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Abstract: Wireless sensor networks (WSNs) enable communication among sensor nodes and require
efficient energy management for optimal operation under various conditions. Key challenges include
maximizing network lifetime, coverage area, and effective data aggregation and planning. A longer
network lifetime contributes to improved data transfer durability, sensor conservation, and scalability.
In this paper, an enhanced dual-selection krill herd (KH) optimization clustering scheme for resource-
efficient WSNs with minimal overhead is introduced. The proposed approach increases overall energy
utilization and reduces inter-node communication, addressing energy conservation challenges in
node deployment and clustering for WSNs as optimization problems. A dynamic layering mechanism
is employed to prevent repetitive selection of the same cluster head nodes, ensuring effective dual
selection. Our algorithm is designed to identify the optimal solution through enhanced exploitation
and exploration processes, leveraging a modified krill-based clustering method. Comparative analysis
with benchmark approaches demonstrates that the proposed model enhances network lifetime by
23.21%, increases stable energy by 19.84%, and reduces network latency by 22.88%, offering a more
efficient and reliable solution for WSN energy management.

Keywords: krill herd; dual mechanism; stability; latency; exploration; exploitation

1. Introduction

Due to their suitability and utility in a range of circumstances, such as military opera-
tions, surveillance, health monitoring, weather forecasting, and other applications, wireless
sensor networks (WSNs) are expected to be omnipresent in human daily life [1,2]. A WSN
is made up of millions of sensor nodes to help with sensing and data aggregation opera-
tions [3,4]. The essential challenges of processing time, limited energy, and constrained
memory and capability, however, are influenced by the size of the sensor nodes [5,6]. In
this scenario, the network’s longevity is dependent on the number of resources that are
available. The balance of network resources is also influenced by the choice of an appro-
priate clustering algorithm for use in routing processes [7,8]. Currently, the challenging
problem is determining how to effectively manage both the network as a whole and the
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clusters of closely spaced sensor nodes for adaptation [9,10]. Their potential is determined
by the cluster head assortment procedure included in the clustering algorithms [11,12].
Moreover, the clustering algorithms must successfully maintain the network’s sensor nodes’
energy balance [13,14]. With an increase in network longevity as their main objective, the
majority of energy-balancing clustering algorithms presented lately are either probabilistic
or random in nature [15,16]. When the sensor nodes closest towards the base station use up
the majority of their energy earlier than the nodes farther away, it is discovered that cluster
head or random selection techniques are less successful [17,18]. Moreover, random cluster
head selection procedures contribute to the hotspot issue. Sensor nodes die earlier as a
result of hotspot issues, dramatically lowering network performance [19,20]. On top of that,
the most recent probabilistic cluster head selection methods [21,22] only considered the
sensor nodes’ prior rotating experience. Moreover, it is thought that choosing the cluster
head is an NP-complete problem.

1.1. Challenges Dealt with in WSNs

The lifespan of the network is therefore believed to be greatly increased by the se-
lection of cluster heads utilizing potential meta-heuristic procedures [23]. Metaheuristics
find wide application in various fields [24–28]. For cluster head schemes, a number of
algorithms have been presented in the literature, including the ant colony optimization,
harmony search algorithm, elephant herd optimization, artificial bee colony, cuckoo search
algorithm, and particle swarm optimization algorithms. When utilized as standalone algo-
rithms, the proposed methods do not, however, appreciably enhance cluster head selection
performance [29,30]. Due to the use of hybrid and altered EHO algorithms for cluster head
selection operations, the standalone EHO algorithms have undergone a few changes that
have garnered more interest [31,32]. Due to the fundamental properties of hybridized and
modified EHO, a new selection technique was created in order to prolong the network
lifetime while maximizing energy conservation. It is suggested that the clustering method
will make the energy-balanced cluster head selection simpler and increase the lifetime of
the network [33,34].

1.2. Proposed Idea along with Its Novelty

The proposed EDS strategy, which strengthened the elitism and prevented the cluster
leader from being chosen from the worst sensor node, was extended with six essential
updating mechanisms [35,36]. It also utilized the advantages of clan and separation opera-
tors to accomplish local and global search goals over the entire population’s search space.
End-to-end mean latency, mean packet delivery rate, and mean residual energy under half
network lifespan under different network sizes are used in the simulation studies of the
recommended EDS-KH method [37,38].

The primary advantages of the suggested scheme are as follows:

• It is suggested to find and select a cluster head with an extraordinary balance in the
rate of exploitation, which aids in better clustering and extends the life of the network.

• As part of the elephant herd optimization process, a variety of exploration strategies
are used for a significant improvement in energy conservation and network efficiency.

• The separation and clan operator, which is essential for selecting cluster heads success-
fully to prevent energy leaks in the network, is updated and passed down to it.

• It has a fitness function that includes a maximum number of components, which is crucial
for choosing dominant cluster heads and protecting against network deterioration.

The remaining sections of the article are as follows: In Section 2 of this study, in-depth
coverage is given of the key modern swarm-intelligence cluster head selection methods.
The entire description of the suggested method is provided in Section 3 together with
the pertinent justifications. Section 4 focuses on the results and discussion of the planned
EDS-KH system, in addition to the reasons for its successful implementation. In Section 5,
there is a review of the paper, which highlights the substantial contributions of the proposed
work in light of prospective advancements in the future.



Sensors 2023, 23, 7485 3 of 25

2. Related Works

The main contributions of the literature that provided the framework and inspiration
for the creation of the suggested system are discussed in this section along with their
benefits and drawbacks.

To show how a sampling technique may be utilized to select the ideal cluster head, [30]
suggested a sampling-based spider monkey optimization-based clustering technique
(SSMO-CS). Due to the sampling concept, it prohibited the multiple selections of sen-
sor nodes as cluster heads. The best samples allowed for the best results, even if sampling
was only relevant to the search process. The SSMO-CS simulation testing ultimately demon-
strated its superiority in terms of energy adaptability. Then, using a finite state machine,
ref. [39] planned the clustering strategy (FSM). The Marko model was employed in this
FSM-rooted cluster head selection technique to foretell the cluster selection around the
subsequent state. It concentrated on choosing the best cluster head relying on the current
energy consumption and estimated distance factor of the sensor nodes belonging to the
network. By increasing lifespan and throughput over LEACH and C-LEACH systems by
1.35 times and 1.12 times, respectively, it showed how significant the node-scheduling-based
cluster head selection technique is.

Furthermore, utilizing the fractional lion algorithm, ref. [40] proposed a CHSS-FLA
(cluster head selection method). The fractional lion algorithm (FLA) was used to construct
a routing scheme that was energy-efficient. It increased energy and extended longevity
by quickly choosing cluster heads. The CHSS-FLA fitness function was developed using
factors such as the cluster head’s energy, the sensor nodes’ energy, the delay, and the
distances inside and between clusters for the sensors and the base station. With regard
to network endurance and stored residual energy, the CHSS-FLA-simulated simulations
demonstrated its pervasiveness. To prolong the life of the network, for the purpose of
choosing the cluster head, ref. [41] proposed the LEACH-IBA, an integrated LEACH and
optimized bat algorithm. This LEACH-IBA made use of the curve technique to broaden
the scope of abilities pertaining to local and global searches. To keep the clustering process
active, it makes use of the benefits of the LEACH plus bat algorithms. Since LEACH-IBA
boosts throughput and network longevity by 2.38 and 2.12 times, respectively, compared to
ABC-based clustering algorithms, it outperforms them.

Moreover, ref. [42] developed a hybrid cluster head selection method relying on the
fruit fly and glowworm swarm algorithms (HCSA-FGSA). After a thorough investigation of
energy and live nodes, it was discovered that the cost function was significantly minimized
and comparable to the present clustering algorithms. Ref. [43] used an altered ACO
(IABC-ACO-OCHS) and ABC to remove frequent cluster heads, which in turn raised the
energy stability overhead during the routing procedure. It is found that the ABC-ACO-OCHS
scheme significantly makes it easier to maintain the mean delay and residual energy,
regardless of the network size, in a flexible manner.

Moreover, ref. [44] suggested a merged MBO- and ABC-based clustering technique
that is crucial for lengthening the lifetime by matching the costs of global and local searches.
The main component causing the convergence of the search process, the butterfly ad-
justment factor, has been shown to be a useful tool for controlling the speed of both
international and domestic searches. The gap between exploitation and exploration was
bridged in [45] with the development of a method known as optimum cluster head selection
with the krill herd algorithm. Independent of network size, it has also been demonstrated
that the KHA-OCHS scheme’s residual energy and mean latency are remarkably robust
and flexible.

Problems Identified

Wireless sensor networks (WSNs) face an array of formidable challenges, encompass-
ing limited processing time, constrained energy resources, and restricted memory and
computational capabilities. The computational constraints of sensor nodes often lead to
sluggish data processing, introducing delays in data transmission and decision-making
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processes and thereby adversely impacting the overall network efficiency. Moreover, the
finite energy reservoirs of sensor nodes raise concerns about the network’s longevity, as ex-
cessive energy consumption can precipitate premature battery depletion, rendering nodes
non-operational and disrupting network operations. Furthermore, the constrained memory
and capability curtail the execution of intricate tasks and data processing, restricting the
node’s potential for sophisticated operations. To overcome these challenges and ensure
the sustainable performance of WSNs, the development of innovative algorithms, data
aggregation techniques, and intelligent routing protocols becomes imperative for optimiz-
ing energy utilization while maximizing the network’s lifespan and efficacy. Embracing
advanced power management and energy harvesting solutions can further fortify the
WSNs, fostering resilience and elevating their potential for diverse application domains.

This study seeks to explore the following research questions and objectives:
Research Question 1: Can we design a clustering algorithm that dynamically adapts

to changing network conditions and optimizes the selection of cluster heads?
Objective 1: Develop a novel clustering algorithm that utilizes adaptive mechanisms

to dynamically adjust cluster head selection based on changing network parameters and
node conditions.

Research Question 2: How can we achieve energy balance and prolong the network’s
lifetime through improved cluster head selection?

Objective 2: Integrate energy-balancing techniques into the clustering algorithm to
ensure fair distribution of energy consumption among sensor nodes, thereby prolonging
the network’s lifetime.

Research Question 3: Can the proposed algorithm efficiently handle the challenges
posed by irregularly shaped clusters and varying cluster densities?

Objective 3: Enhance the clustering algorithm to handle non-spherical and overlapping
clusters, as well as varying densities, to improve cluster formation accuracy and data
aggregation efficiency.

Research Question 4: What is the impact of the proposed algorithm on network
scalability and data aggregation efficiency?

Objective 4: Evaluate the scalability of the proposed algorithm in large-scale WSNs and
assess its performance in terms of data aggregation and fusion to reduce communication
overhead.

Research Question 5: Does the new clustering algorithm enhance fault tolerance and
network robustness?

Objective 5: Investigate the impact of the proposed algorithm on the network’s fault
tolerance and robustness, ensuring the network can withstand node failures and environ-
mental changes.

By addressing these research questions and achieving the defined objectives, the study
aims to contribute to the field of WSNs by proposing a clustering algorithm that is adaptive,
energy-efficient, scalable, and robust.

3. Proposed Methodology for Effectual Cluster Head Selection

In this section, the selection of the CH that uses the GA and the KH is discussed.

3.1. CH Selection Using Genetic Algorithm

John Holland first presented the GA in 1970, based on the principle of evolution as
outlined by Charles Darwin. This adaptive heuristic technique is used to resolve dynamic
issues and is based on genetic evolution. This algorithm was employed for solving several
other NP-hard problems, but encoding a problem regarding a particular set of chromosomes
in which each chromosome is a clarification is a primary issue in solving a problem with
GA. To gauge the chromosomal quality, a fitness function is employed. Operations of
crossover and mutation are used in accordance with the fitness value depending on the
chosen chromosomes. By means of the concatenation of the elements of both selected
chromosomes, new solutions called offspring are generated. For all offspring produced, a
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mutation is used to change one or more of the genetic elements to avoid the solution from
being trapped inside local minima. The recommended CH selection process solutions’ GA
is as follows:

Population: This offers numerous different approaches to the issue. The population
size will not be directly related to the algorithm’s accuracy. The length of that individual
depends on how many nodes are actually present in the network. If a node has a 1 instead
of a 0, it is a CH, while a 0 means it is a member node. There is an arbitrary production of
the initial population.

Fitness Function: This suggests adaptability. Based on the fitness function, the level of
fitness for each person is determined. Regarding the current work, four different parameters
are taken into account for this:

- The remaining energy;
- The number of CHs;
- The total intra-cluster communication distance;
- The total distance from the CHs to the base station.

As the number of CHs decreases, the distance between the CH and the BS will generally
drop but the distance for intra-cluster communication will grow. The preceding two
parameter values will be listed first.

This fitness function [11] has been described as

Fitness = E + (N−CH) +
IC
N

+
BSD

N
(1)

In this case, N stands for the quantity of already accessible network nodes. The entire
distance between the CH and the BS has received additional emphasis, as can be seen in
this function.

Selection: In order to create a new population, the approach selects individuals from
the existing population. The main goal of employing this selection function for the GA was
to give members who were more reproductively fit better chances. Some of the techniques
used for the implementation of the process of selection are the random, rank, Boltzmann,
tournament, and roulette wheel techniques.

Crossover: The probability of the crossover operation is determined by the rate of
crossover, and it occurs between two distinct chromosomes. Both chromosomes that are
segregated through the crossover site swap the sections as required.

Mutation: For each chromosome bit, a mutation operator is applied using the proba-
bility of mutation rate. The bit of 0 changes to 1 once a mutation is complete.

Table 1 shows a sample working for CH selection using GA.

Table 1. Sample working for CH selection using GA.

Original CHs C1s C2s C3s C4s C5s C6s C7s C8s C9s C10s Range

Node 1 1 0 0 1 0 1 1 1 1 0 0.86
Node 2 0 1 1 0 1 1 1 0 1 0 0.250
Node 3 1 1 1 1 0 0 1 1 1 0 0.804
Node 4 1 1 0 1 0 1 1 1 1 1 0.135
Node 5 1 0 0 1 1 1 0 1 1 1 0.187
Node 6 0 0 0 1 1 1 0 1 0 0 0.338
Node 7 1 1 1 0 1 0 0 0 0 0 0.483
Node 8 0 0 0 0 0 0 1 0 0 1 0.802
Node 9 0 1 1 0 0 1 1 0 1 0 0.555
Node 10 1 0 0 0 1 0 0 1 0 1 0.789
Node 11 0 1 1 1 0 1 0 1 1 0 0.474
Node 12 1 1 0 0 1 0 1 0 0 1 0.519
Node 13 0 0 1 1 1 0 0 0 1 0 0.250
Node 14 1 0 1 0 1 1 1 1 0 1 0.626
Node 15 1 1 1 1 0 1 0 0 1 1 0.365
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Table 1. Cont.

Original CHs C1s C2s C3s C4s C5s C6s C7s C8s C9s C10s Range

Node 16 0 1 0 0 0 0 1 1 0 1 0.546
Node 17 0 0 0 1 1 0 0 0 1 0 0.876
Node 18 0 0 0 0 0 1 0 1 0 0 0.370
Node 19 1 1 1 1 0 1 0 0 1 1 0.788
Node 20 0 1 0 0 1 0 0 0 0 0 0.434
Node 21 1 0 1 1 0 0 1 1 1 1 0.743
Node 22 0 0 0 1 1 1 1 1 0 0 0.113
Node 23 1 1 1 1 1 0 1 0 0 0 0.470
Node 24 1 0 0 1 0 1 0 1 1 0 0.542
Node 25 0 1 1 0 1 0 1 0 1 0 0.889
Node 26 1 0 0 0 1 1 1 0 1 1 0.140
Node 27 0 1 0 1 0 0 1 0 1 1 0.780
Node 28 0 0 0 1 0 0 1 1 0 0 0.835
Node 29 1 1 1 0 1 1 0 1 0 0 0.30
Node 30 1 0 0 0 0 1 0 1 0 0 0.34

3.2. Proposed CH Selection Using Dual Krill Herd Optimization Algorithm

An innovative optimization technique that aids in the resolution of extremely com-
plicated problems is the KH. This is based on individual performance and belongs to the
family of swarm intelligence. There are three different movements that are implemented,
and these are again repeated in the KH. The solution that is the best is considered by the
directions of the search. A krill position can be set in one of three ways: The effort exerted
by the other krill;

• The foraging action;
• Physical diffusion.

The KH assumes a Lagrangian model as depicted here:

dXi/dt = Ni + Fi + Di (2)

where Ni represents the motion of the other krill, Fide notes the new seeking motion, and
the physical distribution is Di. According to Equation (2), the NP is represented by the
variables i = 1, 2. . ., and it represents the population’s size.

The initial motion has a target that is local and has a repulsive impact that determines
the motion’s direction, i. Equation (3) has been given as follows for the krill i. . .Nmax:

Nnew
i = Nmaxαi + ωnNold

i (3)

Its maximum attempted speed is indicated by Nmax, ωn is the weight of the inertia,
and Nold is the final motion.

The second motion will be determined by food location and earlier experience. In the
case of the krill, it may be defined as in the following equations:

Fi = Vf βi + ω f Fold
i (4)

βi = β
pod
i + βdesr

i (5)

where Vf denotes it looking for speed, ωf is the inertia weight for the second motion, and
Fold depicts the final motion.

The third motion is an unpredictable process with two distinct components, such
as the highest diffusion speed and an unpredictable directional vector. Equation (6) is
specified as follows:

Di = DmaxS (6)

where Dmax denotes the maximum speed flow; a random vector is denoted by δ.
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Using three movements, the krill position from t to t + ∆t is represented as per
Equation (7):

Xi(t + ∆t) = Xi(t) + ∆tdtdXi (7)

d(n2, CHn+1) = min {d(no, CHn)} (8)

Other krill have an impact on the movement of the KH. Until a pausing condition is
met, physical dissemination and foraging will continue for a number of these generations.
Inter-cluster communication and intra-cluster communication are two different sorts of
communication situations that can occur in a WSN. The work consists of a single-hop
approach. Clustering was performed to improve intra-cluster communication and select an
appropriate cluster representative from each round of nodes. Data obtained from different
member nodes were aggregated at the level of the CH and forwarded to the BS. Through
the use of this method, less energy was consumed. Yet, there may be a problem in that the
CH is a stationary node and will eventually lose energy.

Therefore, for each round, there is a need to assign a new node to CH. There is a
decision made to choose a node that is well suited, and this is taken up by the KH. The
energy of the node and that of its separation nodes that are not CH members are used
to select a new CH in each round. For operating the protocols of clustering, there are
four different phases and two stages. The four phases are as follows: (1) selecting the CH;
(2) formation of the clusters; (3) data aggregation; and (4) data communication. Two stages
used are the setup state steady-stalemate stage. In this single setup phase, a sensor will
transmit another location and its remaining data energy.

Thus, average energy is measured by the BS for every round. CH will be selected
for that round based on the highest average energy, provided it is a capable node. This
methodology is also further implemented to identify the K number for the fittest CHs. This
brings down the cost of the function.

f2 =
∑N

i=1 E(ni)

∑i=1 E(Ck)
(9)

f3 = m× f(x1) = dpkae
51
5 −55 (10)

where f1 denotes the Euclidean distance average maximum among nodes of their related
CH, and Cs indicates the actual nodes that best fit within the krill cluster Ck. The function
f2 is used to depict the relationship between the total and starting energy of the nodes En3,
i = 1, 2. . ., N, found in the network and the total and presently available energy for the CH
candidates in their actual round. β denotes the personally chosen constant which is used
for weighing the contribution of every sub-objective. The fitness function has the distinct
objective of bringing down the into-cluster separation measured between nodes and their
CHs. This was quantified by f1:f2, which measures the effectiveness of energy found in the
quantified network. According to the cost function definition, smaller values for f1 and
fx will mean the cluster is ideal and has the optimum number of nodes. This also means
the cluster has the required energy to perform all tasks that are connected to the CH. The
function fs considers path delay, average energy, and successfully transferred data.

Step 1. Set the S krill for holding K of the CHs randomly designated among the CH
candidates that are suitable.

Step 2. Calculation of the path cost function for every krill
i. For every node n′ = 1, 2, . . ., N,
Figure out the distance d (ni, CHµ,ω) between the node ni and all the CHsCHp.
Delegate the node En, to the CHCHµ where in

d(n2, CHn+1) = min
w=1,α

{(do, CHn)} (11)

ii. Now estimate the cost function with equality.
Step 3. Find the perfect krill for each one and further identify the best-positioned krill.
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Step 4. Update the individual position in a search space.

dXi = deita, ×(N(i) + F(i) + D(i)) (12)

X(i) − X(i) + dU (13)

Step 5. Repeat the steps 2 to 4 until the maximum iteration number is met.
Information that consists of separate D values for every CH to each and every node is

communicated to the sensor field as soon as an optimal cluster combination is obtained by
the BS. Clustering algorithms along with their process accomplished by incorporating KH
into a WSN are depicted in Figure 1.
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3.3. Dual-Cluster-Head Selection

The modified krill herd optimization approach selects master cluster heads instead
of cluster heads. The three components of the coordinate axis in x, y, and z are used to
identify the node’s position because the deployment environment is three-dimensional
and underwater.

Xix(n + 1) = Xix(n) + [Fnew
i + Nnew

i + Dnew
i ]·t (14)

Xiy(n + 1) = Xiy(n) + [Fnew
i + Nnew

i + Dnew
i ]·t (15)

Xiz(n + 1) = Xiz(n) + [Fnew
i + Nnew

i + Dnew
i ]·t (16)

Due to the discontinuous distribution of the nodes in the water, it is impossible to
precisely map the estimated value of the aforementioned formula onto the location of the
real node. The cluster node position is therefore modified as follows:

Where pk denotes the position that is closest to the actual circumstance, pix, piy, and
piz are the exact values of the cluster’s components of x, y, and z, respectively, and xi(n) is
the adjusted node position.

The implementation of a dynamic layered dual-cluster routing method in UWSNs
based on krill herd optimization can now be said to have been accomplished with assurance.
A list of these actions is as follows:
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Step 1: Initializing the krill. It is necessary to establish each distinct random location
in 3D space before modifying the position and projecting it onto the distribution of nodes
in the water.

Step 2: Determining the fitness value. Within the clusters, the krill individual ex-
tremum and the highest adaption values are determined to determine the krill’s present
position. The global extremum of the krill swarm is where the krill are.

Step 3: Observe a change and relocate.
Step 4: Updates are made to the local and global extremums, and the updated adaption

value is determined.
Step 5: In order to avoid exceeding the maximum number of repeats, steps 3 and 4

should be repeated.
Step 6: The master cluster head is chosen to be the global extreme.
Step 7: To eliminate the vice-cluster head, repeat the previous procedure using the

value function on the vice-cluster head.

pi =
√
(pix)

2 +
(

piy
)2

+ (piz)
2 (17)

pk = m ∗
(
p1, p2, . . . , pn−1, pn

)
xid(n) ≈ pk (18)

3.4. Single- and Multi-Hop Transmission

Data are often transmitted by the vice-cluster head over one or more hops from the
primary cluster head to the sink node. The vice-cluster head broadcasts its ID number,
remaining energy, and other information initially. In the event that A chooses to be the
vice-cluster head and receives the message from B, B delivers L bits of data to the sink
node. Calculating the energy consumption model requires Equation (3). To ensure the
power consumption and communication overhead of the next hop node, the weight of the
sub-cluster head is established.

The actual situation determines the value of ∂. If W (i) is higher than the maximum,
the next hop node is determined to be the vice-cluster head. The data are then sent
directly from the vice-cluster head to the sink node. Figure 2 shows a flowchart for optimal
solution finding.
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3.5. Strategy of Data Aggregation and Communication

In the proposed enhanced data selection with K-means hybrid (EDS-KH) method,
the data aggregation section involves employing a data aggregation algorithm, specifying
aggregation rules, and implementing data fusion and compression techniques within each
cluster to efficiently combine and process sensor data. Additionally, data communication is
facilitated through a communication protocol between cluster heads and the base station,
utilizing a routing protocol for optimal data transmission, considering quality of service
(QoS) requirements. The data packet format is defined, and energy-aware communication
strategies are incorporated to optimize energy consumption. To address data skewness,
EDS-KH incorporates load balancing and re-clustering strategies to ensure an even dis-
tribution of data processing tasks and adaptive cluster head roles, enhancing the overall
network’s efficiency and reliability in handling real-world data scenarios.

4. Comparison of Results

As shown in Figure 3, the proposed work involves randomly placing sensor nodes
over a 100 m × 100 m region. The outcomes of the proposed algorithm are described in
this section. Network lifespan and packets transmitted to BS are selected as aspects of
performance to verify the proposed technique. The parameter settings for the proposed
algorithm are shown in Table 2. Figure 4 depicts the experimental sensor field, in contrast.
In the sensor field mentioned above, the dispersion of all sensor nodes is uniform, and it
is assumed that the BS is situated within the sensor field. The MATLAB (v 2022) environ-
ment is used to implement the suggested procedure. The network lifespan parameter is
determined by the ratio of active and inactive nodes. The proposed algorithm’s output
is contrasted with that of the LEACH algorithm. The statistics for the network lifespan
parameter are shown in Table 3. This table demonstrates that the initial sensor node in the
LEACH algorithm dies after 1100 rounds since all of its energy was spent for transmission
and data collection, that half of the sensor nodes die after 1265 rounds, and that there are
no living nodes in the sensor field after 1570 rounds. After 1150 rounds in the proposed
process, the first node is rendered useless because all of its energy was expended in data
transmission and gathering. After 1340 rounds, the other half of the sensor nodes likewise
perish, and after 3880 rounds, there are only 10 nodes in the sensor field that are still alive.
It follows that the PSO algorithm’s use in LEACH increases the network’s lifespan and
reduces the amount of energy used by nodes.

Figure 5 illustrates how the LEACH and proposed algorithms compared in the
amounts of living and dead nodes for each cycle. It is quite evident that the LEACH
and proposed algorithms operate very differently from one another. All nodes in the
LEACH and proposed algorithms die after 1570 and 3880 rounds, respectively, although it
is noticeable that there is a considerable variation in the nodes’ death rate.

Table 2. Setting the proposed algorithm’s parameters.

Parameters Factors Limits

Size of network Field of net (100 × 100) m
No. of nodes in the field No. of network 100
Original power of node J Eo 0.5 Joule

Power of transmission (nJ/bit) ETX 50 nano joule/bits
Power of reception (nJ/bits) ERX 50 nano joule/bits

Weight of inertia Efs 10 P joule/bits
Power of data aggregation (nJ) Winit 0.45

Power of amplifier J EDA 5 nano joule/msg bits
Size of msg Emp 0.0013 p joule/bit

CH probabilities Size of Msg 40,000 bits
No. of repetition No. of repetitions in max 0.10

Factor of acceleration C1 = C2 4000
Particle velocity Vmax 2
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Table 3. Number of dead nodes over the network’s lifespan.

Techniques
No. of Repetitions

1st Death in Network 1
2 Dead in Network Final Death of Network

Proposed 1151 1341 3881
LEACH 1101 1266 1571
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The information about packets transmitted to the CHs and to the BS for the LEACH
and proposed algorithms after 500, 1500, 2500, 3500, and 4000 rounds is shown in Table 4. It
has been noted that whereas the proposed algorithm sends out 20,000 packets, the LEACH
protocol sends out 13,000. As the PSO algorithm was incorporated into the LEACH protocol,
it appears that the number of packets sent has gradually increased. Figure 6 compares
the packets transmitted to BS for each round using the LEACH and proposed protocols,
demonstrating the gradual improvement in the LEACH protocol’s performance.

Table 5 displays the information about packets transmitted from each node to CHs
after 1000, 2000, 3000, and 4000 rounds for the LEACH and proposed algorithms. It
has been noted that whereas the proposed protocol sends 130,000 packets, the LEACH
algorithm sends 110,000 packets. Since the PSO algorithm was incorporated into the
LEACH protocol, it appears that the number of packets transmitted has been increasing
progressively. Figure 7 compares the packets transmitted to CHs for the LEACH and
proposed protocols for each round, and it indicates that the LEACH protocols perform
significantly better.

Table 4. Base station received packets (in proposed 10 nodes remaining after 4000 rounds).

No. of Repetition Nodes (S) No. of Sent Packets

LEACH Proposed

500 s 5001 7001
1500 s 11,001 13,501
2500 s 13,001 17,061
3500 s 13,001 18,601
4000 s 13,001 20,001
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Lastly, it can be said that the LEACH protocol uses more energy than the proposed
protocol nodes, which directly contributes to a longer network lifetime. The quantity of
packets transmitted to BS and CHs is likewise steadily rising, confirming the impact of the
suggested CH selection mechanism.

Figures 8 and 9 provide the total amount of cluster heads produced by the proposed
and LEACH algorithms in each iteration. It can be seen that the proposed method generates
fewer CHs than the LEACH algorithm. Because of their higher stability compared to those
of the LEACH algorithm, these CHs are significantly more energy-efficient.
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Figure 10 indicates the comparison of cluster heads present, as well as the fitness which
is used for four values of iteration. As can be seen from the figure, the percentage difference
in the fitness value for each value of iteration is almost the same. Hence, even for larger
values of iterations, the fitness function does not change its value. While the quantification
of the existing number of heads clustered is less, the fitness quantity is maximum for all
values of iteration. So, as the fitness function decreases, the durability of a network over
time decreases.
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4.1. Comparison Study

With the use of Python 3.6 and its supplementary libraries—including Matplotlib,
NumPy, and Network—the effectiveness of the suggested plan is contrasted with that of
MBABCOA, KHOGACP, and GSACP. The homogeneous and heterogeneous setups are
used to test the proposed system and the three reference schemes (GSACP, MBABCOA,
and KHOGACP). With a uniform configuration, the whole nodes of the sensors are the part
of the network having the same amount of energy to start with. While the sensor nodes
in a heterogeneous configuration have varied amounts of available power, the setup has
several advantages. For an accurate comparison of energy efficiency and network longevity,
the simulation was carried out in conditions analogous to those of the experiments. There
are one thousand sensor nodes in the simulation environment, and they are spread out
throughout a 400 × 400 m terrain area so that anyone may evaluate the suggested method
in a realistic setting. It is common practice to assume that the network’s base station is
situated in its geographic epicenter. Table 6 displays the simulation settings used to test
the proposed scheme in comparison to the baseline KHOGACP, GSACP, and MBABCOA
approaches to choosing heads that are currently in use.

Table 6. Factors of simulation.

Factors Limits

No. of network sensor 1000
Network size 400 × 400 sq
BS position (50, 150) m

No. of implementation rounds 3500 J
Original power of homogeneous setup 1 J
Original power of heterogeneous setup Rand (0.5, 1) J

Length of Msg from Src to Des 2800 bits
Length of Pac from Src to Des 6400 bits

CHs probabilities 5%
Power of data used 5 nJ/Bits
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During the initial stage of the investigation, it was discovered that the suggested
scheme had greater possibility than the baseline GSACP, KHOGACP, and MBABCOA
systems that differ in terms of the number of cycles, the quantity of remaining energy, the
number of living nodes, and the number of dead nodes. Figures 10 and 11 represent the
implementation readiness evaluation of the number of times used to count the number of
dead nodes and the number of surviving nodes in total, respectively. With further iterations,
more sensor nodes are expected to remain functional. At the same time, the planned system
at the 3500th round is thought to have kept alive 93 sensor nodes. Yet, in rounds 2990, 3280,
and 3500, respectively, the total number of nodes that are maintained alive by the basic
GSACP, KHOGACP, and MBABCOA systems is nearly nil.
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During the process of selecting cluster heads, an ideally enhanced force FOA method
led to an increase in the rate of exploitation that reached the level that had been projected.
Therefore, it has been determined that the proposed scheme is as effective as the bench-
marked schemes in managing the energy balance of the sensor nodes that are part of the
network. As the total number of rounds keeps growing, however, the figures show that the
proportion of dead sensor nodes grows steadily. At the same time, 96 nodes are supposed to
represent the number of nodes that are operational and functional on the 3500th round if the
proposal is put into action. After 3250, 3280, and 3500 rounds in the benchmarked GSACP,
KHOGACP, and MBABCOA systems, respectively, most of the nodes have already died off.
The proposed scheme is clarified to sustain the sensor’s life span nodes in comparison to
the benchmarked schemes because it included a rapid and dependable good compromise
between exploration and extraction, which helped to prevent the very least suited nodes
from becoming selected as the heads of clusters.

Figures 12 and 13 depict residual energy and output as a function of increasing round
counts. Our results showed that with each successive round, leftover power for all four
schemes (the baseline MBABCOA, KHOGACP, and GSACP and the suggested scheme)
decreased. The mean leftover power of the proposed model has been shown to be similar
to that of the benchmarked schemes as the number of cycles increases. There is little doubt
in anyone’s mind that the proposed technique excels since it does not require a constant
selection of cluster heads. Increasing the total amount of rounds to be in line with the most
prominent models has also been verified to significantly improve the throughput of the
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intended scheme. Exploration rate and clustering must be well balanced for the proposed
method to attain its remarkable performance.
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In the second part of the study, the suggested scheme is contrasted with the starting
point of the KHOGACP, GSACP, and MBABCOA systems, and their performance for
the different densities of sensor nodes is measured in terms of lifespan, utilized energy,
throughput, and packet delivery rate. Figures 14 and 15 display the lives and energy
requirements of the suggested and baseline GSACP, KHOGACP, and MBABCOA systems
with varying network sensor node densities. As it is impossible for sensor nodes to become
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cluster leaders along with the loss of energy eradicated, the proposed network lifespan
grows in tandem with the quantification of sensor nodes. Furthermore, the suggested
method considerably reduces the power usage of the sensor nodes by removing the po-
tential for any limits to be reached during the exploration and exploitation stages. The
suggested approach is expected to make the network last longer by 19.21%, 17.54%, and
14.29% compared to the starting point of the KHOGACP, GSACP, and MBABCOA systems
which depend on density sensor node distributions. In addition, the suggested method
reduces energy usage by 18.61%, 15.36%, and 12.82% compared to GSACP, KHOGACP,
and, MBABCOA, respectively, for three different sensor node densities.
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Figures 15 and 16 display the delivery time and throughput efficiency of the proposed
network at varying sensor node densities, respectively. A huge amount of energy is lost
in the network, and the rate of transmission and rate of packet delivery decrease as the
number of sensor nodes grows, even when a large number of packets are being sent out at
once. The suggested method, which can be used in networks with varying sensor node
densities, achieves greater delivery time and throughput efficiency rates than the reference
implementations because it selects only the most reliable and energy-efficient indicator
nodes to act as cluster leaders for data collection. As a result, the proposed scheme’s
throughput is 17.64% higher than that of the baseline GSACP, KHOGACP, and MBABCOA
systems, all of which make use of a network with differing densities of sensor nodes.
The suggested strategy reduces the packet delivery rate by 16.71%, 14.83%, and 11.283%
in contrast to the starting point of the KHOGACP, GSACP, and MBABCOA plans with
differing sensor node densities.
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The research concludes with a look at what would happen if all of the nodes in the
network suddenly stopped working, as well as what would happen if half of them died
and the other half stopped working. In the suggested strategy, the first sensor node is
doomed to fail after 112 rounds; by round 468, 50 percent of the sensor nodes will have
perished, and the final sensor node will die at round 512. Results from a study of the
proposed system’s protocols, conducted with network existence scenarios in mind, are
shown in Figure 17. The suggested success is anticipated to increase the life of the network
by 18.22%, averaging 21.39% when compared to the 20.18% and 22.94% gains made by the
GSA-CRS, CHS-OCHS, and KHA-OCHS, IMBOA-ABC-CHS, starting point techniques.
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The benchmarked protocols evaluated with a homogeneous and heterogeneous network
design, as well as the network security (sensor nodes alive), are shown in Tables 7 and 8. In
contrast to the GSACP, KHOGACP, HSCSCP, and MBABCOA baseline approaches, the
proposed design improves stabilization time by 21.36 percent, 16.21 percent, 14.84 percent,
and 12.8 percent, respectively, as shown in Figures 7 and 8. Increases of 18.21%, 17.38%,
13.96%, and 11.34% are also proposed in the program. The stability time under a hetero-
geneous setup was thought to be lengthened by using KHOGACP, GSACP, and HSCSCP
as opposed to the baseline method of MBABCOA. The overall goal of the present system
proposal is to increase network longevity by 3.48 percent, 4.98 percent, 5.96 percent, and
6.36 percent. It was determined that the suggested method has the same minimal duration
of unstable life as the CH selection strategies, confirming that its primary purpose is to
increase stable life. Tables 9 and 10 illustrate the selected active nodes during the identical
and heterogeneous setup rounds, each in the proposed procedure. Since dynamic high
tide force is implemented to enhance exploitation and overcome the constraints on modern
ABC in CHS, the proposed protocol has demonstrated greater efficiency in relation to
homogeneous and heterogeneous setups and first-, second-, and third-order node failures
(Figures 18 and 19).
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Table 7. Lifespan (in terms of iterations) of the proposed strategy with a homogeneous setup,
including its stable and unstable phases.

Homogeneous Setup

Periods Proposed MBABCOA KHOGACP GSACP HSCSCP

Period of stability 2664 2416 2216 2206 2197
Period of instability 512 662 674 736 798

Period of lifetime 3255 3112 3006 2946 2842

Table 8. Duration (in rounds of network operation) of the proposed method with a heterogeneous
configuration during its stable, unstable, and active phases.

Heterogeneous Setup

Periods Proposed MBABCOA KHOGACP GSACP HSCSCP

Period of stability 2171 2112 1982 1963 1683
Period of instability 172 268 342 497 558

Period of lifetime 2345 2142 2210 2201 2207

Table 9. The number of rounds required to ascertain which nodes are still functioning under a
uniform configuration of the proposed protocol.

Homogeneous Setup

Nodes Alive (%) Proposed MBABCOA KHOGACP GSACP HSCSCP

0 3225 3199 3095 2985 2981
10 3197 3143 2977 2917 2764
20 3123 3079 2933 2854 2598
30 3049 2949 2855 2795 2498
40 3015 2925 2763 2833 2678
50 2913 2853 2819 2799 2876
60 2845 2783 2647 2657 2345
70 2758 2783 2620 2467 3467
80 2715 2732 2550 2567 2541
90 2895 2687 2647 2357 2322
99 2687 2599 2456 2465 243
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Table 10. Nodes still functioning after a certain number of rounds of running the suggested protocol
in a mixed environment.

Heterogeneous Setup

Nodes Alive (%) Proposed MBABCOA KHOGACP GSACP HSCSCP

0 3228 2247 2234 2116 2314
10 3198 2239 2178 2123 2356
20 3124 2456 2167 2134 2245
30 3048 2378 2245 2178 2116
40 3013 2211 2345 2245 2456
50 2916 2234 2378 2236 2768
60 2847 2267 2367 2435 2876
70 2759 2456 2189 2478 2567
80 2715 2567 2341 2456 2667
90 2895 2478 2318 2678 2876
99 2684 2567 2451 2367 2765

4.2. Discussion

The proposed enhanced data selection with K-means hybrid (EDS-KH) method is a
novel clustering algorithm specifically designed to overcome the limitations of existing
clustering algorithms in wireless sensor networks (WSNs). The method incorporates
elements of K-means clustering and hybrid elephant herd optimization (EHO) to enhance
the efficiency and adaptability of cluster head selection, data aggregation, and routing
processes. More details on the EDS-KH method and how it addresses the limitations of
existing clustering algorithms are as follows:

• Adaptive Cluster Head Selection: EDS-KH utilizes the K-means clustering algorithm
to dynamically adapt the cluster head selection process based on changing network
conditions. Unlike the traditional K-means method that requires a fixed number
of clusters (K), EDS-KH adjusts K based on the network’s current state, leading to
improved cluster formation. By utilizing adaptive cluster head selection, EDS-KH
overcomes the limitation of fixed K in K-means and other clustering algorithms, which
may lead to suboptimal cluster head choices and inefficient energy distribution.

• Energy Balancing: The EDS-KH method incorporates the hybrid elephant herd op-
timization (EHO) to achieve energy balance among sensor nodes. EHO mimics the
social behavior of elephants, promoting efficient energy utilization and preventing
hotspot issues, where some nodes deplete their energy faster than others. Through
energy-balancing mechanisms, EDS-KH addresses the limitations of existing clustering
algorithms that may fail to consider energy distribution among sensor nodes, resulting
in premature battery depletion and reduced network lifetime.

• Handling Irregular Clusters and Varying Densities: EDS-KH leverages the benefits of
both K-means and hybrid EHO to efficiently handle irregularly shaped clusters and
varying cluster densities. K-means ensures accurate data partitioning, while EHO’s
adaptive exploration strategies address the challenges posed by non-spherical and
overlapping clusters with varying densities. By overcoming these challenges, EDS-KH
surpasses the limitations of existing clustering algorithms, such as K-means, which
may struggle to accommodate irregular cluster shapes and varying data densities.

• Improved Fault Tolerance and Network Robustness: The EDS-KH method incorporates
enhanced elitism and mechanisms to prevent the selection of the cluster leader from the
worst sensor node. This fosters improved fault tolerance and network robustness by
ensuring that cluster heads are selected from relatively more stable and reliable nodes.
By enhancing fault tolerance and robustness, EDS-KH addresses the limitations of
existing algorithms that may not explicitly consider the selection of more stable cluster
heads, potentially leading to network disruptions in the presence of node failures.
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Thereby, the EDS-KH method offers a comprehensive approach to clustering in WSNs,
addressing the limitations of existing algorithms by incorporating adaptive cluster head se-
lection, energy balancing, handling irregular clusters and varying densities, and enhancing
fault tolerance and network robustness. These enhancements make the EDS-KH method
a promising solution for optimizing the performance and longevity of wireless sensor
networks in various real-world applications.

In addition to the proposed enhanced data selection with K-means hybrid (EDS-KH)
method, the authors are encouraged to consider adaptive topology management schemes
for maintaining network connectivity in wireless sensor networks (WSNs). Adaptive
topology management involves dynamically adjusting the network’s structure to respond to
changing environmental conditions and node failures, ensuring continuous communication
and data transmission. Techniques such as dynamic clustering, node reconfiguration, and
mobile sink deployment can be incorporated to adaptively reorganize the network and
maintain connectivity. By employing adaptive topologies, WSNs can effectively handle
node mobility, topology changes, and network partitioning, improving data delivery, fault
tolerance, and overall network performance. Integrating adaptive topology management
with EDS-KH can further enhance the resilience and adaptability of a WSN, making it
more suitable for complex and dynamic environments while extending its applications to
mission-critical scenarios like disaster response and environmental monitoring.

5. Conclusions

In this paper, EDS-KHO is proposed as a reliable power convergence clustering
methodology with shorter distances between nodes and less time between them. This is
done to keep the expected level of a wireless sensor network’s average lifespan. Indications
showed that KHO adds tidal force to its dual mechanism to improve how it works and
eliminate the problem of postponed convergence. In this incorporation of the customized
EDS-KHO, positions that have not been updated with the new positions made by the
trooper bee shift in the process. As part of their work, bees are used in a procedure;
in addition to this, there is a fresh search formula to increase the chance of accurately
predicting desirable placements, primarily by swapping out some less favorable sites
during the viewing phase for possible new ones. The results of the suggested scheme’s
simulation supported the stabilization period for a relatively homogeneous setup of the
available approaches, GSACP, HSCSCP KHOGACP, and MBABCOA by 22.37, 13.22, 15.85,
and 12.36 percent, respectively. These percentages are in accordance with the suggested
scheme. When compared to benchmark systems, the stabilization time is also thought to
increase by 18.21%, 17.38%, 13.96%, and 11.34. Spotted baboon optimization and the linear
search clustering procedure will likely be developed soon so that they can be compared to
the proposed system.

The proposed enhanced data selection with K-means hybrid (EDS-KH) method holds
considerable promise for enhancing wireless sensor networks (WSNs); however, several
potential limitations should be addressed in future research. These include investigating its
scalability for large-scale WSNs and fine-tuning parameters for optimal performance. In
future research, the scalability for large-scale WSNs and fine-tuning parameters for optimal
performance in the proposed enhanced data selection with K-means hybrid (EDS-KH)
method can be addressed through approaches such as distributed and parallel algorithms,
hierarchical clustering, automated parameter tuning using machine learning techniques,
sensitivity analysis, extensive simulation and real-world deployment, and fostering collabo-
rative research efforts. By exploring these strategies, researchers can enhance the efficiency,
adaptability, and performance of EDS-KH, making it a more practical and effective solution
for diverse WSN applications and challenging network conditions.
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