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Abstract
This article reviews and analyzes the approaches utilized for monitoring cutting tool conditions. The Research focuses on 
publications from 2012 to 2022 (10 years), in which Machine Learning and other statistical processes are used to determine 
the quality, condition, wear, and remaining useful life (RUL) of shearing tools. The paper quantifies the typical signals utilized 
by researchers and scientists (vibration of the cutting tool and workpiece, the tool cutting force, and the tool’s temperature, 
for example). These signals are sensitive to changes in the workpiece quality condition; therefore, they are used as a proxy 
of the tool degradation and the quality of the product. The selection of signals to analyze the workpiece quality and the tool 
wear level is still in development; however, the article shows the main signals used over the years and their correlation with 
the cutting tool condition. These signals can be taken directly from the cutting tool or the workpiece, the choice varies, and 
both have shown promising results. In parallel, the Research presents, analyzes, and quantifies some of the most utilized 
statistical techniques that serve as filters to cleanse the collected data before the prediction and classification phase. These 
methods and techniques also extract relevant and wear-sensitive information from the collected signals, easing the classifiers’ 
work by numerically changing alongside the tool wear and the product quality.

1  Introduction

The analysis of cutting tools has been a relevant topic for 
many years. Proper maintenance results in the tool’s pro-
ductive life prolongation and high-quality performance. 

The main goal of condition monitoring systems is to allow 
maintenance or other actions to be predicted; therefore, 
extra costs due to out-of-specification (OOS) products or 
damage in the machinery can be avoided. Even though 
the producers extensively explain the appropriate main-
tenance which should be implemented to obtain efficient 
performance, the occurrence and the frequency of failures 
increase the production costs, especially in those cases 
where the material must be reformed and reprocessed, 
resulting in a financial loss for the company. In those 
scenarios, incorporating methods to predict an imminent 
failure or a reduction in the quality of the cut can save and 
reduce production costs. In 2012, Cai et al. [22] stated 
that approximately 20% of a machine downtime which 
results in reduced productivity and economic losses was 
attributed to cutting tool failure; in the very same year, 
Gahni et al. [39] concluded that around 3–12% of the total 
production cost are accounted to tool’s replacements. It 
has also been calculated that the tool-related issues down-
time is approximately 7–20% of the machine’s produc-
tive time, as Drouillet et al. [35] stated. In more recent 
studies; researchers concluded that the 15-40% of costs 
of produced goods is influenced by tool machine fail-
ures [26, 27, 99]. As clearly stated, the financial impact of 
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tool maintenance is relevant and substantial; therefore, a 
monitoring system has become a proper course of action 
to mitigate these losses.

An ideal monitoring system can supervise the wear in the 
tools over time to avoid unexpected downtime or non-precise 
cuts [5]. Most of the recent approaches comprise two main 
parts: The data-measuring process and the classification sys-
tems. As described further, the data measuring process is in 
charge of the data collection, which uses sensors to measure 
a physical or electrical signal taken during the production 
process. The classification system uses this information to 
determine the condition of the tool or the Remaining Useful 
Life (RUL). It can improve tools sustainability [108] and 
enables the reliability prediction [101].

The data measuring process is a sensor or a set of sen-
sors to capture specific information from the tool and the 
machine. Data acquisition through the Monitoring Systems 
(MS) is crucial since it must be capable of accurately and 
continuously measuring some defined variables, which are 
then analyzed to predict future failures. Several signals are 
being used for those purposes; however, as will be discussed 
in further chapters, some physical signals have shown a high 
correlation to the tool’s wear, such as cutting force [96, 117, 
129], acoustic signals [15, 103, 138], the cutting tools and 
work-piece vibration signal [116, 121, 141], among others.

On the other hand, the classification system is the final 
part of the monitoring system. In 2013 [15] implemented 
Super Vector regression to predict and monitor the wear of 
a shearing tool. From 2019 most of the approaches are Neu-
ral Network-based, in any of its variations (auto-encoder, 
Recurrent Neural Network, Convolutional Neural Net-
works.) Preez et al., [88]; Sun et al., [107]; Traini et al., 
[114]; Kong et al., [57]; Patange et al., [87]; Lee et al., [66]. 
It can also work with limited data collection [70].

Several methods have been developed over the year for 
classification and prediction purposes. Artificial Neural 
Networks [10, 29, 114, 121], specifically Long Short Time 
Memory, Convolutional Neural Network; also Support Vec-
tor Machine, Wang et al., [118]; Lee et al., [66] and others.

The tool’s life prediction and remaining life are typically 
modelled using data-driven approaches. Some researchers 
have also shown promising results by modelling the tools’ 
wear and creating mathematical models. A review paper 
from Kuntoǧlu et al., [62] also mentioned other possible 
ways to design the indirect tool condition monitoring sys-
tem; their Work also presents various decision-making meth-
ods used for condition monitoring of steel machining. In 
2011, the work [18] was published, where hidden discrete 
Markov models were used for tool wear/fracture and bearing 
failures. The technique was tested and validated successfully. 
In this case, the model correctly detected the state of the tool 
(i.e., sharp, worn, or broken), resulting in a 95% success rate 
obtained for fault severity classification.

There are also hybrid systems where both approaches 
are implemented. Hanachi, in their work [42], managed the 
uncertainties and noise of both methods, implementing a 
hybrid framework where they fused the results of the pre-
diction model and the measurement-based inference data 
step-wise. They concluded that the results of their hybrid 
system showed significant improvements in tool wear state 
estimation, reducing the prediction errors by almost half, 
compared to the prediction model and sensor-based monitor-
ing method independently used.

The correct operation of many systems is often guar-
anteed by post-manufacturing testing; therefore, it will be 
considered that they work correctly right after installation. 
Although it is possible to analyze situations with manufac-
turing defects, this paper does not aim to. The focus is the 
cases where systems gradually degrade to reach a failure 
state eventually. Such problems are the focus of the Survival 
Analysis.

Because of the stochastic nature of a tool degradation, 
its time to failure is usually modeled as a random variable, 
say T. By the reliability (of a non-repairable system) at a 
given time t, meaning the probability that the actual failure 
time has not occurred yet, R(t) ∶= P(T > t) . Various models 
(exponential, gamma, Weibull, log-normal, etc.) and their 
applications are given in the basic textbooks on Reliability 
theory [12, 105, 113].

The basic models can be constructed via standard statisti-
cal inference methods from historical data like the Maximal-
Likelihood method, Bayesian inference, or, in the case of 
latent variables in the model, the Expectation-Maximization 
algorithm. The reason for constructing the models is to use 
them in the subsequent analyses in which the maintenance is 
optimized [48] and [83] to ensure that the system will deliver 
the required functionality.

The remaining life can be regressed directly as in  Wu 
et al., [130], who used Artificial Neural Networks (ANN) 
and, subsequently, polynomial curve fitting for condition-
based predictions regresses the remaining life by correlating 
the force with the wear rates [125]. The inferred statisti-
cal models described in the following section can also be 
assessed.

2 � Tool Condition Monitoring Chain

Tool Condition Monitoring (TCM) systems monitor produc-
tion, optimize it and prevent breakdowns. Figure 1 shows a 
standard schematic of the composition of the monitoring 
system, which includes signal converters/amplifiers, pro-
cessing systems, and HMI (monitor) [82]. These measure-
ment systems key elements are the sensors, which must be 
optimally positioned close to the target location. The raw 
sensor signals are usually unusable and must be amplified 
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or adjusted. The signal is then processed to obtain help-
ful information about the process being monitored [132]. 
This task is performed by processing units such as personal 
computers and embedded systems. The last part of the 
measuring system is the visualization via an HMI panel or 
monitor. Information about the machine status can be sent 
to the maintenance planning system or the plant Information 
System (IS) [5, 84]. Today, edge or fog computing nodes 
are also being commissioned as part of the Smart Factoring 
trend. This enables large amounts of data to be monitored 
and processed efficiently [128].

The connection of sensors to the machine depends on 
the type of sensors used to collect the data. In the case of 
signals generated by the physical action of the equipment, 
these signals are measured by direct coupling to the tool, 
e.g., tool cutting forces, tool vibration, and work-piece vibra-
tion, among others. For accurate measurements, the instru-
ment must be adjusted appropriately to avoid resonance. 
Similar rules apply when installing contact sensors, where 
the correct procedure and method must be followed. In the 
case of non-contact measurements using a microphone, the 
effect of surrounding machines must be considered. Suit-
able filters [72] or an adaptive system must be installed. If 
necessary, a second acoustic signal source must be installed 
to sense ambient noise.

Frameworks for condition monitoring could be based on 
various hardware and software solutions. For example, TCM 
system presented in Assad et al., [9] consists of a manu-
facturing station with PLC system, and an Open Platform 
Communications-Unified Architecture (OPC–UA) is used 
for data exchange. Data is saved to the database and pro-
cessed with maintenance software. Specific frequency alarm 
values in the frequency domain are checked.

The signal extraction can be done using specialized soft-
ware and hardware and customized hardware and software 
such as measuring cards and personal computers. Nowadays, 
in the age of Industry 4.0, technological initiatives, such as 
cyber-physical systems, the internet of things, and predic-
tive maintenance play essential roles in equipping existing 
manufacturing systems with intelligent capabilities such as 

self-awareness, self-adaptation, and condition monitoring in 
delivering agile and uninterrupted productions [74].

Currently, more technologies are being developed to man-
age signal processing. High-performance, cloud, and edge 
computing are being investigated as potential solutions to 
enable intelligent manufacturing in the machining industry. 
Current research aims to realize a tool condition monitoring 
system using the edge computing-based architecture [74].

2.1 � Signals and Features

A typical representation of metalworking machines is a mill-
ing machine. As shown in Table 2, it was the most used in 
selected TCM articles between 2012 and 2022. An illus-
trative picture of the milling machine is shown in Fig. 2 
and includes all the sensor systems typically used as signal 
sources in this application area. The Fig. 3 graph shows the 
frequency of occurrence of the same types of signal sources 
during the selected time frame.

The measured signals can be cutting force, vibrations, 
temperature, acoustic emission, motor current, etc. It is gen-
erally acknowledged that a reliable process based on a single 
signal feature is not feasible [110] and it is necessary to use 
the most meaningful signal features to build a robust and 
reliable TCM system [34, 110]. Figure 4 shows the top 4 
signals scientists and researchers used in the last ten years. 
Leading the top is the cutting force of the cutting tool and 
its vibration. During those ten years, 35% of the signals var-
ied from electrical signals to even the volume of material 
removed from the cut products.

2.1.1 � Cutting Force

Measuring cutting force is one of the most effective ways 
to determine tool wear [117]; it can optimize the milling 

Fig. 1   Block diagram of standard TCM system

Fig. 2   Milling machine, an example of using different types of sen-
sors to capture multi-domain features
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process and measure strain on the tool. The force applied 
to the tool is directly proportional to its wear, feed rate, 
and thickness or hardness of the material. A three-axis 
dynamometer is used to measure these forces.

2.1.2 � Vibration Signals

In 1987, Lee Minyouing et al. [64] introduced vibration 
analysis of cutting tools used in metal forming processes. 
Their main conclusions were that the vibration signals from 
metal-cutting processes contain beneficial information and 
offer excellent possibilities for diagnosing many metal-cut-
ting problems, including tool wear.

Milling, turning, or drilling machines generate vibrations 
based on the rotational movement of the tool or workpiece in 
the case of turning. In contrast to cutting, vibration in these 
machines is caused by the rotational motion of unbalanced 
rotating parts or a defective bearing; shear and frictional 
forces result from the vibration generated during cutting. 
Therefore, an approach that could monitor industrial motors 
or machine bearings cannot usually be used in other metal-
forming applications. It is possible to process raw vibra-
tion signals [136]. Still, for a nonlinear system with high 

variability in the time domain, detection and analysis of 
features in the frequency domain [67] is also required.

2.1.3 � Acoustic Signal

Another indirect method of condition monitoring is acous-
tic emissions from the production process. They are usually 
caused by contact between the tool and the workpiece at 
higher speeds (milling machine, drilling machine, lathe). 
This method does not interfere with the monitored process, 
is easy to set up, has a fast dynamic response, and has a 
reasonable price/performance ratio [148]. The problem of 
acoustic emission lies in ambient noise and other acous-
tic signal sources from moving parts of machines or other 
nearby machines. A direction sensor or adaptive filtering 
can be used to reduce the impact of overlapping signals [91].

2.1.4 � Electrical Signal

Various ways of analyzing the influence of energy consump-
tion on the condition of a machine appear in the articles. 
The electrical signals mainly used are the current and power 
consumption.

The article [149] evaluates the past and future of the 
production process in terms of energy consumption. Under 
constant pressure from environmental and economic trends, 
manufacturing companies must develop and seek new ways 
to plan and optimize production; this requires a proper eval-
uation of the energy efficiency of machine tools. The system 
can show inefficient parts of the production process that can 
be optimized or redesigned with a deeper understanding. 
The author suggests that an indicator for the overall evalu-
ation of the energy efficiency of machine tools should be 
investigated and developed. This would help to create a com-
parable industry benchmark for energy efficiency evaluation. 
The possible form of energy consumption models of milling 
machines was divided into three categories, such as:

Fig. 3   Signal sources - usage frequency 2012–2022

Fig. 4   Features usage Frequency 2012-2022
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•	 Linear type of energy consumption model based on mate-
rial removal rate,

•	 Detailed parameter type of cutting energy consumption 
correlation models,

•	 Processed oriented machining energy consumption 
model.

The distribution can be used for most machines and as an 
additional input to TCM system for estimating tool wear. 
The signal has many advantages since it does not need to 
be located near the tool and does not disturb the monitored 
process. The source of the signal cannot be affected by oil, 
metal debris, or other things that can affect the measurement 
in an industrial environment.

2.1.5 � Other Signal Sources

Other signal sources for the TCM system are information 
provided directly by the machine, such as depth of cut [109], 
the speed at which the tool head is moving [114] or the time 
the tool is active. In this way, we can calculate the volume of 
material removed [99] or, with the addition of a temperature 
sensor, monitor the additional thermal load that correlates 
with the tool wear rate [60].

A final source of information about the machining pro-
cess can be a visual inspection of the tool [31] or the work-
piece [36] itself using image processing techniques.

2.2 � Signal Features

Various methods have been developed to monitor tool wear. 
An essential problem in a TCM system is processing the 
signal with sufficient features that match the target prob-
lem. The signal from the sensor needs to be transformed 
into features that could describe the signal sufficiently while 
preserving relevant information about the tool condition in 
the extracted features  [43, 71]. The time domain, frequency 
domain, mean, RMS, skewness, kurtosis, and other signal 
features listed in Table 1 can extract the signal features.

RMS An RMS value is also known as the effective value 
and is defined in terms of the equivalent heating effect of 
direct current. The RMS value of a sinusoidal voltage (or any 
time-varying voltage) is equivalent to the value of a dc volt-
age that causes an equal amount of heat (power dissipation) 
due to the circuit current flowing through a resistance [41].

Arithmetical Mean represents a point about which the 
numbers balance. For example, if unit masses are placed 
on a line at points with coordinates x1, x2,..., xn, then the 
arithmetic mean is the coordinate of the system’s center 
of gravity. In statistics, the arithmetic mean is commonly 
used as the single value typical of a data set. For a system 
of particles having unequal masses, the center of gravity is 

determined by a more general average, the weighted arith-
metic mean.

Skewness is a measurement of the symmetry of the sur-
face deviations about the mean reference line and is the ratio 
of the mean cube value of the height values and the cube of 
Rq within a sampling area [63].

Kurtosis The kurtosis factor is a common dimensionless 
time series statistic that can reflect the random distribu-
tion of time series data. The larger the value is, the more 
frequency of random fluctuation of the large value of the 
sequence [41].

Crest Factor The crest factor [94], which is defined as the 
ratio of the peak value and the RMS value of a data series

The information obtained from the sensors is then combined 
into a single TCM system, which can be based on various 
statistical methods, autoregressive modeling, pattern recog-
nition, fuzzy logic systems, neural networks, and combina-
tions of these methods  [49].

3 � Methods to Predict Cutting Tool Failures

As previously mentioned, researchers have been using 
and developing various methods to determine the condi-
tion of the cutting tools. In Sect. 2.1, the signals and fea-
tures normally collected by developers as a proxy of the 
tool and work-piece condition were mentioned. Kong et al., 
[57]; Marwala et al., [79] Since these signals are complex 

(1)RSK =
1

Rq3

[
1

l ∫
l

0

Z3(x) dx

]

(2)KUR =
1

N − 1

∑
xi − X4

�4

(3)Cf =
Peak

RMS

Table 1   The most common time and frequency domain features

 BP Band Power

Time domain Frequency domain

Arithmetical mean (M) Sum of total BP (STPB)
Root mean square (RMS) Mean of BP (MBP)
Variance (V) Variance od BP (VBP)
Skewness (Sk) Skewness of BP (SkBP)
Kurtosis (Ku) Kurtosis of BP (KuBP)
Power (P) Peak of BP (PBP)
Peak-to-peak ampl. (pp) Frequency of max. peak of BP (FPBP)
Crest factor (CF) Relative spectral peak per band (RSPBP)
The burst rate (Br) Total harmonic BP (THBP)
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sequences of values continuously collected by the sensor, 
the classifiers and methods to determine the condition of the 
tools must efficiently correlate the tool’s state with the cor-
responding numerical input  [9, 61, 126]. Different methods 
can be used based on the data being monitored during the 
machine operation.

Machine Learning is a frequently used approach to pre-
dict the failure of these tools. Thanks to its accuracy and 
effectiveness, researchers, scientists, and engineers have 
increased its utilization in industry and academia.

From Table 2, Figs. 10 and 5 were elaborated. Figure 5 
summarizes the most used Machine Learning and Statistical 
algorithms. The result is as follows:

•	 Artificial Neural Networks [32%].
•	 Support Vector Machine [14.4%].
•	 Customized Algorithms [7.2%].
•	 Random Forest [7.2%].
•	 Others [39.2%].

In general, there are three types of Learning:
Supervised Learning includes a variety of function 

algorithms that can map inputs to desired outputs. Usually, 
supervised Learning is used in classification and regression 
problems: classifiers map inputs into pre-defined classes, 
while regression algorithms map inputs into a real-value 
domain. In other words, classification allows predicting the 
input category, while regression allows predicting a numeri-
cal value based on collected data [61].

Unsupervised machine learning aims to discover fea-
tures from labelled examples, so it is possible to analyze 
unlabeled examples with possibly high accuracy. The pro-
gram creates a rule according to the data to be processed and 
classified. Among supervised algorithms, the most widely 
used are the following algorithms: linear and logistic regres-
sion, Naive Bayes, nearest neighbour, and random forest. In 
condition monitoring and diagnostics of electrical machines, 

the most suitable supervised algorithms are decision trees 
and support vector machines [61].

Semi-supervised Learning is halfway between super-
vised and unsupervised Learning. In addition to unlabeled 
data, the algorithm is provided with some supervision infor-
mation - but not necessarily for all examples. Often, this 
information standard setting will be the target associated 
with some of the examples.

Reinforcement learning is one of the ML methods where 
the system (agent) learns by interacting with some environ-
ment. Different from supervised algorithms, there is no need 
for labelled data pairs. Reinforcement learning balances an 
unknown environment and existing knowledge [61].

Researchers and engineers usually use Supervised, Semi-
Supervised, and Unsupervised Learning since the labelled 
or unlabeled data is typically available.

3.1 � Artificial Neural Network

Artificial neural network is leading the survey with 30.9% 
of the articles utilizing some neural network to evaluate 
the prediction of the tool. as Doriana M. D’Addona et al. 
stated in  D’Addona et al., [31] “ANN learns from exam-
ples and classifies/recognizes the hidden structures under-
lying the examples. This way, it helps establish functional 
relationships among some input and output parameters. As 
described in the “Introduction” section, ANN has extensively 
been used in developing computing systems for predicting 
the degree of wear and recognizing the patterns underlying 
tool-wear.”

Artificial neural networks fall into three categories:

3.1.1 � Methods without any Spatial‑time Processing

This is the fully connected dense layer, where the process 
focuses on the numerical interaction of the data.

The research shows that within the 30.9% of papers that 
used Artificial Neural Networks as the classifier, 40.7% 
chose Dense-Connected Layers in all its current variations, 
as can be seen in Fig. 6.

Dense-Connected Layers are the most basic Neural Net-
work structure; see Fig. 7. A Dense-Connected layer is com-
posed of a network of single neurons mathematically defined 
as Eq. 4. To complete the whole learning process, the net-
work of neurons is activated or deactivated based on the type 
of Activation function used in the model, see Eq. 5 6. The 
model learns during the pass-forward and back-propagation 
process, where all the trainable parameters are multiplied by 
their corresponding weights and bias. The back-propagation 
process calculates all the gradients and then uses an optimi-
zation function to minimize the loss value.

The research shows that most papers extract numeri-
cal values from the measurements and feed the neurons Fig. 5   Classifier - usage frequency 2012–2022
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with the information. As can be seen in the Wang et al., 
[117]; Chen et al., [25]; D’Addona et al., [31]; Yuqing 
et al., [140]; Rao et al.,[92]. One example of this procedure 
is what Baig Ulla et al. did in their article [11]; they used 
the following:

•	 Material of the workpiece.
•	 Spindle Speed.
•	 Feed Rate.
•	 Depth of cut.
•	 Tool Vibration.

The structure is divided into three main parts Input Layer, 
Hidden Layers, and Output Layer. The input layer length 
depends on the feature size.

The mathematical model of a single neuron:

(4)f (x) = XW + b

where,
W represents a set of weights initially randomized; they 

are updated after the optimization during the training pro-
cess. B represents a set of biases, one per neuron randomly 
initialized; they are updated after the optimization function 
during the back-propagation X = InputValue.

After each neuron, the activation function takes place. 
Several activation functions are used depending on the case 
and the complexity of the implementation. Some of the 
most used activation functions are RELU and SIGMOID; 
however, researchers and scientists also use other Activa-
tion Functions or customized ones depending on their needs.

In the case of RELU, its range is [0,1]. Mathematically:

In the case of SIGMOID, its range is [– 1,1]. Mathematically:

The optimal weights and biases within the network are con-
tinuously “learned” or “updated” by a back-propagation 
algorithm, which usually implements stochastic gradient 
descent, where a single data point is used to update the 
weights in one iteration [35]. Then, the output layer errors 
are calculated using the target training output for the data 
point and the defined error function. In regression prob-
lems [31], mean squared error is most frequently used as an 
error function; in the case of classification problems, typi-
cally binary-cross-entropy is used. The advantage of using 
Neural Networks is their adaptation to non-linear problems 
and their effectiveness in solving complex classification 
tasks.

3.1.2 � Methods that Focus on the Spatial Information 
of the Data

These methods use Sliding Windows, kernels, and other 
spatial image processing methods to extract visual and 2D 
features of the data. This type of Network is called a “Con-
volutional neural network”. As Ambadekar et al. [4] con-
cluded in their article: The CNN can extract features, select 
required features from the extracted ones and classify the 
data into the required number of classes. The training pro-
cess of the CNN differs from the Dense layers in the train-
able parameters. The optimization function in CNN updates 
the “kernels” (filters), which are then convoluted into the 
images and feature maps, see Fig. 8.

(5)F(x) =

{
0 if x < 0

x if x ≥ 0

(6)s(x) =
1

1 + e−x

(7)f (x) =AF(b +W0b0 +W1b1 +W2b2....Wnbn)

Fig. 6   Most frequently used-neural networks model

Fig. 7   Neural network basic structure
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The research shows that most CNN architectures were 
mainly used when collecting the workpiece and cutting tool 
images. Cases were also found where the researchers used 
the spectrogram of the data as an image or simply the data in 
the time domain. Guofa Li et al. [69] collected the Vibration 
and the cutting force of the cutting tool in all its axes. They 
rearranged the data as multi-layer images where each layer 
was one component of the vibration or the force, obtaining 
satisfactory results. As Meng Lip [80] stated, the most sig-
nificant advantage of the Convolutional Neural Network and 
all its derivations is extracting visual features from the data 
eventually results in classification based on shapes, appear-
ance, colors, and visual structures. Sayyad et al., [102].

Ambadekar et all [4] experimented with Convolutional 
Neural networks using the tool and work-piece images as the 
input data. The results reached an accuracy of 87%, which 
for their purposes was satisfactory.

Figure 6 it is presented as a standard CNN architecture. 
CNN commonly comprises four parts: Input data, Convo-
lutional Layers, Dense Layers (the dense layers which are 
simple number neurons that are then used for classification 
or clustering purposes), and Output. Nowadays, many CNNs 
can be easily found; researchers also use them to customize 
their trainable parameters for their use case; this method is 
called “Transfer Learning” [76].

3.1.3 � Methods that Focus on the Sequence of the Data

Instead of treating each input individually, these methods 
consider the sequential variation of the data. Recurrent 
Neural Networks solve one of the most significant issues of 
the Dense Layers and Convolutional layers, the “Vanishing 
gradient problem” [27], which is the reduction of the impact 
of the first layers into the final output. This problem causes 
the last weights and biases to be more dominant in the loss 
function.

This problem has been overcome, by reusing the train-
able parameters from the first layers to more deep layers, 

see Fig. 9. It also uses neurons, Eq. 5 as part of the structure 
of the model, but their importance stems from the fact that 
they can create a model which perceives and considers the 
sequential and continuous change in data in a time frame. 
Publication [1] summarized some of the most used types 
of RCNN:

•	 Binary.
•	 Linear.
•	 Continuous-Nonlinear.
•	 Additive STM equation.
•	 Shunting STM equation.
•	 Generalized STM equation.
•	 MTM: Habituative transmitter gates and depressing syn-

apses.
•	 LTM: Gated steepest descent learning: not hebbian learn-

ing.

Fig. 8   Convolutional neural Network Architecture
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Fig. 9   Basic structure of recurrent neural network
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Wennian Yu et al., in the article [138], utilized and com-
pared the different types of RNN networks (Long-Term 
Short Memory and Elman) to determine the tool condi-
tion in a Milling process. Cutting forces and other signals 
were used, and it was then concluded that LSTM results 
in a more accurate method but requires a longer time to 
train.

The research shows that even though the RNNs mod-
el’s results are time-dependent, robust, and sensitive to 
the sequential change of the data, they are more laborious 
algorithms, especially when combined with CNN (Spatial 
Feature Extractors). Since you do not only work with the 
standard weights, biases, and kernel parameters, you also 
should manage the parameters which model the impact of 
the time in the data; that is one of the assumptions why 

the research shows that only the 11.1% of the analyzed 
papers used this method for cutting tools monitoring.

3.2 � Support Vector Machine (SVM)

SVM is a machine learning algorithm used for classifica-
tion and, in some cases, for Clustering tasks. It employs the 
structural risk minimization principle while introducing a 
kernel trick. Support Vector Machine problems originated 
from a supervised binary classification, in which most of 
the solutions are evaluated by obtaining a separating hyper-
plane among classes.

The Data set in SVM can be illustrated as follows:

(8)D =
{(

xi, yi
)
, i = 1, 2, 3… .N

}
,

Fig. 10   Classifier-usage frequency 2012–2022
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where, xi=Vector of M dimension of features.
In the case of the Vibration-Data, this is the raw data 

(Each sample) obtained by the sensor(s). If any Feature 
extraction is applied, all the features should be converted to 
a 1D vector indexed by each feature. It indicated to which 
class their corresponding Xi belongs. SVM aims to find the 
separating boundary between defined classes. This is done 
by maximizing the margin between the decision hyperplane 
and the data set while minimizing the misclassification. The 
decision/separating hyper-plane is defined as:

where w is the weight vector defining the direction of the 
separating boundary. b is the bias. The decision function is 
defined as:

where sgn(𝛼) = −1, 𝛼 < 01,= &𝛼 ≥ 0

The SVM algorithm aims to maximize the margin by 
minimizing ||w||, which results in the following constrained 
optimization problem.

3.3 � Customized Algorithms

As shown in Fig. 5, a relevant number of articles developed 
what the researchers decided to call “Customized Algo-
rithms”. These algorithms are methods, approaches, and 
solutions designed to monitor individual case. Bouzakis 
K.D et al. [19], Cerke Luka et al. [24] and Tangjitsitcharoen 
et al. [109] designed a method to predict the tool-life by 
modelling the geometry of their tool and then experimen-
tally tested the tool-life, by loading the tool and measuring 
the continuous measurement of the tool-wear.

3.4 � Random Forest

Leo Breiman [20] developed the random forest algorithm. 
Random Forest model grows and combines multiple deci-
sion trees to create a “forest”  [126]. A decision tree is 
another algorithm for classifying data [114]. In straightfor-
ward terms, you can think of it like a flowchart that draws a 
clear pathway to a decision or outcome; it starts at a single 
point and then branches off into two or more directions, with 
each branch of the decision tree offering different possible 
outcomes [38].

Random forests are a combination of tree predictors such 
that each tree depends on the values of a random vector 
sampled independently and with the same distribution for 

(9)wtx + b = 0,

(10)f (x) = sgn
(
wtxi + b

)
,

(11)min(�i(w, �)) = min

�
1

2
‖w‖2 + c

n�

i=1

�i

�

all trees in the forest [85]. The generalization error for for-
ests converges a.s. to a limit as the number of trees in the 
forest becomes large. The error of a forest of tree classifiers 
depends on the strength of the individual trees in the for-
est and the correlation between them [38]. Using a random 
selection of features to split each node yields error rates 
that compare favourably to Adaboost, but are more robust 
concerning noise. Internal estimates monitor error, strength, 
and correlation, which show the response to increasing the 
number of features used in the splitting (Fig. 11).

3.5 � Others

The issue of tool conditional monitoring and fault prediction 
is complex, and to successfully describe the behaviour of the 
observed system; it is necessary to study all its aspects, not 
just a narrow look at one approach. Most of the machining 
processes are non-linear, and the computation of the wear 
of the monitoring tool is complex.

In practice, the application of algorithms that reduce the 
dimension of the input vector and highlight essential proper-
ties of the measured signals was encountered [17, 26, 67, 67, 
104, 148]. It is used to reduce computing power and elimi-
nate redundant information. The principles of adaptive tech-
niques can be found in several advanced algorithms, namely 
well-known adaptive linear element (ADALIN) neural net-
works, adaptive neuro-fuzzy interface systems (ANFIS), and 
linear programming.

In the article [104], authors presented a wear predictive 
model based on a combination of PCA and least squares 
support vector machines (LS-SVM). LS-SVM uses func-
tions from multiple sensor signals and is resistant to typical 
problems with using a small learning set thanks to statisti-
cal learning theory. The authors present a good correlation 
between LS-SVM results and subsequence optical analysis.

In 2007 another article [67], the authors divided signals 
into three streams for feature detection. The features were 
extracted from raw, filtered data and data processed by 
Empirical Mode Decomposition (EMD). All features have 

Fig. 11   Random forest
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been processed by an improved distance evaluation (IDE) 
technique, which reduces redundant information and selects 
the most important ones. Finally, the data were processed 
by ANFIS.

In 2016 article [99] analyzed the performance of these 
most widely used methods of tool condition monitoring 
(TCM), namely artificial neural network (ANN), fuzzy logic 
(FL), and least squares (LS) model. The experiments were 
performed on CNC turning machine, and milling param-
eters (cutting depth, feed, speed, and force) were used as 
model input of the model. The models were computed on 
three datasets (108, 12, and 12 samples). The ANN model 
(RANN

2 = 0.952) scored nearly the same as the FL model 
(RFL

2 = 0.94) , and the LS scored the least (RLS
2 = 0.81) . 

As the ANN method scored the most, the FL model would 
be much more feasible for small-scale applications.

3.5.1 � Tool Wear Modelling

As mentioned earlier, the tool to work correctly at its instal-
lation is considered and aimed to model its gradual degra-
dation. The specific work influences this degradation the 
tool is performing - the parameters of the cut steel sheet in 
our case. Therefore, an inference from bulk historical data 
gathered from heterogeneous jobs would lead to sub-optimal 
performance of our predictive models because of a signifi-
cant variation in the predicted failure times.

Another peculiarity for shear cutter operation lies in yet 
another variation in cutting conditions during a single tool’s 
useful life. The metal coils are changed according to the 
manufacturing plan and may differ in dimensions and mate-
rial properties. Therefore, the conditions are not homogene-
ous during the cutting tool service.

This restricts us from using the well-established Propor-
tional Hazards Model [30] described in section 3.5.2, suc-
cessfully used for tool wear modeling in different industries 
and medical sciences. That’s because it requires stable con-
ditions for each investigated unit, e.g. a tool blade. An alter-
native might lie in using stress-varying techniques known 
from accelerated life tests, e.g. by Liu et al., [73] for analysis 
of cutting tools or virtual age models [21].

A similar applies to Bayesian parameter inference for 
some basic physics-based wear models. The models speci-
fied in the differential form can nevertheless be used when 
the tool condition is monitored in case of direct observa-
tion (see Sect. 3.5.3) or estimation of the model parameters 
online (Sect. 3.5.5).

Therefore, the information about the processed material 
should be included in our degradation models, available 
from the operator. This can be done by using some of the 
theoretical models, which identify the mechanical stresses 
on the tool as the most influential covariate (see [52, 53]) 

and using empirical models for modelling the tool wear 
rate [8, 78, 86].

3.5.2 � Proportional Hazards Models

The proportional hazards model is a reliability theory tech-
nique for regressing the dependency of the failure time on 
known covariates of statistical units. Hazard rate (or hazard 
function) is a non-negative function that can fully represent 
a positive random variable. It is defined as the immediate 
rate of failure,

knowing the hazard rate, the reliability can be calculated as

The quantity

is also known as the cumulative hazard and represents the 
accumulated virtual wear of the investigated system.

In the proportional hazards model, it is assumed that the 
hazard rate is proportional to known covariates. A baseline 
hazard, h0 , is modelled (and inferred) for the investigated 
bulk observations, and the hazard rate for each individual is 
then computed as a combination of both:

where Zi,j represents known covariates corresponding to the 
individual i and �j are coefficients to be inferred via statisti-
cal methods. Cox [30] developed an efficient method for 
estimating the model parameters. Once the individual failure 
rate is specified, the remaining useful life can be calculated 
for each item as the expected value

Nevertheless, the original method doesn’t allow us to include 
information about the monitored condition. But it can still be 
used either for offline maintenance scheduling or as a partial 
model for a more complex one, like in Aramesh et al., [6, 7] 
where they were used to model transitions between discrete 
tool wear states.

Proportional hazard models were successfully used for 
tool life estimations when the working conditions stayed 
constant during the whole tool life. Aramesh et al., [7]; 
Diamoutene et al., [33]; Salonitis et al., [100]; Wang et al., 
[124].

(12)h(t) = lim
Δt→0

P(T < t + Δt ∣ T > t)

Δt

(13)R(t) = exp

(
−∫

t

0

h(u)du

)

(14)H(t) ∶= ∫
t

0

h(u)du,

(15)hi(t) = h0(t)
∑

j

�jZi,j,

(16)RUL(t) = E[T − t ∣ T > t].



232	 M. A. Lara de Leon et al.

1 3

Shaban Y. and Yacout S. used the proportional hazards 
model to estimate remaining useful life and later also for 
optimal maintenance decisions [134, 135].

3.5.3 � Parameter Pegression for Physics‑based Models

Some empirical models which link tool working conditions 
and their useful life were developed in the past and originated 
by Taylor [78]. Statistical methods can estimate the param-
eters of these models and their uncertainty. Several authors 
have attempted this [53, 54]. Yet these approaches might suf-
fer from similar issues as the proportional hazards models if 
they relate only to the tool’s useful life as they can be used 
only for prior offline predictions. If the empirical model is 
stated in a differential form, it can be used to model state 
transition in Hidden Markov Models [123]. Rodriguez et. 
al. [97] fitted the Taylor model by the Maximum likelihood 
method and used the obtained tool reliability for  Palmai, [86] 
introduces a new differential model for flank wear.

3.5.4 � Wear Regression

The wear mechanism for a cutting tool consists of gradual 
abrasion of its blades. Empirical measurements show that 
this wear rate is not constant but changes during the tool’s 
life [111]. A typical curve representing the gradual wear is 
depicted in Fig. 12, which shows three distinguished phases 
of the wear out - a design phase (D), an initial phase of the 
new asset (I), a steady life phase (P), and the accelerated 
wear region of rapid degradation (F). Each phase is suitable 

for a certain type of maintenance. Thus, it is not always 
predictive maintenance [2, 150].

•	 D-I phase
	   The most important thing here is to set up the machine 

correctly and prepare it for long-term operation. This 
requires an initial set-up, optimization of the operation 
and a proper maintenance schedule.

•	 I-P phase
	   The initial start-up of the machine is followed by a 

phase of long-term operation and, if all machine compo-
nents are correctly adjusted, maintenance interventions 
are generally not necessary.

	   At the beginning of this phase, the machine normally 
exhibits increased vibration, followed by an interval of 
standard machine operation. The maintenance focuses only 
on the execution of the standard maintenance schedule.

•	 P-F phase
	   If predictive maintenance methods are applied to the 

machine, they are mainly applied in the P-F phase. Here, 
wear of individual machine parts, or even the whole 
mechanism, occurs. The machine is ageing. This results 
in higher vibrations, power supply imbalances, increased 
noise, or operating temperature. Properly applied, predic-
tive maintenance can detect an impending failure and 
alert maintenance to this fact, which can eliminate the 
cause before the failure occurs [2, 51].

•	 F+ phase
	   The final stage in the life of a given machine is when 

the impending failure is not corrected in time. Partial or 

Fig. 12   Wear curve
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complete destruction of the machine occurs. Predictive 
diagnostics methods are designed to prevent this phase.

This knowledge can be used for modelling purposes. Tool 
reliability is often defined heuristically by the extent of this 
wear, and a crisp limit is used to denote the failure state. 
Zhang et al. proposed a generic parametric model, which 
they fitted by a genetic algorithm [141]. These publica-
tions [6, 7] infer the tool life as a semi-Markov process of 
transition between these three phases. Baruah et al. [13] use 
discrete phases; their number is chosen by a clustering algo-
rithm based on the available monitored signal for construct-
ing a Hidden Markov Model for tool diagnosis.

Another possibility is to use regression techniques to 
predict the wear state. The actual wear usually needs to be 
determined by visual inspections, which is impractical dur-
ing regular operations. An estimation based on available 
information from a monitoring system can be used to esti-
mate the actual wear state instead [16, 32, 40, 47, 55].

Salonitis et  al. in their work  [100] uses the surface 
response method for wear regression based on operational 
parameters and, subsequently, the First order reliability 
method and Monte Carlo simulations to estimate tool reli-
ability. Also [16, 98].

3.5.5 � Hidden Markov Models

The Hidden Markov Models model estimates unobserved pro-
cesses out of indirect observation. A Markov process is used 
to model the hidden process (Fig 13b), e.g. the tool wear. Its 
evolution can be general, drifting Gaussian processes or a 
homogeneous Markov Chain in the discrete case (state transi-
tion diagram in Fig. 13a), or inspired by physics-based models 
(Sect. 3.5.3). The observation model can be obtained from 
inference/regression from the monitored signal. Labelling of 
the data is desired (e.g. by a less-frequent visual inspection of 
the accumulated wear as was done in many papers mentioned 
in this section), but the pooled inference is also possible as 
in  Wang et al., [119, 123] who used hmm for joint state and 

parameter estimation using physics-based tool wear model 
and subsequent remaining useful life estimation.

Mnighg et al.  [81] compare support vector machines 
and hidden Markov models for tool diagnosis and claims 
that SVM outperforms HMM. But they use a homogeneous 
Markov chain to model the evolution of the hidden states, 
which can be improved by using differential wear models. 
Generally, Hidden Markov Models can be used for both fault 
diagnostics [13] or prognostics [119].

3.5.6 � Kalman Filter (KF)

One of the older recursive algorithms, the Kalman filter, 
is widely used to remove uncertainty and noise from the 
measured signal. It is ale used as a basic tool for solving the 
problem of estimating the state and the parameters of linear 
systems. It has been used in artificial neural networks for 
mass transfer [89], which is more efficient than the back-
propagation algorithm. This helped reduce the size of the 
input layer, arithmetic operations, and the required number 
of iterations.

3.5.7 � Particle Filter (PF)

With a nonlinear system, a particle filter can provide better 
results at the cost of additional computing power. It works 
with a set of particles representing an uneven distribution of 
stochastic processes. As in the paper [146], the authors com-
bined the long short-term memory (LSTM) network with a 
particle filter (PF) algorithm to improve the performance of 
the tool wear prediction algorithm. The average prediction 
error was reduced from 15.07% to 11.67%.

3.5.8 � Least Mean Squares (LMS)

The LMS filter is mainly used for adaptive signal noise sup-
pression. The algorithm aims to minimize the mean square 
error between the desired signal and the filter output.

3.5.9 � Recursive Least Squares (RLS)

The RLS filter works similarly to the LMS but minimizes 
the total square error and requires more computing power. 
The Zhou et al. [147] applied RLS algorithm to the collected 
data using singular value decomposition (SVD), which was 
applied to the raw data. SVD helped to reduce the size of 
data to extract dominant features. The predicted values dif-
fered by approximately 8.86% to 11.61% from the actual tool 
wear measurement.

 

Fig. 13   Hidden Markov Model from Baruah et al., [13]
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4 � Conclusion

The paper analyzed different methods to estimate the con-
dition of cutting tools. The research covered articles from 
2012 to 2022. It is concluded that most of the consulted 
algorithms followed a similar pattern:

•	 The data is acquired using specialized sensors. The sen-
sors are strategically placed in the machine to collect the 
information effectively; then it is used different methods 
to transform, filter, and extract relevant information from 
the collected data. The research showed that the 27.4% 
of the analyzed articles use Cutting Force as the proxy to 
evaluate the condition of the tool, followed by the Vibra-
tion of the cutting tool with a 21.7%, Acoustic Signal, 
and the speed of the tool with 10.2% and 5.7% respect-
ably.

•	 The classification process. The classification algorithms 
are methods to determine the condition of the tool based 
on the provided data. As it was explained, the most used 
methods are Neural Networks (30.9%), Support Vector 
Machine (14.4%), Random Forest (7.2%), and others 
(40.2%). Neural Networks have shown promising results 
even in noisy environments where the data usually comes 
with many outliers, which are hard to eliminate in pre-
possessing methods. Based on the research, the use of 
neural networks has increased since 2016, and according 
to those papers’ conclusions, the results are promising, 
even in real-time projects. When analyzing the Artifi-
cial Intelligence approaches, the researchers based their 
model on three categories, Recurrent Neural Network at 
11.1%, Dense Layers at 40.7%, and Convolutional Layers 
at 48.1%. There were also combinations of these models. 
Support Vector machine is the second most used method 
for classification. The research showed that it is mostly 
used when unsupervised or semi-supervised learning is 
needed.

This review article is part of a sequence of articles deal-
ing with TCM problems in shearing and other types of 
machines. The team will utilize the most used methods for 
feature extraction and, subsequently, classification methods 
of custom data. Data comprises information from cutting 
blades, such as cut length, material, vibrations, and energy 
consumption during production. In addition, RGB images 

and thermal images of the metallic sheet (within the cut 
zone) and the cutting tool edge are collected. Promising 
results for TCM and potential fault predictions from these 
multiple signals are aimed to be generated.

5 � Discussion

Notwithstanding the advancements in accuracy and reac-
tion time developed over the years, some drawbacks still 
exist. These challenges range from the data collection and 
labeling to the algorithm’s dynamic adaptation to changes 
in the system.

In a production line, all the equipment produces data that 
can be analyzed. The issue arises in the labeling process, in 
other words, assigning a label to data indicating its status or 
condition. This drawback worsens when there is no intelli-
gent system classifying the condition of the tool or machine. 
The failure appears during the quality inspection process, 
which occurs almost at the end of the production cycle. At 
this moment, it is difficult to determine when the tool started 
to fail. For cases like the one above explained, researchers 
are improving their unsupervised learning methods to detect 
and predict relevant changes in the data over time. Cluster-
ing algorithms are already known (K-Mean, Self-Organizing 
Map, Auto-Encoders...), and their role in the final solution 
became a mandatory pre-processing process before classifi-
cation or regression tasks.

Another challenging problem is the changes in the sys-
tem conditions over time. Production lines are dynamic sys-
tems based on the market; industries modify their products 
according to new clients to target and reduce production 
costs. Those changes might affect the products’ material and 
shape, dramatically affecting the data collected for the clas-
sification. For those cases, the system will attempt to classify 
data for which it was not developed. Self-Adaptive systems 
are used for those scenarios where the system can adapt its 
parameters over time; nevertheless, these algorithms are still 
in development due to the number of variations, the com-
plexity of the tasks, and the targets to aim for.

Appendix
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Table 2   Summary table of publications found in the field of CM of cutting tools

Authors Year Process Features Condition evaluation Comp. Prediction

Cai et al 2012 CNC Tool Vibration Proportional Covariate Model ND ND
Wang et al. 2012 MP Cutting Force Gaussian mixture regression (GMR)

Multiple linear regression
Radius basis function
Artificial neural network

ND ND

Ghani et al 2012 TP Cutting Force Kurtosis I-kaz method ND ND
Wang et al 2012 MP Cutting Force Partial least square regression-based ND ND
Attanasio et al 2013 MP Tool’s physical parameters Artificial neural network

Response surface methodology (RSM)
ANN ND

Benkedjouh et al 2013 MP Tool Vibration
Cutting Force
Acoustic Signal

Support Vector Machine ND ND

Bouzakis et al 2013 MP Tool’s physical parameters Customized Algorithm ND ND
Karandikar et al 2013 MP Tool power consumption ND ND Bayesian inf.
Rizal et al 2013 TP Tool Cutting speed

Tool Depth of cut
Cutting Force

Artificial neural network
Kurtosis I-kaz method

ANN ND

Venkata Rao et al 2013 TP Work piece vibration
Volume of metal removed

Multiple Regression Analysis ND ND

De Agustina et al 2014 MP Cutting Force ANOVA ND ND
Gadelmawla et al 2014 MP Tool images ND ND Direct correl
Karandikar et al 2014 MP Tool speed

Tool cutting speed
ND ND Bayesian inf.

Karandikar et al 2014 TP Tool speed
Tool cutting speed

ND ND Markov Chain
Monte Carlo

Rao et al 2014 MP Work piece vibration Artificial neural network ND ND
Ren et al 2014 MP Acoustic Signal ND ND Fuzzy Logic
Wu et al 2014 MP Cutting Force Bayesian multilayer perceptron ND ND
Zhang et al 2014 MP Work pieces structure Customized Algorithm ND ND
Zhang et al 2014 MP Tool speed

Tool cutting speed
Tool depth of cut
Tool cutting time

Support Vector Machine
Kalman filter

ND ND

Akhavan Niaki et al 2015 MP Tool power consumption Kalman filter
SMC method

ND ND

Cerce et al 2015 MP Work pieces structure Customized Algorithm ND ND
Dutta et al 2015 TP Work pieces images Support Vector Machine ND ND
Stavropoulos et al 2015 MP Tool Vibration

Tool current consumption
Third degree regression models
Pattern recognition systems

ND ND

Wang et al 2015 MP Cutting Force
Tool Vibration

Autoregressive model
Support Vector Machine

ND ND

Zhang et al 2015 MP Acoustic Signal Support Vector Machine ND ND
Corne et al 2016 DP Tool power consumption

Cutting Force
Support Vector Machine ND ND

Drouillet et al 2016 MP Tool power consumption Artificial neural network ND ND
Letot et al 2016 TP Tool power consumption

Tool Vibration
Customized Algorithm ND ND

Malakizadi et al 2016 MP Work pieces structure
Cutting Force

Customized Algorithm ND ND

Salimiasl et al 2016 MP Tool cutting speed
Tool speed
Tool depth of cut
Volume of metal removed

Artificial neural network
Fuzzy Logic

ND
ND

ND
ND
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Table 2   (continued)

Authors Year Process Features Condition evaluation Comp. Prediction

Wu et al 2016 MP Cutting Force
Acoustic Signal

Random Forest ND ND

Corne et al 2017 DP Tool power consumption Artificial neural network ND ND
D’Addona et al 2017 MP Tool Images Artificial neural network ND ND
Wu et al 2017 MP Cutting Force

Tool Vibration
Acoustic Signal

ND ND ANN
SVM

Chen et al 2018 MP Cutting Force
Tool Vibration
Acoustic Signal

Support Vector Machine
Artificial neural network

ND ND

Kothuru et al 2018 MP Acoustic Signal Support Vector Machine ND ND
Tangjitsitcharoen et al 2018 TP Cutting Force

Tool speed
Tool depth of cut

Customized Algorithm ND ANN

Tiwari et al 2018 MP Cutting Force
Tool images

Kalman Filter ND ND

Wu et al 2018 MP Cutting Force
Tool Vibration
Acoustic Signal

Random Forest ND ND

Hanachi et al 2019 MP Tool current consumption
Work pieces structure

Fuzzy Logic ND ND

Huang et al 2019 MP Tool speed
Tool depth of cut

Artificial neural network ND ND

Kong et al 2019 MP Cutting Force Support Vector Machine
Principal components

ND ND

Kong et al 2019 MP Cutting Force Wavelet package decomposition
Support Vector Machine
The gravitational search algorithm

ND ND

Kong et al 2019 MP Cutting Force Support Vector Machine ND ND
Kovac et al 2019 MP Tool cutting temperature Customized Algorithm ND ND
Lee et al 2019 MP Cutting Force

Tool Vibration
Support Vector Machine
Artificial neural network

ND ND

Li et al 2019 MP Tool speed
Tool depth of cut

Hidden Markov Model ND ND

Patange et al 2019 MP Tool Vibration Logistic Model Tree Classifier
Random Forest

ND ND

Traini et al 2019 MP Tool Cutting speed
Tool speed
Cutting Force
Tool Vibration

Logistic Regression
Decision Forest
Artificial neural network
Decision Jungle
Boosted Decision Tree

ND ND

Ambadekar et al 2020 MP Tool images Artificial neural network ND ND
Barzani et al 2020 TP Cutting Force Fuzzy Logic ND ND
Cai et al 2020 MP Acoustic Signal

Tool Vibration
Artificial neural network ND ND

Huang et al 2020 MP Cutting Force
Tool Vibration

Artificial neural network ND ND

Wang et al 2020 MP Cutting Force
Tool Vibration
Acoustic Signal

ND ND ANN

Wang et al 2020 MP Cutting Force Crossphysics-data fusion ND ND
Wang et al 2020 MP Cutting Force

Tool Vibration
Artificial neural network ND ND

Wu et al 2020 MP Cutting Force Artificial neural network
Singular value decomposition

ND ND
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Table 2   (continued)

Authors Year Process Features Condition evaluation Comp. Prediction

Yu et al 2020 MP Acoustic Signal
Tool current consumption
Tool Vibration

Artificial Neural Network ND ND

Yuan et al 2020 MP Tool current consumption Ensemble learning ND ND
Baig et al 2021 MP Tool Vibration Artificial neural network ND ND
Huang et al 2021 MP Work pieces structure Random-effects inverse Gaussian ND Customized

algorithms
Lee et al 2021 MP Tool Vibration Artificial neural network ND ND
Li et al 2021 MP Cutting force

Tool vibration
Artificial neural network ND ND

Li et al 2021 MP Cutting Force Support Vector Machine ND ND
Marei et al 2021 MP Tool images Artificial neural network ND ND
Ouda et al 2021 MP Tool vibration

Tool pressure
Tool voltage

Logistic Regression
Gradient Boosting
Random Forest

Gradient
Boosting

ND

Radetzky et al 2021 Tool images Color gradient ND ND
Rao et al 2021 MP Tool Vibration Support Vector Machine ND ND
Wang et al 2021 MP Cutting force

Tool vibration
Tool power consumption
Tool current consumption

Artificial neural network ND ND

Xia et al 2021 MP Tool Vibration
Tool current consumption

Artificial neural network ND ND

Yao et al 2021 MP Cutting Force
Tool Vibration

ND ND ANN

Zhang et al 2021 MP Cutting Force
Tool Vibration
Acoustic Signal

Improved symmetrized dot pattern
Multi-covariance
Gaussian process regression

ND ND

Zhang et al 2021 MP Tool Vibration
Tool images

ND ND ANN

Chiu et al 2022 MP Tool Vibration Artificial neural network ND ND
Gao et al 2022 TP Tool Vibration Random Forest ND Extreme

vector
machine

He et al 2022 MP Cutting Force
Tool Vibration
Acoustic Signal

Artificial neural network ND ND

Jia et al 2022 MP Cutting Force Artificial neural network ND ND
Marei et al 2022 MP Tool images ND ND ANN
Meng Lip et al 2022 TP Work pieces images Artificial neural network ND ND
Sayyad et al 2022 MP Cutting Force

Tool Vibration
Acoustic Signal
Tool current consumption

Artificial neural network ND ND

Shah et al 2022 MP Acoustic Signal
Tool Vibration

Artificial neural network ND ND

Yuqing et al 2022 MP Cutting Force
Tool Vibration
Acoustic Signal
Tool current consumption

Artificial neural network ND ND

MP - Milling process; DP - Drilling process; CNC - CNC Lathe; TP - Turning process; ND - Not defined
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