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Abstract: This article describes an innovative method for the determination of heat flow (specific heat
loss; linear heat flow density) from a one-metre length of a twin pipe directly-buried heat network.
Such heat losses are currently described by applying analytical procedures based on the heat transfer
theory. It is rather complicated to accurately express the heat loss using such procedures, due to
the necessity to determine the individual values of thermal resistance. A simpler method to express
heat loss is the balance method, as it requires measuring a temperature gradient ∆t between the
starting point of the heat network and the end point of the heat collection. A suitable measuring
device must provide high-accuracy measurements of the temperature. In the case of very well-
insulated distribution pipelines and short pipes, the temperature measurements must be accurate to
the hundredths of a degree Celsius. It is impossible to install such devices as fixed equipment on
every heat distribution network, due to such networks measuring many kilometres and the cost of
the appropriate measuring technology. For the aforesaid reasons, the authors created a mathematical
model for specific heat losses based on dimensional analysis. This method facilitates the identification
of dimensionless criteria based on the relevant dimensional quantities. Functional correlations
between the identified criteria may be identified on the basis of the results of physical or numerical
experiments. In this study, a database of the results obtained from physical experiments conducted
on two heat networks was used. The output of the similarity model was a function describing the
heat flow from a one-meter pipe length that was applicable to various alternatives in relation to the
geometrical, physical and boundary conditions. The standard deviation of a difference in the heat
losses identified by applying the balance method and using the proposed criterial equation for a twin
pipe directly-buried pre-insulated heat network was 0.515 W·m−1.

Keywords: heat loss; directly-buried heat network; dimensional analysis; mathematical model

1. Introduction

Exact mathematical formulations for heat transfer in heat distribution systems are
associated with certain shortcomings, which are related to the exact identification of the
heat transfer coefficient for the external side of a directly-buried heat distribution pipeline.

A problem associated with identifying the heat loss in a directly-buried pipeline
is that the cooling of the pipes is not a symmetrical process, especially in the case of a
twin pipe arrangement. Differences in the heat removal in individual directions cause
differences in the temperatures measured along the thickness of the insulation. The thermal
conductivity coefficient, which has a significant effect on heat loss, also changes with a
changing temperature.

The authors of this article, therefore, searched for a procedure that would facilitate
the simplest possible description, but with sufficient accuracy, of the specific heat loss of a

Appl. Sci. 2023, 13, 8055. https://doi.org/10.3390/app13148055 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148055
https://doi.org/10.3390/app13148055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1188-3016
https://doi.org/10.3390/app13148055
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148055?type=check_update&version=1


Appl. Sci. 2023, 13, 8055 2 of 10

twin pipe directly-buried heat network. They conducted a precise experiment and created
a similarity model based on dimensional analysis.

In order to find concrete quantities of a criterial equation, it is possible to use the
results of an experiment or numerical simulations. The procedure for deriving a criterial
equation by a dimensional analysis is described in detail in Section 3.

The authors of this article had extensive experience with even more complicated
physical experiments [1,2]. In addition to physical experiments, tasks related to heat transfer
and heat flow are also solved using a numerical simulation. For example, the authors
of a publication [3] presented a similarity model for the description of the temperature
of cooled fluid in cisterns relative to the transportation time, in which they used the
results of an extensive numerical calculation. Numerical experiments are also used in
specific fields of technology, with the use of various software products. For example,
the finite element method (FEM), integrated with COMSOL Multiphysics software, was
used in an investigation into the effects of adding nanoparticles of copper oxide during
a heat transfer [4]. Furthermore, an investigation into a two-phase developing laminar
mixing layer at supercritical pressures was carried out by applying the finite volume
method (FVM) [5]. The FVM was also used in an investigation into the enhancement of a
turbulent heat transfer in a mini-channel cooler [6] and in a study of loop heat pipes for heat
transfers [7], as well as in various other applications of specific technical solutions [8–13].

2. Analysis of the Problem

To describe a process for which no exact physical equation exists, or if the application
of a physical equation is assumed to be problematic, it is advisable to perform an experi-
ment and to generalise its results while applying the laws of similarity. Similar processes
that depend on several physical quantities are subject to certain correlations between the
similarity constants, which cannot be arbitrarily changed [14–19]. Such a condition must
also apply to a description of the specific heat loss for directly-buried heat distribution
systems.

Following a detailed analysis, several physical quantities that affect the specific heat
flow were selected for the twin pipe directly-buried heat network. The selected quantities
relevant to the creation of a mathematical model using a dimensional analysis are listed
in Table 1. In the process of creating a model law, the dimensions of physical quantities
are always transformed to the seven SI units (kg; m; s; K; A; mol; cd). However, the
quantities that are relevant to the creation of a model of specific heat loss are only four basic
dimensions—kg, m, s and K.

Table 1. Input quantities for the mathematical model.

Symbol Physical Quantity Unit

ql Specific heat loss W·m−1 ≈ kg·m·s−3

T1 Average temperature of water in the feed pipe K

T2 Average temperature of water in the return pipe K

Te Ambient temperature K

d2 External diameter of the pipe m

b Insulation thickness m

λin Thermal conductivity coefficient for insulation W·m−1·K−1 ≈
kg·m·s−3·K−1

H Burial depth m

C Pipe spacing m

λs Thermal conductivity coefficient for soil W·m−1·K−1 ≈
kg·m·s−3·K−1

αe Coefficient of heat transfer to the surrounding environment W·m−2·K−1 ≈ kg·s−3·K−1

The table does not contain the coefficient of heat transfer from the flowing fluid to
the pipe wall α, internal diameter of the pipe d1, pipe wall thickness bp, and the thermal
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conductivity coefficient for the pipe wall λp. A detailed analysis, conducted for steel pipes
through which hot water flowed at a rate of several metres per second, showed that the
sum of the thermal resistance on the internal side of the pipe and the thermal resistance of
the pipe wall was a value three orders lower than the value for the thermal resistance of the
pipe insulation. Therefore, the quantities α, d1, bp and λp can be neglected in the creation of
the model.

A similarity model for describing any phenomenon (a criterial equation) is created in
the process of replacing selected dimensional quantities ϕ1 to ϕn with similarity criteria π1
to πl, and then by identifying functional correlations between the individual criteria either
experimentally or by a numerical calculation. Such a criterial equation is then applicable to
the entire group of similar phenomena.

A general procedure for applying dimensional analysis, in order to describe a process
for which no exact analytical solution is known, is described in detail in papers [20–22].
The authors of this article applied dimensional analysis when describing the formation of
nitrogen oxides during a dendromass combustion process. The resulting criterial equation
was verified in a physical experiment, conducted on the combustion equipment by Werner
with a power of 13 kW [23]. The results obtained from the model were in absolute agreement
with the results obtained in situ using a HORYBA ENDA—680P analyser. The errors in
the identification of nitrogen oxides by direct measurements and according to the created
model ranged from −0.54 to +0.48%. The authors of this article also applied a dimensional
analysis to modelling the prediction of nitrogen concentrations in the Laborec River in
Slovakia [24]. A sensitivity analysis revealed that the temperatures of the air and the
water had a significant effect on the concentrations of pollutants in the river. Despite
a significant variability of the conditions of the river pollution throughout the year, the
average annual indicators of pollution, as monitored by an accredited laboratory, were in
excellent agreement with the results obtained from the created model. Dimensional analysis
was also used to evaluate profits from the production of electric energy in hydro-pumped
water power plants [25], where the resulting criterial equation was verified by a power
plant in Ružín, Slovakia. This was the first case of verifying the method of a dimensional
analysis that was used to describe an economic process, not a physical one. The extensive
experience of the authors of this article in the application of a dimensional analysis to solve
various practical tasks is outlined in paper [26].

The innovative approach to addressing specific heat loss using similarity criteria, and
the subsequently created mathematical model presented in this article, lies in the simplicity
of its practical application. As a result, it is not necessary to perform an experiment
involving each analysed twin pipe heat network in various boundary conditions. The
created mathematical model guarantees the accuracy of the calculations, as is presented in
the conclusions.

3. Similarity Model Based on the Criterial Equation

Applying a criterial equation to any process always brings a smaller number of criteria
π than the number of relevant quantities n on which the process depends. The basic
equation describing a correlation between n relevant quantities ϕ1, ϕ2 . . . ϕi . . . ϕn of
various dimensions is as follows:

f (ϕ1, ϕ2 . . . ϕi . . . ϕn) = 0 (1)

For each quantity ϕ, it is possible to write a dimensional formula based on a defining
equation. It is the product of the symbols of the base units with the respective exponents. In
the case of four base units of selected physical quantities (kg, m, s, K), a defining equation
is as follows:

[ϕ] = mx1 ·kgx2 ·sx3 ·Kx4 (2)

In Equation (2), the dimensional exponents x1 to x4 are rational numbers, which must
follow from the solution—see the procedure below.
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Equation (1) is dimensionally homogeneous; this means that the variables ϕi cannot
be individually present in the equation, but only in the form of products:

π =
n

∏
i=1

ϕ
xi
i (3)

where in π is the dimensionless variable quantity (similarity criterion); xi is the exponent (a
rational number); and ϕI is physical quantities with the respective dimensions.

According to Equation (1), and while taking the physical quantities listed in Table 1
into account, the following correlation must apply:

(ql , T1, T2, Te, d2, b, λin, H, C, λs, αe) = 0 (4)

In general, for a process described by n relevant quantities, a total of l similar-
ity criteria may be created. The number of searched criteria π is identified using the
following equation:

l = n− h (5)

where in h is the rank of a dimensional matrix.
According to Equation (3), the following may be written:

π = qx1
l ·T

x2
1 ·T

x3
2 ·T

x4
e ·dx5

2 ·b
x6 ·λx7

in ·H
x8 ·Cx9 ·λx10

s ·αx11
e (6)

The dimensional formula of Equation (6) is as follows:

1 = (kg·m·s−3)
x1 ·(K)x2 ·(K)x3 ·(K)x4 ·(m)x5 ·(m)x6 ·(kg·m·s−3·K−1)

x7 ·(m)x8 ·(m)x9

·(kg·m·s−3·K−1)
x10 ·(kg·s−3·K−1)

x11 (7)

Since the left side of Equation (7) equals one, the sum of the dimensional exponents for
each base quantity must equal zero. Therefore, for individual dimensions of the physical
quantities (m, kg, s, K) that affect a value of the specific heat dissipation rate in the analysed
heat network, the set of Equations (8)–(11) applies:

For a unit : “metre” x1 + x5 + x6 + x7 + x8 + x9 + x10 = 0 (8)

“kilogram” x1 + x7 + x10 + x11 = 0 (9)

“second” − 3x1 − 3x7 − 3x10 − 3x11 = 0 (10)

“kelvin” x2 + x3 + x4 − x7 − x10 − x11 = 0 (11)

Equations (9) and (10) are in a linear correlation. Therefore, in a further solution,
one of them must be omitted, and the rank of the dimensional matrix then equals h = 3.
According to Equation (5), out of the eleven relevant quantities it is then possible to create
eight similarity criteria. In order to obtain the eight independent criteria π, it is necessary
to make eight independent solutions of the set of Equations (8)–(11), and in each case to
select eight unknowns xi. When selecting the unknowns, the usual procedure is that one
unknown is determined as equal to one, while the others are equal to zero. Such a selection
has only one constraint—the selected unknowns cannot be mutually correlated. Therefore,
in the set of Equations (8)–(11), it is not permitted to arbitrarily simultaneously select the
unknowns x1, x7, x10 and x11 in a single solution.

Quantities with identical dimensions are expressed as individual criteria, or simplexes.
In particular, they include the temperature of water in the feed pipe, the temperature in
a return pipe, and the ambient temperature (K); thickness of the insulation, pipe burial
depth, spacing of the pipes, and an external diameter of the pipe (m); as well as the thermal
conductivity coefficients for the insulation and for the soil (kg·m·s−3·K−1). Based on the
physical quantities listed in Table 1, it was possible to compile six such simplexes.
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The first ones were the following temperature simplexes:

π1 =
T2

T1
(12)

π2 =
Te

T1
(13)

Other simplexes were created from the quantities with a length dimension, as follows:

π3 =
H
d2

(14)

π4 =
C
d2

(15)

π5 =
b
d2

(16)

The last simplex contained thermal conductivity coefficients, as follows:

π6 =
λs

λin
(17)

Quantities T2, Te, b, H, C and λs were not analysed in the following solution. Therefore,
for the set of Equations (8), (9) and (11), it was determined that x3 = x4 = x6 = x8 = x9 = x10 = 0;
as a result, the equations were as follows:

x1 + x5 + x7 = 0 (18)

x1 + x7 + x11 = 0 (19)

x2 − x7 − x11 = 0 (20)

Such a simplified set was then used to identify the last two complex criteria. With
the first selection of x11 = 1 and x1 = 0, the result was x2 = 0, x5 = 1 and x7 = −1, and the
criterion was as follows:

π7 =
αe·d2

λin
(21)

In order to determine the eighth criterion π8, it was determined that x1 = 1 and x11 = 0.
By solving the set of Equations (18)–(20), the obtained result was that x5 = 0 and x2 = x7 = −1,
while the identified dimensionless argument was as follows:

π8 =
ql

T1·λin
(22)

The searched quantity ql lied in the criterion π8; therefore, this criterion was expressed
as a function of the other arguments, as follows:

π8 = ψ(π1, π2, π3, π4, π5, π6, π7) (23)

4. Experimental Data

For the purpose of obtaining data on specific heat loss, two directly-buried heat
networks were subjected to measurements of the selected relevant physical quantities. The
experiments were carried out on a DN65 twin pipe pre-insulated pipeline network and
on a network consisting of DN100 pipes. The temperature gradients in the two pipeline
networks were 85/50 ◦C. The external diameter of the DN65 steel pipe was d2 = 76.1 mm,
and for the DN100 steel pipe it was d2 = 114.3 mm (Figure 1). The external diameter of
the insulated DN65 pipe was d3 = 140 mm, and for the DN100 pipe it was d3 = 200 mm.
The insulation of both pipelines was of Class A, freon-free PUR foam (EN 253), with a
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protective jacket made of high-density polyethylene (HDPE) (EN 253). The burial depths
of the feed and return pipes in both networks were identical: H = H1 = H2 = 0.97 m. The
distance between the axes of the pipes in the DN65 network was C = 0.262 m, while for the
DN100 network it was C = 0.322 m. The pipes were buried in a concrete bed, surrounded
by sand and covered with a gravel layer. In the DN65 network, there was a clay layer (λs =
1.5 W·m−1·K−1) above the gravel layer, while the DN100 network was covered by a layer
of dry soil (λs = 0.9 W·m−1·K−1). The thermal conductivity coefficient for the insulation
made of PUR foam was λin = 0.027 W·m−1·K−1, based on the recommendations of the
manufacturer of the PIPECO insulation.

Figure 1. Geometry of the pipes.

The heat losses required for the creation of a similarity model were identified by
applying the balance method. Temperatures at the system’s inlet and outlet were measured
using an MI9060 device. The measurement accuracy was ±0.01 ◦C in a temperature range
from −200 ◦C to +850 ◦C, with 0.001 ◦C resolution. A volumetric flow rate of the water was
measured, using an ultrasonic flow rate meter with an accuracy of ±0.3% of the measured
value.

For the DN65 heat network, the measurements were carried out at three different
ambient temperatures: te = 7.5, 10 and 15 ◦C. As for the DN100 network, the ambient
temperatures were: 5, 9 and 13 ◦C. At each temperature te, 36 measurements were carried
out. For the purpose of further analysis, the values of the parameters obtained from a total of
216 measurements were available. Outliers were removed from the set of calculated values
for ql. Therefore, when deriving the parameters of a criterial equation, two measurements
on the DN65 network and three measurements on the DN100 network were not taken
into account.

5. Identification of the Criterial Equation Parameters

The correlation between the dimensionless arguments in Equation (23) is a power
function, so the following equations hold:

π8 = C·πz1
1 ·π

z2
2 ·π

3
3 ·π

z4
4 ·π

z5
5 ·π

z6
6 ·π

z7
7 (24)

In logarithmic coordinates, this correlation is linear, as follows:

lnπ8 = ln C + z1· ln π1 + z2· ln π2 + z3· ln π3 + z4· ln π4 + z5· ln π5 + z6· ln π6 + z7· ln π7 (25)

Individual criteria π were calculated from the measured values of all the quantities.
A constant C and the searched exponents z1 to z7 were identified from the results of the
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experiment by applying a multiple linear regression. The values of the constant C and the
exponents z1 to z7 are listed in Table 2.

Table 2. Constant C and individual exponents.

Constant Exponent

C z1 z2 z3 z4 z5 z6 z7

0.343 2.976 −5.165 −2.016·10−4−2.485·10−2 −0.587 0.155 2.641·10−2

An analysis of the results indicated that the model was statistically significant. In
order to verify the multicollinearity, we applied the Variance Inflation Factor (VIF) quotient.
Since the VIF value lied between 1 and 5, the considered criteria did not correlate with the
other criteria. Heteroscedasticity was verified using the Breusch-Pagan test. The results
indicated that the regression model did not prove the heteroscedasticity. The tests were
carried out using the R package software.

For the analysed twin pipe directly-buried heat network, the full criterial Equation (24)
was as follows:

ql
T1·λin

= 0.343·
(

T2
T1

)2.976
·
(

Te
T1

)−5.165
·
(

H
d2

)−2.016·10−4

·
(

C
d2

)−2.485·10−2

·
(

b
d2

)−0.587
··(

λs
λin

)0.155
·
(

αe·d2
λin

)2.641·10−2 (26)

6. Discussion and Conclusions

The exponents in Equation (26) indicated that specific heat loss is most affected by the
temperature criteria π2 and π1 and by the simplexes π5 and π6. A significantly weaker
effect of the other criteria—π3, π4 and π7—may be explained after a more detailed analysis
of the process of heat transfer from hot water to the surrounding environment. A sensitivity
analysis of the individual thermal resistances indicated a weak effect of the quantities that
are present in those criteria—H, C and αe—on the heat loss value. Moreover, the effect of
the quantity H was most reduced due to the fact that the measurements were carried out
on two networks with identical pipe burial depths.

The results obtained from the similarity model and the results obtained from the
measurements exhibited a very good agreement. Figure 2 shows the correlation between
the specific heat loss ql,mea calculated from the results of the measurements and ql,mod
calculated using the criterial Equation (26).

Figure 2. Correlation between the specific heat losses obtained by the measurements and from
the model.

The correlation may be described by a regression line with the slope approaching 1,
in particular 1.0004, with the coefficient of determination (square power of the correlation
coefficient) R2 = 0.9502. The standard deviation of the difference was s∆ = 0.515 W·m−1.
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The results of both methodologies were also tested by using a paired t-test at a
significance level of p = 0.05. The value of the test criterion t was calculated using the
following equation:

t =

∣∣∆ql
∣∣·√m− 1

s∆
(27)

where m is the number of values.
The quantity ∆ql is an average value of the difference ql,mea − ql,mod calculated using

the following equation:

∆ql =
∑(ql,mea,i − ql,mod,i)

m
(28)

For the analysed datasets, m = 211 and ∆ql = 0.0175 W·m−1; therefore, the value of the
test criterion was t = 0.492. The critical value tcr at a significance level of 0.05 was t0.05(211-1)
= 1.971. Since t < tcr, it may be stated that both of the methodologies led to identical results.

The criterial Equation (26) represents a universal formula for expressing the specific
heat loss for a twin pipe directly-buried heat network. The ranges of the quantities to which
the derived model applies are listed in Table 3.

Table 3. Scope of applicability of the created model.

Quantity Unit Minimum Maximum

T1 K 348 354

T2 K 319 323

Te K 278 288

d2 mm 76 114

b mm 32 43

λs W·m−1·K−1 0.9 1.5

αe W·m−2·K−1 17 23

An advantage of defining the specific heat loss using a criterial equation is that it
facilitates the identification of specific heat loss, as well as the heat loss of the entire
distribution system, without the necessity to perform repeated accurate measurements.

An example of using the model, when the temperature of water in the feed pipe t1 = 81
◦C, is shown in Figure 3, comparing the specific heat loss of the DN65 network and that of the
DN100 network. The values of the other quantities were as follows: λin = 0.027 W·m−1·K−1;
te = 5 ◦C; λs = 1.5 W·m−1·K−1; αe = 23 W·m−2·K−1; H = 0.97 m. The figure indicates the
following:

- Heat loss decreased as the temperature of the water in the return pipe decreased;
- The DN100 network exhibited a 2.5 W·m−1 higher specific heat loss compared to the

DN65 network.

The resulting model is primarily intended for the distributors of heat, for the purpose
of identifying the specific heat loss, as well as the total dissipation rate of a heat distribution
pipeline with a known length of piping. Equation (26) may be programmed in a simple
manner to facilitate the identification of the specific heat loss, as well as the total dissipation
rate of a heat network. For other ranges of the relevant quantities, it will be necessary to
perform another experiment and modify the constant and the exponents in Equation (26).
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Figure 3. Comparison of specific heat losses of the DN65 and DN100 networks.
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