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ABSTRACT Physical layer security (PLS) and simultaneous wireless information and power transfer
(SWIPT) in cooperative relaying have gained great interest as technologies for security and energy enhance-
ment in Internet-of-Things (IoT) networks. In this work, we investigate PLS for a SWIPT- and AF-enabled
cooperative wireless IoT system, consisting of one source, multiple energy harvesting (EH) relays, and
one destination, in the presence of an eavesdropper that tries to overhear the confidential information.
Furthermore, an EH-friendly jammer is deployed to transmit jamming signals aimed at the eavesdropper
to improve the security system. In this context, a low-complexity, sub-optimal, but efficient relay selection
method is proposed. More specifically, the relay is selected to convey information such that it has the best
channel to the source. Based on the proposed system model, the performance analysis of the intercept
probability (IP), asymptotic IP, and non-zero secrecy probability (NZSP) is analyzed by considering the
time switching (TS)-based relaying strategy. Particularly, the exact closed-form expression of IP is achieved
by applying modified Bessel function expansion. Monte-Carlo simulations are employed to corroborate the
correctness and efficiency of our mathematical analysis. The time splitting factor α makes variations on the
IP of about 3× as α ∈ [0.1, 0.8]. However, a dramatic reduction of the IP up to 317× is observed as α

increases from 0.8 to 0.9.

INDEX TERMS Cooperative relay, eavesdropper, IoT, friendly jammer, physical layer security, SWIPT.

I. INTRODUCTION
The structure and layout of a network that links and facili-
tates communication among a wide variety of IoT (Internet

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .

of Things) devices utilizing radio technologies is referred
to as wireless IoT network architecture. The IoT system
often consists of a number of layers and equipment, each
of which has a defined function.In fifth-generation (5G) and
beyond networks, billions of internet of things (IoT) users
are connected to the networks that provided various utilities
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to human life such as health care, smart cities, smart home,
industrial automation, and agriculture [1], [2], [3]. Following
Ericsson’s report, the number of IoT devices is approximated
to be 22 billion by 2025 [4]. Nevertheless, the massive num-
ber of IoT users (IoTU) impose challenges and become a
burden for future wireless systems such as due to the limited
resources, e.g., restricted in available spectrum and energy
capacity. Especially, changing or recharging IoTU’s batter-
ies is generally expensive and even impossible in practice,
for example, on the battlefield or inside toxic or hazardous
environments. Owing to recent developments in energy har-
vesting (EH), which brings potential solutions to overcome
the aforementioned issues.

A. RELATED WORKS
Energy can be harvested from surrounding resources such
as wind [5], solar [6], vibration [7], and radio frequency
(RF) [8]. Among them, RF EH has become an appealing
solution due to its controllability, predictability, and it can
brings both information and energy. Consequently, simul-
taneous wireless information and power transfer (SWIPT)
has recently become one of the promising techniques for
self-sustainable wireless systems [9], [10], [11], [12]. Beyond
the benefits of EH for IoT networks, relay users in coopera-
tive relaying systems help the IoTU convey information to
the sink/data collector since the IoTU has inherent limita-
tions as far-distance distribution and low power. Generally,
cooperative relaying networks can be mainly divide into
two type: amplify-and-forward (AF)-based relaying [13],
[14] and decode-and-forward (DF)-based relaying [15],
[16]. Specifically, Cao et al. [13] proposed a novel system
model integrating power beacon (PB) EH, full-duplex (FD),
and non-orthogonal multiple access (NOMA), whereas the
source and relay can harvest energy from a PB in an
AF-based system. By taking into account the hardware
imperfections (HWIs) and channel estimation errors (CEEs),
Shahiri et al. [14] investigated the average block error rate
(BLER) for AF relaying in ultra-reliable low-latency com-
munications (URLLC) networks. Zheng et al. [15] proposed
a DF short-packet relaying system to investigate the freshness
of information in IoT networks. Concretely, the authors took
the age of information (AoI) as a metric for studying with
the assist of a relay in FD and HD modes. Shim et al. [16]
considered one-wayDF-based relaying applying time switch-
ing (TS) method with rechargeable and non-rechargeable
batteries. Furthermore, AF- and DF-based relay in cognitive
radio networks (CRNs)was studied in [17] and [18]. Different
to [13], [14], [15], [16], [17], and [18] that only considered
one-way communications, recent works [19], [20], [21], [22],
[23] have studied two-way relaying IoT networks. In [24]
and [25], the multi-input multi-output (MIMO) system has
been considered in cooperative relaying for IoT networks.
In particular, the authors in [26], [27], and [28] consid-
ered an unmanned aerial vehicle (UAV) acted as a relay for
aerial-terrestrial communication systems.

Besides many advantages for providing utilities in human
lives, IoT communications are not without limitations. Partic-
ularly, the security requirements in IoT networks have been
received significant attention from both academia and indus-
trial perspectives. Adversarial attacks happen in real life and
are not a threat. Specifically, there are more than 60000 vul-
nerabilities found by two researchers from Russia that can
take full control of compromised systems [29]. Due to the
simple in implementation compared to upper layer security
methods, physical layer security (PLS) becomes a promising
solution for IoT networks [30], [31], [32], [33], [34], [35],
[36]. Specifically, the authors in [30] and [31] studied the
PLS inWireless powered communication networks (WPCN).
Yan et al. [30] considered the secrecy outage analysis of a
MIMO EH system by proposing two schemes, termed the
optimal and sub-optimal antenna selection. Chu et al. [31]
applied Stackelberg game for designing a secure wireless-
powered multi-antenna system. In contrast to [30] and [31]
that only considered single or dual-hop cooperative relaying
systems, some state-of-art works [33], [34], [35], [36] have
focused on multi-hop cooperative networks. Despite many
fruitful results obtained from the literature to improve the PLS
in IoT networks [30], [31], [32], [33], [34], [35], [36], none
of these works considered jammer in their system model.
Recent studies has shown that friendly jammers help enhance
the system security [37], [38], [39], [40]. Cao et al. [37] pro-
posed a novel system model in which an idle relay was
selected to act as a friendly jammer to transmit artificial
noise to the eavesdropper in a NOMA system. Moreover,
the authors proposed two schemes, namely, random jammer
selection and optimal jammer selection based on the avail-
ability of the eavesdropper’s channel state information (CSI).
In [38] and [39], the authors adopted jammers in secure
UAV communications. Reference [38] was one of the first
works that jointly optimized friendly jamming and band-
width allocation in UAV communications. Kim et al. [39]
investigated the influences of multiple UAVs jammer which
are randomly distributed in the considered area and derived
the secrecy transmission probability. In [40], a learning-
assisted Stackelberg was applied for a friendly jammer sys-
tem. Specifically, Qi et al. [40] proposed a noel systemmodel
including two adversary parties, namely the blue team and
the red team. Then, the friendly jammer, blue team, and red
team were modeled as Stackelberg game to find their utility
maximization.

B. CONTRIBUTIONS
Despite many achievements in the literature, the study of
physical layer security in SWIPT- and AF-enabled coop-
erative wireless IoT networks is still needed. Particularly,
exact closed-from expression for the intercept probability (IP)
poses challenges due to its complexity. For instance, the exact
closed-form expression for the IP in [23] can not be obtained.
Motivated by the above discussions, we propose a SWIPT
relaying network consisting of one source, multiple relays,
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FIGURE 1. The considered system model.

one destination, in the presence of one eavesdropper and
one friendly jammer. The contributions of this work can be
summarized as follows:

• Due to the high cost of seeking the optimal relay selec-
tion, we propose a simple yet efficient method, termed
the partial relay selection (PRS), to select the best relay
with the highest channel gain to the source to transfer
information to the destination. In the proposed sys-
tem model, we apply the harvest-then-transmit scheme.
Specifically, the selected relay and friendly jammer can
harvest energy from the source’s RF signal and then use
it for transferring and jamming signals.

• To the best of our knowledge, this is the first work that
obtains exact closed-form expression in terms of IP for
the proposed system model adopting modified Bessel
function expansion. Furthers, the asymptotic IP and the
non-zero secrecy probability (NZSP) expressions are
also derived. This is highly challenging because the
analysis involves many random variables.

• Finally, the numerical results are performed to cor-
roborate the exactness of the mathematical analysis.
The simulation results show the influences of different
parameters on the system performance and how to select
these parameters appropriately to eliminate the eaves-
dropper’s impacts.

II. SYSTEM MODEL
As shown in Fig. 1, we propose a SWIPT-enabled HD relay-
ing network in the presence of a friendly jammer (J) and an
eavesdropper (E). Transmitter (S) can communicate with a
receiver (D) through multi-relay nodes (R) since the direct
link is missing due to severe fading or obstacles [41]. The
friendly jammer can transmit the jamming signals to elimi-
nate overheard information from the eavesdropper.Moreover,
relay users can harvest energy from S signals using the time

FIGURE 2. Schematic illustration of EH and information transmission
processes at the friendly jammer and the selected relay.

switching (TW) method as illustrated in Fig. 1. Specifically,
the total operation time T can be divided into three time slots.
In the first time slot αT , where α is the TS factor and satis-
fying 0 ≤ α ≤ 1, transmitter S supplies power to the jammer
and relay. In the last two time slots, transmitter S transmits
information to the selected relay during the (1 − α)T/2 time
period, and the selected relay will convey information to the
receiver in the third time period, i.e., (1 − α)T/2.

A. ENERGY HARVESTING PHASE
In the first time slot, the received signal at relay b−th and the
jammer can be respectively given by

yRb = hSRbxs + nRb , (1)

yJ = hSJxs + nJ , (2)

where xs is the information transmitted from S; hSRb and hSJ
are channel gains from S → Rb and S → j, respectively; nRb
and nJ denote additive White Gaussian noise (AWGN) at Rb
and S, respectively.

Without loss of generality, we assume that relay Rb and
jammer J use all harvested energy for data transmission and
jamming. Consequently, the transmit power of Rb and J are
respectively calculated as

PRb =
ERb

(1 − α)T/2
=

αTPs
∣∣hSRb ∣∣2

(1 − α)T/2
= κPs

∣∣hSRb ∣∣2, (3)

PJ =
EJ

(1 − α)T/2
=

αTPs|hSJ |2

(1 − α)T/2
= κPs|hSJ |2, (4)

where 0 ≤ η ≤ 1 denotes the energy harvesting conversion
coefficient, 0 ≤ α ≤ 1 is the TS factor, and κ ≜ 2αη

1−α
.

B. INFORMATION AND JAMMING TRANSMISSION PHASE
In the second time slot, the received signal at relay b-th can
be expressed as

yRb = hSRbxs + hJRbxJ + nRb , (5)
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where hJRb is the channel gain between J → Rb and
E{|xJ |2} = PJ .
Notably, we assume that the jamming signal xJ is known

in advance at relay Rb. Therefore, the jamming signal can be
perfectly canceled at Rb. Consequently, yRb can be rewritten
as

yRb = hSRbxs + nRb , (6)

In the system model, we consider amplify-and-forward
(AF) protocol. Therefore, the amplified factor χ at Rb can
be given as

χ =
xRb
yRb

=

√
PRb∣∣hSRb ∣∣2Ps + N0

. (7)

In the third time slot, the signals received at the destination
can be expressed as

yD = hRbDxRb + nD, (8)

where hRbD is the channel gain between Rb → D and nD is
the AWGN at destination D with variance N0.

By substituting (6) and (7) into (8), we have

yD = hRbDχyRb + nD = hRbDχ
(
hSRbxs + nRb

)
+ nD

= hRbDχhSRbxs︸ ︷︷ ︸
signal

+ hRbDχnRb + nD︸ ︷︷ ︸
noise

. (9)

Then, the end-to-end signal-to-noise (SNR) ratio at the
destination can be given by

γD =
E
{
|signal|2

}
E{|noise|2}

=

∣∣hSRb ∣∣2∣∣hRbD∣∣2χ2Ps∣∣hRbD∣∣2χ2N0 + N0

. (10)

Based on N0 << PRb and by substituting (3) and (4) into
(10), it yields

γD =
κ
∣∣hSRb ∣∣2∣∣hRbD∣∣29
κ
∣∣hRbD∣∣2 + 1

=
κϕ1ϕ29

κϕ2 + 1
, (11)

where ϕ1 =
∣∣hSRb ∣∣2, ϕ2 =

∣∣hRbD∣∣2 and 9 =
Ps
N0
. Next,

we analyze the secrecy of the proposed system since an eaves-
dropper can overhear confidential information from relay Rb
in the presence of jamming signals from a friendly jammer.
Specifically, the signals received at the eavesdropper can be
given as

yE = hRbEχ
(
hSRbxs + nRb

)
+ hJExJ + nE , (12)

where hJE is the channel gain between J → E and nE is the
AWGN at the eavesdropper with variance N0.
From (12), the SNR at the eavesdropper can be given by

γE =

∣∣hSRb ∣∣2∣∣hRbE ∣∣2χ2Ps∣∣hRbE ∣∣2χ2N0 + PJ |hJE |
2
+ N0

≈

∣∣hSRb ∣∣2∣∣hRbE ∣∣2Ps∣∣hRbE ∣∣2N0 +
PJ |hJE |

2

κ
+

N0
κ

. (13)

By substituting (3) and (4) into (13), we have

γE =
κ
∣∣hSRb ∣∣2∣∣hRbE ∣∣29

κ
∣∣hRbE ∣∣2 + κ9|hSJ |2|hJE |

2
+ 1

=
κϕ1ϕ39

κϕ3 + κ9ϕ4ϕ5 + 1
, (14)

where ϕ3 =
∣∣hRbE ∣∣2, ϕ4 = |hSJ |2, and ϕ5 = |hJE |

2.

Remark 1: We assume that all channels are Rayleigh fad-
ing appearing in rich scattering environments where scat-
terers are located around the receivers’ side. Consequently,
the channel gains follow exponential random variable (RV).
Cumulative distribution function (CDF) and probability den-
sity function (PDF) can be respectively given by

Fϕa (x) = 1 − exp(−λax), (15)

fϕa (x) = λa exp(−λax), (16)

where a ∈ (1, 2, . . . , 5), λa = (da)β , where β is the path loss
exponent and da denotes the distance between users.
Remark 2: Due to the high computational complexity of

finding the global optimum to the relay selection prob-
lem, in this paper, we consider partial relay selection (PRS)
method, whereas the best relay can be selected as follows:

Rb : ϕ1 =
∣∣hSRb ∣∣2 = max

m=1,2,...,M

(∣∣hSRm ∣∣2) . (17)

Equation (17) means that relay Rb providing the highest
channel to the source is selected as the best relay for the
cooperation between S → Rb. In practice, the CSIs between
S and relays can be estimated through local control message,
and thus the best candidate can be easy determined as in (16).
Moreover, we assume in this paper that dSRj > dRjD, thus the
relay selection should be performed at the first hop to enhance
the quality of the channel between S → Rb.
From (17), the CDF of ϕ1 can be given by [42]

Fϕ1 (x) =

M∑
j=0

(−1)jC j
M × exp(−jλ1x)

= 1 +

M∑
j=1

(−1)jC j
M × exp(−jλ1x), (18)

fϕ1 (x) = λ1

M−1∑
j=0

(−1)jC j
M−1M × exp [−(j+ 1)xλ1] , (19)

where C j
M =

M !

j!(M−j)! . The data rate at destination D and
eavesdropper E can be respectively given by

CD =
(1 − α)T

2
× log2 (1 + γD) , (20)

CE =
(1 − α)T

2
× log2 (1 + γE ) . (21)

III. PERFORMANCE ANALYSIS
A. INTERCEPT PROBABILITY (IP)
Relay Rb can be intercepted if eavesdropper E can success-
fully decode the signal, i.e., CE ≥ Cth. Thus, intercept
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probability can be defined as [43] and [44]

IP = Pr (CE ≥ Cth) = Pr (γE ≥ γth)

= Pr
(

κϕ1ϕ39

κϕ3 + κ9ϕ4ϕ5 + 1
≥ γth

)
, (22)

where γth = 2
2Cth

(1−α)T − 1 and Cth is the predetermined
threshold value. In order to obtain the closed-form expression
of IP, we introduce following lemmas
Lemma 1: In order to obtain the closed-form expression

for the PDF of SNR in amplify-and-forward system, a new
series expansion of the modified Bessel function for Kv is
mathematically represented as [45]

Kv (x) = exp [−x] ×

∞∑
l=0

l∑
m=0

(x)m−v3 (v, l,m) , (23)

where 3(v, l,m) =
(−1)m

√
π0(2v)0(l−v+1/2)L(l,m)

0(1/2−v)0(1/2+l+v)m!
and L(l,m)

is Lah number, which is defined as L(l,m) =

(
l − 1
m− 1

)
l!
m!
.

Lemma 2: The function exp(x) is transformed by applying
the Taylor series [46, Eq. (1.211.1)] as follows:

exp(x) =

∞∑
i=0

x i

i!
. (24)

1) EXACT ANALYSIS
Based on (22), IP can be recalculated as

IP =

∞∫
0

Pr
(

κϕ1ϕ39

κϕ3 + κ9x + 1
≥ γth

)
× fX (x)dx, (25)

where X = ϕ4ϕ5.
The first term in (25) can be calculated as

P1 = Pr
(

κϕ1ϕ39

κϕ3 + κ9x + 1
≥ γth

)
= 1 − Pr

[
ϕ1 <

γth(κϕ3 + κ9x + 1)
κϕ39

]

= 1 −

∞∫
0

Fϕ1

[
γth(κϕ3 + κ9x + 1)

κϕ39
|ϕ3 = ϕ

]
fϕ3 (ϕ)dϕ.

(26)

By applying (15) and (18), P1 can be re-written as

P1 =

M∑
j=1

(−1)j+1C j
Mλ3

×

∞∫
0

exp
[
−jλ1γth(κϕ + κ9x + 1)

κϕ9

]
exp (−λ3ϕ) dϕ

=

M∑
j=1

(−1)j+1C j
M × λ3 exp

(
−
jλ1γth

9

)

×

∞∫
0

exp
[
−jλ1γth(κ9x + 1)

κϕ9

]
× exp (−λ3ϕ) dϕ.

(27)

By applying [46, Eq. (3.324.1)], P1 can be obtained as

P1 =

M∑
j=1

(−1)j+1C j
M × exp

(
−
jλ1γth

9

)

×

√
4jλ1λ3γth(κ9x + 1)

κ9

× K1

(
2

√
jλ1λ3γth(κ9x + 1)

κ9

)
, (28)

where Kv(•) is the modified Bessel function of the second
kind and v-th order.
Next, we need to calculate the pdf of fX (x) in (25). First,

we can obtain the CDF function as [32]

FX (x) = 1 − 2
√

λ4λ5x × K1

(
2
√

λ4λ5x
)

. (29)

Then, by applying ∂
∂x (xvKv(x)) = −xvKv−1(x), the PDF

of X is formulated as

fX (x) = 2λ4λ5 × K0

(
2
√

λ4λ5x
)

. (30)

By substituting (28) and (30) into (25), IP can be claimed
as

IP = 4
M∑
j=1

(−1)j+1C j
Mλ4λ5 exp

(
−
jλ1γth

9

)√
jλ1λ3γth

κ9

×

∞∫
0

√
(κ9x + 1)K1

(
2

√
jλ1λ3γth(κ9x + 1)

κ9

)

× K0

(
2
√

λ4λ5x
)
dx. (31)

Remark 3: From (31), it is challenging to obtain the
closed-form expression of IP. Therefore, we apply Lemmas
1 and 2 to solve this problem.
By applying Lemma 1, we have

Kv

(
2

√
jλ1λ3γth(κ9x + 1)

κ9

)

= exp

[
−2

√
jλ1λ3γth(κ9x + 1)

κ9

]
×

×

∞∑
l=0

l∑
m=0

(
jλ1λ3γth

κ9

)m−v
2 (2)2m−2v

m!l!
3 (v, l,m)

× (κ9x + 1)
m−v
2 . (32)

Next, we apply Lemma 2, which yields

exp

[
−2

√
jλ1λ3γth(κ9x + 1)

κ9

]
VOLUME 11, 2023 86169
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=

∞∑
i=0

(
−2
√

jλ1λ3γth(κ9x+1)
κ9

)i
i!

=

∞∑
i=0

(
jλ1λ3γth

κ9

)i/2 (−1)i(2)i(κ9x + 1)i/2

i!
. (33)

By replacing (33) into (32) and applying K1(·), we have

K1

(
2

√
jλ1λ3γth(κ9x + 1)

κ9

)

=

∞∑
i=0

∞∑
l=0

l∑
m=0

(
jλ1λ3γth

κ9

)m−1+i
2

×
(−1)i(2)2m−2+i

m!l!i!
3 (1, l,m) × (κ9x + 1)

m−1+i
2 .

(34)

By substituting (34) into (31), we have

IP =

∞∑
i=0

∞∑
l=0

l∑
m=0

M∑
j=0

(−1)i+j(2)2m+i3 (1, l,m)C j
M × λ4λ5

m!l!i!

×

(
jλ1λ3γth

κ9

)m+i
2

× exp
(

−
jλ1γth

9

)

×

∞∫
0

(κ9x + 1)
m+i
2 × K0

(
2
√

λ4λ5x
)
dx. (35)

Then, by applying

(x + y)m =

m∑
n=0

(
m
n

)
xm−nyn

and denoting y =
√
x, the IP can be expressed as in (36) in

the top of next page.

IP =

∑̃(
t
n

)
(−1)i+j(2)t13 (1, l,m)C j

Mλ4λ5(jλ1λ3γth)t

m!l!i!(κ9)n+t

× exp
(

−
jλ1γth

9

) ∞∫
0

y2n+1K0

(
2y
√

λ4λ5

)
dx, (36)

where
∑̃

=

∞∑
i=0

∞∑
l=0

l∑
m=0

t∑
n=0

M∑
j=0

, t ≜ m+i
2 , t1 ≜ 2m+ i+ 1.

Finally, by applying [46, Eq. (6.561.16)], the IP can be
represented as the following theorem.
Theorem 1: In the HD SWIPT-enabled wireless system

with a friendly jammer and an eavesdropper, the closed-form
expression of the IP can be presented as

IP =

∑̃(
t
n

)
(−1)i+j(2)2m+i−13 (1, l,m)C j

M (jλ1λ3γth)t

m!l!i!(κ9)n+t (λ4λ5)n

× exp
(

−
jλ1γth

9

)
× [0(1 + n)]2, (37)

where 0(z) =

∞∫
0
e−t tz−1dt is the complete gamma function.

2) ASYMPTOTIC ANALYSIS
At high SNR regime, γE in (14) can be expressed as

γ ∞
E ≈

ϕ1ϕ3

ϕ4ϕ5
. (38)

Then, the IP can be calculated as

IP∞
= Pr

(
ϕ1ϕ3

ϕ4ϕ5
≥ γth

)

= 1 −

∞∫
0

FY (xγth) × fX (x)dx, (39)

where Y = ϕ1ϕ3.
Lemma 3: The CDF of Y can be given as

FY (y) = 1 + 2
M∑
j=1

(−1)jC j
M

√
jλ1λ3yK1

(
2
√
jλ1λ3y

)
.

(40)

Proof: The CDF of Y can be calculated as

FY (y) = Pr (Y < y)

= Pr
(

ϕ1 <
y
ϕ3

)
=

∞∫
0

Fϕ1

(
y
ϕ

)
× fϕ3 (ϕ)dϕ. (41)

By applying (18), we have

FY (y) = 1 +

M∑
j=1

(−1)jC j
Mλ3

×

∞∫
0

exp
(

−
jλ1y
ϕ

)
exp (−λ3ϕ) dϕ. (42)

By applying [46, Eq. (3.324.1)], the CDF of Y can be
obtained as in Lemma 3.
By substituting (30) and (42) into (39), the IP can be given

as

IP∞
= 4

M∑
j=1

(−1)j+1C j
M ×

√
jλ1λ3γth × λ4λ5

×

∞∫
0

√
x×K1

(
2
√
jλ1λ3γthx

)
× K0

(
2
√

λ4λ5x
)
dx.

(43)

Let us denote t =
√
x, (43) can be rewritten as

IP∞
= 8

M∑
j=1

(−1)j+1C j
M

√
jλ1λ3γthλ4λ5

×

∞∫
0

t2K1

(
2t
√
jλ1λ3γth

)
K0

(
2t
√

λ4λ5

)
dt. (44)

By applying [46, Eq. (6.576. 4)], the IP can be represented as
the following theorem.
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Theorem 2: In the HD SWIPT-enabled wireless system
with a friendly jammer and an eavesdropper, the closed-form
expression of the IP in high SNR regime can be represented
as

IP∞
=

M∑
j=1

(−1)j+1C j
M × λ4λ5

2jλ1λ3γth

× F
(
2, 1; 2; 1 −

λ4λ5

jλ1λ3γth

)
, (45)

where F (α, β; γ ; z) is the Gauss Hypergeometric function.

B. NON ZERO-SECRECY PROBABILITY (NZSP)
Non-zero secrecy capacity (NZSC) can be defined as the end-
to-end secrecy capacity is higher than zero [47]

NZSP = Pr (CD − CE > 0) = Pr (γD > γE ) . (46)

By substituting (9) and (12) into (46), we have

NZSP = Pr
(

ϕ2

κϕ2 + 1
>

ϕ3

κϕ3 + κ9ϕ4ϕ5 + 1

)

=

∞∫
0

Fγ̃E

(
x

κx + 1
|ϕ2 = x

)
× fϕ2 (x)dx, (47)

where γ̃E =
ϕ3

κϕ3+κ9ϕ4ϕ5+1 .

Lemma 4: The closed-form expression of CDF of γ̃E can
be given as

Fγ̃E

(
x

κx + 1

)
= 1 −

√
λ4λ5 ×

exp
(

λ4λ5
2λ3κ9x − λ3x

)
√

λ3κ9x

× W
−

1
2 ,0

(
λ4λ5

λ3κ9x

)
, (48)

whereW (•) is the Whittaker function.
Proof: The CDF of γ̃E can be calculated as

Fγ̃E (a) = Pr
(

ϕ3

κϕ3 + κ9ϕ4ϕ5 + 1
< a

)
= Pr [ϕ3(1 − κa) < κ9aϕ4ϕ5 + a]

=


Pr
(

ϕ3 <
κ9aϕ4ϕ5 + a

1 − κa

)
, a ≤

1
κ

1, a >
1
κ

=

∞∫
0

Fϕ3

[
κ9ay+ a
1 − κa

]
× fX (y)dy, a ≤

1
κ

. (49)

By applying (30), Fγ̃E (a) with a ≤ 1/κ is calculated as

Fγ̃E (a) = 1 − 2λ4λ5

∞∫
0

exp
[
−

λ3 (κ9ay+ a)
1 − κa

]
× K0

(
2
√

λ4λ5y
)
dy

= 1−2λ4λ5 × exp
(
−

λ3a
1−κa

) ∞∫
0

exp
(
−

λ3κ9ay
1−κa

)

× K0

(
2
√

λ4λ5y
)
dy. (50)

By setting a =
x

κx+1 , it yields

Fγ̃E

(
x

κx + 1

)
= 1 − 2λ4λ5 × exp (−λ3x)

×

∞∫
0

exp (−λ3κ9xy)K0

(
2
√

λ4λ5y
)
dy.

(51)

Then, by applying [46, Eq. (6.614.4)], (48) is obtained.
Thus, the proof is complete.
By substituting (48) into (47), the NZSP can be expressed

as

NZSP = 1 − λ2

∞∫
0

√
λ4λ5

exp
(

λ4λ5
2λ3κ9x − λ3x − λ2x

)
√

λ3κ9x

× W
−

1
2 ,0

(
λ4λ5

λ3κ9x

)
dx. (52)

By applying [46, Eq. (7.629.1)], the NZSP can be
expressed as the following theorem.
Theorem 3: In the HD SWIPT-enabled wireless system

with a friendly jammer and an eavesdropper, the closed-form
expression of the NZSP can be represented as

NZSP = 1 −
4λ2λ4λ5 (λ2 + λ3)

λ3κ9

× S−1,0

(
2

√
λ4λ5 (λ2 + λ3)

λ3κ9

)
, (53)

where S(•) is the Lommel functions.

IV. SIMULATION RESULTS
In this section, we present the intercept probability and non
zero-secrecy probability for theoretical analytical evaluation.
For Monte-Carlo simulations, we perform 106 independent
random channels, and they are Rayleigh fading for each
realization. The obtained results are averaged to remove the
randomness and compare with the analytical results. Unless
otherwise stated, the simulation parameters are listed in
Table 1.
Fig. 3 shows the intercept probability as a function of

9 (in dB), where Cth = 0.25 bps/Hz, η = 0.8, and α =

0.5. It can be seen from the figure that IP increases with
a higher value of 9. This is due to the fact that 9 can be
defined as the fractional between the source transmit power
and the white noise. Therefore, the higher the 9 is, the more
power at source S is transmitted. Consequently, the higher
data transmission rate can be obtained at eavesdropper E,
which improves the intercept probability. More specifically,
when the number of relaysM = 1, the IP value is 0.0616 and
0.2393, corresponding to 9 equals 5 dB and 10 dB, respec-
tively.We also observe from Fig. 3 that intercept performance
is enhanced as the number of relays increases. This can be
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TABLE 1. Simulation parameters.

FIGURE 3. IP versus 9, with Cth = 0.5 bps/Hz, η = 0.8, M = 2.

explained based on equation (13) since the signal-to-noise-
ratio at the eavesdropper, i.e., γE , is linearly proportional to
the channel gain between S → Rb, i.e., |hSRb |

2. Therefore,
the higher the number of relays is, the better channel to
eavesdropper can be obtained. For instance, when 9 = 5 dB,
the IP is 0.0616, 0.1148, and 0.2016, corresponding to the
number of relays is 4, 2, 1, respectively. Fig. 3 also validates
the correctness of the exact and asymptotic analysis compared
to the Monte-Carlo simulation.

Fig. 4 illustrates the intercept probability versus time
switching factor, where the number of relays M = 2, η =

0.8, and Cth = 0.05 bps/Hz. The time switching factor plays
a crucial role since it influences the time used for energy
harvesting and the allocation time for data transmission.
Therefore, it significantly impacts the network performance.
First, it is observed that the intercept performance is improved
to an optimal point when the time switching ratio α increases
to the optimal value, then IP decreases when α continues

FIGURE 4. IP vs. α, with Cth = 0.5 bps/Hz, M = 2, K = 1, 8 = 1 dB.

increasing. Specifically, when 9 = 3 dB, the IP achieves
maximum value 0.6141 at α equals 0.5, then it decreases to
0.0012 at α equals 0.9. Second, it is also observed that the
intercept performance is improved as a higher 9 value. For
instance, the IP is 0.6087, 0.7729, and 0.833when9 equals 3,
7, 10 dB, respectively.

Fig. 5 further characterizes the intercept probability versus
number of relays M , where 9 = 5 dB, η = 0.8. It is
observed from this figure that the IP is greatly improved
with a higher number of relays. This phenomenon has been
explained in Fig. 3. Moreover, the intercept performance
also increases as α value decreases from 0.5 to 0.25, and
Cth = 0.25 bps/Hz. For instance, the IP is 0.0052, 0.0226,
and 0.2016 corresponding to three cases α = 0.5,Cth =

0.5 bps/Hz, α = 0.25,Cth = 0.5 bps/Hz, and α = 0.5,Cth =

0.25 bps/Hz, respectively. Further observation reveals that the
lower the threshold rate is, the higher IP can be obtained.
It can be explained based on equation (22). Specifically, the
lower the Cth is, the higher the IP can be obtained.
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FIGURE 5. IP versus number of relays M, with 9 = 5 dB, η = 0.8.

FIGURE 6. IP versus 9, with α = 0.5.

In Fig. 6, we investigate non-zero secrecy probability as a
function of 9 (in dB), where α = 0.5. From Fig. 6, it can
be shown that the non-zero secrecy probability is greatly
improved as 9 increases from 0 to 25 dB. It means that
the data transmission rate received at destination D is higher
than that at eavesdropper E. More specifically, when η =

0.5, the NZSP is 0.6007, 0.6836, 0.7779 corresponding to
9 equals 5, 10, and 15, respectively. Furthermore, it also be
shown that the NZSP is enhanced as the η value increases.
For instance, when 9 = 10 dB, the NZSP is 0.6836, 0.7271,
0.7405 corresponding to η equals 0.5, 0.8, and 1, respectively.

In Fig. 7, we study non-zero secrecy probability depend-
ing on time switching factor α, with η = 0.8. from Fig. 7,

FIGURE 7. NZSP versus α, with η = 0.8.

FIGURE 8. NZSP versus η, with 9 = 5 dB.

it can be seen that the NZSP is enhanced as time switching
ratio increases from 0.1 to 0.9. It shows the superiority of
transmission rate at the destination D compared to that at the
eavesdropper when increasing time switching factor α. For
instance, when9 = 3 dB, the NZSP imposes 0.6279, 0.6604,
and 0.7035 corresponding to α equals 0.6, 0.7, and 0.8,
respectively. It is also observed that the NZSP is improved
with a higher value of 9. For instance, at α = 0.4, the NZSP
is 0.5782, 0.6047, and 0.6888 corresponding to9 equals 3, 5,
and 10 dB, respectively. It explains the fact that the increase of
source’s power hasmore effects on the transmission rate at the
destination D than the transmission rate at eavesdropper E.

VOLUME 11, 2023 86173



D. T. Vo et al.: SWIPT-Enabled Cooperative Wireless IoT Networks

FIGURE 9. IP versus dRbE , with Cth = 0.25 bps/Hz, η = 0.8, 9 = 2 dB, and
M = 2.

FIGURE 10. IP versus dSJ , with Cth = 0.25 bps/Hz, η = 0.8, 9 = 2 dB, and
M = 2.

In Fig. 8, we show the result corresponding to non-zero
secrecy probability versus energy harvesting coefficient η,
with 9 = 5 dB. From Fig. 8, it is clear to see that the
higher the energy harvesting coefficient is, the more NZSP
can be achieved. This phenomenon can be explained based on
equation (3), whereas the amount of harvested energy at the
relay Rb is linearly proportional with the energy harvesting
coefficient η. More specifically, the NZSP imposes 0.5315,
0.5542, and 0. 5724 when η is 0.1, 0.2, and 0.3, respectively.
The simulation results in Fig. 9 show the influences of

different eavesdropper locations on the intercept perfor-
mance, where Cth = 0.25 bps/Hz, η = 0.8, 9 = 2 dB,
and M = 2. In practice, it is difficult to know exactly the
eavesdropper position to prevent them from wire-tapping

information. Therefore, Fig. 9 investigates the influences of
different eavesdropper locations on the network performance,
i.e., intercept probability. First, it can be seen from Fig. 9 that
the higher the distance from E → Rb is, the worse inter-
cept probability can be obtained. This is expected since by
increasing distance dRbE , we make the channel gain between
E → Rb deteriorate, which reduces the intercept perfor-
mance. Specifically, the IP is 0.0206, 0.01, and 0.0043 when
dRbE equals 0.2, 0.6, and 1, respectively. Besides, we also
study the effects of different time switching factor α with the
variances of dRbE . We observe that when dRbE is less than 0.5,
the IP of scheme with α = 0.15 obtains the best performance
compared to other cases with α equals 0.55, 0.455, and 0.655,
respectively. Nevertheless, hen dRbE is larger than 0.5, the IP
of the scheme is the best one. While the IP of scheme with
α = 0.15 is significantly decreased with dRbE > 0.5.

In Fig. 10, we investigate the effects of different jam-
mer locations on the intercept performance, where Cth =

0.25 bps/Hz, η = 0.8, 9 = 2 dB, and M = 2. Fig. 10 aims
to find the best position of a friendly jammer to reduce the
influences of eavesdropper. It can be seen that the intercept
performance can obtain the best performance at an optimal
value of dSJ , then it reduces later on. Specifically, when
α = 0.655, the IP achieves the best performance at dSJ equals
1.4. There also exists the optimum α value corresponding to
difference dSJ ranging from 0.2 to 2. Indeed, the intercept
performance of the scheme with α = 0.355 obtains the best
results compared to others, i.e., α is 0.15, 0.455, and 0.655,
respectively. For example, when dSJ = 1, the IP is 0.003,
0.0183, 0.0258, and 0.339 corresponding to α equals 0.355,
0.15, 0. 455, and 0.15, respectively.

V. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we investigated the intercept and non-zero
secrecy probability of an AF- and SWIPT-based IoT network,
including one source, multiple relays, one destination in the
presence of one jammer, and one eavesdropper. By applying
the time switching method, the selected relay can harvest
energy from the source’s RF signals, and then it uses its
energy for conveying information to the destination. Espe-
cially, the exact closed-form expressions of IP, asymptotic
IP, and NZSP were derived. Moreover, these mathematical
analyses have been validated throughput simulation results,
which showed the correctness of the analysis and Monte-
Carlo simulations. Based on the simulation results, we rec-
ommend suitable system parameters for designing in practice.
Specifically, the values of time switching factor α, source
transmit power 9, the number of relays, and position of
jammer can be selected appropriately to reduces the effects
of the eavesdropper. The IP fluctuates less than 3× as α ∈

[0.1, 0.8], while the fluctuation of the IP is in a wide range
as α > 0.8. Multiple sources and destinations should be of
interest for future work investigating cooperative networks or
mutual interference management. Moreover, multiple-input
multiple-output systems also have the potential to improve
system performance.
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