. The HMiner algorithm [17] combines many pruning
strategies, such as TWU-Prune, EUCS-Prune, LA-Prune, C-
Prune, and U-Prune, and uses the CUL (Compact Utility List)
structure to store the essential information, so the database
is scanned only once. In 2018, Deng proposed a data struc-
ture called PU–tree-Node list (PUN-list) and introduced a
high-utility itemset mining approach using Pun-list (MIP)
to find HUIs. The MIP algorithm [37] only used a single
database scan to discover HUIs in one phase. Wu et al. then
proposed the HUI-PR algorithm [38] to exploit HUIs in 2019.
This algorithm introduced pruning strategies to decrease the
algorithm’s implementation time by decreasing access to
non-essential nodes. The two upper bounds, slocU (the strict
local utility) and ssubU (the strict sub-tree utility), are used
to reduce the time needed in cases with many transactions in
the database. In addition, extensive research has been studied
to exploit HUIs using evolutionary algorithms.

B. MINING TOP-K HUIS
In practice, users often only focus on the utility itemsets
that give them the most profit. Therefore, setting a minimum
utility threshold δ to be able to exploit the best k HUIs is
not a simple task. To resolve this issue, many top-k HUIs
algorithms have been researched. Tseng et al. mentioned the
top-k HUIM task and introduced TKU [27] and TKO [28].
Top-k HUIM usually focuses on two main issues: developing
strategies to raise δ and constructing pruning strategies to
minimize the search space.

TKU was the first algorithm, proposed in 2012, to resolve
the top-kHUIs problem. TKU is a two-phase algorithm devel-
oped from UP-Growth. In the first phase, TKU focuses on
finding candidates. In the second phase, the TKU scans the
data again to correctly identify the top-k HUIs to be collected.
The strategies used to increase thresholds in TKUare PE (Pre-
evaluation) in the first phase, and then MC, MD, NU, and SE
in the second phase. The PE strategy is applied during the first
scan of the database. The main idea of this strategy is based
on the lower bound of 2-itemsets that are stored in the PEM
(PE matrix). For each transaction Tr = {i1, i2, i3, . . . , im} in
the database, the PE strategy updates the utility value of the

itemsets associated with the first item with each remaining
item in Tr and saves to PEM. After all the transactions are
retrieved, the strategy assigns the kth largest value in the
PEM as the algorithm’s current threshold. Although PE has
raised the initial threshold for the TKU algorithm. But this
strategy only focuses on exploiting the itemsets containing
the first item of each transaction, and the values in PEM are
not optimized. The TKU also uses four pruning strategies
based on UP-Tree: DGU, DGN, DLN, and DLU.

Also based on the UP-Tree structure, in 2015 Ryang and
Yun introduced an algorithm called REPT [29]. In REPT, the
authors proposed three strategies to effectively raise δ in the
first phase to accurately compute the utility of itemsets whose
lengths are 1 or 2, namely RIU (Real Item Utilities), PUD
(Pre-evaluation with Utility Descending order), and RSD
(Raising the threshold with items in Support Descending
order). The PUD strategy is an improvement of the PE strat-
egy. Instead of combining the first item with the following
items in an order for each transaction, the PUD chooses the
most profitable item to associate with the remaining items and
this combination can build the lower bound of the 2-itemsets
better than PE. However, the item with the most profit is
not necessarily the item that has the greatest utility in the
transaction. The second strategy is the RIU strategy. This is a
threshold-strategy based on the utility of the 1-itemsets in the
database. TheRIU is implemented by calculating the utility of
the items correctly on the first scan of the database and choos-
ing the kth highest value to use for updating the minimum
utility threshold. Meanwhile, the third strategy, namely RSD,
is performed in the second scan of the database. The RSD
strategy requires determining the support of all promising
items whose TWU is greater than the current threshold value.
RSD sorts promising items in descending order of support.
Next, RSD will choose k/2 items with the highest support
and k/2 items with the lowest support to form a set. As each
transaction is scanned a second time, RSD inspects the
2-itemsets that are made up of the set created in the previous
step in turn. The RSD calculates their utility and stores them
in the RSD matrix (RSDM). RSD will search the kth highest
value in RSDM to decide whether to update the minimum
utility threshold. A method to increase the threshold faster
with the exact and pre-calculated utilities for determining a
set of precise top-k high-utility patterns, termed SEP, is also
proposed in the second phase. Both TKU and REPT generate
a large number of candidates because they follow the two-
phase model. They also scan the dataset repeatedly to obtain
the exact utility of candidate itemsets and mine the actual top-
k HUIs. One problem that exists in two-phase algorithms is
that they need a lot of execution time as well as storage space,
because they do not combine the generation of candidates and
the precise calculation of their utility.

With regard this this specific weakness, many one-phase
methods have been shown to tackle the top-k HUIs problem
more efficiently. In 2016, using the UL structure, the TKO
algorithm was shown to solve the top-k HUIs problem with
one phase. Many strategies have also been applied in TKO,
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such as RUC, RUD, and EPB, to increase the minimum
threshold, and the results of the related experiments prove
that TKO is better than TKU. However, storing the itemsets’
utility information requires a huge among of space.

Duong et al. introduced the kHMC algorithm to explore
top-k HUIs, which is also another one-phase algorithm. This
algorithm introduced two strategies to reduce the search
space: a threshold-increasing strategy called EUCST based
on the EUCS structure, and a transitive extension pruning
(TEP) strategy. Moreover, the algorithm also uses effective
threshold-raising strategies such as RIU, COV (COVerage
with utility descending order), and CUD (Co-occurrence with
Utility Descending order). CUD is like the EUCS pruning
strategy. Instead of calculating the TWU of itemset A =
{a, b}, the CUD strategy computes u(A) and stores it in a
triangularmatrix, namely CUDM.The k th highest value in the
CUDM matrix ≤δ. This is easily proven because the values
in CUDM are also the utility of itemsets with a size of two,
which is the subset of all the sets in the databaseD. The COV
strategy uses a list named COVL for storage of the utility
values of itemsets, which is built step by step as follows:
Step 1, all values in CUDM are saved to COVL; Step 2, for
each 1-itemset i: j and i will be added to COVL if all the
transactions containing j also contains i. Repeat step 2 until
all i itemsets are processed. The k th highest value in the
COVL ≤δ.

Liu et al. recommended the TONUP algorithm [30], which
is an algorithm developed from the d2HUP algorithm by
developing the CAUL structure to iCAUL. The TONUP
algorithm has optimal threshold-raising methods and five
strategies (ExactBorder, SuffixTree, AutoMateria, DynaDe-
scend, OppoShift) to maintain the list of compact patterns,
calculate the utility efficiently and estimate the upper-bound
to minimize the search space.

In 2018, Singh et al. proposed the TKEH algorithm to
find the answer to this problem. TKEH [32] is based on the
database projection method, and besides applying effective
threshold-raising strategies such as RIU, COV, and COD,
the algorithm also takes advantage of database projection as
well as the pruning strategies introduced in EFIM, and thus
TKEH performs very well on both dense and sparse databases
compared to previous algorithms.

In 2019, the one-phase THUI algorithm [33] was proposed,
and this uses two structures to store data, the UL and LIU
(Leaf Itemset Utility) matrix. In this study, LIU is the utility
value of a continuous sequence of ordered items existing in
the dataset. In addition to applying two strategies to increase
the threshold (RUI, and RUC), THUI also proposes strate-
gies such as LIU_E (LIU Exact), and LIU_LB (LIU Lower
Bound) based on the LIU value of the itemsets that have been
calculated and stored in the LIU matrix.

LIU_E is a threshold-raising strategy based on the util-
ity of sequences of items sorted in a given total order ≻.
Denote (xa . . . xb) = {xa, xa+1, xa+2, . . . , xb}, as the items
are sorted in alphabetical order, then (a . . . d) = {a, b, c, d}
or (b . . . d) = {b, c, d}. Therefore, to save the utility of the

(xa . . . xb) sets, the algorithm will use a structure called the
LIUM, a triangular matrix, similar to the EUCS structure,
and LIU (xa . . . xb) =

∑
X=(xa...xb)∧Tj∈D u(X ,Tj). To cal-

culate the LIU values for all the sets on the database,
the algorithm will scan the database once more and cal-
culate them similarly to the values of the EUCS table, so
the complexity of the algorithm will be O(l2), where l is the
average length of transactions in D. It is easy to see that the
LIUM stores all the utility of sets in the form of sequences,
so the k th highest LIU value, denoted as k − LIU , then
k−LIU≤δ. LIU_LB is a threshold-raising strategy developed
from the LIU strategy to construct the lower bound of an
itemset. This strategy is based on the following property:
u (A ∪ B) ≤ u (A) + u (B) therefore u (A) ≥ (A ∪ B) −

u (A). Let ULB (B) = u (A ∪ B) − u (A) = u (A ∪ B) −∑
A⊂tj u(A, tj), LIULB ((a, b, y)) = ULB ({(a . . . b)− y}) and

PQ_ALL is a set that contains all the LIU and LIULB values
of the database, then the k th highest value of PQ_ALL≤δ.
With the method determining LIULB as described above, the
strategy only applies to sequence Bwhose size is greater than
two, and it will gradually remove the items in this until B
contains only two items at the beginning and end positions.
However, the calculation process will take a lot of time, and
in reality LIULB is only calculated for levels three or four,
meaning beginning from itemset B the algorithm removes
step by step up to four items.

The efficiency of the top-k HUIs algorithm depends greatly
on the raising-threshold rate of the δ value during the mining
process. The faster the threshold increases, the earlier and
larger the number of candidates is pruned. However, the
previous algorithms focus on the utilities of 1-itemsets (RIU)
or 2-itemsets (RSD, CUD) or sequences of item sequences
(LIU_E, LIU_LB) to increase the threshold in the early stages
without using the transaction utilities to handle this issue.
Another problem is that for each raising-threshold utility
strategy applied, the top-k utility values must be redefined
from the beginning. This causes an unnecessary waste of
search time because the utility values found are not reused.

However, most top-k HUIM algorithms can only deal
efficiently with databases whose sizes are small to medium-
sized, and their performance degrades significantly with huge
datasets or massive data. In 2021, Han et al. [39] presented
a novel algorithm, namely PTM, to address this limitation.
PTM divides the original dataset into partitions which contain
the transactions whose prefix items are the same. PTM can
define an itemset’s utility in one partition and then utilizes
the tree structure to exploit the required results. Moreover,
PTM presents a method for raising the threshold faster using
the average transaction utility. In 2022, Pham et al. proposed
the TKO-BPSO algorithm [34]. The top-k problem has also
been developed with regard to databases with some items that
have negative profits, with the binary swarm optimization
algorithm being applied to the top-k HUIM in this context.
The TKO-BPSO algorithmworks on a one-phasemechanism,
using the method of increasing the minimum threshold RUC
to decrease the search space. Furthermore, the algorithm
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applies the sigmoid function in the process of updating the
candidates. This means that the algorithm can reduce com-
putational complexity, especially when a large database has
many items.

Recently, many top-k HUIM methods have been upgraded
to apply to databases where items have negative profits,
the first of these being the TopHUI algorithm [36]. This
algorithm was developed from the FHN algorithm [40] with
an initial utility threshold of 0. In addition to inheriting the
pruning strategies available in FHN, TopHUI applied some
new strategies – RIU, RTU, RTWU, and RUC – for raising the
minimum threshold. However, the PNU list structure is com-
plex, so TopHUI has not been optimized for the storage space.
In 2021, Sun et al. shared a method dealing with this issue in
the THN algorithm [41], which was developed from the EIHI
method and applies only a threshold-raising method, namely
RTWU, for all its execution. The main idea of THN is to
start fromHUIs containing itemswith positive utility and then
expand to items with negative utility to find HUIs in the top-k
HUIs. However, the above algorithms have not yet provided
a strategy to increase the effective threshold in the imple-
mentation process, and thus the execution performance is not
very good, and all executions must be based on the RTWU
value, which does not reflect the real utility of the itemsets.
In 2022, Ashraf et al. studied the TKN algorithm [35] to mine
the top-k HUIs on a negative database with many threshold-
raising strategies, and they did not depend too much on the
RTWU value. TKN applies the method of projecting and
merging duplicate transactions introduced in EFIM to reduce
the complexity of the calculation process. The algorithm
also uses many threshold methods and pruning strategies to
narrow the search space, such as PRIU, PLIU_E, PLIU_LB,
PSU, PLU, EP, and EA. TKN also uses the UA array structure
to quickly compute the utility of patterns.

III. PROBLEM STATEMENT AND RELATED NOTIONS
A. RELATED NOTATIONS
Let D = {T1,T2, . . . ,Tn} be a transaction database
containing n transactions. A transaction Tj = {xh ∈ I
| h = 1, 2, . . . ,Nj

}
, where Nj is the number of items in the

transaction Tj. Each item xh(1 ≤ h ≤ m) in Tj has a pair
value iu(xh,Tj) and eu(xh) called internal and external utility,
respectively.

For example, Table 1 and Table 2 present database D and
the profit of the items, respectively.
Definition 1: The u(xh,Tj) = iu(xh,Tj) × eu(xh) is the

utility of xh in Tj. The u(X ,Tj) =
∑

xh∈X (xh,Tj) and u(X ) =∑
X⊆Tj⊆D u(X ,Tj) are utilities of itemset X in the transaction

Tj and D.
For example, u (a,T1) = iu (a,T1)× eu (a) = 1× 4 = 4,

u (b,T3) = 2× 3 = 6.
Definition 2: The transaction utility Tj, denoted as tu

(
Tj

)
and tu

(
Tj

)
=

∑
X⊆Tj∧xh∈X u

(
xh,Tj

)
.

For example, tu (T1) = u (a,T1)+ u (b,T1)+ u (d,T1)+
u (e,T1) = 4+ 6+ 4+ 3 = 17, tu (T2) = 15, tu (T3) = 21.

TABLE 1. An example of a transaction database.

TABLE 2. Item profits.

Definition 3: twu(X ) is called the transaction-weighted
utility (TWU) of an itemset X , and twu (X) =

∑
X⊆Tj∧Tj∈D

tu(Tj)
For example, twu (a) = tu (T1)+ tu (T5)+ tu (T6) = 17+

7+ 20 = 44, twu (b) = 95.
Definition 4: An itemset X is called HUI if and only if

u(X ) ≥ δ.
Definition 5: The sets of k HUIs that have the highest

utilities in D are called top-k HUIs.
Problem statement: Given a transaction database D and k

is the desired number of HUIs, the problem of mining top-k
HUIs is to correctly identify the k HUIs in D that have the
highest utility values.

For example, in Table 1, when k = 4, top− k HUIs =
{{c, d, e} : 37, {b, d} : 39, {b, c, e} : 39, {b, d, e} : 45}.

A total order ≻ is applied for all items in the database, i.e.,
the items will be sorted in ascending order by TWU value.
In Table 4, the ordering of items is a ≻ f ≻ d ≻ c ≻ b ≻ e.
The extension of an itemset X are the items listed after X in
order ≻. For example, {c, b, e} is the extension of {d}.
Definition 6: ru

(
X ,Tj

)
=

∑
xi∈(Tj/X ) u(xi,Tj) is defined

as the remaining utility of X in Tj with Tj/X being the itemset
of all items after X in Tj.
Definition 7: The remaining utility of an itemset X in

database D is calculated by ru (X) =
∑

X⊆Tj∈D ru(X ,Tj).
Definition 8: Given an itemset X = {x1, x2, ..., xh} and an

extension item y ∈ I . The prefix utility of an itemset Xy =
{x1, x2, ..., xh, y} in transaction Tj is defined as pu

(
Xy,Tj

)
=

u
(
X ,Tj

)
. If X is an empty set, the prefix utility of an itemset

Xy in the transaction Tj will be 0.
Definition 9: The cu

(
X ,Tj

)
, cru

(
X ,Tj

)
, and pu

(
X ,Tj

)
are called closed utility, closed remaining utility and pre-
fix utility of X in transaction Tj, respectively. And if
|X |> 1 and C (X − xh) = S(Tj/{X − xh}), then cu

(
X ,Tj

)
=

u
(
X ,Tj

)
, cru

(
X ,Tj

)
= ru

(
X ,Tj

)
and, cpu

(
X ,Tj

)
=

pu
(
X ,Tj

)
or else they will all be 0. Where S(Tj/X ) is the

number of items after X in Tj (in the mentioned above order
≻) and C(X ) is the size of the closed extensions of X .
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For the running example, let X = {d, c}. In transaction T3,
S(T3/{X − c}) = |{c, b, e}| = 3, C (X − c) = |{c, b, e}| =
3. Therefore, cu (X ,T3) = U (X ,T3) = 13. Similary,
cu (X ,T4) = 0 as S(T4/{X − c}) = |{c, e}| = 2 ̸=
C (X − c) = |{c, b, e}| = 3.
Definition 10: Closed utility, closed remaining utility

and prefix utility of X in the database are defined
as cu(X ), cru(X ), cpu(X ), respectively and cu (X) =∑

X⊆Tj∈D cu(X ,Tj), cru (X) =
∑

X⊆Tj∈D cru(X ,Tj), and
cpu (X) =

∑
X⊆Tj∈D cpu(X ,Tj)

Definition 11: Non-closed utility, non-closed remaining
utility and non-prefix utility of X in the database are defined
as nu(X ), nru(X )npu(X ) and nu(X ) = u(X ) − cu(X ),
nru (X) = ru (X)− cru (X) , and npu(X ) = pu(X )− cpu(X )

B. EFFECTIVE PRUNING STRATEGIES
To improve runtime and memory performance a number
of pruning strategies are used to identify unexpected items
that should be ignored, namely TWU–Prune, U–Prune, LA–
Prune, C–Prune and EUCP.
Property 1 (TWU–Prune [42]): Let X be an itemset,

if twu(X ) < δ, then X and all extensions of X are not HUI.
Property 2 (U–Prune [13]): LetX be an itemset, if u (X)+

ru (X) < δ, then X and all extensions of X are low utility
itemsets, which means that they are not HUI.
Property 3 (LA–Prune [11]): Let X and Y be two given

itemsets, if: cu (X) + cru (X) + nu (X) + nru (X) −∑
∀Tj∈D,X⊆Tj∧Y ̸⊆Tj nu(X ,Tj) + nru

(
X ,Tj

)
< δ then X ′Y ′ /∈

HUI ,∀X′ ⊇ Xand∀Y′ ⊇Y .
Property 4 (C–Prune [17]): Let X and Y be two given

itemsets, if cu (X) + cru (X) +
∑

XY⊆Tj∈D nu(X ,Tj) +
nru

(
X ,Tj

)
< δ then X ′Y ′ /∈ HUI ,∀X′ ⊇ Xand∀Y′ ⊇Y

Property 5 ((EUCP [14]): Let X be an itemset. If the
TWU of a 2-itemset Y ⊆ X according to the constructed
EUCS is less than the minimum utility threshold (δ), X and
all extensions of X are not HUI, where EUCS is a triangular
matrix that stores the TWU values of the 2-itemsets.

IV. FTKHUIM ALGORITHM
In this section, the research introduces the TU strategy for
raising the threshold in the first database scan in Section A
and the global structure for storing k-highest utilities which
are explored by threshold-raising strategies in Section B.
We will then also present the proposed algorithm, namely
FTKHUIM, in Section C and give an illustration of its use
in Section D, and complexity analysis in Section E.

A. TU THRESHOLD-RASING STRATEGIES
Two issues that greatly affect top− kHUIs mining problems
in transactional databases are the methods of raising the min-
imum utility threshold and search space pruning strategies
which are applied for maximum efficiency. If threshold-
raising is done well, then early detection of a high-valued
minimum utility threshold will help to eliminate many
unpromising candidates. In contrast, of it is done poorly then

the mining process needs a lot of time for those candidates
which are not in the top− kHUIs.
Each transaction in the database is also an itemset that

needs to be considered. Therefore, their utility can be used
in the process of specifying the initial threshold for the
algorithm. On the first database scan, the utility of transac-
tions will be determined. The utility of a transaction Tc in D is
denoted by tu(Tc) and is defined as tu (Tc) =

∑
x∈Tc u (x,Tc).

Property 6: Let RTU = {tu (T1) , tu (T2) , tu (T3) , . . . , tu
(Tn)} be a set of utilities of transactions in D and tu (tK) is
the kth highest value in RTU. tu (TK) is not greater than the
utilities of the itemsets in the top-k HUIs.
Proof: Let {i1, i2, · · · ,ik} be the items in the transaction Tj.

Then X = {i1, i2, · · · ,ik} is also an itemset and tu
(
Tj

)
is also

the utility of X in transaction Tj.
Assuming database D has n transactions, D will gen-

erate a set as {X1,X2,X2, . . . ,Xn} with the utility set
{tu (T1) , tu (T2) , tu (T3) , . . . , tu (Tn)} , respectively. Each
Xi is an element in the top-k search space, so the kth highest
value in the set {tu (T1) , tu (T2) , tu (T3) , . . . , tu (Tn)} can be
used as the minimum utility threshold (δ) in mining the top-k
HUIs in the database D. Therefore, the kth highest utility
value in D will not be less than tu (TK ).
From this property, the utilities of the transactions can be

applied to determine the minimum threshold value δ for top-k
HUIs mining.

B. GLOBAL STORE STRUCTURE
In top-k HUIs mining algorithms, the minimum utility
threshold-raising process uses an array or a queue to store the
highest utility values found. From those values, the algorithm
determines the δ value for the algorithm. Although many dif-
ferent threshold-raising strategies are used in turn throughout
the problem-solving process, these methods are independent
and do not reuse the maximum utilities found by the previous
strategies. Therefore, when a threshold-raising strategy is
applied, it first must find enough k utility values which are
greater than the current threshold to fill full the stored struc-
ture, then it can start to consider updating the new threshold.
This takes time to execute. Moreover, the k utility values that
are greater than the current threshold found in the previous
thresholding strategy are completely ignored. To solve this
limitation, this study proposes using the global priorityQueue
structure to store the k maximum utilities in all thresholding
processes of the algorithm. Storing in a global structure will
make it possible for the algorithm to reuse those maximum
utility values and δ value can increase faster.

C. FTKHUIM ALGORITHM
One problem in the previously proposed algorithms is that the
initial thresholding is all based on the RIU strategy, meaning
the value δ of in top-k HUIM is calculated based on the utility
of 1- itemsets in the database. However, it is easy to see that
each transaction in D is also an itemset, and the TU value
is also its utility. It is thus possible to rely on the TU of the
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transactions to determine the value of δ for the top-k HUIs
problem.

Furthermore, when applying the threshold-raising strate-
gies the utility values stored in a priority queue or any type
of data structure must be initialized without reusing the
stored values in previous strategies, leading to long execution
times as well as inefficiency. Therefore, our proposed method
develops the presented threshold-raising techniques, reuses
the found high utility values, and predicts which of the previ-
ous strategies can be used as a prerequisite for the following
strategies. However, this will face the following obstacle: the
duplication of candidates in the processing. To solve this,
we use the hashmap structure to check whether the candidates
are the same or not.

In this algorithm, wewill apply all the search space pruning
strategies that have been applied effectively in HUIM tomake
the top-k HUIs mining more effective.

Algorithm 1 The FTKHUIM algorithm
Input: D: a transaction database

k : number of itemsets
Output: top− kHUIs: the set of k highest utility itemsets.
1 Assign δ = 1.
2 Scan D to compute the TU of each transaction, TWU,

and utilities for all 1-itemsets.
3 δ←− the k th highest TU value by RTU strategy;
4 Update δ by RIU strategy;
5 Sort items in increasing according to their TWU (the

total order ≻);
6 Eliminate all items i that twu (i) < δ from all

transactions, sort items in each transaction by ≻, and
remove the null transactions.

7 Compute LIU and update δ using the LIU_E strategy
8 Initialize 1-CULs;
9 Initialize hashmapHT and save the transaction utilities

of transactions.
10 for each ts in D do
11 if ts is duplicated with any previous transaction

then
12 Update TidInfo in CULs that contain items in
ts.

Update the HT
13 Else
14 Insert newTidInfo toCULs that contain items ts;

Insert new tran into HT
15 Endif
16 end for
17 δ←− the k th highest tu value in HT ;
18 Build the EUCS and CUDM;
19 δ←− the k th highest utility in CUD;
20 δ←− the k th highest utility in LIU_LB strategy;
21 top− kHUIs = ExplorekHUI (Ø,1− CULs, δ, k);

The FTKHUIM is the key procedure of our algorithm.
The input of FTKHUIM includes a transaction database D,

and k is the desired number of highest utility itemsets. The
output of the procedure is a list of k highest utility itemsets
in the database. In the first step, algorithm initializes the
utility threshold as 1. Then, the scanning database is done to
calculate the tu, twu, and u of all items in the database. The
TU strategy is applied by selecting the k th highest tu value
for δ value. Next, algorithm uses the RIU strategy to update
the value for δ. Thereby non-potential items, whose TWU
value is less than the δ current threshold, are removed. The
others will be put in ascending order based on their TWU
value. After adjusting the database, the algorithm calculates
the LIU table and updates σ once more based on the LIU
strategy. In this way, the module constructs all 1-CULs and
builds EUCS and CUDM to prepare for the search space.
It then applies the CUD and LUI_LB strategies for raising
the δ value. Finally, the ExploreKHUI procedure is called to
exploit the top− kHUIs satisfying all the requirements of the
problem.

Algorithm 2 ExplorekHUI
Input: P: the itemset prefix, CULs,

δ : current thresholds
k : number of itemsets

Output: top− kHUIs: the set of k highest utility itemsets
1 for each position i in CULs do
2 X = P ∪ CULs[i].item;
3 u = CULs[i].nu+ CULs[i].cu;
4 ru = CULs[i].nru+ CULs[i].cru;
5 if(u ≥ δ) then
6 Update top− kHUIs and δ

7 endif
8 if(u+ ru ≥ δ) then
9 exCULs = buildCUL(|X |,CULs, i, δ);
10 if (exCULs! = NULL) then
11 ExplorekHUI (X , exCULs, δ, k);
12 endif
13 endif
14 endfor

The ExplorekHUI algorithm is implemented recursively to
detect all itemsets belonging to the top− kHUIs in D. The
algorithmwill traverse each CUL to check whether an itemset
satisfies the current δ threshold or not. If an itemset X has
a utility greater than δ, X will be added to the top− kHUIs
and the value of δ will be updated if necessary. The U–Prune
pruning strategy is also applied to see if it is necessary to
expand itemset X . If u+ru≥δ, the algorithm will be executed
and construct CULs at the next level to find undiscovered
HUIs in D.

Algorithm 3, namely buildCUL, is responsible for generat-
ing (k+1)-CULs from k-CULs by combining k-CULs in the
position start with k-CULs from start onwards. To decrease
the time consumption and memory needed for this process,
the algorithm has applied various of the proposed effective
pruning strategies, such as U-Prune, C-Prune, EUCS-Prune,
and LA-Prune.

VOLUME 11, 2023 104795



V. V. Vu et al.: FTKHUIM: A Fast and Efficient Method for Mining Top-K High-Utility Itemsets

Algorithm 3 buildCUL
Input: l: length of itemset, start: starting position, CULs,

δ : current utility thresholds
Output: exRCULs: the list CUL extensions of
CULs[start]
1 size = |CULs| − start;
2 exSize = size; //real quantity of elements of exCULs
3 x = CULs[start].item;
4 Initialize LAU [size]; //use for LA-Prune
5 Initialize CUTIL[size]; //use for C-Prune
6 for i from 0 to size− 1 do
7 y = CULs[start + i].item;
8 if (EUCS [x, y] ≥ δ) then
9 Initialize exCULs[i];
10 Initialize LAU [i], CUTIL[i];
11 else
12 exCULs[i] = NULL;
13 exSize = exSize− 1;
14 endif
15 endfor
16 Update cru of exCUL in front of exCUL assigned NULL
17 vt = start − 1;
18 for each TidInfo in CULs[vt].TranSet do
19 tid = TidInfo.tid ;
20 for j from 0 to size− 1 do
21 //if tid is not in CULs[j+ vt].TranSet
22 if (CULs[j+ vt].TranSet does not

contain tid) then
23 Update LAU [j];
24 if (LAU [j] < δ) then
25 exCULs[j] = NULL;
26 exSize = exSize− 1;
27 Des = exCUL [j] .cu−

exCUL[j].pu;
28 Update cru of exCULs in font of

position j by Des;
29 Continue;
30 endif
31 else
32 Update CUTIL[j];
33 endif
34 endfor
35 if (tid contains in all CULs after CULs[vt])

then //complete transaction
36 Update cpu, cu, cru, Cδ in all exCULs;
37 else
38 if (tid is duplicated with the previous

transactions) then
39 Update value in TidInfo;
40 else
41 Insert new TidInfo in all exCULs[j] that

CULs[j+ start] contains tid ;
42 endif
43 endif
44 endfor
45 Remove exCULs[j] that exCULs[j] = NULL or
CUTIL [j] < δ
46 return exRCULs

D. ILLUSTRATION
First, let δ = 1 and k= 4. Next, FTKHUIM scans the
database from Table 1 and calculates the TU of each trans-
action, as shown in Table 3.

TABLE 3. TU values of each transaction.

From the results in Table 3, apply the threshold-raising TU
strategy to increase the δ value TU, and δ is updated to 17.

Next, the algorithm calculates the TWU values of the items
to use in TWU pruning. We obtain the value of TWU as
shown in Table 4.

TABLE 4. TWU value.

In the next step, the algorithm applies the RIU strategy to
update the minimum threshold value δ (if possible).

TABLE 5. RIU values.

Since the RIU of the items is not large, we cannot update
the value of δ (the current value of δ at 17). In this step, the
algorithm puts the RIU values that satisfy the threshold into
a priority queue named priorityQueue, then priorityQueue =
{18, 27, 28}. Based on the TWU values in the previous step,
the algorithm removes the items where twu < δ. In Table 4,
the TWU values are relatively large compared to δ, so no
items are excluded from the dataset. However, the items are
ordered by ascending TWU: a≻f ≻ d ≻ c ≻ b≻e. From
there, the items in the transaction are reordered and any empty
transactions are removed (because some 1-itemsets can be
eliminated in the previous step).

TABLE 6. Modified database by total order of items.

Next, the FTKHUIM determines the values of the LIU
matrix, and the results are presented in Table 7.

The algorithm then applies the threshold-raising LIU_E
strategy to update the value δ. When applying the LIU strat-
egy, it uses the values stored in the priorityQueue and inserts
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TABLE 7. LIU matrix.

new utilities that are equal to or greater than the current
threshold δ, as shown below:

TABLE 8. Priority values.

In the end, the value of δ= 34.
In steps 8 to 16, the algorithm builds 1-CUL structures

for 1-itemsets. In the process, the algorithm also aggregates
duplicate transactions and stores these new TU values in a
hash table, namely HT . In these steps, the algorithm only
stores the TU values of transactions that have more than
two items. This is because with those transactions that only
contain one or two items, their TU values are used in the RIU
strategy and the CUD strategy, respectively. We thus have the
following TU values: {9, 17, 21, 37, 20}. These values will be
used to update δ again in the next step of the TU threshold-
raising strategy.

In step 17, the TU strategy continues to be applied after
the duplicate transactions are merged (as shown in Table 6,
transaction 2 and transaction 7 will be merged). If we con-
struct a new priorityQueue, this means that the values in
the priorityQueue in the LIU_E strategy are not reused.
The newly calculated TU values are {9, 17, 21, 37, 20}.
Then, there are only 37 greater than δ= 34 to be inserted
into the new priorityQueue. This makes it impossible to
raise the value of δ. If we use the previously stored
priorityQueue, it will raise the value of δ and make the
search space more compact. From the currently stored
tuple {34, 37, 39, 36} when considering tu= 37, the value
37 will be inserted into the priorityQueue and priorityQueue
becomes {36, 37, 39, 37} and δ receives the value 36.

Step 18. The algorithm will build EUCS and CUD at the
same time because the two processes are similar. This is
because reusing the priorityQueue will help the algorithm
increase the threshold to 37 when the CUD strategy (step 19)
is implemented with the values of CUDM shown in the
following table:

To increase δ, the algorithm continuously applies the
LIU_LB strategy in step 20. However, in this case the value

TABLE 9. CUD matrix.

of δ= 37 remains unchanged because the value of LIU_LB is
not greater than the current threshold.

With the value δ found and based on the 1-CUL structure,
the ExplorekHUI algorithmwill identify all the HUIs belong-
ing to the top− kHUIs to be mined. In the ExploreKHUI
algorithm, the CULs will be considered in turn to determine
whether the utilities of itemsets are equal to or greater than δ.
If it is satisfied, it will put these itemsets in the top− kHUIs
and can eliminate an itemset that has the lowest utility when
the top− kHUIs already contain k HUIs and update the value
for δ. The EUCP and U-prune pruning strategies will be
applied to consider whether the existing CUL needs to be
extended. If the expansion condition is relevant, the algorithm
will combine the current CUL with the following CULs to
form a new list of CULs. From there, the ExploreKHUI
algorithm will be called recursively so that it can inspect all
the cases of HUIs that exist in the database and can become
a candidate for the top− kHUIs.

In the end, the algorithm gives the following result:

top-k HUIs =

{{c, d, e} : 37, {b, d} : 39, {b, c, e} : 39, {b, d, e} : 45}.

E. COMPLEXITY ANALYSIS
In this section, we will estimate the complexity of the
FTKHUIM algorithm. Let n,m be the number of transac-
tions and the number of entries in the database, respectively.
The FTKHUIM algorithm consists of two main stages: the
first stage of increasing the threshold and building 1-CUL
(steps 1-21) and the second stage of determining the top-k
HUIs (Step 22).

From step 1 to step 4, the FTKHUIM algorithm scans
the database for the first time to calculate the TU and RIU
values which are used for threshold-raising strategies. In the
worst case, the complexity is O(nm). From steps 5 to 7,
the algorithm scans the database for a second time to reorder
the items in the transaction, build the LIU matrix and
implement the LIU_E strategy. Because of scanning and
sorting, its complexity is O(nmlogm). In steps 8 to 16 the
algorithm builds 1-CUL with the complexity ofO(nm). From
steps 17 to 21, FTKHUIM builds EUCS, CUDM and uses
CUD, LIU_LB strategies, so the complexity is O(nm2). The
complexity of the first stage is then O(nm + nmlogm +
nm2) = O(nm2).
Step 22, ExplorerKHUI is executed, this is a recursive

algorithm that will traverse all the itemsets in the search
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FIGURE 1. 1-CUL structures for 1-itemsets.

space. In the worst case, when all items are potential candi-
dates, the number of itemsets to consider is l = 2m − 1.
As such, in the worst case the complexity of the algorithm

is O(nm2
+ l) and is equivalent to the complexity of the

HMiner algorithm. The execution time of the algorithm is
much lower and depends on the parameters as well as the
efficiency of the threshold-raising strategies and the search
space pruning strategies.

Similarly, we also estimate the complexity of the TKEH
and THUI algorithms. In general, the complexity of these
algorithms is the same. The number of candidates pruned
during the manipulation of the threshold-raising and prun-
ing strategies will show the effectiveness of the proposed
algorithm.

V. PERFORMANCE EVALUATION
To evaluate the feasibility of the FTKHUIM algorithm,
we implemented it in Java on a Dell Latitude 7490 com-
puter with a 2.6GHz Core i7 processor, 16GB memory, and
Windows 10 operating system. The algorithm has also been
used in experiments on datasets published on the SPMF
website [43], including both sparse and dense databases.
The detailed properties of these databases are presented in
Table 10. During the experiment, the results are compared
with the state-of-the-art methods that have been published
recently on the same topic – mining top-kHUIs in terms of
both running time and memory consumption – namely the
TKEH [32] and THUI [33] algorithms.

A. THE EFFECTIVENESS OF THE RTU STRATEGY
The TKEH and THUI algorithms apply the RUI threshold-
raising strategy to determine the minimum utility value δ

before proceeding to remove unpromising items. Meanwhile,
the FTKHUIM algorithm applies both RTU and RIU strate-
gies before removing unpromising items from the database.
To evaluate the effectiveness of the RTU strategy, the study
makes an experiment to measure the achieved value and
the number of promising items that the algorithm retains to

TABLE 10. Dataset characteristics.

exploit in the FTKHUIMalgorithm in three cases: UsingRTU
in conjunction with RIU, using RIU only, and using RTU
only. The results are presented in Table 11.

The Chainstore database is characterized by a large number
of items, but the ratio of the average length of transactions to
the number of transactions of Chainstore is very small (only
less than 0.0007%), so the RTU strategy is not more effective
than the RIU strategy. Because the number of transactions
is very large compared to the average length, the frequency
of occurrence of items in the database is many times larger
than the length of the transaction (more than 152,000 times).
This results in the utilities of single items far outweighing
the utilities of transactions, making the RIU strategy more
efficient than the RTU strategy.

However, for the other databases where the number of
items is small, especially when the number of items is less
than the number K, then the RIU strategy cannot increase the
initial threshold for the mining process. Therefore, using only
the RIU strategy, the minimum utility threshold δ remains
at 1 or increases insignificantly. In these cases in particular,
the RTU strategy is much more effective in increasing the
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TABLE 11. Evaluation of the effectiveness of the RTU strategy.

initial threshold δ. For example, with the Fruithut database
when k = 1, 000, if applying the RIU strategy the value
of δ only reaches 4,497 but with RTU the δ increases to
7,792 and this helps the number of promising items only
1,199 compared to 1,230. Therefore, the performance of the
algorithm is improved. Similar to the other approaches, due to
the small number of items compared to the desired number K,
the RIU strategywill not be able to eliminate any unpromising
items. In the Accidents and Fruithut databases, the number of
promising items is reduced to 20% and 800% when the RTU
strategy is applied, respectively.

With our proposal, the RTU strategy will not be more
efficient than the RIU strategy if the number of transactions

in the database is lower than K, although this is rarely the
case. Furthermore, to handle this problem and be able to take
advantage of both strategies, the algorithm used a combina-
tion of these two strategies in the first stage of the FTKHUIM
algorithm to get the best possible value for δ.

B. THE EFFECTIVENESS OF THE GLOBAL STORAGE
STRUCTURE
The runtime and space consumption of the top-k HUIs min-
ing algorithms are highly dependent on the minimum utility
threshold δ. The higher the value of δ is, the smaller the search
space and the more the runtime is optimized. To evaluate
the effectiveness of using a global storage structure, this
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study also conducted an experiment on two separate cases:
using and not using the global storage structure, namely
priorityQueue. The experiment records the 05 values of the
minimum utility threshold at different points when every
threshold-raising strategy finishes, namely δ1 to δ5. The
experimental results are presented in Table 12.

From the results shown in Table 12, it is easy to see
that with all test cases and test databases the global pri-
orityQueue structure always makes the minimum utility
threshold increase faster and higher compared to other
approaches. This result is a consequence of the algorithm
using effective utility values higher than the current minimum
utility threshold detected in the applied pruning strategies.
As such, when a new candidate satisfying δ is found, the
algorithm will immediately consider whether it is possible to
raise the current threshold without waiting to find enough k
values for local storage. Local storage is a common priority,
and is only initialized each time a new threshold-raising
strategy is applied.

With two very sparse databases, Chainstore and Retail,
the δ value before calling the ExplorekHUI to determine
the top-k HUIs increased by 149% and 129%, respectively.
This is the basis to help the algorithm eliminate more
unpromising itemsets. Similar results were found with the
Fruithut and Foodmart databases, with δ growth rate being
128% and 157%, respectively. In many stages the δ even
increased by more than 154% and 157% for Fruithut and
Foodmart.

With the Accidents and Mushroom databases, which are
quite dense, using a global storage structure gives relatively
good results in experimental cases. The minimum utility
threshold increases from 123% to 171% when the global pri-
orityQueue is applied to the Mushroom database. Similarly,
in experimenting with Accidents the minimum threshold
value increases from 109% to 123%, and when k = 5000
it increases to 941%. In addition, the δ value sometimes
increases more than 18 times compared to when not applying
the global priorityQueue. With two databases, Connect and
Chess, the application of global priorityQueue is more effec-
tive in terms of intermediate thresholding strategies, such as
stage 4 increased from 179% to 259% in Connect and from
156% to 370% in Chess. However, after the final thresholding
strategy is applied the δ value is still larger, but not by too
much.

In summary, by using the global storage structure during
threshold-raising, the algorithm finds the minimum utility δ

is higher. This results in a larger number of candidates being
pruned in the search process.

C. RUNTIME
According to the results in Figure 2 and Figure 3, it is not
difficult to see that the FTKHUIM algorithm performs more
efficiently in terms of time than the two other approaches.
In most cases, for all k values the execution time of the
FTKHUIM is relatively stable and very fast. Meanwhile, with
TKEH and THUI, the larger the k value is, the longer the

FIGURE 2. The runtime of the algorithms on dense datasets.

FIGURE 3. The runtime of the algorithms on sparse datasets.

running time. This is because when the database is scanned
for the first time in the FTKHUIM algorithm, the threshold δ

is raised by the TU values of the transactions. This threshold
is initialized earlier and faster than with the other two algo-
rithms, and pruning strategies can eliminate more candidates.
In addition, the technique of reusing the utility values of the
previous threshold-raising strategies to apply with the next
strategy makes the δ value increase more efficiently. For this
reason, more candidates will be eliminated, and faster, in the
top-kHUIs.

In addition, many effective pruning strategies are applied
in the FTKHUIM algorithm, like LA-Prune, C-Prune, and
so on. This makes the execution time of our algorithm
significantly shorter compared to that of the other two algo-
rithms, TKEH and THUI. For dense databases, specifically
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TABLE 12. Evaluation of the effectiveness of the global PriorityQueue.
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the Connect dataset, with k = 1, 000 and k = 2, 000, the
runtime of FTKHUIM is faster than TKEH and THUI by over
500 and 1,000 times, respectively. For the Chess database,
FTKHUI is also 8, 10, and 13 times faster than TKEH and
17, 30, and 68 times faster than THUI at k = 500, 1, 000,
and 2, 000. For the Accidents database in particular, our
proposed algorithm is 300 to 400 times faster when k is 500 or
bigger. Based on this, the threshold-raising strategies and pro-
posed algorithm achieved exceptionally good results on dense
databases.

Although for sparse databases like Chainstore, Fruithut,
Retail, and Footmart, the FTKHUIM algorithm is not much
better than TKEH and THUI, its runtime is always shorter.
In particular, the larger the value of k is, the longer the
execution time of TKEH and THUI. Sometimes, they are two
to 10 times – even up to 20 times – more than FTKHUIM’s.
For example, in Chainstore, one of the large and very sparse
databases, if k is less than 10 the execution time of FTKHUI
is twice as fast as that of THUI, but it is 40 to 80 times
faster than that of TKEH. And the larger the value of k is, the
faster FTKHUIM always is, being at least 10 times and up to
30 times faster than both algorithms. Similar results are found
when we carry out experiments on three other databases:
Fruithut, Retail, and Footmart.

This result is reasonable, because FTKHUIM adopts the
threshold-raising strategy using the TU value at the beginning
of the algorithm. This strategy increases the threshold value
δ from 0 to a higher value. Meanwhile, THUI and TKEH
do not use this strategy, and so the δ value is just initialized
at 0. As these databases are sparse, the number of closed
transactions is low, so applying the RCUL structure in
the algorithm does not achieve any great efficiency, and
the search speed is slower than the search speed of dense
databases.

D. MEMORY USAGE
Figure 4 shows thememory consumed for dense datasets with
all three experimental algorithms. For Connect, the memory
usage of the FTKHUIM algorithm is better than with the
two other approaches, especially for THUI. Using a lot of
complex structures to store the information needed for the
pruning and threshold-raising strategies is the main reason
why THUI’s memory usage is two or three times more than
that of FTKHUIM and TKEH. Meanwhile, the FTKHUIM
algorithm has pruned a large number of candidates and sig-
nificantly reduced the search space. Moreover, in the RCUL
structure many closed and duplicate transactions are merged
to optimize the memory usage of FTKHUIM. Since testing
on Mushroom, the memory usage of FTKHUIM is still the
best in all cases (except for k = 50), and is always less than
100MB. In many cases, the memory consumption of the
THUI and TKEH algorithms is two to four times more than
that of the proposed algorithm. For the Chess dataset, THUI’s
memory usage is less at thresholds of 50, 100, 500, 1,000,
and 2,000. FTKHUIM consumes less memory on smaller
experimental thresholds.

FIGURE 4. Memory usage of the algorithm on dense datasets.

FIGURE 5. Memory usage of the algorithms on sparse datasets.

Particularly for the Accidents dataset, the FTKHUI
algorithm is not effective on memory and it always con-
sumes two to three times more memory than the other two
algorithms. This is because Accident is a thick database and
there are many approved candidates. This leads to storing
these candidates to check for duplicates which increases the
processing speed, making the amount of memory FTKHUIM
needs spike and end up higher than with the other two
algorithms.

Figure 5 shows the experimental results of the FTKHUIM,
TKEH, and THUI algorithms on sparse datasets such as
Fruithut, Chainstore, Retail, and Footmart. For the first three
datasets, the memory usage that THUI consumes is always
less than that used by the others, but with Footmart TKEH
proves to be superior. For the Fruithut dataset, the memory
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consumption of FTKHUIM is equivalent to that of the TKEH
algorithm and slightly more than that of the THUI algorithm.
For the Chainstore dataset, TKEH uses many times more
memory than THUI and FTKHUI for small k values. When k
is small, the amount of memory that FTKHUIM needs to use
is much smaller than that of TKEH, by about 8 to 10 times.
For large k (1,000, 2,000), the proposed algorithm has a spike
in memory usage. For Retail, when the k value is small,
the memory usage of FTKHUIM is also low, equivalent to
THUI’s and two to four times less than TKEH’s.

In sparse databases, the average transaction length is very
small, with few items. Therefore, the combination of items
in the dataset is low, so the number of itemsets containing
many items with high utility is not much. Moreover, the
pruning strategies which FTKHUIM applies are effective,
so the search space is compacted.

Sometimes transactions containing multiple items also
appear in these databases. These transactions have high trans-
action utilities, so the TU thresholding strategy is applied
to make the initial threshold higher in the first steps of the
proposed algorithm. This is the reason why many candidates
are eliminated at the outset. Because FTKHUIM must save
the considered candidates to avoid duplicates, it is not more
optimal concerning memory use than THUI in the test cases.

With regard to the Footmart dataset, the storage space
that TKEH uses is the most optimal, while THUI is the
least efficient, and even when k = 2, 000 the amount of
memory THUI needs is five times higher than with the
other two algorithms. The FTKHUIM algorithm is stable and
uses 40 to 60MB.

VI. CONCLUSIONS AND FUTURE WORK
In this study, we have introduced a strategy to raise the
threshold to determine the initial minimum threshold for the
top-k HUIM problem. The research considers each transac-
tion in the database as an itemset and its transaction utility
(TU) as a candidate’s utility that can be useful for increas-
ing the threshold. Therefore, TU values were computed and
applied to update the threshold for the top-k HUIM from
scanning the database for the first time. In other algorithms,
because raising-threshold strategies are applied they have
to re-determine k number of utility values that satisfy the
current threshold. If k is a large value, this task also needs
much runtime, and the algorithm needs much more time.
To address this issue we build a global storage structure for
utility values and use it in all the raising-threshold strategies
applied throughout the mining process. With this technique,
the algorithm’s performance gets better because the threshold
is increased more rapidly. Finally, the FTKHUIM algorithm
is introduced to exploit the top-k HUIs efficiently in terms of
both runtime and memory usage. The FTKHUIM algorithm
uses the CUL storage structure, combines many thresholding
strategies such as TU, RUI, LIU, COD, and COV, and applies
search space pruning strategies such as C-prune, U- prune,
LA-prune, EUCP, and so on to exploit top-k HUIs efficiently.

In terms of time, the algorithm is very good on both dense and
sparse datasets, and especially effective on dense datasets.

In future studies, we will focus more on optimizing mem-
ory usage for top-k HUIM on sparse databases. At the same
time, our research will improve the algorithm so that it can be
used on dynamic databases and negative utility databases.
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