
COMPASTA: Integrating COMPASS Functionality
into TASTE

A. Bombardelli, A. Bonizzi, M. Bozzano, R. Cavada, A. Cimatti, A. Griggio, M. Nazaria, E. Nicolodi, S. Tonetta, G.
Zampedri
Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy; email: bozzano@fbk.eu

Abstract

TASTE is a tool chain dedicated to the design and im-
plementation of embedded, real-time systems, developed
under the initiative of the European Space Agency (ESA).
It consists of various tools, which support model-based
design of embedded systems, automatic code generation,
deployment and simulation. TASTE is based on several
specification languages, in particular it uses AADL for
the architectural design, whereas the behavior of SW com-
ponents can be specified in SDL and other languages.

TASTE currently lacks a comprehensive support for per-
forming early verification and assessment of the design
models. COMPASTA is an ESA study that aims at filling
this gap, by integrating into TASTE the formal verification
functionality of COMPASS, a tool for model-based HW-
SW co-Engineering developed in a series of ESA studies.
COMPASTA extends TASTE by providing the possibility
to model the behavior of HW components using SLIM, a
dialect of AADL supported by COMPASS. Moreover, it
offers capabilities such as library-based specification of
HW faults, automatic fault injection, contract-based de-
sign, functional verification and safety assessment, fault
detection and identification analysis.

Keywords: AADL, SDL, TASTE, COMPASS.

1 Introduction
TASTE [1, 2] is a model-based software engineering design
environment dedicated to embedded, real-time systems, which
has been actively developed by ESA since 2008. Specifications
are written in different languages, such as AADL [3] (for the
architectural specification) and SDL [4] (for the behavioral
specification). TASTE includes various other tools, such as
editors, viewers, and code generators. TASTE has been adopted
as a glue technology and for system deployment in several
projects, see e.g. [5, 6, 7].

COMPASS [8, 9, 10] is a tool for System-SW Co-Engineering
developed in a series of ESA studies from 2008 to 2016. Speci-
fications are written in SLIM, a dialect of AADL. COMPASS
supports model-based verification techniques, based on model

checking, such as requirements analysis, contract-based anal-
ysis, fault specification, functional verification, safety and de-
pendability assessment, fault detection and identification anal-
ysis. COMPASS is based on the ocra [11], nuXmv [12] and
xSAP [13] verification back-ends.

COMPASTA is an ESA study (2021-2022) that aims at integrat-
ing the formal verification functionalities of COMPASS [8,9,10]
into TASTE [1, 2]. COMPASTA extends TASTE by supporting
model-based specification of both SW and HW components,
fault injection, and a full set of formal analyses, based on model
checking. The goal of the analyses is to formally validate the
system model, before the system is deployed to the target HW.
Thus, COMPASTA makes TASTE a comprehensive and co-
herent end-to-end tool chain, that covers system design and
development SW implementation, deployment and testing.

2 The COMPASTA Workflow Exemplified
COMPASTA extends the TASTE workflow by providing addi-
tional functionalities which are complementary with respect to
the ones available in TASTE. TASTE is a tool for model-based
SW engineering, focusing on SW design, deployment and im-
plementation. COMPASTA, on the other hand, extends TASTE
by providing the possibility to model HW components and their
faults, to perform fault injection, and to carry out several formal
analyses (e.g., requirements validation, contract-based design,
functional verification, safety and dependability assessment)
on the complete formal model (including both HW and SW).
The goal of COMPASTA is to enable early validation of the
design model, before the SW is implemented and deployed to
the target HW.

We illustrate the COMPASTA workflow in a simple running
example, shown in Fig. 1, modeling a redundant power system.

The example consists of HW components (batteries, generators,
sensors, and switches) and SW components (the FDIR compo-
nents). Generators provide power to batteries, which in turn
provide power to sensors. In case of a fault of a generator or a
battery, the lines connecting generators, batteries and sensors
can be reconfigured. For instance, in case of a fault of one
battery, the remaining battery can be used to power both sen-
sors. FDIR components perform a re-configuration by sending
a command to the corresponding switch component.

Reprinted from Ada User Journal, Vol. 44(1), March 2023, with permission. Copyright is held by the author/owner(s).



Figure 1: A power system example.

The system is modeled using the graphical user interface of
TASTE. Fig. 1 shows the Interface View (architecture) of the
system, i.e. the blocks corresponding to the components, and
the connections (provided and required interfaces) between
the components. TASTE uses AADL to generate an internal
representation of the Interface View.

SW components (FDIRs in our example) can be modeled using
the SDL language. For instance, Fig 2 shows an excerpt of the
code for FDIR_2. It periodically reads the input voltages of the
two batteries and, in case the output voltage of either of them is
under a given threshold, it sends a command to the Switch_2
component to change from primary mode to a secondary mode.

HW components can be modeled in SLIM, a dialect of AADL,
which extends AADL by providing the possibility, among other
things, to specify behavioral models in the form of state ma-
chines, and to specify faults and fault injections. We show below
some sample code for the Battery_1 component. The given tran-
sition causes the output voltage of the battery to decrease by 1,
when the input voltage is below 10.

system implementation Battery_1.others
−− BATTERY SUBCOMPONENTS
subcomponents

−− DELAY FOR TIMESTEPS
delay: data clock;

−− BATTERY STATES
states

init : initial state;
base: state while (delay <= 1);

−− BATTERY STATE TRANSITIONS
transitions

−− INIT
init −[

then voltage_out.voltage := 12
]−> base;
−− BATTERY DISCHARGES BY 1V
base −[

when delay >= 1
and get_voltage.voltage < 10

Figure 2: Sample SDL code for FDIR_1.

and voltage_out.voltage >= 1
then delay := 0;

voltage_out.voltage := voltage_out.voltage − 1
]−> base;

[...]
end Battery_1.others;

The SDL and SLIM models are translated by COMPASTA into
the language supported by the verification back-ends, which are
run to carry out the formal analyses. The translation performed



t

Figure 3: An example Fault Tree.

by COMPASTA is based on the definition of the semantics of
the input languages (based on the standards [3, 4] and on the
COMPASS semantics for SLIM), and of the semantics of the
communication between HW and SW (defined in COMPASTA,
and compatible with the TASTE communication semantics).

Fault definitions can be picked from a library, and automatically
injected into the system model, e.g., a fault injection can model
a permanent “stuck-at-zero” fault of the “voltage_out” signal
of a battery. This is specified via the following fault injection
specification:

system implementation Battery_1.others
properties

FaultInjections => (
[

Description => "Dead";
Fault_Model => "StuckAtByValue_I";
Fault_Dynamics => "Permanent";
Probability => "1.e−7";
DataInput => "voltage_out.voltage";
DataVarout => "voltage_out.voltage";
DataTerm => "0";

]
);

end Battery_1.others;

Model checking can be used to verify functional properties.
For instance, the following property (specified using a property
pattern from COMPASS):

“Globally, it is always the case that sensor1.valid and
sensor2.valid holds”

states that the outputs of both sensors are always valid (which
is the case when the sensors are powered and they are not failed.
COMPASTA can automatically generate and display artifacts
such as traces (e.g., a counterexample trace, when a property is
violated). Moreover, COMPASTA can automatically generate
artifacts such as Fault Trees. Fig. 3 shows an example Fault Tree
for the property corresponding to the outputs of both sensors
being invalid.

When the formal model has been validated, the standard TASTE
workflow can be used for the implementation of the SW com-
ponents. To this aim, first HW components must be replaced

with corresponding interface components, that represents the
SW layer realizing the communication between SW and HW.
Then, the deployment of the SW components (binding of the
SW to the target HW platform(s)) is specified. Finally, TASTE
can then be used to generate the executable code for the target
platform(s) and to test and simulate the final implementation.

3 Conclusions and Future Work
COMPASTA is an ESA-funded study whose goal is to extend
the TASTE toolset with formal verification and assessment func-
tionality, creating a comprehensive and coherent tool chain that
covers architectural and functional design, system-level safety
assessment, and deployment of the embedded software. In
the proposed workflow, system, safety, and software engineers
share the same models and use them in an iterative process, sup-
ported by various analyses that increase the confidence in the
internal and external consistency of the system, and the overall
quality of the final product.

The integration is based on a view where the COMPASS back-
ends are split from the COMPASS front-end and integrated in
other model-based design environments such as TASTE. On the
same lines, ocra, nuXmv, and xSAP have been integrated into
CHESS for a SysML-based design [14], while FBK is working
on the integration of such back-ends into CAMEO and on the
prototype support for SySML-V2.

Acknowledgments
This work was funded by ESA-ESTEC under Contract No.
4000133700/21/NL/GLC/kk.

References
[1] J. Hugues, L. Pautet, B. Zalila, P. Dissaux, and M. Per-

rotin, “Using AADL to build critical real-time systems:
Experiments in the IST-ASSERT project,” in Proc. ERTS,
2008.

[2] “TASTE web page.” https://taste.tools/.

[3] SAE, “Architecture Analysis & Design Language
(AADL),” 2022. SAE document AS5506D.



[4] International Telecommunication Union, “ITU-T Z.100.
Specification and Description Language – Overview of
SDL-2010,” 2021.

[5] “ADE: Autonomous Decision Making in Very Long Tra-
verses.”

[6] “MOSAR: Modular Spacecraft Assembly and Reconfigu-
ration.”

[7] R. Cavada and A. Cimatti and L. Crema, and M. Roc-
cabruna and S. Tonetta, “Model-Based Design of an
Energy-System Embedded Controller Using Taste,” in
Proc. FM 2016, vol. 9995 of LNCS, pp. 741–747, 2016.

[8] M. Bozzano, H. Bruintjes, A. Cimatti, J.-P. Katoen,
T. Noll, and S. Tonetta, “COMPASS 3.0,” in Proc. TACAS
2019, 2019.

[9] M. Bozzano, A. Cimatti, J.-P. Katoen, P. Katsaros,
K. Mokos, V. Nguyen, T. Noll, B. Postma, and M. Roveri,

“Spacecraft Early Design Validation using Formal Meth-
ods,” Reliability Engineering & System Safety, vol. 132,
pp. 20–35, 2014.

[10] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll,
and M. Roveri, “Safety, Dependability and Performance
Analysis of Extended AADL Models,” Computer Journal,
vol. 54, no. 5, pp. 754–775, 2011.

[11] “ocra web page.” https://ocra.fbk.eu.

[12] “nuXmv web page.” https://nuxmv.fbk.eu.

[13] “xSAP web page.” https://xsap.fbk.eu.

[14] A. Debiasi, F. Ihirwe, P. Pierini, S. Mazzini, and S. Tonetta,
“Model-based Analysis Support for Dependable Complex
Systems in CHESS,” in MODELSWARD, pp. 262–269,
SCITEPRESS, 2021.


