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Abstract. Proper use of materials is one of the most 
important criteria of a rational design and shaping of 
engineering constructions. It requires such dimensioning 
of each element of the construction which will ensure that 
the element is matched to its load – and this condition is 
fulfilled only for beams with variable cross section. Hence, 
it is essential to develop possibilities of calculations of 
beams with cross section varying along the beam 
longitudinal axis. This study provides relevant matrices 
(i.e. stiffness, mass and initial stress matrix) applied in the 
Finite Element Method for calculations of natural 
frequencies and buckling critical forces. The matrices have 
been derived for beams shaped as a truncated cone with a 
linear generatrix, supported in various ways. The results 
have been compared to those obtained for the stair-shaped 
beams approximating the conical ones; a good 
concordance of results has been stated. 
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1. Introduction 

 Problems of bending, stability and vibrations of 
variable cross section beams are being solved with many 
methods. The vibration mode shape and frequency as well 
as the deflection line after buckling and the buckling 
critical force can be determined from the Euler-Bernoulli 
differential equation of beam deflection. A classical 
solution by means of the Bessel functions was presented 
by Conway and Dubil [1]. Other works worth mentioning 
have been made by Ece et al. [2] (for an exponential 
variability of beam width), Laura et al. [3] (for beams of 
bilinearly varying thickness), Naguleswaran [4, 5] as well 

as Duan and Wang [6]  both for multi-segment, stair-
shaped beams. A numerical solution for the natural 
vibration shape of beams with multiple step changes was 
provided by Vaz and Lima Junior [7]. If referred to 
approximated methods, it is worth to mention works by 
Jaworski et al. [8], Jaworski and Szlachetka [9] and 
Szlachetka et al. [10]. All of them apply the Rayleigh’s 
method to find first natural frequencies for solid and 
hollow truncated cones with generatrices having the shape 
of straight line, concave parabola and convex parabola. 

 Naguleswaran [11] provided an exact solution for 
truncated cone and truncated wedge beams using the 
Frobenius method and submitted results for various types 
of beams. Due to an extensivity and accuracy of this study, 
it can be acknowledged as a benchmark in terms of the 
natural frequencies: the analysis is very extensive – 
concerns 16 combinations of supports (even unstable) and 
two types of stiffness variability (depending on the fourth 
and third power of the longitudinal coordinate). 

 Regarding the buckling, Qiusheng et al. [12] applied 
the Euler-Bernoulli differential equation to obtain exact 
solutions for stability analysis of beams with varying cross 
sections subjected to various axial loads (concentrated and 
variably distributed). Coşkun and Atay [13] used the 
variational iteration method (VIM) for seeking critical 
buckling loads of Euler columns with constant and 
variable cross-sections (three values of truncation factor) 
and support conditions (five combinations of supports). 
Soltani and Asgarian [14] used a combination of power 
series expansions and the Rayleigh-Ritz method for the 
analysis of stability and free vibration of axially 
functionally graded beams resting on an elastic foundation. 
The obtained results were compared to the results of Finite 
Element Method (FEM). The authors provided values of 
critical buckling forces and natural frequencies for three 
types of stiffness variability as well as three combinations 
of supports. Results obtained in [14] can be acknowledged 
as benchmark in terms of the critical buckling forces. 

 Solving problems of stability and vibrations of variable 
cross section beams with use of FEM is quite simple if the 
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beam is divided into finite elements with a constant cross 
section (stair-shaped). However, in aim to enable the best 
possible approximation of the beam shape, it requires an 
assumption of a very large number of such elements what 
significantly increases the dimensions of matrices and the 
whole task. This problem can be overcome if shape 
functions, matrices of stiffness, mass and initial stress for 
a beam finite element with variable cross section are 
known; they allow to divide the beam into several finite 
elements. There is a lot of such works in the literature 
(Šapalas et al. [15], Katsikadelis and Tsiatas [16], 
Smoljanović et al. [17], etc.) but the basic problem is that 
these papers do not provide appropriate FEM matrices. 

 The present study is aimed to fill this gap. Due to a 
restricted space, however, this paper is limited only to one 
specific type of beams – where the second area moment 
depends on the fourth power of an axial coordinate; 
nevertheless, the presented derivation applies to all types 
of cross section variability. For the abovementioned 
variability type, all matrices (of stiffness, mass and initial 
stress) and shape functions, required in the Finite Element 
Method for calculations of statics, dynamics and stability 
of constructions consisting of variable cross section beams 
have been submitted. The formulas have been applied for 
calculations of first natural frequencies and critical 
buckling forces of beams supported in different ways and 
obtained results have been compared to results obtained 
for piecewise constant (stair-shaped) cross section beams. 

2. Methods 

 
Fig. 1: General dimensions of a circular cross section beam with 

linearly changing diameter (truncated cone) 

It is assumed in the paper that the beam cross section is 
circular with the diameter changing linearly (Fig. 1), i.e. 
the beam is a truncated cone. Hence, the second area 
moment depends on an axial coordinate in the fourth 
power. The related formulas for the diameter d(x), cross 
section area A(x) and second area moment J(x) are 
following: 
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of the beam. It is worth mentioning that a rectangular beam 
with both height and width changing linearly but 
maintaining the proportions between each other also has 
the second area moment depending on the fourth power of 
the axial coordinate, thus the relations obtained in this 
paper are also valid for it. 

 The beams calculated in this chapter are supported in 
10 ways. The supports are classified according to the 
possibility of transversal movement ( 0w  or 0w  ) or 
the possibility of rotation ( 0   or 0  ). Along with 

their denotations, they are following: 

 clamped support (C): 0,w  0  , 

 pinned support (P): 0,w  0  , 

 sliding support (S): 0,w  0  , 

 free end (F): 0,w  0  . 

 Taking the aforementioned denotations into account, 
one can distinguish 10 combinations of supports: CC, CP, 
PC, PP, CS, SC, CF, FC, SP, PS (Fig. 2). As only simple 
beams (not connected with other beams) are being 
considered in the paper and the finite elements are not 
connected by hinges, it is enough for these types of support 
to provide a finite element clamped at both ends; a real 
support of a specific beam is modelled by removing 
appropriate rows and columns in the global matrices 
(according to the general rules of FEM). 

 
Fig. 2: Supporting of beams 

 The calculations of the FEM matrices start from 
solving two Euler-Bernoulli equations of displacements of 
a beam without load: 

 for longitudinal displacements u(x): 
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 for transversal displacements w(x): 
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where E – Young modulus of the beam. As boundary 
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conditions, it must be assumed: 
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 Following displacement formulas have been obtained: 

  1 2( ) i kF u uu Fx   , (5a) 
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are shape functions constituting a shape function matrix N: 
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Having the shape function matrix, one can calculate a 
stiffness matrix K, mass matrix M and initial stress matrix 

σK which are expressed as: 
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yN , S – a longitudinal force 

acting on a beam. Execution of the calculations  according 
to Form. (7) yields:
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where:  2 3 4 5 6 7 2 3
22 12 80 85 155 60 112 35 5 60 1 2 2 ln( )a                        , 
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   2 3 4 5 6 2
23 24 315 95 100 180 41 5 60 3 5 4 ln( )a                    , 

   2 3 4 5
33 6 125 80 60 10 60 1 2 ln( )a                , 

   2 3 4 5 6 7 2 3
25 5 49 125 135 135 125 49 5 120 1 2 2 ln( )a                        , 

   2 3 4 5 6 2 2
26 6 75 275 80 210 59 5 60 4 5 3 ln( )a                   , 

   2 3 4 5 6 2 2
35 5 59 210 80 275 75 6 60 3 5 4 ln( )a                    , 

   2 3 4 5 2
36 1 15 80 80 15 60 1 ln( )a               , 

  2 3 4 5 6 7 3 2 3
55 5 35 112 60 155 85 80 12 60 1 2 2 ln( )a                        , 

  2 3 4 5 6 3 2
56 5 41 180 100 95 315 24 60 4 5 3 ln( )a                   , 

  2 3 4 5 3
66 1 10 60 80 125 6 60 2 ln( )a                 , 
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Then, having the matrices K, M and ,σK  FEM equations 

for free vibrations and stability problem and their 
characteristic equations can be obtained: 

  20    det( ) 0,    MΔ + KΔ M K  (11a) 

    0    det( ) 0,  σ σK + K Δ K + K  (11b) 

where Δ   a displacement vector,    a vibration angular 
frequency. The characteristic equations enable to find a 
natural frequency 0  being a root of Eq. (11a) and a 

critical force crP  being a root of Eq. (11b). The frequency 

0  and the force crP  are presented as a dimensionless 

(normalized) frequency nor  and a dimensionless 

(normalized) critical force ,norP  wherein 

  2 2
0 4 2

,    i i
nor cr nor

i

EJ EJ
P P

A L L
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
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3. Results 

Results of application of the method presented in Section 
2 are presented in Tab. 1. The dimensionless frequency 

nor has been calculated for a beam consisting of 2 finite 

elements (i.e. the lowest possible number) characterized 
by the matrices (8), (9), (10); the dimensionless critical 
force ,norP  however, has been calculated for a beam 

consisting of 6 finite elements. These results are provided 
in Tab. 1 in the rows denoted as “v”. As a comparison, 
analogical results have been provided for a beam 
consisting of 40 finite elements having the constant cross 
section area. These results are provided in Tab. 1 in the 
rows denoted as “c”. Moreover, the benchmark solutions 
have been provided as well: for the frequencies  obtained 
by Naguleswaran [11] and denoted by “N”; for the critical 
buckling force – obtained by Soltani and Asgarian [14] and 
denoted by “S”. The values printed with italic have been 
obtained by an extrapolation of the data provided in the 
relevant paper. Soltani and Asgarian provided data only for 
three types of supporting. 

 All results were calculated for the truncation factor 
equal to 1, 2, …, 10. A small exception is the dimension-
less frequency which was impossible to count for the 
variable cross section beam having 1  , i.e. the constant 

cross section beam, probably due to certain limit passages 
existing for 1   in the matrix (10) (it is seen that 1   

implies 0 in some denominators). In this case, 1.1   was 

assumed; assumption of values from the range 1.011.09 
did not help either, although the reason is not known and 
requires a separate numerical analysis of the matrix (10). 

  



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 23 | NUMBER: 1 | 2023 | JUNE 

© 2023 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 5 

Tab. 1: First natural frequencies and critical buckling forces of truncated cone beams for various values of truncation factor 

 
Supporting 

CC CP PC PP CF FC CS SC PS SP 

1 
(1.1*) 

nor 

v* 4.885 4.000 4.082 3.224 1.837 2.007 2.376 2.476 1.624 1.593 

c* 4.843 3.985 4.062 3.224 1.838 1.995 2.375 2.458 1.623 1.593 

N 4.842 3.983 4.063 3.225 1.838 1.994 2.374 2.458 1.624 1.592 

Pnor 

v 6.288 4.488 4.494 3.142 1.571 1.571 3.142 3.142 1.571 1.571 

c 6.283 4.493 4.493 3.140 1.571 1.571 3.142 3.142 1.571 1.571 

S   4.496 3.143  1.578     

2 

nor 

v 5.795 4.406 5.108 3.737 1.611 3.045 2.503 3.374 1.966 1.695 

c 5.741 4.394 5.069 3.729 1.612 3.041 2.503 3.368 1.965 1.695 

N 5.741 4.393 5.070 3.730 1.611 3.041 2.502 3.368 1.966 1.695 

Pnor 

v 12.59 8.995 8.993 6.284 2.331 4.058 6.573 6.573 4.058 2.331 

c 12.57 8.990 8.990 6.281 2.332 4.057 6.573 6.573 4.057 2.332 

S   8.996 6.286  4.060     

3 

nor 

v 6.623 4.744 6.007 4.126 1.468 4.007 2.657 4.248 2.212 1.720 

c 6.550 4.735 5.946 4.118 1.469 3.996 2.657 4.234 2.212 1.721 

N 6.548 4.732 5.948 4.119 1.468 3.998 2.655 4.236 2.212 1.720 

Pnor 

v 18.91 13.56 13.51 9.428 2.902 6.867 10.43 10.43 6.867 2.902 

c 18.87 13.49 13.47 9.420 2.905 6.864 10.43 10.43 6.864 2.905 

S   13.53 9.450  6.890     

4 

nor 

v 7.340 5.017 6.771 4.425 1.372 4.846 2.796 5.031 2.396 1.712 

c 7.247 5.010 6.688 4.417 1.374 4.824 2.798 5.006 2.395 1.714 

N 7.244 5.006 6.690 4.419 1.372 4.826 2.796 5.007 2.395 1.712 

Pnor 

v 25.21 18.12 18.08 12.58 3.379 9.825 14.53 14.53 9.825 3.379 

c 25.17 18.00 17.95 12.55 3.385 9.815 14.53 14.53 9.815 3.385 

S   18.07 12.62  9.873     

5 

nor 

v 7.984 5.249 7.449 4.672 1.301 5.599 2.920 5.745 2.546 1.692 

c 7.873 5.245 7.344 4.663 1.303 5.563 2.923 5.706 2.545 1.694 

N 7.868 5.239 7.348 4.665 1.301 5.566 2.920 5.708 2.546 1.692 

Pnor 

v 31.54 22.62 22.72 15.74 3.800 12.86 18.77 18.77 12.86 3.800 

c 31.49 22.52 22.43 15.68 3.808 12.84 18.78 18.78 12.84 3.808 

S   22.61 15.79  12.93     

6 

nor 

v 8.573 5.452 8.066 4.883 1.245 6.286 3.031 6.405 2.673 1.667 

c 8.441 5.451 7.940 4.873 1.249 6.235 3.036 6.351 2.671 1.670 

N 8.433 5.443 7.947 4.884 1.245 6.226 3.033 6.335 2.672 1.669 

Pnor 

v 38.28 27.08 27.46 18.91 4.173 15.94 23.09 23.09 15.94 4.173 

c 37.84 27.06 26.89 18.81 4.191 15.89 23.14 23.14 15.89 4.192 

S   27.15 18.96  16.03     

7 

nor 

v 9.120 5.634 8.636 5.070 1.200 6.922 3.132 7.020 2.784 1.641 

c 8.976 5.636 8.490 5.058 1.204 6.855 3.139 6.950 2.782 1.645 

N 8.963 5.625 8.497 5.069 1.200 6.850 3.134 6.940 2.783 1.642 

Pnor 

v 44.50 31.52 32.23 22.10 4.518 19.05 27.47 27.47 19.05 4.518 

c 44.22 31.62 31.34 21.92 4.547 18.96 27.56 27.56 18.96 4.547 

S   31.69 22.13  19.15     
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Tab.1 (cont.) 

 
Supporting 

CC CP PC PP CF FC CS SC PS SP 

8 

nor 

v 9.633 5.798 9.169 5.237 1.162 7.516 3.224 7.597 2.883 1.615 

c 9.467 5.805 9.003 5.224 1.167 7.431 3.233 7.510 2.880 1.621 

N 9.460 5.790 9.011 5.232 1.162 7.433 3.226 7.509 2.882 1.616 

Pnor 

v 51.23 36.01 37.21 25.30 4.838 22.19 31.88 31.88 22.19 4.838 

c 50.64 36.20 35.76 25.02 4.880 22.04 32.04 32.04 22.04 4.880 

S   36.22 25.30  22.26     

9 

nor 

v 10.12 5.950 9.671 5.389 1.129 8.074 3.309 8.143 2.973 1.589 

c 9.945 5.961 9.486 5.375 1.136 7.972 3.321 8.038 2.969 1.597 

N 9.930 5.941 9.495 5.380 1.129 7.983 3.310 8.049 2.973 1.590 

Pnor 

v 58.15 40.57 42.21 28.52 5.139 25.35 36.31 36.31 25.35 5.139 

c 57.10 40.81 40.17 28.11 5.195 25.11 36.56 36.56 25.11 5.195 

S   40.75 28.46  25.37     

10 

nor 

v 10.58 6.090 10.15 5.529 1.100 8.602 3.389 8.661 3.055 1.565 

c 10.39 6.106 9.943 5.513 1.108 8.482 3.402 8.539 3.050 1.575 

N 10.38 6.082 9.954 5.515 1.100 8.503 3.387 8.562 3.055 1.565 

Pnor 

v 65.27 45.13 47.30 31.75 5.423 28.53 40.78 40.78 28.53 5.423 

c 63.61 45.45 44.56 31.19 5.496 28.18 41.12 41.12 28.19 5.496 

S   45.28 31.62  28.46     

 

4. Analysis and conclusions 

Table 1 shows a good conformity between the results 
obtained with use of the matrices (8)(10) for beams 
consisting of the finite elements with variable cross 
section, results obtained with use of the known matrices 
for the finite elements with a constant cross section and the 
results obtained in the literature ([11], [14]) with use of 
other methods than FEM. It proves a correctness of the 
derived matrices. It also proves that the assumed number 
of the finite elements (2 for calculations of nor  and 6 for 

calculations of norP ) is enough what – in turn – shows a 

high efficiency of the presented method. 

 Although there is a little literature data for the 
calculations of the buckling critical force, even the existing 
data for the three supporting ways allow to believe that the 
results for the remaining supporting are correct. 

 Similar calculations can be relatively easily performed 
for other types of variability of the cross section. For a 
construction practice, two types suggest themselves: 1) a 
truncated wedge with variable height (i.e. a cross section 
dimension changing in the bending plane) – then the 
second area moment depends on the 3rd power of the axial 
coordinate, 2) a truncated wedge with variable width (i.e. 

a cross section dimension changing transversely to the 
bending plane) – then the second area moment depends on 
the 1st power of the axial coordinate. However, a limited 
volume of this paper does not allow to present such 
calculations. 

 As a resumée, it can be concluded that the presented 
matrices can be applied in the Finite Element Method for 
calculations of the first natural frequency of transverse 
vibrations as well as critical buckling force of circular 
cross section beams with accuracy sufficient for 
engineering calculations. A certain difficulty arises from a 
quite complicated form of terms of the matrices for a finite 
element with variable stiffness  due to that, an 
introduction of these matrices into a computer program 
seems to be the most time-consuming part of the 
calculations. Nevertheless, two finite elements (as for 
calculations of nor ) described by these matrices generate 

a global matrix with dimensions 9 x 9 (i.e. 81 terms before 
reduction), six finite elements (as for calculations of norP ) 

generate a global matrix with dimensions 21 x 21 (i.e. 441 
terms before reduction). From the other hand, using 40 
finite elements with a constant cross section (as for the 
comparative calculation results in the lines “c” of Table 1) 
generates a global matrix with dimensions 123 x 123 (i.e. 
15129 terms before reduction). The difference and 
advantage is obvious.  
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