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Short-term power load forecasting involves the stable 
operation and optimal scheduling of the power sys-
tem. Accurate load forecasting can improve the safety 
and economy of the power grid. Therefore, how to 
predict power load quickly and accurately has become 
one of the urgent problems to be solved. Based on the 
optimization parameter selection and data preprocess-
ing of the improved long short-term memory (LSTM) 
network, the study first integrated particle swarm 
optimization (PSO) algorithm to achieve parameter 
optimization. Then, combined with convolutional 
neural network (CNN), the power load data were pro-
cessed to optimize the data and reduce noise, thereby 
enhancing model performance. Finally, simulation 
experiments were conducted. The PSO-CNN-LSTM 
model was tested on the GEFC dataset and demon-
strated stability of up to 90%. This was 22% higher 
than the competing CNN-LSTM model and at least 
30% higher than the LSTM model. The PSO-CNN-
LSTM model was trained with a step size of 1.9×104, 
the relative mean square error was 0.2345×10-4. How-
ever, when the CNN-LSTM and LSTM models were 
trained for more than 2.0×104 steps, they still did not 
achieve the target effect. In addition, the fitting error 
of the PSO-CNN-LSTM model in the GEFC dataset 
was less than 1.0×10-7. In power load forecasting, the 
PSO-CNN-LSTM model's predicted results had an 
average absolute error of less than 1.0% when com-
pared to actual data. This was an improvement of at 
least 0.8% compared to the average absolute error 
of the CNN-LSTM prediction model. These experi-
ments confirmed that the prediction model that com-
bined two methods had further improved the speed 
and accuracy of power load prediction compared to 
traditional prediction models, providing more guaran-
tees for safe and stable operation of the power system.
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1. Introduction

Power load forecasting (PLF) is an important 
component of power system operation. Accu-
rate load forecasting can provide a reliable basis 
for actual operation and ensure the safe and sta-
ble operation of the power system. Therefore, 
it should facilitate efficient and accurate predic-
tions for short-term power load (PL). This pre-
diction can help power companies and energy 
management departments make wiser decisions 
in scheduling and arranging power production, 
to ensure the power system operates safely and 
stably [1–2]. In addition, PLF can help users 
make more reasonable electricity consumption 
plans to reduce energy waste and cost expen-
ditures. However, PLF faces many challenges, 
such as large load fluctuations and the signifi-
cant impact of environmental factors on predic-
tive data, which pose great challenges to PLF 
[3–5]. Since the 1970s, experts have extensively 
researched short-term PLF and established var-
ious forecasting models. Short-term PLF can 
be classified into two types: classical and artifi-
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cial intelligence. Classical PLF mainly includes 
time-series, regression analysis, and grey pre-
diction methods. The modeling of these methods 
is relatively simple, and the prediction accuracy 
is relatively low. Artificial intelligence-based 
power prediction mainly includes support vec-
tor machines, artificial neural networks, long 
short-term memory (LSTM), etc. These pre-
diction methods may suffer from issues such as 
local optimal solutions and missing historical 
data, which can negatively impact prediction 
accuracy. Despite some limitations, LSTM is 
widely used in the PLF due to its strong ability 
to process sequence data. Therefore, improving 
LSTM has become one of the current research 
hotspots. To address issues such as local optimal 
solutions, data redundancy, and parameter opti-
mization in LSTM, particle swarm optimization 
(PSO) and convolutional neural network (CNN) 
are used to improve the original model, and a 
high-precision PSO-CNN-LSTM PLF model is 
designed. This research is expected to further 
improve the accuracy and stability of short-term 
PLF, providing guarantees for the safe and sta-
ble operation of the power system. The main in-
novation of this paper is centered on the dataset 
and processing methods of PLF. First, the data 
is processed to remove redundancies and com-
pensate for missing information. Then, LSTM 
is used for PLF. To improve its prediction ac-
curacy, a combined model, namely PSO-CNN-
LSTM, is constructed. The model combines 
PSO's optimization ability with CNN's local 
feature extraction, addressing the limitations 
of CNN-LSTM and PSO-LSTM models. The 
research content mainly includes three parts. 
Firstly, it introduces the research of domestic 
and foreign experts and scholars on PLF, outlin-
ing the application of PSO and LSTM. Second-
ly, an overview of the process of short-term PLF 
is provided and each step is analyzed, with a fo-
cus on the construction of the PSO-CNN-LSTM 
prediction model. The third part is to conduct 
experimental verification and analysis on the 
constructed PSO-CNN-LSTM prediction mod-
el's performance. Nowadays, short-term PLF is 
an important means for a power grid department 
to predict power demand in the coming days. 
Its accuracy directly affects the safety, reliabil-
ity, and economy of power system operation. 
Therefore, the accuracy and effectiveness of 
short-term PLF are extremely important. There-
fore, many researchers have conducted relevant 

research on short-term PLF. Chafi and Afrakhte 
proposed a method for short-term PLF using 
neural networks and PSO to reduce the impact 
of parameters on performance, using networks 
with optimized parameters for prediction. This 
method was tested on the Iranian power grid. 
These results reflected that the proposed meth-
od could accurately predict PL [6]. Traditional 
load forecasting methods had limitations due to 
insufficient or missing data. M. Gilanifar et al. 
proposed an improved MTL algorithm for this. 
It assumed similar effects of environmental and 
traffic conditions on electricity consumption 
to improve short-term load forecasting meth-
ods. The effectiveness of this method has been 
demonstrated through real cases. Compared 
with other MTL methods, the new method was 
significantly superior to traditional prediction 
methods [7]. A. Tudose et al. put forward a 
CNN-LSTM forecasting model to address the 
issues of feature extracting and predicting accu-
racy. This model fused feature vectors as input 
to LSTM and used it for forecasting. Further-
more, the model was applied to predict the actu-
al load data. These experiments confirmed that 
it had higher predicting accuracy [8]. A. Io et al. 
proposed a migration prediction method based 
on data correlation to accurately predict the PL 
requirements of buildings. They obtained data 
from different regions of the world to achieve 
more successful predictions with limited data. 
The application results in actual energy systems 
confirmed that this method had significant pre-
dictive advantages [9]. R. Patel et al. explored 
the resources required to operate power plants, 
rotational reverse planning, generator schedul-
ing, and other applications. They used well-de-
fined machine learning methods called recurrent 
neural network (RNN) and LSTM to predict fu-
ture PL. These results confirmed that this meth-
od could accurately predict future PLs [10].
In PLF, the performance research of LSTM and 
PSO has become a focus of attention. Many 
scholars have focused on the research of wide-
band and narrowband hybrid control algorithms 
and have achieved many remarkable research 
results. A. Amiri et al. used PSO to adjust fuzzy 
parameters to improve the adaptability and flex-
ibility of the control chart. These results con-
firmed that this method had significant advan-
tages and improvement effects [11]. Chafi and 
Afrakhte proposed neural network models to 
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2. Construction of PLF Based on 
PSO-CNN-LSTM

This section mainly analyzes the process of 
building a short-term PL and provides expla-
nations for each step of the process. Then the 
construction process and operational methods 
of PSO-CNN-LSTM are analyzed. Traditional 
LSTM is first introduced, and then PSO is in-
troduced to address the shortcomings of LSTM 
parameter optimization. On this basis, CNN is 
introduced to preprocess PL data to improve the 
final predicting accuracy.

2.1. The Construction Process and 
Evaluation Method of PLF

PLF is a key task in the operation and planning 
of the power system, which can estimate the 
electricity consumption for some point in time 
[15]. Accurate load forecasting can help power 
companies optimize generation plans, dispatch 
energy resources, and improve power supply 
reliability, making it is also crucial for partici-
pants in the electricity market. Figure 1 shows 
the general process of PLF.
In Figure 1, PLF first needs to determine an 
appropriate prediction target, e.g. selecting 
PL for the next month as the prediction target. 
Subsequently, a suitable prediction method is 
determined. Then, historical data of the cor-
responding detection targets are collected and 
preprocessed. Afterwards, a prediction model is 
established, which is LSTM-PLF. Finally, the 
LSTM-PLF is improved using CNN and PSO, 
and the prediction results are obtained through 
example validation. In PLF, Figure 2 shows the 
process of data preprocessing [16].

load forecasting and used PSO to optimize the 
parameters of the neural network. These results 
confirmed that this method had good accuracy 
and predictive ability in short-term load fore-
casting [6]. W. Lu et al. constructed a compre-
hensive model to improve the accuracy of stock 
price prediction. By training historical stock 
price data, this model could learn patterns and 
trends in price sequences and be used to predict 
future changes in stock prices [12]. Liang and 
Zhang collected a large amount of ship trajecto-
ry information using AIS data and applied it to 
LSTM for training and prediction. To improve 
the performance of LSTM, they also used PSO 
to optimize its parameter settings. These results 
confirmed that this method could accurately pre-
dict the future trajectory of ships [13]. To great-
ly improve the accuracy and precision of short-
term PLF, R. Wang had improved the similar 
day category screening method based on a time 
period neural network model. They divided the 
load into 7 time periods using the regional load 
characteristics. Based on real-time meteorolog-
ical data, the prediction model could provide 
load values for the predicted day. These results 
confirmed that the prediction accuracy of differ-
ent types of days could reach over 96% [14].
In summary, although many experts have de-
signed and developed various models to im-
prove the accuracy and precision of short-term 
PLF, research on short-term PLF based on im-
proved LSTM is still quite rare. To further im-
prove the accuracy of PLF, a short-term PLF 
based on PSO-CNN-LSTM is proposed, which 
utilizes the advantages of improved LSTM in 
prediction and provides more reference experi-
ence for improving the accuracy and effective-
ness of short-term PLF.

Figure 1. Flow chart of power load forecast.
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For the selection of PL raw data, one year's 
PL data and meteorological characteristic data 
from a certain region are selected. For the miss-
ing data, the study uses cyclic code and mean 
filling methods to ensure its integrity, as pre-
sented in equation (1).
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In equation (1), Xi is the data value. ni is the 
amount of data. γ is the basis for determining 
whether the data are filled in. γ = 1 indicates 
that it needs to be filled in. γ = 2 indicates that 
no padding is required. After supplementing 
the missing data, the dimensional differences of 
the added data should be removed, and, there-
fore, a normalization method should be used 
to process the data [17]. Considering that PL 
and meteorological data are single-dimensional 
data, the experiment selects the maximum and 
minimum normalization to process the data in 
equation (2).
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In equation (2), Xmax and Xmin are the maximum 
and minimum values within the set range, re-
spectively. max and min are 0.9 and 0.1, respec-
tively. Xs is the normalized value. Taking Euro-
pean PL data from January 1998 to December 
1998 as an example, the 3D grid graph module 
is used to display the changes in data filling and 
normalization processing in Figure 3.
In Figure 3(a), the cyclic code and mean filling 
method fill in the missing data to form a co-
herent data line. After preprocessing the data, 
the construction of a prediction model begins. 
Considering the temporal nature of the collect-
ed data, LSTM was selected as the basic predic-
tion model, and PSO and CNN were used to im-
prove the LSTM prediction model. The general 
evaluation indicators for constructed prediction 
models are Sum of Squares Error (SSE), Mean 
Square Error (MSE), Root Mean Square Error 
(RMSE), standard deviation, and Mean Abso-
lute Error (MAE) [17]. Equation (3) shows the 
calculation method for variance.
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In equation (3), n represents the number of sam-
ples. yi is the actual data. yj is the fitted data, and 

Figure 2. Power load data preprocessing flowchart.
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ωi ≥ 0. The closer SSE approaches 0, the better 
the fitting degree of the prediction model and 
the higher the prediction accuracy [18]. Equa-
tion (4) is MSE.
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Similarly, the closer MSE approaches 0, the 
higher the model accuracy and the smaller the 
error. Equation (5) defines RMSE.
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Like MSE and SSE, the closer RMSE approach-
es 0, the higher the accuracy. Equation (6) rep-
resents MAE.
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MAE can accurately reflect the model's predic-
tion error, and a small difference indicates a 
higher model accuracy. Equation (7) represents 
the standard deviation.
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2.2. Construction and Improvement 
Strategy of PLF Based on LSTM

LSTM is an upgraded form of RNN that can se-
lectively receive data information and quickly 
process and save it. Figure 4 shows the com-
plete LSTM.

Figure 4. Schematic diagram of LSTM structural model 
structure.

According to Figure 4, LSTM mainly consists 
of three parts. The input and output gates are 
responsible for receiving and transmitting in-
formation between memory units, respective-
ly. Furthermore, the forgetting gate is utilized 
to forget the information in the memory unit 
by blocking the transmission of information 
layer by layer. LSTM is mainly divided into 
three stages during runtime: ''forget'', ''selec-
tive memory'', and ''output''. The forget stage 
is mainly used to delete information that is no 

Figure 3. Comparison of 3D grid images before and after data processing.
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longer needed, update the memory state, and 
provide space for new inputs in equation (8).

( )1t hf t xf t ff W h W x bσ −= + +               (8)

In equation (8), ft is the forget output, Whf and  
Wxf are weight matrices, and bf is the bias term. 
ft is used to determine whether the previous 
state value should be forgotten or memorized. 
The selective memory stage is determined by 
the activation level of the input gate and forget 
gate. The input gate controls the entry of new 
information into memory, while the forget gate 
controls whether old memories are retained. 
Equation (9) represents the output i of the out-
put gate.

( )1t hi t xi t ii W h W h bσ −= + +                 (9)

Equation (10) represents the state of selecting 
the memory stage.
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In equation (10), Ct represents a temporary 
state, and Ct is the new unit status obtained af-
ter updating the temporary unit status. In the 
output stage, tanh activation function is used to 
change the output of the previous unit to obtain 
the output ht. Equation (11) is the specific cal-
culation.

1( )t xo t xo t oo W h W x bσ −= + +             (11)

In equation (11), ht-1 and xt are the two inputs 
of the output gate, and σ is activation function 
sigmoid. After activating sigmoid, the numeri-
cal values between [0, 1] are obtained, and the 
magnitude of the values represents the degree 
of preservation and forgetting. For the infor-
mation to be forgotten, its memory state will 
be updated to a smaller value, gradually disap-
pearing [19]. In this way, LSTM can remember 
the most important information when process-
ing sequential data and forget information that 
is no longer needed. Due to its characteristics, 
LSTM is very suitable for solving the problems 
of predicting time series with temporal order 
and predicting discontinuous time series. The 

general LSTM is far from meeting the require-
ments of PL short-term prediction and requires 
further optimization. There are currently two 
optimization approaches, one is ''self-optimiza-
tion'', which mainly focuses on optimizing the 
parameters and function settings of the model 
itself [20]. This optimization can be achieved 
by repeating multiple experiments to determine 
the optimal parameters of the model. Another 
approach is ''algorithm assisted optimization'', 
which utilizes algorithms and mathematical 
models to improve and optimize the basic mod-
el. This study uses PSO and CNN to optimize 
the solution of LSTM. PSO has extremely high 
convergence speed and optimization ability, 
which can help obtain the optimal values for the 
two important parameters, namely, the number 
of hidden layer neurons and learning rate in 
LSTM [21]. Usually, particles in PSO update 
themselves through two outliers: individual out-
lier pBEST and global optimal solution gBest. 
After several iterations, the particle's own ve-
locity and position are continuously updated to 
seek the optimal solution. Figure 5 shows the 
specific process of PSO.
In Figure 5, it is assumed that there are n parti-
cle populations X = (X1, X1, ..., Xn) undergoing 
random initialization motion in D-dimensional 
space, and the spatial position of each particle 
is represented by X = (xi1, xi1, ..., xiD)D. It is as-
sumed that the velocity of the i-th particle in the 
particle swarm is Vi, the extreme value of the 
individual particle is pi, and the extreme value 
of the particle population is Pg, which are cal-
culated in equation (12).
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After calculating the extreme values of indi-
vidual and population particles, the speed and 
position of the particles are updated. Equation 
(13) represents the update of particle position:

1 1k k k
id id idX X V+ += +                   (13)
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Equation (14) represents the update of particle 
velocity Vid

k+1.

( ) ( )1
1 1 2 2

k k k k k k
id id id id gd gdV V c r p X c r p Xω+ = + − + −   (14)

In equation (14), ω is the inertia weight, k is 
iteration, c1, c2 are non-negative learning factor 
constants, and r1, r2 are random numbers within 
[0, 1]. ω reflects the degree to which the model 
seeks the optimal solution and is calculated us-
ing adaptive methods in equation (15).
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In equation (15), ωmax and ωmin are the max-
imum and minimum values of ω, respective-
ly, f  is particle's current fitness value, and fmin 
and favg are the minimum and average fitness  
values of all current particles. CNN can help 
LSTM handle longer time series and more di-
mensional problems. Due to the large amount 
of information in PL data, the model generates 
many useless signals during prediction. There-
fore, one-dimensional CNN is used for feature 
extraction of PL data [22]. This can reduce the 
noise and instability caused by excessive data, 
thereby improving the accuracy of the model 

for short-term PLF. Considering the advantages 
of LSTM, PSO, and CNN, a PSO-CNN-LSTM 
short-term power model is constructed, as 
shown in Figure 6 [23].
Figure 6 shows how PSO-CNN-LSTM con-
structs a short-term power model. Historical 
PL and weather data are collected and prepro-
cessed. CNN extracts features from the input 
weather data, which are then fused with the PL 
data to obtain a comprehensive feature repre-
sentation. Then, the constructed LSTM is used 
to model the comprehensive features to learn 
long-term dependencies and sequence features 
in time series data. PSO is subsequently used 
to adjust and optimize the parameters to im-
prove prediction accuracy. Finally, historical 
data is used to train PSO-CNN-LSTM, and the 
resulting model is used to predict PL for a fu-
ture period, generating corresponding results. 
The optimization parameters in the operation 
of the PSO-CNN-LSTM short-term PLF model 
mainly include learning rate, number of hidden 
layers, number of hidden layer neurons, and 
loss value. The learning rate ranges from 0.01 
to 0.001. To reduce model complexity, the num-
ber of layers and nodes in the model is set to 
the minimum, and the hidden layer is set to 2 
layers. The optimization range for the number 
of neurons is 2n, and the loss function is shown 
in equation (5).

Figure 5. Particle swarm optimization algorithm process.
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3. Performance and Application  
Analysis of Short-Term PLF  
Based on PSO-CNN-LSTM

This section mainly analyzes the performance 
and application of PSO-CNN-LSTM short-term 
PLF. Firstly, a testing environment was con-
structed. Then, the stability convergence, RMSE, 
fitting error, Relative Error (RE), and Absolute 
Error (AE) of LSTM, CNN-LSTM, and PSO-
CNN-LSTM were analyzed. In practical appli-
cation analysis, data from different time intervals 
and regions were selected for testing to verify the 
prediction accuracy of PSO-CNN-LSTM.

3.1. Performance Analysis of Short Term 
PLF Based on PSO-CNN-LSTM

To verify the accuracy and effectiveness of the 
constructed PSO-CNN-LSTM short-term PLF, 
simulation experiments were conducted to de-
termine the performance of the constructed 
model. Table 1 shows the computer hardware.

This study selected LSTM, CNN-LSTM, and 
PSO-CNN-LSTM for performance compari-
son. To ensure the accuracy of the final exper-
imental results and eliminate randomness, the 
iterations of each algorithm were set to 1000 
times. PL data were selected from January to 
December 2021 from the Global Energy Fore-
casting Competition (GEFC) and IEEE Power 
and Energy Society (IEEE) datasets. PL data 
from January to April were used as the train-
ing set and the PL data from May to December 
were used as the testing set to train the model. 
Then the performance of the model was tested. 
The purpose of stability testing for the model 
is to ensure consistent output results even with 
slight changes in input data, making it more ro-
bust. Figure 7 shows the results of the stability 
testing for the model.
In Figure 7, as the experimental iterations in-
creased, the stability of all three algorithms 
gradually increased. Figure 7 (a) shows the 
test of model stability in GEFC dataset. As 
the iteration progressed, CNN-LSTM and 

Figure 6. PSO-CNN-LSTM process.
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PSO-CNN-LSTM's stability values converged. 
After 720 iterations, CNN-LSTM gradually 
stabilized with a stable value of 68%. PSO-
CNN-LSTM tended to stabilize around 350 
times, with a stable value of up to 90%. LSTM 
exhibited tortuous fluctuations, with stable 
values ranging from 40% to 60%. Figure 7 (b) 
shows the test of model stability for the IEEE 
dataset. As the iteration progressed, three mod-
els' stability converged. LSTM tended to stabi-
lize after 850 iterations, with a stable value of 
58%. CNN-LSTM tended to stabilize after 620 
iterations, with a stable value of 70%. PSO-
CNN-LSTM tended to stabilize after 200 iter-
ations, with a stable value of 92%. Therefore, 
the iterations of PSO-CNN-LSTM tended to 
stabilize in different datasets sooner than for 
other approaches. So, the simulation model 
constructed by PSO-CNN-LSTM had better 

stability and higher computational efficiency. 
After testing the stability of the model, next 
step size training was performed on the three 
algorithms to obtain RMSE in Figure 8.
By analyzing the training step curves of three 
algorithm models in Figure 8, the RMSE of 
PSO-CNN-LSTM decreased as the training 
step size continued to increase. During the pro-
cess, it experienced two fluctuations, one from 
0 to 1000, with a rapid decrease in RMSE, and 
the second at around 2000 steps, with a grad-
ual decrease. In the end, it achieved a training 
effect with RMSE of 0.2345×10-4 at the step 
size of 1.9×104, which was basically consistent 
with the target effect. However, CNN-LSTM 
and LSTM still did not achieve the target effect 
after reaching 2.0×104 training steps. So, they 
required more calculation steps and longer cal-
culation time. Based on these data, the above 

Table 1. Simulation experiment computer hardware.

Equipment Model

CPU Intel Core

Internal storage 32G

Caliche 256GBSSD

Graphics card NVIDIA GeForce GTX 1060

Operating system Win10

Figure 7. Stability convergence of three models.
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models were used to predict the electricity load 
from 2010 to 2020. The predicted results are 
shown in Table 2.
According to the results in Tables 2 and 3, the 
prediction results of PSO-CNN-LSTM were 
relatively close to the original data, with a con-
fidence level of 98.3% and a P of 0.223, indi-
cating that there was no significant difference 
within the confidence interval. The prediction 
results of LSTM showed significant differenc-
es from the original data, with a confidence 
interval of P < 0.05. Thus, PSO-CNN-LSTM 
could accurately predict short-term PL. When 
deploying prediction models in practice, the 
optimal parameters were set to solve hyper-pa-
rameters and improve model accuracy. When 
deploying prediction models in practice, the 
actual data usually contain missing values, out-
liers, or biases, which may have an adverse im-
pact on the stability performance of the model. 
The constructed model used cyclic code and 
mean filling methods to pre-process the data, 
ensuring the integrity of the data and improv-
ing the stability of the model. In addition, ac-
tual deployment typically required models to 
process large amounts of data in real-time or 
quasi-real-time. CNN was used to extract data 
features, reducing the complexity of data pro-
cessing, and improving the accuracy of model 
predictions.

two datasets were used to analyze the fitting 
error of the training results of the three models. 
The fitting error of the model reflects the dif-
ference between the predicted results and the 
actual results, and the performance and accu-
racy of the model can be evaluated. The results 
are shown in Figure 9.

Figure 9 (a) confirmed that as the training step 
size continued to increase, the Mu of LSTM 
fluctuated several times and did not converge. 
The fitting error values of PSO-CNN-LSTM 
and CNN-LSTM both experienced a fluctua-
tion and eventually stabilized. The Mu of PSO-
CNN-LSTM was 1.0×10-7, while the Mu of 
CNN-LSTM was 1.0×10-6. In Figure 9 (b), as 
the training step size increased, the fitting er-
rors of three algorithms eventually stabilized. 
The difference was that the Mu of ML showed 
several fluctuations, and Mu eventually tended 
to stabilize at 1.0×10-6. The Mu of PSO-CNN-
LSTM and CNN-LSTM began to rapidly de-
crease, then became flat, and finally stabilized. 
Furthermore, the Mu of PSO-CNN-LSTM was 
1.0×10-8, which was still smaller than that 
of CNN-LSTM. Through the above analysis, 
the stability and effectiveness of PSO-CNN-
LSTM were higher than of the other two mod-
els [24]. Finally, based on the public dataset 
Global Energy Forecasting Competition, three

Figure 8. Comparative analysis of RMSE of three models.
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Figure 9. Analysis of fitting errors of three models.

Table 2. Electricity load forecast results for 2010–2020.

Years Serial Number
Raw data

(ten thousand kWh)

Predicted data

LSTM CNN-LSTM PSO-CNN-LSTM

2010 1 226 259 236 239

2011 2 245 203 234 564

2012 3 298 356 326 310

2013 4 343 410 365 356

2014 5 386 456 423 402

2015 6 415 489 435 435

2016 7 446 502 486 476

2017 8 498 563 534 512

2018 9 528 589 556 563

2019 10 598 658 523 623

2020 11 678 756 541 702
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3.2. Application Effectiveness Based on 
PSO-CNN-LSTM-PLF

This study tested the PSO-CNN-LSTM and 
CNN-LSTM models using historical PL data 
from A and B during the first and third quarters, 
and compared them with actual PL change data 
in Figure 10.
From Figure 10, the predicted results of PSO-
CNN-LSTM in different regions and periods 
were more consistent with actual data than the 

other two models. Therefore, using PSO to op-
timize CNN-LSTM effectively improved the 
accuracy of PLF. This improvement achieved 
very good prediction results both at individual 
moments and as a whole. This indicated that us-
ing PSO could not only effectively compensate 
for the shortcomings of CNN-LSTM predic-
tion, but also effectively improve the applica-
tion value of LSTM in PLF. Finally, an analysis 
was conducted on RE and AE generated by the 
predicted data in Figure 11.

Figure 10. Power load prediction results of two models.

Table 3. Testing indicators.

Index Confidence level d Posterior error C Small error  
probability P value

LSTM 80.33% 0.86 0.65 P < 0.05

CNN-LSTM 92.34% 0.13 0.86 P = 0.185

PSO-CNN-LSTM 98.36% 0.09 0.96 P = 0.223
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According to Figure 11 (a), the fluctuation of 
AE predicted by CNN-LSTM was significant, 
with an average predicted AE value of 1.0%.   
The overall AE predicted by PSO-CNN-LSTM 
was relatively flat, with small fluctuations, and 
the average predicted AE value was 0.6%. 
In Figure 11 (b), CNN-LSTM had significant 
fluctuations in RE, with an average predicted 
RE value of 1.6%. The overall AE predicted 
by PSO-CNN-LSTM was relatively flat, with 
relatively small fluctuations, and the average 
predicted AE value was 0.8%. Therefore, for 
RE and AE, PSO-CNN-LSTM had smaller re-
sults than for CNN-LSTM. Therefore, using 
PSO-CNN-LSTM significantly improved the 
prediction accuracy of LSTM, greatly reduc-
ing the AE and RE caused by the limitations of 
LSTM itself.

4. Conclusion

Accurate short-term PLF can help improve the 
safety, economy, and reliability of power sys-
tems. The research aims to further improve the 
accuracy and speed of short-term PLF  by de-
signing a PSO-CNN-LSTM power load fore-
casting model. Firstly, by introducing PSO to 
accelerate the convergence rate and stability 
of LSTM, the optimal parameters were found. 
Subsequently, CNN was introduced to extract 
the data features of power compliance, reducing 
noise and instability. Finally, the performance 
analysis and prediction results of three predic-
tion models, LSTM, CNN-LSTM, and PSO-
CNN-LSTM were compared. These results con-
firmed that when PSO-CNN-LSTM prediction 
model was iterated 350 times using the GEFC 
dataset, the performance stability reached 90%. 
CNN-LSTM gradually stabilized after 720 iter-

Figure 11. RE and AE Analysis of two models.
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ations, with a stable value of 68%, while LSTM 
had no stable value. For the IEEE dataset, PSO-
CNN-LSTM had a performance stability of 
92% after 200 iterations. LSTM tended to sta-
bilize after 850 iterations, with a stable value of 
58%. CNN-LSTM tended to stabilize after 620 
iterations, with a stable value of 70%. In error 
analysis, the RMSE of PSO-CNN-LSTM for 
training step size of 1.9×104 was 0.2345×10-
4, achieving the desired training effect. The 
other two models still did not reach the target 
value at the end of training. The fitting error of 
PSO-CNN-LSTM in GEFC was 1.0×10-7 when 
training for 2.0×104 steps. The fitting error for 
the IEEE dataset was 1.0×10-8. Comparing the 
predicted results with actual data, the predict-
ed curves of PSO-CNN-LSTM were basically 
consistent with the actual data curves, having an 
AE of 1.0% and a RE of 0.8%. The above re-
sults confirmed that the prediction performance 
of PSO-CNN-LSTM was much higher, indicat-
ing that PSO-CNN-LSTM had extremely high 
stability and could achieve relatively accurate 
prediction results in short-term PLF. However, 
there are also some shortcomings in the pre-
sented research methods. Firstly, during model 
testing, only two commonly used datasets were 
utilized, which may lead to overfitting or under-
fitting issues. This can limit the generalization 
ability of predictive models and result in poor 
performance in actual usage scenarios. Second-
ly, the PSO-CNN-LSTM model requires multi-
ple parameter settings, including the parameters 
of the PSO algorithm, the structure and param-
eters of the CNN and LSTM. Adjusting these 
parameters will be a complex and time-consum-
ing process. Further research is necessary to ad-
dress the aforementioned issues.
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