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ABSTRACT Electric vehicle (EV) technology is emerging as one of the most promising solutions for
green transportation. The same growth occurs in the charging infrastructure development and automating
the EV charging process. Globally, EVs has different types of charging sockets and it’s located at the
various positions in the Vehicle. In simple, EV has a diversity in socket type and socket location. Hence,
correctly identifying the socket type and location is mandatory to automate the charging process. The
recent development in computer vision and robotic systems helps to automate EV charging without human
intervention. Image processing and deep learning-based socket identification can help the EV charging
infrastructure providers automate the process. Moreover, the deep learning techniques should be simple
enough to implement in the real-time processing boards for experimental viability. Hence, this paper proposes
a new You Only Look Once (YOLO) model called the Electric Vehicle Socket (EVS) YOLO that uses
YOLOv5 as its base architecture with the addition of a vision-type transformer called the SWIN-Transformer
and an attention mechanism called SimAM for better performance of the model in detecting the correct
charging port. A dataset of 2700 images with six types of classes has been used to test the model, and the
EVS -YOLO also evaluated with varying mechanisms of attention positioned at various places along the
head. The paper contrasts the suggested model with alternative deep learning architectures and analyzes
respective performances.

INDEX TERMS SWIN-transformer, attention mechanism, YOLOv5, electric vehicles, socket detection,
SimAM.

I. INTRODUCTION
The current technological revolution, the electric vehicle,
uses batteries instead of fuel-based technologies to help
reduce emissions [1], [2]. Since then, EVs have advanced
significantly, from efficient designs to many sorts of charg-
ing sockets [3], [4]. Even though there has been growth
since different EV models employ various kinds of sock-
ets, the techniques used to charge electric vehicles now
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rely significantly on manual operation, which can result in
problems including parking the vehicle according to socket
location, heavyweight handling approx. 1.5 kg and choose the
correct plug and docking of charging ports, which needs some
effort. The EV has a charging port at five locations: front
right & left, rear right & left, and front middle [5], as shown
in Figure 1. Most vehicles’ charging ports are located at the
right rear at 36%, followed by 28% at the left end and 22%
at the left front. Only 10 % of the global vehicle has front-
end charging, which enable ease of parking, and the rest need
some effort to align the vehicle according to the charging
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FIGURE 1. Global charging port position.

station gun. From this study, there is a need for automated
charging robots enabled by machine vision. Electric shock is
another possible safety risk brought on by old insulation and
manual operation. The need for intelligent and humanized
services [6] in the electric car charging sector is rising in
the age of intelligence. To enhance the charging experience
for owners of electric vehicles and to reduce the hazards [7],
research on automated identificationmethods based on image
recognition and the creation of automatic charging control
systems. Robotic, automatic charging is one of the many
methods investigated in the study of electric cars automated
charging systems. For instance, TESLA [8] has created an
autonomous charging robot as a snake that can stoop down
to locate the charging port and attach the charging gun to
the charging socket. The Volkswagen Automotive Company
created the E-Smart Connect system, employing a camera to
detect the vehicle’s location and interface while also con-
trolling a KUKA robot to charge [9]. Other studies have
concentrated on very accurate charging port locations utiliz-
ing binocular vision or ultrasonic-based techniques [10], [11],
[12], [13]. [14] Samsung’s EVAR is the latest autonomous
charging system for electric cars.

Hyundai Motors recently developed an Automatic charg-
ing robot (ACR) [15]. Most automated charging systems
proposed, conceived & developed are limited to specific
sockets & connectors and particular locations at the vehicle
and more end-user involvement. Hence, a 6 DOF robot with
a 3D vision sensor mount on AGV is proposed that moves in
the parking line as guided to ensure the entire system moves
around the vehicle. The robot’s vision sensor with image
processing capability will detect the charging port by moving
the whole robot system on the parking line, get the correct
charging gun from the station through a suitable control sys-
tem, and achieve charging by plug-in with image processing
support. The process will reverse to keep the charger gun back
at the station. Through this proposed automated system, any
electric car with any charging socket located in any location
of a vehicle can be charged.

The image processing area alone is discussed in this paper.
Safety is a top priority when designing automated charging
systems for electric vehicles [16]. Hence, it is crucial to

distinguish between purposeful encounters and unintentional
accidents when robots and vehicles come into touch dur-
ing the charging process. Despite research advances, little
is known about these vehicle-robot interaction components.
Given the significance of new energy-based vehicles and
the rising demand for intelligent charging solutions, there
is a need for more research and development in electric car
charging facilities. The electric vehicle charging industry can
enhance the effectiveness, security, and user experience of
electric vehicle charging by utilizing cutting-edge technolo-
gies like image recognition, robotics, and automation. It will
help to promote the overall growth of the electric vehicle
ecosystem and the international efforts to conserve energy
and reduce emissions.

To address such concerns, applying deep learning through
object detection can play a role by automatically detecting
the type of charging socket required by the electric vehicle,
eliminating the need for the driver to select the appropriate
one. s manually. Using deep learning algorithms, EV charg-
ing stations can detect a wide range of charging socket types,
including older or less common types, making it easier for
EV drivers to charge their vehicles. By automating the socket
detection process, EV charging stations can reduce the need
for additional personnel, resulting in operator cost savings.
It is possible through object detection, which forms the basis
of an automatic EV charging system. Similarly, charging
sockets can also be detected. Every sort of socket will have
a unique quality. For example, the type 1 plug, which can
support a power injection of up to 7.4 kW (230 V, 32 A),
is a single-phase connector. Type 2 plug is a triple-phase
plug. Type 2 sockets at public charging stations provide power
levels of up to 43 kW (400 V, 63 A, AC). The Combined
Charging System plugs in short Combination plugs or CCS
with power levels of up to 170 kW. However, in practical sce-
narios, the value frequently remains in the vicinity of 50 kW.
A wide variety of electric vehicles can use the CHAdeMO
plug, which is built for them and offers a charge of 50kW,
designed specifically for Tesla electric vehicles. These charg-
ers come with a charging capacity between 150kW and
250kW.

Identifying the existence and placement of objects in an
image or video is object detection in computer vision. Object
detection algorithms coupled with a label specifying the item
type produce Bounding boxes that encircle the things in the
picture. Some challenges associated with this task include
occlusions, background clutter, and scale variations. Several
approaches are developed, which typically revolve around
learning complex representations of objects and their features
to solve these issues. In deep learning, a feature refers to a
pattern or characteristic detected or extracted from input data
relevant to the problem being solved. Features are frequently
utilized to express the input data more concisely and appro-
priately tomake it simpler. For instance, in image recognition,
a feature may be a specific edge or texture pattern typical
of a particular class of objects. A distinctive word or phrase
to a feeling or topic might be a feature in natural language
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processing. Feature methods like Histogram of Oriented Gra-
dients (HOG) [17] and Scale-Invariant Feature Transform
(SIFT) [18] are categorized as handcrafted feature extraction
methods.

A. MOTIVATION
Handmade feature extraction methods involve manually
designing algorithms or heuristics to identify and extract
features from input data. These methods typically use domain
knowledge and human expertise to develop effective fea-
ture extractors. HOG and SIFT are examples of widely
used handcrafted feature extraction methods in computer
vision. HOG works by computing the distribution of gradient
orientations in an image, while SIFT extracts features by
detecting key points and describing their local appearance
using scale-invariant descriptors. The capacity of more recent
deep learning techniques to automatically learn the most
pertinent and discriminative features from the data, without
the need for human skill or domain knowledge, is one of
their key benefits over more traditional feature extraction
techniques like HOG and SIFT. Deep learning models can
achieve cutting-edge performance on a broad range of tasks
by learning to extract complicated and abstract characteristics
from the data by training on vast volumes of labeled data.

B. CONTRIBUTIONS
The main contribution of this paper includes:

• It effectively detects charging ports embedded in
electric vehicles using a novel network architecture
EVS-YOLO that uses a Swin transformer to improve
self-attention.

• A SimAM attention mechanism is added in 3 locations
across the detection heads in the architecture, and a
comparison of different attention mechanisms is to
come to a consensus on using the SimAM attention
module.

• A dataset [18] of 2700 images with six types of classes
was used and the same was operated on different
models and results are compared between proposed
EVS-YOLO network architecture and existing object
detectors. The proposed EVS-YOLOmodel has aMean
Average Precision (mAP) of 81.4, the highest com-
pared to the other object detectors.

II. LITERATURE SURVEY
A. REAL-TIME OBJECT DETECTORS
Modern-day deep learning frameworks are aggregated into
two types: single-stage and two-stage detectors. The bound-
ing boxes and class probabilities of objects in an image
are directly predicted by a single-stage detector, sometimes
called a one-stage detector. These versions are perfect for
real-time applications since they are often quicker and easier
to use than two-stage detectors. Contrarily, two-stage detec-
tors have two steps. The model creates region proposals in the
first step, potential placements for objects in the picture. The

model uses these suggestions in the second step to categorize
items and improve the bounding box coordinates. An example
of this type is R-CNN, proposed by Girshick et al. [19]
This approach uses a method to extract features from an
image, followed by a step of the regional proposal to identify
potential object locations and a classifier to classify objects
in each proposed region.

Fast RCNN [20], [21] improved upon R-CNN by using
a single CNN to extract features for both the region pro-
posal and object classification stages, resulting in faster
training and inference. One another example that portrays
the two-stage detector method is Faster RCNN [22], which
introduced a Region Proposal Network (RPN) that shares
convolutional features with the object detection network,
allowing for even faster training and inference. The RPN
generates region proposals more efficiently than the external
region proposal algorithms used in R-CNN. Even though
R-CNN was a significant advance in object detection, it had
several limitations, including slow training and inference
and limited flexibility. Its successors, such as Fast R-CNN
Faster R-CNN, addressed these limitations and significantly
improved the accuracy and efficiency of object detection
models. On the other hand, in SSD [23] and YOLO [24], [25],
[26] the input images are fragmented into a grid of cells, and
for each cell, bounding boxes and probabilities of class are
predicted. On the other hand, SSD uses multiple layers with
different aspect ratios to manage objects of different shapes
and scales. RetinaNet [27] uses an FPN 0662to identify
objects at various dimensions and resolutions that includes
a novel focal loss function that addresses the class imbalance
problem in object detection.

B. ATTENTION MODULES
Attention modules are utilized in object identification to
assist the model in concentrating on the areas of an image that
are most important for detecting objects. According to their
importance to the task, distinct parts of a picture are given
varied weights by attention modules. The model’s attention is
directed to the areas of a concept that are the most informative
using weights learned during training. It enables the model
to concentrate on an image’s most crucial elements while
avoiding unimportant or distracting aspects. To upgrade the
model’s capacity to focus on critical properties of the input
data, deep learning models employ two different types of
attention methodologies: channel and spatial.

A CNN’s channel attention mechanism may be trained
to highlight or suppress particular feature map channels
selectively. Contrarily, a spatial attention technique may be
instructed to selectively emphasize or hide certain spatial
positions in a CNN’s feature maps. SE attention [28] module
consists of the squeeze and excites operations. The squeezing
process aggregates the spatial dimensions of each feature
map into a single scalar value by a global average pooling
technique. It decreases the dimensions of the feature maps
while retaining the channel-wise information. The final step
is to apply the generated vector to a two-layer perceptron
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TABLE 1. Summary of related works.

that learns to represent the channel-wise correlations. The
excitation operation, a sigmoid activation function, scales
the learned attention map produced by a two-layer percep-
tron. CBAM [29] attention module consists of channel and
spatial attention modules, wherein the SAM records the spa-
tial dependencies, and the CAM learns the channel-wise
feature maps. Therefore, the CBAM attention module can
adaptively recalibrate the feature maps across both spatial
and channel dimensions by integrating the CAM and SAM
processes.

The coordinate attention [30] module aims to improve by
ingraining positional information with channel attention with
the help of two blocks: coordinate information embedding
and coordinate attention generation blocks. The first block
replaces the typically used global pooling operation with a
two 1- D encoding structure to better preserve the positional
information. The second block lets the model concentrate
on an image’s most crucial elements while avoiding unim-
portant or distracting aspects. Deep learning models employ
two types of attention methodologies, channel and spatial,
to upgrade the model’s capacity to focus on key properties of
the input data. A CNN’s channel attention mechanism may
be trained to highlight or suppress particular feature map
channels selectively. Contrarily, a technique called spatial
attention the captured positional data to identify the regions
of interest precisely, and it is also capable of effectively
capturing inter-channel relationships.

C. DETECTION METHODS BASED ON THE YOLO SERIES
The popularity of the YOLO series due to its speed, its
real-time inference of images and videos as it is a one-stage
detector, its accuracy, its versatility to be trained on different
datasets, and its ability to be able to detect a wide variety of
objects it is has been employed in many fields [31], [32], [33],
[34], [35], [36], [37], [38] and performs very well concerning
other methods. Tian et al. [39] Proposed a method for detect-
ing apple lesions using a YOLOv3-dense network; it also
included the usage of cycle GAN as an image augmentation
tool to improve the results as traditional YOLOv3 networks
don’t have the inbuilt ability for data augmentation.

The consequent model in the YOLO series is YOLOv4,
which introduced a CSP-based structure into the backbone
and added SPP and PAN to improve the multi-scale fusion
of features. It also added an improved head and data aug-
mentation technique for better performance. Cai et al. [40]
introduced YOLOv4-5D for object detection in autonomous
driving in which the existing CSPdarknet53 backbone was
combined with deformable convolutional layers, and the net-
work was modified by adding two large-scale layers to be
effective in detecting smaller objects. The proposed model
was also pruned in terms of parameters. Since the pro-
posed model had five different detection scales, the feature
fusion network was modified to accompany that change. One
another example that shows the versatility of the YOLO series
is [41] in the field of marine target detection, wherein the
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CBAM attention module was added to the three branches
of the feature fusion network to improve the accuracy of
the result. Guney et al. [42] used YOLO v5 for the ADAS
system in cars to recognize sign boards on roads to assist
drivers in real-time. YOLOv5 was improved upon the pre-
decessor by introducing changes to its backbone; it is also a
shallower model, thus making it faster to train on. In 2021,
Zhu et al. [43] introduced a modified YOLOv5 network
called transformer prediction heads YOLOv5 to aid object
detection in drone scenarios. It was improved by the addi-
tion of transformer heads for prediction and the addition
of the CBAM attention module. Therefore, when tested on
the VisDrone dataset, it outperformed the base model by
7%. Due to the ability of real-time and fast inference, the
YOLO models are helpful in applications involving moni-
toring and sorting. Wang et al. [44] portray the application
of a modified YOLOv5 network called YOLO-BS which
includes a SimAM attention module by detecting more giant
coal blocks to aid congestion in underground mine scraper
conveyors.

D. RELATED WORKS ON EV CHARGING SYSTEMS
The capacity to identify and locate the charging outlet is
essential for autonomous charging as it also affects the sys-
tem’s dependability. It is critical to attenuate the negative
impacts of a complicated environment by using the neces-
sary algorithms. For an autonomous vehicle charging system
to work efficiently, detecting the charging port used in an
electric vehicle is essential; therefore, the algorithm used
for the detection must aid the robotic system accurately to
get the best results. Zhao et al. [45] proposed a method for
fast identification and localized detection of the socket with
a combination of a modified YOLOv4 network for quick
recognition and mean shift clustering to improve the success
rate by removing noise and an affine transformation method
for the correction of coordinates. Mingqiang et al. [46] use
a modified Lenet-5 model in which the ReLU function is
used, the dimensionality of the Final convolution is changed,
and the learning rate is optimized for the recognition of the
socket. The socket was located by using a feature circle
method. Zhang et al. [47] describe a process for using the
vision software HALCON to automatically extract the char-
acteristic parameters of an electric vehicle charging hole. The
method involves filtering the original image using various
image processing techniques.

Miseikis et al. [48] presented an approach that combines
shape-based template matching, stereo cameras, and a robot
with a connector plug to localize and approach the charging
socket of an EV or PHEV. The method uses markerless eye-
to-hand calibration to estimate the location and orientation of
the charging socket and observes the forces exerted on the
robot’s end-effector to prevent misalignment. The approach
has succeeded in lab conditions using a custom-made charg-
ing port holder and indoor illumination. Li et al. [49] propose
a method for accurately identifying and positioning charging
ports, even under varying light intensities and backgrounds.

The technique uses the SIFT feature extraction algorithm
and FLANN matching algorithm to attain a high-precision
mapping of points. It then employs the SGBM algorithm
for binocular ranging for calculating the depth of the socket.
The proposed method was validated through binocular range
and image identification experiments, demonstrating high-
precision results. Behl et al. [50], This technology employs
HSV color space to recognize and monitor the location of
the female socket. It combines a mobile male socket on
the shore charging station with a stationary female socket
aboard the ship. The system was trained using the YOLO
model for quicker and more precise identification, and an
application interface was created for real-time monitoring.
Table 1 depicts the summary of related works that clearly
illuminates data such as method, technology, and description
of various studies.

III. METHODOLOGY
A. YOLOV5 STRUCTURE
YOLOv5, being one of the widely used object detection
algorithms due to its speed and effectiveness, has intrigued
researchers to explore its possibilities in bringing change in
its overall architecture, which comprises the head, neck, and
backbone. Feature information gets extracted in the back-
bone and gets gathered in the neck. Based on the feature
maps created, the head detects the predictions. CSPDarket53
framework with Spatial Pyramid Pooling-Fast (SPPF) layer
makes up the backbone gets employed, PANet as neck and
detection head completes the YOLOv5 basic architecture.
The feature pyramids are obtained using the PANet. With
the accuracy and speed of a pyramid in mind, the Feature
Pyramid Network (FPN) [51] feature extractor was devel-
oped. As compared to older models like the quicker RCNN,
it creates numerous layers of feature maps with greater qual-
ity information than the usual feature pyramid. The FPN
is made up of top-down feature pyramids and a bottom-up
path. The bottom-up method extracts features using a typical
convolutional network.

As we climb, the spatial resolution decreases. Each layer
becomes more important semantically when more high-level
structures are found. The YOLO deep network uses resid-
ual and dense blocks to overcome the vanishing gradient
problem, enabling information to go to the deepest layers.
However, one advantage of having thick and residual blocks
is the problem of recurring gradients. CSPNet [52] solves
this problem by discretizing the gradient flow. Convolutional
neural networks are designed to perform better, and one sort
of feature aggregation module, CSPNet, seeks to do just that
(CNNs) [53]. The CSPNet module serves as the backbone of
the network architecture in YOLOv5. The object detection
head uses feature maps produced by the spine to forecast
the predictions. The three phases of the CSPNet module
in YOLOv5 [54], [55] each feature a set of convolutional
layers followed by a cross-pathway link. It achieves this by
dividing the network into central and cross pathways.The
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FIGURE 2. Base architecture of yolov5 showing three regions backbone, neck and head.

main pathway analyses the input data and creates feature
maps. More information flow is made possible by doing this,
which also lessens the chance that important data may be lost
while being processed. Incorporating CSPNet in YOLOv5
enables maintaining a smaller size and a higher inference
speed. This is because CSPNet enhances the network’s infor-
mation flow and enables more effective feature aggregation.
The final product is an application-friendly object detection
model that is very effective and accurate. CSPNet decreases
the model’s parameters and Flops, which not only enhances
inference speed and accuracy but also addresses the problems
with recurrent gradient information in large-scale backbones
and trims down the model’s size.Fast and accurate data
detection is essential, and the model’s size also determines
the effectiveness of its inference on devices with mini-
mal computational resources. The SPPF block produces a
fixed-length result after it has combined the data it received
from the inputs. As a result, without degrading the net-
work’s performance, it has the advantage of greatly increasing
the receptive field using this block in earlier iterations of
YOLO; however, to increase network speed in YOLOv5,
SPPF just another variation of the SPP block was utilized.
The classes of the discovered objects, their bounding boxes,
and the abjectness scores are the three outputs. YOLOv5
produces. In calculating the location loss, CIoU [56] loss
is used. The following equation provides the ultimate loss
formula.

Loss = λ1Lcls + λ2Lobj + λ3Lloc (1)

Different activation functions, attention mechanisms, and
modifying the backbone have been done previously
to improve the performance of the YOLOv5 detection
algorithm. Sigmoid linear units are the standard activation
function used in YOLOv5. YOLOv5 comes in five dif-
ferent sizes, namely. YOLOv5x, YOLOv5N, YOLOv5M,
YOLOv5L, and YOLOv5s. The model architecture in all
five models remains the same, but changes in the width
and depths can be noticed. YOLOv5X being the largest
and YOLOv5n being the smallest. The larger models tend
to perform better, but they are computationally intensive.
We use the YOLOv5s architecture a base for our proposed
EVS-YOLO architecture. The architecture of the YOLOv5
model is depicted in Figure 2. Base architecture of yolov5,
which is predominantly made of three regions backbone,
neck and head, wherein CBL consists of convolution, batch
normalization and activation layer. C3 refers to a cross stage
partial network with 3 convolutions and concat refers to the
concatenation operation. SPPF refers to a faster version of
spatial pyramid pooling which reduces the dimensionality
and improves the network speed.

B. SWIN TRANSFORMER
In addition to effectively modeling global contextual infor-
mation, the transformer also exhibits great transferability
to downstream tasks when pretraining on a large scale.
It offers new opportunities for visual feature learning and has
observed the performance of the transformer in various deep-
learning avenues. The transformer creates amethod for global
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FIGURE 3. The Swin transformer with W-MSA and SW-MSA.

information exchange that aids in creating a suitable feature
representation. Nevertheless, using the transformer for visual
tasks has two big drawbacks. On the one hand, the trans-
former’s use is severely constrained by the high computing
cost of its transformation, which employs sequences as input.

On the other hand, Transformer mines correlations from
global linkages instead of local inductive bias in convolu-
tion and needs training with a lot of data to provide good
results. The introduction of the Swin transformer expands
the potential uses of transforms in visual activities. The
computational overhead of the swing transformer is mini-
mal. Hierarchical structures are built as it analyses pictures,
enabling the swing-based model to tackle multiscale heavy
jobs. The proposed work modifies the YOLOv5s network
topology to incorporate the Swin module, allowing the
network to do global modeling while using fewer comput-
ing resources. The window based multi-head self-attention
(W-MSA) module was proposed by Swin Transformer. There
are several windows split up into the image. Swin Trans-
former reduces the computing complexity to a linear rela-
tionship by performing attention computations exclusively
on the window pixel areas. Importantly, the Swin Trans-
former interacts with information across non-overlapping
windows utilizing a multi-head self-attention module for
shifted windows (SW-MSA). A shifted window partitioning
strategy in the Swin transformer is incorporated such that
the switches between two partitioning configurations in sub-
sequent Swin Transformer blocks allow for cross-window
connections to ensure the effectiveness of non-overlapping

FIGURE 4. SimAM module.

window computation. It is difficult to gather global contex-
tual information due to CNN’s constrained perceptual field.
The Swin Transformer, in comparison, makes use of more
adaptable self-attention information transmission and per-
forms very well in obtaining global semantic information and
effectiveness.

The architecture of the Swin Transformer is shown in
Figure 3. The Swin transformer predominantly contains two
blocks namely Windows Multi-Head Self-Attention module
(W-MSA) and Shifted Windows Multi-Head Self-Attention
module (SW-MSA). The SW-MSA is crucial to know the
functions of Swin transformer as it allows for information
exchange across non overlapping windows. The computa-
tional complexity of a global MSA module and a window
based are given as

�(MSA) = 4h C2 + 2(h )2C (2)

�(W − MSA) = 4h C2 + 2M2h C (3)

The shifted window partitioning approach is used to compute
the successively aligned Swin transformer blocks.

ẑl = W − MSA(LN(zl − 1)) + zl − 1 (4)

zl = MLP(LN(ẑl)) + ẑl (5)

ẑl+1 = SW − MSA(LN(zl)) + zl (6)

zl + 1 = MLP(LN(ẑl + 1)) + ẑl+1 (7)

where, ẑl and zl stands for the respective block l output
characteristics of the SW-MSA module and MLP module.

C. SIMAM ATTENTION MECHANISM
Attention mechanisms are a great way to utilize the most sig-
nificant features in an input sequence by using the weighted
combination of the input vectors. For our proposed model,
we have incorporated the SimAM attention mechanism in the
YOLOv5 structure to improve its overall performance. The
attention module in the system uses a complex set of filters
to focus on a single object while having a variety of different
things in our field of view. To filter out feature combinations
that are helpful to the recognition of the feature, we include a
3D attention module called SimAM here. Moreover, the issue
of feature misalignment brought on by the direct stacking of
components with various scales may be resolved. To capital-
ize on the value of neurons, the SimAM module suggests an
improved energy function based on neuroscience theory.
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FIGURE 5. Proposed EVS-YOLO architecture Model.

It then generates an analytical solution to the energy func-
tion to expedite the calculation of attention weights. SimAM
is a unique attention mechanism because of its complete
usage of 3D weights and the energy function, which accel-
erates the computation of weights. The entire SimAM is a
lightweight module as it is non-parametric; the number of
parameters accounts for zero compared to the other attention
mechanisms. The SimAM attention module will be placed
in different places along the head, and the performance will
be tabulated for each positioning. The architecture of the
SimAM attention module can be seen in Figure 4. SimAM
completely uses the 3d weights and the energy function to
accelerate the weights calculation along with an added advan-
tage of it being a non-parametric module Energy function of
each neuron will be:

et( t ,bt ,y,xi) = (yt − t̂)2 +
1

M − 1

M−1∑
i=1

(
yo−
x̂i

)2

(8)

Here, t̂ = t t + bt and x̂i = txi + bt are linear
transformations of t and xi, where t is the target neuron and
xi is the other neurons in a single channel of the input feature.
Final energy function will be:

et( t ,bt ,y,xi) =
1

M − 1

M−1∑
i=1

(−1 − ( txi + bt ))2

+ (1 − ( t t + bt ))2 + λ 2
t (9)

where, t and bt can be easily obtained by:

t = −
2 (t − µt)

(t − µt)
2
+ 2σ 2

t + 2λ
(10)

bt = −
1
2

(t + µt) t (11)

where,

µt =
1

M − 1

∑M−1

i=1
xi (12)

σ 2
t =

1
M − 1

∑M−1

i
(xt − µt )2 (13)

are mean and variance calculated for all neurons except t.
Minimal energy can be computed with:

e∗t =
4(σ̂ 2

+ λ)

(t − µ̂)2 + 2σ̂ 2 + 2λ
(14)

where,

µ̂ =
1
M

∑M

i=1
xi (15)

σ̂ 2
=

1
M

∑M

i=1
(xi − µ̂)2. (16)

The above equation (14) depicts the lower energy e∗t , the
neuron t is more unique from neighbouring neurons.
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FIGURE 6. Instances of each class of the dataset.

D. PROPOSED EVS-YOLO ARCHITECTURE
In the proposed EVS-YOLO model, we use the Swin module
in the backbone of the YOLOv5S architecture. Adding a
transformer in the backbone improves the model’s overall
performance by focusing on the necessary information rather
than focusing on every aspect of the image that includes
the unwanted part, thus decreasing the overall accuracy and
performance. Researchers have created a better network by
fusing CNN with the transformer inspired by the visual
transformer. The transformer works better for dense and
obstructed images and scenarios. It has a more significant
capacity to collect global information than CNN, thus being
an essential addition to the overall network in enhancing its
performance.

Further, to push the model’s performance, the SimAM
module is embedded before the three detection heads in
the architecture. On using an attention mechanism, the
EVS-YOLO model tends to focus better on the target rather
than concentrating more on the unimportant features, thus
enhancing the model’s overall performance. Attention mech-
anisms can selectively attend to informative regions of the
input image, which can improve the discrimination ability
of the model. By listening to relevant regions, the attention
module can help the YOLOmodel better distinguish between
objects with similar features, reducing false positives or false
negatives. The SimAM attention [57] is a lightweight and
non-parametric algorithm. It directly uses 3D- weights, thus
making it robust attention to be embedded along with the
Swin Transformer [58] in the YOLO architecture. The pro-
posed EVS-YOLO architecture is depicted in Figure 5 with
SWIN transformer module embedded in the backbone of the
network before the pooling operation done by the SPPF layer.
The SimAM attention modules are added in the neck before
passing to the head through the different detection heads.

IV. EXPERIMENT
A. DATASET
To evaluate the performance and robustness of the
EVS-YOLO algorithm for detecting the EV charging socket,
we used a dataset derived from two publicly available datasets
consisting of over 2,500 images. The dataset consists of
different EV charging sockets, and it was categorized into
six different types of classes manually.

The dataset consists of 6 classes, namely CCS1, CCS2,
Type1, Type2, Tesla, and CHAdeMO. All the images in
the combined dataset have been manually labeled and then
categorized into their respective type of sockets. The dataset
is partitioned in a ratio of 8:1:1 for the training, validation,
and testing sets, respectively.

Figure 6 represents the instances of different types of
classes in the dataset used for the analysis of EVS-YOLO
model. An overview of the dataset showing different sockets
namely CCS1, CCS2, CHAdeMO, Type1, Type2 and Tesla
is illustrated in Figure 7. Dataset preparation includes images
with different conditions and scenarios as shown in Figure 8
for calculation the accuracy of the proposed model so as to
attain the real-time implementation success containing all the
different cases such as image samples with different camera
angles, different brightness, weather conditions, different col-
ors, environments and images with socket and camera - dirty,
clean conditions.

B. EXPERIMENTAL AND ENVIRONMENTAL SETTINGS
To confirm the efficacy and reliability of the EVS-YOLO
algorithm, we performed ablation and comparison tests on
the dataset. Windows 11 is the operating system employed
for the trials. The processor is an Intel 10th Gen H type.
Python 3.8.13 is the programming language used. Pytorch
1.10.0 is the deep learning framework, and the acceleration
environment is CUDA 11.4. For the analysis, the epochs were
set at 125, the weights used were YOLOv5.pt, and the batch
size was set as 16. Figure 9, the overall representation and
distribution of the objects in the dataset are uniform.

V. RESULTS AND DICUSSION
To analyze the improvement that happens with adding dif-
ferent modules in the ES-YOLO algorithm, we performed
ablation experiments that would better help us understand
how adding each module improves the base model. Table 2
shows the experimental results of proposed EVS-YOLO abla-
tion on the respective datasets. The general trend is that the
base model’s performance is enhanced by including a process
in terms of precision, recall, mean average accuracy, and
F1 score. It lags in inference speed as there are many more
mathematical operations to be performed, as indicated by the
Gflops column. In scheme 2, the SWIN transformer module
is added to the backbone of the base network to improve
the model’s ability to capture long-range dependencies and
contextual information. This enhanced precision by 1.6%,
recall by 6.2%, mAP by 1.0%, and f1 score by 4.79%,
but conversely, the inference speed increased to 7.9ms from
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FIGURE 7. A Representation of different classes of EV sockets present in the dataset [18].

7.7ms in scheme 1. Gigaflops (GFlops) refer to the number
of mathematical operations required for the model to have an
entire pass. These metric increases, so there is an increase in
inference speed. The lower the inference speed, the faster we
have the result.

In scheme three, along with the Swin transformer in the
backbone, SimAM attention module is added to three detec-
tion heads, allowing the neural network to selectively focus
on different parts of the input data, assigning varying levels of
importance to other regions or features, helping the network
capture relevant information while filtering out irrelevant or
redundant information. Therefore, this improves precision
by 5.6%, recall by 0.5%, mAP by 1.6%, and F1 score by
2.59%, and is slightly slower as there is an increase in
inference speed. On comparison of the results of scheme
one and scheme 3, we can infer that the EVS-YOLO model
outperforms the YOLOv5s model in all evaluation indicators.
The precision reached 95.2%, the recall reached 78.7%, and
the mAP and F1 scores reached 81.4% and 86.16%, respec-
tively, with a slight increase in inference speed but still fast
enough for real-time applications. Figure 10 represents the
class-wise mAP comparison between the EVSYOLO and
base YOLOv5s. Drastic changes is observed in the tesla
and CHAdeMO classes where the base model significantly
underperforms.

For other classes, the proposed model either slightly
improves or has similar accuracy values. The confusion
matrix of the YOLOv5s model and the proposed EVS-YOLO
model is shown in Figure 11. It can be seen that the
EVS-YOLO model outperforms the YOLOv5s model in
every class. Table 3 represents the performance of different
attention modules with a Swin transformer backbone. The

TABLE 2. Experimental results of the proposed EVS-YOLO ablation on the
respective dataset.

other attention models are placed before the three detection
heads of the structure. The proposed model comprises a
SimAM attention module, a lightweight and non-parametric
module, reflected in the results as the proposed model has the
lowest number of parameters at 7,163,019.

Compared to the next best-performing model in terms of
accuracy with CBAM, which has 7207276 parameters, it is
44,257 less. The proposed model also performs the best in
precision, recall, mAP, and f1 scores. It outperforms the next
best model, which includes CBAM as its attention module
in terms of accuracy by 16.8%, mAP by 0.3%, and f1 score
by 6.3%.

It significantly outperforms when compared to the model
which includes the SK Attention module, as it has five times
less the number of parameters and twice as few Gflops, and
it improves on precision by 5.8%, recall by5.0%, mAP by
5.7%, f1 score by 5.3%. Typically, the lower the parame-
ters, the faster the model is in inference. The addition of
SimAM improves the accuracy compared with another atten-
tion module called the Coordinate attention module by 0.8%
while having 35,680 lesser parameters. It also outperforms
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FIGURE 8. Sample images taken under different environmental
conditions Source: 
Roboflow.com [18].

FIGURE 9. Location size and distribution of objects.

attention modules like NAM and SE attention modules in all
metrics while still having fewer parameters. Figure 12 shows
the class wise comparison of Mean Average Precision for

FIGURE 10. Class wise performance comparison between EVS-YOLO and
YOLOv5s model.

TABLE 3. Comparison of different positioning of SimAM attention
module on different detection heads on the EVS-YOLO model.

different attention modules with Swin Transformer embed-
ded in the backbone. It justifies that adding the SimAM
attention module improves precision for certain classes such
as CCS1, CHAdeMO and Tesla. YOLOv5 uses three different
detection heads, each responsible for predicting objects at
different scales or resolutions in the input image. The large
Detection Head predicts things at the highest resolution in
the input image. It has a larger receptive field, which allows
it to detect smaller objects with fine details. It outputs a ten-
sor with higher spatial resolution and smaller object anchor
boxes for detecting smaller objects. Medium Detection Head
operates at an intermediate resolution in the input image and
is responsible for detecting objects of medium size. It has a
medium-sized receptive field, allowing it to detect moderate-
sized objects. The Small Detection Head operates at the
lowest resolution in the input image and detects larger objects.
Its larger receptive field will enable it to detect objects
of larger size with coarser details. Combining these three
detection heads at different resolutions helps YOLOv5 to
accurately detect objects of varying sizes and scales. Table 4
represents the results of the influence of the positioning of
the SimAM attention module in these three detection heads.
Since there are three detection heads, seven possible combi-
nations of positions are likely. The best-performing model
is scheme seven, where an attention module is present in
all three places with a precision, recall, mAP, and f1 score
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FIGURE 11. Confusion matrix obtained from (a) . YOLOv5s base model and (b). proposed EVS-YOLO model.

FIGURE 12. Class wise comparison of Mean Average Precision for different attention modules with Swin
Transformer embedded in the backbone.

FIGURE 13. Graphical representation of various evaluation metrics of proposed EVS-YOLO model with existing object detection models.

value of 95.2%, 78.7%, 81.4%, and 86.16% as there is a
combination of all three detection scales. The addition of
attention modules in the small and large detection heads has
similar results in terms of mAP at 80.6% in both cases. Still,
including an attention method in the more giant head out-
performs precision, recall, and f1 scores by 2.5%, 4.2%, and
3.56%. In terms of positioning in two detection heads, adding

attention modules in the small and large detection heads
gives the best outperforming the other schemes with similar
positioning but still less than other positioning methods.

Table 5 compares the proposed model with other detec-
tion methods. It outperforms traditional methods like Faster
RCNN and Retinanet regarding precision, recall, mAP, and
F1 score by a considerable margin, and typically, stage
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FIGURE 14. Class wise detection results of the proposed EVS-YOLO model with other object detection models.

TABLE 4. Performance comparison for different attention modules with
Swin transformer embedded in the backbone.

methods are faster than two-stagemethods, so this is an added
advantage. Compared with other YOLO models, it outper-
forms YOLOv3 by 7% in terms of mAP and has a better
F1 score, which is 3.7% better than YOLOv3. Its successor,
YOLOv4, is slightly improved over YOLOv3 but still needs
to catch up by 5.3% in average precision. Even though the

TABLE 5. Performance comparison of different detection models with
EVS-YOLO.

YOLOXmodel has a better F1 score, it still needs to improve
in accuracy by 2.0%.
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FIGURE 15. Performance comparison of three kinds of loss for the EVS-YOLO on the dataset used.

TABLE 6. Inference speed and parameters comparison of EVS-YOLO
model with other detection models.

When compared to other YOLOv5 models, the proposed
model outperformsv5n, v5s, and v5m with regards to mean
average precision by 4.1%, 2.6 %,4.5%, and f1 scores by
8.06%, 7.37%,2.11%. The YOLOv5x model outperforms the
proposed model in terms of mAP by 1.9%. Inference speed
and parameters comparison of proposed EVS-YOLO model
and other detection models are tabulated in Table 6.

Even though the proposed model has significantly fewer
parameters, it performed better compared to most one-stage
methods, and it also performs well with inference speed,
with only YOLOv5s and YOLOv5n having lesser inference
speed owing to their more secondary parameters. Figure 13
depicts the graphical representation of various evaluation
metrics such as precision, recall, mAP, and F1 score of the
proposed EVS-YOLO model with existing object detection

models. The proposed EVS Yolo model outperforms other
models, as the graph shows. The subjective detection results
of the proposed EVS-YOLO model with other object detec-
tion models for all six classes shown in Figure 14.

Figure 15 shows the performance comparison of all the
losses in the training and validation set, such as bounding
box, class, and object loss for the proposed EVS-YOLO on
the dataset used. The first row is the loss of the validation set.
The three figures in the first row from left to right are class
loss, object loss, and box loss. The second row is the loss of
the training set for the EVS-YOLOmodel on the dataset used,
and the three figures in the second row from the left are the
same as hose mentioned in the first row. Be it the validation
set or the training set, the loss tends to decrease and eventually
stabilize.

Despite the curve being close, when we compare the
bounding box set of the validation loss, EVS-YOLO is com-
paratively low compared to the YOLOv5s, i.e., the base
model. YOLOv5 loss stands at 0.0048 for 125 epochs,
whereas EVS-YOLO is at 0.0042 for 125 periods, which
means the proposed model accelerates the speed and tends
to converge a lower loss value.

The terms ‘‘bounding box loss,’’ ‘‘class loss,’’ and ‘‘object
loss’’ are used in object detection with deep learning to
represent different types of losses that are computed during
the model’s training and validation stages. The bounding
box loss is a specific type of loss that assesses the error in
anticipating the bounding box coordinates of an object. The
model is penalized when the expected coordinates differ from
the actual coordinates, and the loss is frequently calculated
utilizing a regression loss function like mean squared error or
smooth L1 loss.
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On the other hand, class loss is a type of loss that measures
the model’s error in predicting the object’s class inside the
bounding box. The model is punished when the predicted
label varies from the true label. The loss is typically calcu-
lated using a classification function such as cross-entropy
loss. Lastly, object loss is a type of loss that quantifies the
model’s error in detecting the object inside a boundary. The
model is punished when it fails to detect an object’s presence
inside a bounding box or mistakenly detects a false positive.
The loss is generally calculated using a binary classifica-
tion function such as binary cross-entropy loss. During the
training phase, the model tries to minimize the overall loss,
an aggregated sum of the bounding box, class, and object
loss. The weights are commonly chosen based on the relative
importance of each loss term. During the validation phase,
the loss terms are computed on a separate set of validation
data to determine the model’s performance. The end goal is
to minimize the overall training loss and validation sets to
achieve a high level of generalization performance.

VI. CONCLUSION AND FUTURE WORKS
An object detection algorithm called EVS-Yolo has been
proposed to address the problems of identification of Electric
Vehicle charging sockets, which hurdles the experience of
the charging port efficiently for the users. We introduced
a SimAM attention mechanism in the backbone section to
enhance the network’s ability to aggregate features and focus
more on the object than the background. SimAM attention
was applied in three positions across the proposed archi-
tecture to find the best possible result. We also embedded
the Swin transformer module into the backbone part of the
network, which can extract contextual features. To verify the
satisfactory work of the algorithm, ablation experiments were
performed. The experiment results show that the EVS-YOLO
algorithm achieves an average detection accuracy of 81.4%
on the test set, an improvement of 2.6%. The EVS-YOLO
model achieves an inference speed of 8.3ms, attaining the
accuracy and requirements for detecting Electric vehicle
sockets. The EVSYOLO method is more suitable for this
application than other object detection algorithms due to
higher accuracy and real-time inference. It represents a
significant advancement in the field of electric vehicle infras-
tructure. This innovative solution offers precise and efficient
socket detection and showcases the potential for cutting-edge
deep-learning techniques to revolutionize how we interact
with and utilize electric vehicles. As we move towards a
more sustainable future, this technology paves the way for
enhanced user experience and increased accessibility to elec-
tric vehicle charging, ultimately accelerating the adoption of
clean energy transportation solutions.

Further, the EVS-YOLO algorithm can apply to real-time
samples with an automated application, which might act as
a catalyst for improving the overall user Experience. Several
avenues for future work can be explored, such as Integrat-
ing real-time data sources, availability, and charging rates
to provide users with up-to-date information on the status

of charging sockets, enhancing the user experience. Inte-
grate energy management algorithms to optimize charging
based on user preferences, electricity prices, and grid condi-
tions, promoting efficient and sustainable charging practices.
Implement security protocols to protect against potential
cyber threats, ensuring the safety and integrity of electric
vehicle charging transactions.
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