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Abstract: Around 40% to 60% of municipal solid waste originates from kitchens, offering a valuable
resource for compost production. Traditional composting methods such as windrow, vermi-, and
bin composting are space-intensive and time-consuming. Black soldier fly larvae (BSFL) present a
promising alternative, requiring less space and offering ease of handling. This research encompasses
experimental data collection, life cycle assessment, and machine learning, and employs the Levenberg–
Marquardt algorithm in an Artificial Neural Network, to optimize kitchen waste treatment using
BSFL. Factors such as time, larval population, aeration frequency, waste composition, and container
surface area were considered. Results showed that BSFL achieved significant waste reduction, ranging
from 70% to 93% by weight and 65% to 85% by volume under optimal conditions. Key findings
included a 15-day treatment duration, four times per day aeration frequency, 600 larvae per kilogram
of waste, layering during feeding, and kitchen waste as the preferred feed. The larvae exhibited a
weight gain of 2.2% to 6.5% during composting. Comparing the quality of BSFL compost to that
obtained with conventional methods revealed its superiority in terms of waste reduction (50% to 73%
more) and compost quality. Life cycle assessment confirmed the sustainability advantages of BSFL.
Machine learning achieved high accuracy of prediction reaching 99.5%.

Keywords: black soldier fly larvae; kitchen waste; life cycle assessment; machine learning

1. Introduction

The generation rate and composition of municipal solid waste varies from region
to region depending upon the living standards, cultural norms, geographical location,
and economic development [1]. Globally, solid waste handling and management have
been declared a vital issue for the environment [2]. Some have identified this problem
and devised an efficient method to combat this problem, hence saving time and space,
which is beneficial from both environmental and economic perspectives. The poor waste
management practices in developing countries are the root of many social as well as
environmental issues. They are the main reason behind the contamination of oceans,
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clogging of drains, flooding of water bodies, and contamination of underground water
resources. From respiratory air-borne diseases due to the open burning of the waste to
disease transmission due to the breeding of vectors, it has become an itchy point for the
environment. Vectors, such as mosquitoes or flies, play a crucial role in transmitting air-
borne diseases by carrying pathogens from infected individuals to healthy individuals [3,4].
Many have adopted and developed such efficient systems to change trash into cash but
still, the larger part of the globe is struggling with this problem [5,6].

Municipal solid waste (MSW) consists of organic and inorganic fractions. Handling
of both fractions is difficult, so turning one into a useful byproduct is desirable [7,8]. The
ascribable organic fraction includes residues of fruits and vegetables, food waste, and
yard trimmings which can be treated and changed into a useful product [9,10]. One of
the best ways to recycle the organic fraction is to convert it into compost [11]. There are
several processes of composting such as windrow composting, vermicomposting, and
bin composting [12]. However, typical methods of composting are space-taking and slow
processes [13,14].

Black soldier fly (BSF) larvae have gained significant interest in the past few decades
for their use in the reduction of organic waste and as animal feed [15]. This species has
spread subsequently in Europe since the decades of the 1950s and 1960s [16]. The BSF
treatment method also results in an effective reduction in waste volume and the compost
produced can be used for beneficial purposes [5,17]. In this study, the BSF-based waste
composting process is optimized under local conditions (the composition of organic waste
typical for Pakistan) and compared with a conventional composting method with respect
to waste reduction and compost quality. The waste composting efficiency is influenced
by factors such as time, number of larvae, aeration frequency, waste composition, and
container surface area. These factors are optimized using suitable ranges derived from
literature and advanced statistical tools. The study utilizes life cycle assessment (LCA) and
machine learning (ML) to validate the composting process and facilitate future scale-up
studies. The incorporation of LCA enables assessment of environmental impact, while
ML allows for data-driven analysis and optimization, ensuring sustainable practices and
informed decision-making in composting operations.

2. Methodology
2.1. Waste Sample Collection, Preparation, and Waste Container

Kitchen waste used in this study was sourced from households using a dedicated
bin placed in the kitchen area, as depicted in Figure 1. The collected samples underwent
careful analysis to determine their composition, which was subsequently maintained
throughout the experiment. The conventional literature describes the composition of
kitchen waste, emphasizing major constituents such as tea, fruits, vegetables, tissues, bread,
and pollutants. Additionally, Figure 1a showcases a generalized composting flow sheet,
depicting the sequential steps of waste collection, pre-treatment, composting, specialized
waste treatment, and the ultimate recovery of valuable end-products.

To facilitate the sampling and experimentation process, a household plastic container
was employed for collection of different kind of waste for Conventional Bin Composting
and BSF larvae waste container composting, as depicted in Figure 1b. The container’s
dimensions were carefully selected to ensure proper handling and containment of the waste
samples, thereby guaranteeing reliable and controlled experimentation conditions.

2.2. Waste Treatment and Process Optimization

BSFL-aided composting was optimized for different parameters including time, aera-
tion frequency, number of larvae, the surface area of the container, and waste composition
at ambient conditions. The variables and the range of tested values are presented in Table 1.
During the experimentation, four types of waste composition were used: Kitchen Waste
(W1), Fruit Waste (W2), Vegetable Waste (W3), and Municipal Waste (W4) and their detailed
composition is shown in Figure 2a–d.
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Figure 1. (a) Conventional Composting Process (b) Waste Collection Plastic Container for waste
composting.

W1, which represents kitchen waste, consisted of a combination of Strawberry and
Mulberries (0.535 kg) along with Potato Peels (0.136 kg), accounting for 36% and 10% of
the total weight, respectively. Additionally, it included Tea (0.15 kg) and 1 green chili,
contributing 2% and 10% to the weight, respectively. A bread piece (0.03 kg) made up 2%
of the waste composition, and Tissue Papers accounted for a negligible percentage. W2,
representing fruit waste, comprised Strawberry and Mulberries (0.05 kg), Orange (0.1 kg),
Banana (0.05 kg), Peach (0.05 kg), Apple (0.25 kg), and melon peels, contributing to the
respective percentages of 13%, 26%, 13%, 13%, 17%, and 2% of the total weight.

W3, representing vegetable waste, included Green Leaves (0.05 kg), Brinjal (0.1 kg),
Pumpkin (0.05 kg), Potato (0.05 kg), Tomato (0.05 kg), Onion (0.08 kg), and small Onion
(0.025 kg). These vegetable components accounted for 13%, 26%, 13%, 13%, 13%, 21%, and
2% of the total weight, respectively. W4, representing municipal waste, consisted of Green
Chili (0.1 kg), Bread Piece (0.05 kg), Tissue Papers (0.05 kg), Onion (0.05 kg), and Poultry
waste (0.016 kg). The respective percentages for these components were 26%, 13%, 13%,
13%, and 4% of the total weight.

In total, the waste compositions used in the experimentation had a weight of 1.5 kg,
with each composition contributing to a specific percentage of the overall weight.

Table 1. Treatment Optimization Factors.

Parameter Tested Range

Time 1 to 20 days
Aeration frequency 1, 2, 3 and 4 per day (referred as At1, At2, At3, and At4)

Number of larvae 300, 600, 900, and 1200 per kg of waste (referred as L1,
L2, L3 and L4)

Surface area 56.7′′, 78.5′′, 113′′, and 176.6′′ (inch square) (referred as
S1, S2, S3, and S4)

Waste composition Kitchen Waste, Fruit Waste, Vegetable Waste, and
Municipal Waste (referred to as W1, W2, W3, W4)
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2.3. Comparative Analysis of Waste Treatment and Compost

In our study, we utilized four different types of waste for treatment using Black
Soldier Fly Larvae (BSFL) to explore their composting efficiency. Among these waste
types, we sought to identify the one that yielded the highest efficiency when subjected to
the optimized parameters for BSFL treatment. This waste was then compared with the
conventional bin composting technique to evaluate the effectiveness of the BSFL method in
achieving superior efficiency for various parameters.

To assess the treatment efficiency, we compared the compost generated by the BSFL
and bin composting methods. Several parameters, including pH, moisture content, total
dissolved solids (TDS), conductivity, and nutrient levels such as carbon (C), nitrogen
(N), and potassium (K), were evaluated and analyzed. The experiments were conducted
following the guidelines outlined in the literature [18] and the values of these parameters
were determined using established standard methods. Additionally, the quality of the
resulting compost was compared against the characteristics indicative of good compost.

By comparing the performance of BSFL treatment with the traditional bin composting
approach, we aimed to ascertain the superiority of the BSFL method in terms of composting
efficiency and the quality of the final product. This comprehensive evaluation provided
insights into the potential of BSFL as an efficient and sustainable waste treatment option,
with implications for waste management and resource recovery efforts.
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2.4. Life Cycle Assessment of BSFL Technology and Machine Learning Modeling for Predictive
Modeling and Optimization Validation of Waste Treatment and Compost

In order to effectively address the complexities and dependencies involved in com-
posting experimentation, it is crucial to have a comprehensive understanding of the process.
To achieve this, various tools and methodologies are employed, including life cycle assess-
ment (LCA) which involves both product stage assessment and detailed process analysis.
Additionally, techno-economic assessment is utilized to model the financial implications of
composting, taking into account factors such as the importation of larvae, setup conditions,
and capital and operating expenditures. Researchers have explored different software
tools such as GPX-10, Bio-win 7.8, and MATLAB R-21 for process modeling and simula-
tion in composting studies. However, to date, limited research has been conducted on
a three-pronged strategy that combines experimentation, life cycle assessment, and ad-
vanced artificial intelligence techniques such as machine learning and deep learning. By
integrating these tools, a more comprehensive understanding of the composting process
can be obtained, allowing for accurate predictions and analysis of process variables without
incurring substantial financial costs.

This multidisciplinary approach, shown below in Figure 3, offers several advantages.
At step 1 (experimental analysis), four distinct types of waste are utilized to investigate the
effectiveness of BSFL in composting. We evaluated the efficiency of each waste type and
compared the most efficient one with the conventional bin composting technique. The goal
was to determine the superior performance of the BSFL method across various parameters.
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At step 2 in Figure 3, to ensure the reliability and credibility of our findings, we con-
ducted a Life Cycle Assessment (LCA) of both the BSFL composting and bin composting
approaches. We employed Sima-Pro 9.1, a commercially available software, to analyze and
compare factors such as global warming equivalents, emissions, and inventory standards
associated with each composting technique. A cradle-to-grave approach in LCA is consid-
ered when applied to the composting of Black Soldier Fly Larvae BSFL. This approach takes
into account the complete life cycle of the larvae, beginning with their introduction into the
composting system and continuing through to the final use or disposal of the resulting com-
post. Through this comprehensive analysis, we sought to gain a deeper understanding of
the environmental impact and sustainability aspects of both methods. It provides a deeper
understanding of the composting process itself, enabling researchers to identify critical pa-
rameters and optimize conditions for enhanced performance. Furthermore, the integration
of life cycle assessment provides insights into the environmental impacts associated with
different stages of composting, helping to guide sustainable decision-making.

At step 3 in Figure 3, in order to enhance the accuracy and depth of our analysis, we
incorporated an advanced deep learning Artificial Neural Network (ANN) model. This
model allowed us to further explore the output results from Sima-Pro, enabling us to
delve into parameters such as global warming equivalents, emission levels, and inventory
standards. This innovative approach provided valuable insights that could not be solely
attained through experimental methods. The utilization of advanced artificial intelligence
techniques allows for the development of sophisticated black box models that can accurately
predict and analyze composting outcomes under variable conditions.

An Artificial Neural Network (ANN) model is a powerful computational tool that
mimics the structure and functionality of biological neural networks found in the human
brain [19]. It is a subset of machine learning algorithms that excel at recognizing patterns,
performing complex tasks, and making accurate predictions based on input data. The ANN
model consists of interconnected artificial neurons, also known as nodes, which simulate
the behavior of biological neurons. These nodes are organized into layers, including an
input layer where data are fed, one or more hidden layers that process and extract features
from the input, and an output layer that produces the desired results. The connections
between neurons are represented by weighted edges, which determine the importance and
strength of information flow between nodes. The ANN model has proven to be highly
effective in various domains, including image and speech recognition, natural language
processing, predictive analytics, and decision-making systems [20]. Its ability to learn from
large amounts of data and generalize patterns makes it a valuable tool for solving complex
problems and making accurate predictions [21].

Artificial Neural Networks (ANNs) have found applications in the field of composting,
particularly in optimizing and improving the composting process. ANNs can be used
to model and predict various aspects of composting, such as degradation rates, nutrient
dynamics, temperature profiles, and odor emissions. By analyzing historical data and
training the network, ANNs can learn complex relationships between input variables (e.g.,
waste composition, moisture content, aeration rate) and output variables (e.g., compost
quality, process efficiency).

ANNs have been employed in composting research to enhance process understanding
and develop prediction models [22,23]. For example, in a study by Chung et al., an ANN
model was used to predict the composting process parameters, including temperature,
moisture, and oxygen levels, to optimize the composting process [24]. ANN models have
been widely used to assess the composting performance and predict the nutrient content of
the final compost [25,26].

The use of ANNs in composting offers several advantages. They can handle non-
linear relationships and complex interactions among multiple variables, allowing for more
accurate predictions and optimization. ANNs also enable real-time monitoring and control
of composting systems, facilitating process adjustments, and improving overall efficiency.
MATLAB R.21 software has been incorporated for the built-in ANN tools. Nevertheless,
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ANN has three algorithms, namely, Levenberg–Marquardt (LM) Regression, Bayesian
Regularization, and Scaled Conjugate Gradient (SCG). However, due to the compactness
of regression activity, only the LM Regression and SCG algorithm have been used, as the
dataset is mainly linear and only a single prediction value is required. Machine learning
modeling and analysis work have been described in Figure A1 in terms of the timeline for
data analysis, prediction, and accuracy.

In assessing the quality of the resulting compost, we compared various indicators.
Moreover, our research compared the compost quality against the characteristics of high-
quality compost, ensuring that our findings aligned with established composting standards.
The study aimed to evaluate the effectiveness of BSFL in waste treatment compared to
traditional bin composting methods. Through comprehensive assessments, comparisons,
and analyses, we aimed to provide a comprehensive understanding of the performance
and sustainability aspects of both composting techniques.

By harnessing the power of machine learning and deep learning, researchers can
make data-driven discoveries and advancements in composting. These techniques enable
the identification of complex patterns and relationships within large datasets, facilitating
the development of more efficient and cost-effective composting strategies. Ultimately,
this integrated approach combining experimentation, life cycle assessment, and advanced
artificial intelligence techniques offers a promising avenue for research advancement,
driving innovation in the field of composting and facilitating the transition towards more
sustainable waste management practices.

3. Results and Discussion
3.1. BSFL Experimentation: Composting and Process Conditions Optimization

In BSFL composting, the composting conditions are carefully optimized for experi-
mental purposes using the design of experiment 12.0 methodology [27]. This approach
allows for the consideration of multiple independent variables that can influence the com-
posting process. These variables include factors such as time, aeration frequency, the
number of larvae, the surface area of the container, and the composition of the waste being
composted [28,29]. This ensures accurate and reliable results, as each experimental run
in the study maintains a consistent set of parameters while only modifying one specific
parameter. This approach helps to isolate the effects of each variable and understand their
individual impact on the composting process. By systematically changing one parameter
at a time while keeping others constant, researchers can observe and analyze the direct
influence of that specific variable on the composting conditions. This detailed examination
of variable conditions allows researchers to gain a comprehensive understanding of how
each parameter affects the composting process [30,31]. It helps in identifying the optimal
conditions for the larvae, waste breakdown, and nutrient transformation. Through these
experiments, researchers can assess the effectiveness of different composting strategies and
fine-tune the process to maximize efficiency and productivity.

The use of the design of experiment methodology in BSFL composting research enables
a systematic and methodical approach to investigate the effects of various independent vari-
ables [31,32]. It helps in understanding the intricacies of the composting process and allows
for the development of optimized conditions for efficient waste degradation and nutrient
conversion by the black soldier fly larvae. Details of each parameter’s experimentation is
discussed in detail below.

3.2. Effect of Time on Composting with BSFL

The percentage volume and weight reduction were recorded for 20 consecutive days.
The results are given in Figure 4a for four different types of wastes. As can be observed from
Figure 4, the rate of waste reduction gradually paced up and maximum waste reduction
was attained at 15 days. After 15 days, the waste consumption rate was constant. As per
study [29], the average larval age of BSFL is 14–21 days and a minimum age of 5-day-old
larvae are fed. So, more precisely it has been concluded that after 15 days of composting,
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the larvae would be starting to change into pre-pupae and the food requirements are at
a minimum. Therefore, 15 days was taken as the optimum time of waste reduction with
BSFL, with 5-day-old larvae as feed.
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for all four different compositions of wastes due to effect of (a) variable time (b) variable aeration
frequency (At1 refers to aeration one time per day, At2 refers to aeration two times per day, At3 refers
to aeration three times per day, At4 refers to aeration four times per day).

The study involved monitoring the percentage volume and weight reduction of the
waste over 20 consecutive days. The findings are presented in Figure 4a, which clearly
illustrates the trend of waste reduction. It can be observed that the rate of waste reduction
gradually increased over time, reaching its maximum at around 15 days. Beyond this point,
the rate of waste consumption remained relatively constant.

Taking into account previous research on black soldier fly larvae (BSFL), it has been
established that the average larval age of BSFL ranges from 14 to 21 days, and waste
feeding typically begins when the larvae are at least 5 days old [33,34]. Therefore, it can
be concluded with greater precision that after 15 days of composting, the larvae would
have started transitioning into the pre-pupae stage, and their food requirements would
be minimal. Based on this understanding, it is determined that the optimum duration for
waste reduction with BSFL, while using 5-day-old larvae as feed, is approximately 15 days.
Kitchen waste outperformed among the four types of waste, and the most significant
reduction was observed until day 15; after that, the reduction remained constant. This
time frame allows for the most efficient utilization of the larvae’s feeding behavior, taking
into account their growth and development stages. By adhering to this optimal timeframe,
waste composting with BSFL can be effectively managed and optimized, yielding desirable
outcomes in terms of waste reduction and resource utilization.
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3.3. Effect of Aeration Frequency

In order to investigate the impact of aeration frequency on waste reduction, a series of
experiments were conducted over an optimum period of 15 days. Four samples were set up
with varying aeration frequencies, and the results obtained were analyzed. The percentage
volume and weight reduction achieved with different aeration frequencies are presented in
Figure 4b. Notably, the sample labeled At4, which experienced aeration four times a day,
exhibited a significant volume reduction of 65% after just 8 days. In comparison, the sample
labeled At3, with aeration three times a day, achieved the same reduction after 11 days.
These findings indicate that increasing the frequency of aeration resulted in a faster rate of
waste reduction by the larvae.

Further analysis revealed that the At4 sample demonstrated an impressive 88% reduc-
tion in weight and nearly 70% reduction in volume within the first 8 days. This highlights
the effectiveness of more frequent mixing or aeration in promoting efficient waste con-
sumption by the black soldier fly (BSF) larvae. However, as the experiment reached the
15-day mark, the overall waste reduction showed minimal variation among the different
aeration frequencies. This suggests that beyond a certain threshold, the additional benefits
of increasing the aeration frequency become negligible in terms of waste reduction.

Based on the experimental results, an optimum aeration frequency of four times per
day was determined. This frequency allowed the BSF larvae to consume the waste more
effectively while minimizing odor production. The findings underscore the importance of
regular mixing and aeration in enhancing waste decomposition efficiency and controlling
unwanted odors during the composting process.

3.4. Effect of No. of Larvae

The number of larvae is one of the key factors, as it can vary the degradation speed.
Results obtained for waste reduction using a different number of larvae in different samples
are presented in Figure 5a. The relation between the number of larvae and waste food
consumption is direct, as the more larvae there are, the more rapid will be the consumption
of waste, and less time will be taken to convert the waste into compost. The observed
weight and volume reduction was more rapid in sample L4 (with 1200 larvae per kg of
waste) but for 15 days 600 larvae per kg can provide a similar efficiency. With an increased
number of larvae, rapid waste reduction can be obtained and the required number of days
to obtain a particular waste reduction efficiency can be achieved.

3.5. Effect of Surface Area

The optimization of kitchen waste treatment using Black Soldier Fly Larvae (BSFL)
involved introducing the waste into containers with varying surface areas (diameter), while
keeping other factors constant. The outcomes of this experiment are presented in Figure 5b,
illustrating the observed trend of percentage weight and volume reduction. The results
clearly demonstrated that the degradation efficiency of waste by the larvae increased with
an increased surface area of the container. This finding suggests that a larger surface area
facilitates enhanced waste reduction by the larvae. One approach to increase the surface
area is by distributing the larvae in layers within the container instead of solely feeding
them from the top.

Our current research work adopts the layering technique in BSFL composting to
achieve efficient waste reduction and high-quality compost production. This method in-
volves creating multiple horizontal layers of kitchen waste and BSFL within the composting
container. The process starts with a layer of kitchen waste placed at the container’s bottom
as the initial substrate. BSFL larvae are then evenly introduced across the surface, where
they naturally crawl and burrow into the waste to begin feeding. Successively, additional
layers of each waste type are added on top, alternating with the introduction of larvae,
until the container is nearly filled. Finally, the process is completed with a final layer of
each waste type acting as a cover. As the larvae move through these layers, they effectively
consume the waste, converting it into compost and significantly reducing its volume and
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weight. The layering technique optimizes the surface area available for the larvae, leading
to enhanced composting efficiency and the production of high-quality compost.
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The underlying reason behind the improved waste reduction with increased surface
area is that a larger surface area and shorter height expose the larvae to a greater availability
of food. As a result, the larvae can consume the food more easily and rapidly, leading to a
higher level of waste decomposition. This finding highlights the significance of optimizing
the container’s surface area to maximize the effectiveness of the BSFL treatment process
for kitchen waste in line with research validation [35]. By manipulating the surface area of
the containers and exploring alternative feeding methods, researchers can enhance the effi-
ciency of waste reduction and promote more efficient resource utilization through the BSFL
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treatment method. This knowledge can contribute to the development of sustainable waste
management strategies, enabling the effective utilization of kitchen waste and minimizing
its environmental impact.

3.6. Effect of Waste Composition

Kitchen waste comprises diverse fractions, including fruit peels, vegetables, poultry
waste, and more. The digestion time for each type of waste by Black Soldier Fly Larvae
(BSFL) varies depending on the nature of the waste [36]. In order to evaluate which waste
type is consumed more rapidly by BSF, four different waste types were selected, and their
degradation by the larvae was observed. The results, depicted in Figure 5c, indicate the
percentage weight and volume reduction for different waste compositions.

It was observed that unsegregated waste, such as municipal waste, exhibited lower
degradation efficiency compared to the kitchen waste composed of fruits, vegetables, tea
residues, and oily tissues. The kitchen waste demonstrated exponential waste reduction,
suggesting that the presence of diverse components enhanced the digestion process. No-
tably, the degradation of kitchen waste, particularly fruit peels from oranges, guavas,
apples, berries, and other fruits, exhibited higher efficiency. This can be attributed to
the juice and moisture content present in these peels, which likely facilitated the larvae’s
consumption and breakdown of the waste [37,38]. Furthermore, the physical structure of
fruit waste, particularly the peels, can also influence decomposition. Fruit peels often have
a protective outer layer that can be more resistant to degradation compared to other kitchen
waste components. This resistance to breakdown may result in slower decomposition rates
for fruit waste compared to kitchen waste [38,39]. The study conducted by Lalander et al.,
which investigated the biodegradation of kitchen waste and municipal solid waste using
BSFL, reported similar results. They reported that kitchen waste, rich in organic matter
and diverse components, was more efficiently decomposed compared to municipal solid
waste. The presence of fruit peels and other organic residues contributed to the enhanced
digestion process as observed in our research work [40].

Understanding the varying degradation rates of different waste types by BSFL is
crucial for efficient waste management strategies. By identifying the waste fractions that
can be more rapidly digested by the larvae, appropriate segregation and treatment methods
can be implemented to maximize the reduction of organic waste. This knowledge can
contribute to the development of targeted waste management approaches that harness the
capabilities of BSFL, leading to improved resource utilization and reduced environmental
impact associated with kitchen waste disposal.

3.7. Life Cycle Assessment of BSFL

Life Cycle Assessment (LCA) is a systematic methodology used to evaluate the envi-
ronmental impacts associated with the entire life cycle of a product, process, or service. It
provides a comprehensive assessment of various environmental aspects, such as resource
consumption, energy use, emissions, and waste generation, from the extraction of raw
materials to final disposal or recycling [41]. LCA considers the entire life cycle stages,
including raw material acquisition, manufacturing, transportation, product use, and end-
of-life treatment. It helps in identifying the environmental hotspots and potential areas for
improvement, guiding decision-making towards more sustainable options.

Several tools and software are available to conduct LCA studies, such as SimaPro,
GaBi, and OpenLCA, are popular LCA software tools that enable practitioners to assess
environmental impacts and make informed decisions. Such a tool offers a vast database of
life cycle inventory data and impact assessment methods. It allows users to model life cycle
systems, analyze environmental impacts, and compare different scenarios, which assists in
performing life cycle assessments.

BSFL composting of kitchen waste is an important area of study from an environmental
perspective and conducting a Life Cycle Assessment (LCA) is crucial to understand its
sustainability and potential benefits. LCA helps in quantifying the environmental impacts
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associated with the entire life cycle of BSFL composting, including raw material acquisition,
larvae rearing, waste processing, and end-use of the composted material.

Several studies have investigated the Life Cycle Assessment (LCA) of Black Soldier Fly
Larvae (BSFL) composting of kitchen waste, shedding light on its environmental impacts
and sustainability. An LCA study on the use of BSFL as feed ingredients in aquaculture
was conducted to assess various stages of the life cycle, including larvae rearing, waste
processing, and the production of fish feed. The study highlighted the potential of BSFL as
a sustainable alternative to conventional feed ingredients, demonstrating reduced energy
consumption and greenhouse gas emissions [42].

The LCA of food waste management options, including BSFL treatment, was examined.
The researchers compared the environmental performance of different waste management
methods and found that BSFL composting exhibited favorable outcomes in terms of energy
consumption, greenhouse gas emissions, and waste reduction. The study emphasized the
environmental benefits of incorporating BSFL into food waste management systems [43].
An LCA to assess integrated biowaste treatment systems based on BSFL in China was
conducted to evaluate the environmental impacts of various waste treatment options,
including landfilling, composting, and BSFL composting. The findings indicated that BSFL
composting had significant advantages in terms of reducing greenhouse gas emissions,
energy consumption, and land use. The research suggested that integrating BSFL into
waste management systems could contribute to more sustainable and environmentally
friendly practices [44].

These LCA studies collectively highlight the potential of BSFL composting kitchen
waste as a sustainable waste management option. The findings demonstrate the envi-
ronmental benefits of this approach, including reduced energy consumption, greenhouse
gas emissions, and waste generation. By utilizing BSFL in the composting process, or-
ganic waste can be effectively converted into valuable resources, contributing to a circular
economy and mitigating the environmental impacts associated with traditional waste
management methods.

By performing LCA on BSFL composting of kitchen waste, we assessed various envi-
ronmental aspects such as energy consumption, greenhouse gas emissions, water usage,
and waste generation. This assessment provides insights into the potential environmental
benefits and drawbacks of utilizing BSFL as a composting method compared to conven-
tional alternatives; details are given in Table 2 below. Our LCA study mainly focuses
on assessing the environmental impacts of BSFL composting of kitchen waste by consid-
ering parameters such as energy consumption, greenhouse gas emissions, and resource
utilization to provide insights into the environmental performance and sustainability of
this approach.

Figure 6a illustrates the selection of the Sima-Pro 3.8 tool for conducting a Life Cycle
Assessment (LCA) of Black Soldier Fly Larvae (BSFL). The LCA process typically consists
of eight steps when using the SimaPro software: Goal and Scope Definition, Inventory
Analysis, Life Cycle Impact Assessment, Interpretation of Results, Sensitivity Analysis,
Improvement Analysis, Reporting, and Communication. The flow chart includes a sen-
sitivity analysis, which predominantly involves Monte Carlo simulation. In our specific
case, we have adopted a cradle-to-grave approach. The cradle-to-grave approach in Life
Cycle Assessment (LCA) is particularly justified when considering the composting of Black
Soldier Fly Larvae (BSFL). Composting BSFL involves the entire life cycle of the larvae, from
their introduction into the composting system to the final use or disposal of the compost.

Two distinct scenarios were considered for the LCA studies. The first scenario involved
a pilot-scale experimental run, while the second scenario focused on the scale-up study of a
three-ton BSFL working facility. The Eco-invent library was utilized, and the method 2016
H-16 midpoint was chosen for the analysis.
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Table 2. Impact Category for Input/Output Material LCA results.

Impact Category Unit

BSFL Compost [45]|Treatment of
Kitchen and Garden Biowaste,

Home Composting in Heaps and
Containers|APOS, S-Inputs

Fish Feed-
Output

Fertilizer, N,
DK-Outputs

Water consumption m3 1.30 1.86 0.00
Fossil resource scarcity kg oil eq 3.89 1.56 0.25

Mineral resource scarcity kg Cu eq 0.060 0.113 0.003
Land use m2/a crop eq 7.57 0.27 0.00

Human non-carcinogenic toxicity kg 1,4-DCB 14.26 4.67 0.00
Human carcinogenic toxicity kg 1,4-DCB 0.15 0.61 0.00

Marine ecotoxicity kg 1,4-DCB 0.161 0.058 0.000
Freshwater ecotoxicity kg 1,4-DCB 0.317 0.014 0.000
Terrestrial ecotoxicity kg 1,4-DCB 66.85 84.10 0.00
Marine eutrophication kg N eq 0.0153 0.0001 0.0000

Freshwater eutrophication kg P eq 0.0036 0.0005 0.0000
Terrestrial acidification kg SO2 eq 0.166 0.027 0.005

Ozone formation, Terrestrial
ecosystems kg NOx eq 0.060 0.021 0.004

Fine particulate matter
Formation kg PM2.5 eq 0.035 0.013 0.001

Ozone formation, Human health kg NOx eq 0.057 0.020 0.004
Ionizing radiation kBq Co-60 eq 0.122 0.049 0.000

Stratospheric ozone depletion kg CFC11 eq 112.8 × 10−6 3.1 × 10−6 63.5 × 10−6

Global warming kg CO2 eq 17.67 7.41 2.71

The LCA provides an analysis of the environmental impact categories associated with
the BSFL composting process, fish feed production, and fertilizer production, as shown
in Figure 5b,c, following the steps outlined in Figure 6a. The impact categories identified
through the LCA offer valuable insights into the resource consumption, pollution potential,
and overall environmental performance of each process. Multiple trends were calculated
using LCA tools in addition to material flows as shown in Table 2 and Figure 6. Water
consumption is an important aspect to consider and the results indicate that the BSFL
composting process requires 1.298 m3 of water, while fish feed production utilizes 1.861 m3

mainly due to moisture contents in organic waste as shown in Figure 7a,b. In contrast,
fertilizer production does not involve water consumption, indicating a potential advantage
in terms of water conservation, so fertilizer production is 1.5-fold higher than fish feed.

Fossil resource scarcity, measured in terms of kilograms of oil equivalent, provides
another significant category. The results show that the BSFL composting process has
an impact of 3.894 kg oil equivalent, while fish feed production has a lower impact of
1.558 kg oil equivalent. Fertilizer production demonstrates a relatively smaller impact
of 0.250 kg oil equivalent, suggesting a more efficient utilization of fossil resources as
shown in Figure 8a,b. Land use highlights an important consideration when assessing the
environmental footprint of a process. Sima-Pro LCA revealed that the BSFL composting
process requires 7.569 m2, a crop equivalent of land, indicating the space needed for
composting activities. In contrast, fish feed production has a significantly lower land use
impact of 0.266 m2, crop equivalent. Fertilizer production does not contribute to land use
impacts. LCA also highlighted the ecotoxicity impacts in different environments, including
marine, freshwater, and terrestrial ecosystems. The Global Emissions and Impact bar chart
at Normalization was measured and is shown in Figure 8c. The BSFL composting process
exhibits varying levels of ecotoxicity, with higher values compared to fish feed production.
Fertilizer production, however, shows no ecotoxicity impact.
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Furthermore, global warming potential is a crucial category for assessing the climate
change impact. LCA indicated that the BSFL composting process generates 17.671 kg
CO2 equivalent, fish feed production generates 7.406 kg CO2 equivalent, and fertilizer
production generates 2.715 kg CO2 equivalent. These values provide insights into the
carbon emissions associated with each process. Nonetheless, fertilizer with a higher
percentage of production and minimum CO2 makes the process environmentally and
financially sustainable.

LCA offers a comprehensive overview of the environmental impacts associated with
the BSFL composting process, fish feed production, and fertilizer production. The results
highlight variations in water consumption, fossil resource scarcity, land use, ecotoxicity,
and global warming potential among the different processes and is shown in a bar-plot at
three point of normalization, weighted results, and with factor = 0 in Figures 7a,b and 8a–c.
In addition to the experimental findings at optimum conditions and further process sus-
tainability, KPIs and the tedious index are enabled by LCA tools. These findings can inform
decision-making processes and guide efforts toward more sustainable waste treatment and
resource utilization practices. ML provides the best well-informed tool for both onsite and
future predictive assessments based on major experimental and software results dataset.
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inn heaps and containers |APOS, S; R—Apple, market for {GLO}; S—Strawberry, market for {GLO};
T—Chilli, market for {GLO}; U—Waste treatment, 103 {GLO}; V—Waste Paper, Sorted, production
mix {C}; W—Enzymes, market for {GLO}; X—Potato Starch, market for {GLO}; Y—Electricity, high
voltage {GLO}; Z—Municipal Collection of Non-hazardous Waste {GLO}).

3.8. Machine Learning and Modeling for BSFL Composting

ML accounted for the same dataset as the At3 dataset for the shortlisting of the ANN
algorithm, modeling, and ANN black box simulations. The Epoch was arbitrarily selected
as 85, while the number of hidden layers was 20. The dataset was divided into 50% training,
and 25% each for testing and validations. The ANN matrices shown in Appendix A include
that Mean square error and R were selected. The error bin for LM and SCG was 20 bins.
LM showed the minimum Mean Squared Error (MSE) for all the three distinctive datasets.
The same trend was confirmed for R-metrics. LM had a value of R = 1 for training datasets.
However, the testing and validation had a brief variation of up to 0.09. Figure 9a,b shows
the training, testing and validation of input and sample datasets.
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Table 3 shows results for the Levenberg–Marquardt algorithm; during the training
segment, the MSE is extremely low at 1.23 × 10−19, indicating a very small difference be-
tween the predicted and desired outputs. The correlation coefficient (R) is 1.000, suggesting
a perfect linear relationship between the predicted and desired outputs. The predicted
volume reduction is 64.87%, while the experimental volume reduction is slightly higher
at 65%. The predicted CO2 equivalent is 16.67, and the actual CO2 equivalent is 99.8%,
resulting in high accuracy of prediction.

Table 3. ANN Machine learning Modeling Input/Output and Predictions Results.

ANN
Algorithm

ANN
Segment MSE R

Predicted
Volume

Reduction

Experimental
Volume

Reduction

Predicted
CO2

Equivalent

Actual
CO2

Equivalent
Accuracy

Levenberg–
Marquardt

Training 1.23 × 10−19 1.000
64.9% 65.0% 17.64 16.67 99.8%Validation 4.23 × 10−1 0.999

Testing 0.137 0.991
Scaled

Conjugate
Gradient

Training 0.004 0.997
62.2% 65.0% 16.90 16.67 95.6%Validation 0.016 0.998

Testing 0.674 0.990

In the validation segment, the MSE increases to 0.423, indicating a slightly higher
difference between the predicted and desired outputs compared to the training segment.
The correlation coefficient (R) remains high at 0.999. In the testing segment of the Levenberg–
Marquardt algorithm, the MSE is 0.137, indicating a higher difference between the predicted
and desired outputs compared to both the training and validation segments. The correlation
coefficient (R) is 0.991, still indicating a strong linear relationship satisfying our assumption
of comparison between LM and SCG algorithms for linearity.

For the Scaled Conjugate Gradient algorithm during the training segment, the MSE is
0.004087, indicating a relatively low difference between the predicted and desired outputs.
The correlation coefficient (R) is 0.997, indicating a strong linear relationship. The predicted
volume reduction is 62.2%, which is slightly lower than the experimental volume reduction
of 65%. The predicted CO2 equivalent is 16.90, while the actual CO2 equivalent is 16.67,
resulting in an accuracy of 95.6%.

In the validation segment, the MSE is 0.015932, indicating a higher difference between
the predicted and desired outputs compared to the training segment. In the testing segment
of the Scaled Conjugate Gradient algorithm, the MSE is 0.674, indicating a higher difference
between the predicted and desired outputs compared to both the training and validation
segments. The correlation coefficient (R) is 0.990, indicating a strong linear relationship,
as keenly observed in Figure 9a,b. Overall LM shows greater affinity for handling robust
experimental and LCA parameters for both onsite and scale-up studies predictions, owing
to lower MSE and higher R values.

3.9. Comparative Analysis of Current BSFL, LCA, and Data-Driven Research Work with
Conventional Systems

The waste treatment efficiency of BSFL was also compared with one of the conventional
methods i.e., bin composting. All the inputs such as waste type, quantity, number of larvae,
and surface area were kept the same as the optimized value for BSFL. Two samples were
used, one with BSFL and the other without BSFL in a similar container. The BSFL reduces
waste much faster than the conventional method. The percentage weight and volume
reduction by both the BSFL and bin composting are shown in Figure 10.

From Figure 10 is it evident that by composting with BSFL for 15 days the total waste
was reduced by almost 70%, while the percentage weight reduction of the bin system was
around 20%. The volume was reduced by 20% in the case of a bin, and in the case of BSFL
the volume was reduced by almost 90% in 15 days The normal time for bin composting is 4
to 8 weeks [46].
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Figure 10. Percentage Weight and Volume Reduction with BSFL vs. Bin Composting (conventional
method) for kitchen waste (Optimum conditions 16 days, aeration frequency four times a day, number
of larvae was 600 with kitchen waste composition).

The characteristics of the compost produced are also an important basis to compare
both methods. Table 4 displays the compost quality produced by BSFL in comparison
to that produced by bin composting and the best compost values. Since BSFL and bin
composting are evaluated in this work, a comparison was made between the literature of
earlier research and the current study (BSFL) and bin composting.

Table 4. Quality of compost produced by Kitchen Waste using BSFL and bin system in comparison to
conventional methods.

Parameters Current Study
(Bin Composting) Current Study (BSFL) Best Quality Value by

Conventional Method [18]

pH 5.4 8.5 7.2–7.8
Moisture Content 63.4% 67% 60

C/N 14.5 12.1 >11.0
N (mg/L) 20.6 33.6 >18.7
P (mg/kg) 70 350 >200

TDS (mg/L) 960 1250 2000
Conductivity (dS/m) 2.04 2.5 2–6

Na (mg/kg) 800 1700 >1500
K (mg/kg) 500 1100 2000

The pH and C/N ratio of the compost articulates that the compost produced by the bin
composting was not matured enough yet to be applied, as the pH was in the acidic phase.
Moreover, the nutrient quantity in the compost produced by BSFL was better than the bin
composting. The Levenberg–Marquardt algorithm generally shows better performance
with lower MSE, and higher correlation coefficients compared to the Scaled Conjugate
Gradient algorithm and predicts an accurate result for the experimental and calculated
LCA parameters such as CO2 equivalents.

4. Conclusions

Based on the current research outcomes, it has been demonstrated that Black Soldier Fly
Larvae (BSFL) are highly effective and suitable for composting kitchen waste. The optimal
time required for waste reduction using BSFL was found to be 15 days. By increasing
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the frequency of aeration and the number of larvae, the waste consumption process by
BSFL can be accelerated. Additionally, increasing the surface area of the container leads
to enhanced waste reduction. It was observed that layering the waste can effectively
increase the surface area without occupying much space. Compared to conventional bin
composting systems, waste reduction by BSFL occurs at a significantly faster rate. The
compost produced through BSFL treatment of waste exhibits superior qualities, such as
high nutrient value and other characteristics aligned with standard compost quality. The
life cycle assessment (LCA) study demonstrated sustainable metrics for BSFL composting.
When comparing different Artificial Neural Network (ANN) algorithms, it was evident
that the Levenberg–Marquardt algorithm provided better predictive results, exhibiting the
least Mean Squared Error (MSE) for intricate experimental and software tool parameters.
The accuracy of predicting CO2 equivalent reached up to 99.5%. This study contributes
to optimizing and scaling up composting technologies for the treatment of organic waste,
particularly kitchen waste, using BSFL. The outcome is the production of higher-quality
compost and a clear understanding of the differences in treatment efficiency compared to
conventional bin composting methods.
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