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Abstract
Joint models for longitudinal and survival data have become a popular framework for study-
ing the association between repeatedly measured biomarkers and clinical events. Neverthe-
less, addressing complex survival data structures, especially handling both recurrent and
competing event times within a single model, remains a challenge. This causes important
information to be disregarded. Moreover, existing frameworks rely on a Gaussian distribu-
tion for continuous markers, which may be unsuitable for bounded biomarkers, resulting in
biased estimates of associations. To address these limitations, we propose a Bayesian shared-
parameter joint model that simultaneously accommodates multiple (possibly bounded) longi-
tudinal markers, a recurrent event process, and competing risks. We use the beta distribution
to model responses bounded within any interval (a, b) without sacrificing the interpretability
of the association. The model offers various forms of association, discontinuous risk inter-
vals, and both gap and calendar timescales. A simulation study shows that it outperforms
simpler joint models. We utilize the US Cystic Fibrosis Foundation Patient Registry to
study the associations between changes in lung function and body mass index, and the risk
of recurrent pulmonary exacerbations, while accounting for the competing risks of death
and lung transplantation. Our efficient implementation allows fast fitting of the model
despite its complexity and the large sample size from this patient registry. Our comprehen-
sive approach provides new insights into cystic fibrosis disease progression by quantifying
the relationship between the most important clinical markers and events more precisely than
has been possible before. The model implementation is available in the R package JMbayes2.
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1 Introduction

In clinical research, joint models for longitudinal and survival data have become a popular
framework for studying biomarkers measured over time and their association with clinical
events (Henderson et al. 2000; Tsiatis and Davidian 2004; Rizopoulos 2012). Several exten-
sions have been developed to the basic framework for a single event time and a continuous
longitudinal biomarker proposed by Faucett and Thomas (1996) and Wulfsohn and Tsiatis
(1997). The literature is extensive, with recent comprehensive reviews by Hickey et al. (2016,
2018), Papageorgiou et al. (2019), and Alsefri et al. (2020). These reviews reflect the ongo-
ing efforts to enhance the versatility of the framework and its ability to address the intricate
features often found in longitudinal and survival data.

Cystic fibrosis (CF) is a severe genetic disorder that primarily affects the lungs and di-
gestive system, leading to respiratory impairment and malnutrition (Farrell et al. 2008). Pa-
tients with CF often experience recurrent lung infections, known as pulmonary exacerbations
(PEx), which can cause permanent lung damage and increase the risks of lung transplantation
and death. The body mass index (BMI) and the percentage of predicted forced expiratory
volume in one second (ppFEV1) are routinely measured to monitor disease progression. CF
care teams are interested in understanding the associations between ppFEV1 decline, BMI
changes, recurrent PEx, and the competing risks of death and lung transplantation using
the US Cystic Fibrosis Foundation Patient Registry (CFFPR, Knapp et al. 2016). Previous
studies that aimed to investigate such associations using joint models were hampered by the
lack of an appropriate framework.

The joint modeling framework has previously been extended to incorporate complex
survival data structures, such as recurrent (Liu et al. 2008; Liu and Huang 2009; Kim et al.
2012; Król et al. 2016) and competing event time data (Elashoff et al. 2008; Williamson et al.
2008; Andrinopoulou et al. 2014). However, the integration of both recurrent events and
competing risks within a unified model remains a challenge, leading researchers to omit im-
portant information despite availability in patient registries. For example, Andrinopoulou et al.
(2020) limited their analysis to the period up to the first PEx event, disregarding subse-
quent occurrences and informative censoring due to transplantation or death. When inves-
tigating the association between ppFEV1 and the risks of death and lung transplantation,
Miranda Afonso et al. (2023) treated these two events as a composite endpoint rather than
as competing risks, assuming that they indicate the same prior health status, which is not
clinically accurate.

An additional limitation of existing frameworks is their tendency to rely exclusively on the
Gaussian distribution to model continuous markers. An important aspect of joint modeling is
the appropriate parameterization of longitudinal submodels to ensure accurate extrapolation
of unobserved biomarker evolution up to the event time. A Gaussian parameterization can
be problematic for a bounded biomarker with many observations close to the boundaries,
such as ppFEV1, as it can cause the model to yield biologically implausible values, resulting
in biased estimates of the marker evolution and its associations. Existing CF studies have
modeled ppFEV1 mostly using a Gaussian distribution. Szczesniak et al. (2023) explored
the use of other distributions; however, deriving a meaningful clinical interpretation from
the association in the linear predictor scale was challenging.

We address these collective limitations by introducing a comprehensive joint modeling
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framework that can (i) effectively accommodate competing risk and recurrent event processes
together with multiple longitudinal outcomes, and (ii) appropriately model bounded longi-
tudinal markers with constrained distributions, without compromising the interpretability
of their association. Our model captures the complex dynamics of CF by simultaneously
considering recurrent PEx and the competing risks of death and lung transplantation, and
by appropriately parameterizing the longitudinal markers ppFEV1 and BMI using beta and
Gaussian distributions, respectively. The choice of a beta distribution ensures that ppFEV1

remains within the feasible range. The model allows for the use of various functional forms
to link time-to-event and longitudinal processes, and accommodates discontinuous risk inter-
vals and both gap and calendar timescales. The model has been made available in the user-
friendly R package for joint models, JMbayes2 (Rizopoulos et al. 2022), which is available in
the Comprehensive R Archive Network (CRAN). The implementation approach emphasized
versatility and efficiency to streamline the package’s adoption in complex settings with large
sample sizes.

The remainder of this article is organized into four sections. Section 2 describes the pro-
posed joint modeling framework in detail. In Section 3, a simulation study demonstrates the
added value of our approach over simpler joint models. In Section 4, we apply the proposed
model in a real-world setting using the CFFPR dataset. Lastly, Section 5 summarizes the
main findings and outlines directions for future research.

2 Joint modeling framework

We propose a joint model with J longitudinal markers that can follow different distributions,
K competing events, and one recurrent event process. Joint models assume a full joint
distribution of the longitudinal and time-to-event processes that can be factorized in different
ways (Sousa 2011). We focus on the shared-parameter joint models in this work; we assume
that the time-to-event and longitudinal processes depend on an unobserved process defined
by random effects. The observed processes are assumed independent conditional on the
random effects. Below we present the submodels that make up the proposed joint model.

2.1 Longitudinal outcomes

To describe the subject-specific time evolution of the jth longitudinal outcome, we consider
a mixed-effects regression model

{

Yj,i | bj,i ∼ Fj,Ψj

bj,i ∼ N (0,Dj) ,

where Yj,i is the jth response for the ith individual, bj,i is the corresponding vector of
random effects and Fj is a set of discrete and continuous distributions (not restricted to the
exponential family). The random effects follow a zero-mean multivariate normal distribution
with unstructured variance-covariance matrix Dj . The expected value of the jth outcome
at time t conditional on the random effects, µj,i(t) = E{Yj,i(t) | bj,i}, has the form

µj,i(t) = G−1
j {ηj,i(t)} = G−1

j

{

x⊤
j,i(t)βj + z⊤j,i(t)bj,i

}

, (1)
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where ηj,i(t) is the linear predictor, xj,i(t) and zj,i(t) are the design vectors of (possibly
time-varying) covariates for the fixed effects βj and the subject-specific random effects bj,i,
respectively, and Gj(·) is the link function. In this work, given the motivating case study, we
focus our attention on two particular continuous distributions: Gaussian and beta.

Let Yj,i(t) be a random sample drawn from the distribution Beta (p, q) with nonnega-
tive shape parameters p and q. We follow the beta density reparameterization proposed
by Ferrari and Cribari-Neto (2004), which is indexed by the mean µj,i = p/(p + q) and a
precision parameter φ = p + q, which satisfies 0 < µj,i(t) < 1 and φ > 0. This choice stems
from the difficulty of interpreting shape parameters in terms of conditional expectations.
The flexibility of the beta density enables it to adopt a plethora of distinctive shapes rang-
ing from symmetric bell-shaped curves to flat, skewed, or U-shaped curves within the open
interval (0, 1) (Gupta and Nadarajah 2004). This versatility makes the beta distribution
an appealing choice for modeling a continuous outcome that takes values within a known
interval, such as in the case of ppFEV1. We focus on the logit link log{µ/(1 − µ)} in this
work, but other link functions can be used. For the logit link, the submodel’s regression
parameters βj are interpretable in terms of expected changes in logit{µj,i(t)}. Effects plots
can be employed to retrieve these interpretations to the original scale.

The model is heteroscedastic because the variance of Yj,i(t) is a function of its expected
value, Var {Yj,i(t)} = µj,i(t){1−µj,i(t)}/(1+φ). Thus, the model intrinsically accommodates
non-constant response variances.

When considering a normally distributed outcome, we use the identity link function
in (1), such that µj,i(t) = ηj,i(t), and we account for the measurement error by including the
term εj,i(t) in Yj,i(t) = ηj,i(t)+εj,i(t), where εj,i(t) ∼ N (0, σ2

yj
). We assume the measurement

errors εj,i(t) to be mutually independent and independent of the random effects bj,i. Mul-
tiple longitudinal outcomes are associated through the variance-covariance matrix D, which
encompasses the J variance-covariance matrices Dj. Joint models using the Gaussian distri-
bution have been extensively discussed in the literature (see, for example, Rizopoulos et al.
2014).

2.2 Recurrent event times

For the risk of the recurring event, we rely on a proportional hazards risk model. The hazard
function for the lth event at time t is modeled by

hR

i (t) = hR

0

(

t− t0l,i
)

exp
[

wR⊤
i (t)γR +

J
∑

j=1

Mj
∑

m=1

HR

j,m {ηj,i(t)}α
R

j,m + υR

i

]

,

for t > t0l,i ≥ 0, where t0l,i is the starting time of the risk interval for the lth recurrent

event, and υR

i ∼ N (0, σ2
υ). For the baseline hazard function hR

0

(

t− t0l,i
)

, we use penalized

B-spline functions, P-splines (Eilers and Marx 1996). Specifically, we use log hR

0

(

t− t0l,i
)

=
∑Q

q=1 γ
R

0qbs
R

q

(

t− t0l,i
)

, where bsRq (t) are the P-splines’ qth basis functions of degree d, and
γR

0q are the corresponding unknown coefficients. In the relative risk component of the model,
the design vector wR

i (t) contains the measured characteristics with the corresponding vector
of regression coefficients γR; the design vector may incorporate baseline or time-varying
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exogenous covariates.
The hazard of an event for individual i at time t is associated with the jth subject-specific

marker trajectory through the latent association structure HR

j,m {ηj,i(t)} = HR

j,m {ηj,i(u)},
0 ≤ u ≤ t, which include the random effects bj,i. The longitudinal and recurrent event
processes are assumed to be conditionally independent given (b⊤

1,i, · · · ,b
⊤
J,i). The function

HR

j,m(·) determines the form of association between the longitudinal and time-to-event pro-
cesses. The available functional forms are elaborated upon in Section 2.4. The association
parameter αR

j,m measures the strength of the association between the mth functional form

of the jth longitudinal outcome and the risk of the next event. The quantity exp
{

αR

j,m

}

is
the hazard ratio (HR) for a one-unit increase in the value of HR

j,m {ηj,i(t)} while the rest of
the variables are kept constant.

We incorporate the random effect υR

i to capture the correlation among event times within
the same individual. Hereafter, we refer to the random effect terms in the risk models as
frailties to distinguish them from the random effects in the longitudinal submodels. We
assume that the subject-specific frailties and random effects are independent of each other,
and that the event times from the same individual are independent conditional on υR

i .
Our approach allows the recurrent event process to be modeled under the gap or calendar

timescales, which use different zero-time references (Duchateau et al. 2003). As shown in the
illustrative example in Figure 1, the calendar timescale uses a shared reference time for all
events (e.g., study entry), t0l,i = 0, ∀ l, while the gap timescale uses the end of the previous
event, assuming a renewal after each event and resetting the time to zero. Furthermore, our
model accommodates non-risk periods in which a patient is still experiencing the previous
event and so is not yet at risk of experiencing the next one. For example, if we are interested
in modeling the time to the next hospitalization, then a patient who is currently hospitalized
is not at risk of being hospitalized again.

2.3 Competing risks

To model the risks associated with each of the competing events, we consider a cause-specific
hazard, allowing for distinct specific forms of association between the longitudinal outcomes
and each cause of failure. The instantaneous rate for failures of cause k at any time t > 0 is
modeled by

hT

k,i(t) = hT

0k
(t) exp

[

wT⊤
k,i (t)γ

T

k ++

J
∑

j=1

Mj
∑

m=1

HT

k,j,m {ηj,i(t)}α
T

k,j,m + υT

k,i

]

,

by censoring all other causes. Here, hT

0k
(t) is the cause-specific P-splines baseline hazard

function, given by log hT

0k
(t) =

∑Q
q=1 γ

T

0kq
bsTkq (t), while wT

k,i(t) is the vector of observed

(baseline or time-varying exogenous) explanatory variables, and γT

k is the corresponding
vector of regression coefficients.

The jth longitudinal response influences the risk of failure of cause k throughHT

k,j,m {ηj,i(t)}.
The association parameters αT

k,j,m measure the strength of the association between each
longitudinal outcome and the risk of the corresponding event. For a one-unit increase in
HT

k,j,m {ηj,i(t)}, the HR for cause k is exp(αT

k,j,m). The longitudinal measurements and event
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Figure 1: The hazard function for a hypothetical recurrent event process, assuming the
calendar (top panel) or gap (bottom panel) timescale. During the study period, from time
0 to 100, the displayed individual experienced two recurrent events (e.g., hospitalizations)
at times 40 and 80. These events lasted five and four time units, respectively; during these
periods, the individual was not at risk of a new event.
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times are assumed to be conditionally independent given (b⊤
1,i, · · · ,b

⊤
J,i).

The kth competing event is associated with the recurrent event process through a zero-
mean Gaussian random variable υT

k,i. We assume that the frailties υT

k,i and υR

i are propor-
tional, υT

i = υR

i α
υ
k , reflecting the common underlying factors that affect their risk. The

magnitude of the association between each pair of processes is quantified by αυ
k , the log HR

for a one-unit increase in the frailty term. We assume that correlations among different
competing risks are driven by the shared frailty υR

i . Conditional on υR

i , the competing risks
are independent of themselves and of the recurrent event times.

2.4 Forms of association

It has been recognized that the functional form used to link the longitudinal and event
processes plays an important role in joint models (Rizopoulos et al. 2014; Mauff et al. 2017).
As discussed in Sections 2.2 and 2.3, the hazards hR

i (t) and hT

i (t) of an event for patient i at
time t are associated with the jth subject-specific marker trajectory through HR

j,m {ηj,i(t)}
and HT

k,j,m {ηj,i(t)}, respectively. Our model allows the specification of various forms of
association between the longitudinal and time-to-event processes, such as underlying value,
ηj,i(t); slope, dηj,i(t)/dt; standardized cumulative effect, 1

t

∫ t

0
ηj,i(s) ds; and combinations of

these regarding the same longitudinal outcome. Different forms can be assumed for each risk
model.

When a nonlinear link function G (·) is applied to the mean of the longitudinal outcome
in (1), it may be challenging to interpret the associations exp(αT

k,j,m) and exp(αR

j,m) in the
linear predictor scale. In such situations, it is more convenient to transform the subject-
specific linear predictor back to the outcome’s original scale before applying the functional
form of interest, that is, Hj,m {µj,i(t)} = Hj,m

[

G−1
j {ηj,i(t)}

]

, where G−1
j (·) is the inverse

link function. For example, when considering the logit link, we can use the expit function
G−1(x) = expit(x) = exp(x)/{1+exp(x)} so that the association parameters are interpretable
in terms of the mean µj,i(t) of yj,i(t), and not in terms of logit {µj,i(t)}. Supplementary Ta-
ble S2 lists the functional forms that can be used in our model to link the longitudinal and
time-to-event outcomes, along with the corresponding transformation functions.

2.5 Inference and software

Inference on the joint model parameters is carried out under the Bayesian framework. The
corresponding posterior probability distribution does not have a closed form, so we resort to
the Metropolis–Hastings algorithm with adaptive optimal scaling using the Robbins–Monro
algorithm (Garthwaite et al. 2016) to approximate it. Our C++ implementation of the pos-
terior sampling algorithms allows fast model fitting despite its complexity and sample size,
which have resulted in long computing times in previous analyses of the CFFPR (Andrinopoulou et al.
2020). The full and conditional posterior distributions, along with the prior specification, and
additional details about the sampling heuristic, are available in Supplementary Section A.

We have made our model publicly available in the CRAN R package JMbayes2 (Rizopoulos et al.
2022). In Supplementary Section B, we present an example of the use of the proposed joint
model with JMbayes2. Our implementation allows the longitudinal processes to follow differ-
ent distributions, such as the Student’s t, gamma, unit-Lindley, censored normal, binomial,
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Poisson, negative binomial, and beta-binomial distributions. Furthermore, the flexibility of
our JMbayes2 implementation allows users to fit simpler joint models that only consider the
competing risks or the recurrent event processes.

3 Simulation study

3.1 Design

The objective of our simulation study is twofold: to validate the proposed model and ex-
plore the bias introduced by model misspecification. We present two simulation scenarios,
named A and B. Scenario A is designed to validate the implementation of the model by
demonstrating its ability to recover the parameters’ true values. This scenario considers two
longitudinal outcomes, two competing risks, and one recurrent process. The model struc-
tures for the data generation and fitting processes are identical. In Scenario B, we examine
the bias in the association parameter introduced by modeling a bounded outcome using a
Gaussian distribution. This scenario involves a joint model with one longitudinal outcome
and one terminal event. Two modeling strategies for the longitudinal submodel are consid-
ered: one using a beta distribution (the true model) and the other a Gaussian distribution
(the misspecified model). The beta variant is used to assess the model under ideal conditions
in which it is accurately specified, providing benchmark estimates for the Gaussian model.
When considering the beta distribution, we include the longitudinal outcome in the hazards’
linear predictors at its original scale, rather than the linear predictor scale, to ensure the
comparability of association coefficients between the two models.

Supplementary Table S3 provides the full definitions of the joint models employed for
the data generation process and the corresponding models fitted to the generated data for
both scenarios, and Supplementary Table S4 lists the parameter values considered. We
replicate each scenario 100 times. Supplementary Tables S5 and S6 detail the data generation
process for each scenario, and Supplementary Table S7 summarizes the characteristics of the
simulated datasets.

The joint models are fit using JMbayes2 (v0.4.5). For each model, we use three Markov
chains with 10,000 or 5,000 iterations per chain, discarding the first 7,500 and 2,500 itera-
tions as a warm-up for Scenarios A and B, respectively. Details of the prior distributions
assumed are available in the Supplementary Table S1. The convergence of the chains is
assessed using the convergence diagnostic R̂ (Gelman and Rubin 1992) aiming for values
below 1.10, and by visual inspection of the posterior traceplots of randomly chosen datasets
within each scenario. The code used to perform the simulation study is publicly available at
https://github.com/pedromafonso/bounded-jm-simulation.

3.2 Results

Table 1 summarizes the simulation results, listing the bias and mean squared error values
obtained. Supplementary Figures S1 and S2 depict the distributions of estimated posterior
means for both scenarios. In Scenario A, the estimates closely align with the true values,
confirming the accuracy of the model. In Scenario B, the limitations of the Gaussian distribu-
tion become evident when dealing with inherently bounded longitudinal outcomes. Despite
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apparent convergence (see Supplementary Figure S3), the Gaussian model extrapolates the
longitudinal model to values outside the response domain, introducing bias in the estimation
of the target association (bias: -5.9; mean squared error [MSE]: 34.7) and, consequently, in
the remaining independent variables present in the risk model. These findings underscore
both the critical role of model selection and the suitability of the beta regression model for
scenarios involving constrained response variables.

Table 1: Bias and mean squared error for the joint model estimates obtained under the two
simulated scenarios for 100 simulated datasets. Scenario A: the joint model comprises one
bounded and one unbounded longitudinal marker, two competing risks, and one recurrent
event process; the fitted model is equal to the data generation model. Scenario B: the joint
model comprises one bounded longitudinal marker and one terminal event; of the two fitted
models, the one that models the bounded marker with a Gaussian distribution is different
from the data generation model. Abbreviations: M1, 1st longitudinal marker; M2, 2nd
longitudinal marker; MSE, mean squared error; PEx, pulmonary exacerbation; R, Recurrent
event; T1, 1st terminal event; T2, 2nd terminal event.

Scenario A Scenario B

Beta Gaussian

Submodel Param. True Bias MSE True Bias MSE Bias MSE

M1

β1,0 2.00 -0.001 0.000 2.00 -0.001 0.000 -1.235 1.526
β1,t -1.50 0.001 0.000 -1.00 0.001 0.000 0.881 0.777

M2

β2,0 0.80 0.000 0.000 – – – – –
β2,t -0.05 0.000 0.000 – – – – –

R
γR 0.25 -0.010 0.002 – – – – –
αR

1 -2.00 -0.008 0.006 – – – – –
αR

2 -1.00 -0.003 0.003 – – – – –
T1

γT

1 0.25 -0.016 0.015 0.25 -0.004 0.006 -0.036 0.009
αT

1,1 -2.00 -0.079 0.378 -2.00 -0.066 0.122 -5.870 34.696
αT

1,2 -1.00 -0.019 0.018 – – – – –
αυ
1 1.00 0.020 0.034 – – – – –

T2

γT

2 0.25 -0.013 0.010 – – – – –
αT

2,1 -2.00 -0.026 0.199 – – – – –
αT

2,2 -1.00 -0.020 0.012 – – – – –
αυ
2 1.00 -0.005 0.046 – – – – –
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4 Application

4.1 The CFFPR dataset

The CFFPR is one of the largest and most comprehensive databases of its kind, contain-
ing longitudinal clinical and demographic information on individuals living with CF in the
US (Knapp et al. 2016). Supplementary Figure S4 outlines the exclusion process applied to
address data quality issues, such as missing data or data entry errors. The remaining data
describe 23,543 individuals, who collectively contributed 1,315,586 observations between Jan-
uary 1, 2000, and December 31, 2017. The demographic, social, and clinical characteristics of
the individuals analyzed are summarized in Supplementary Table S8. The baseline character-
istics are ethnicity, genotype, birth cohort, and sex. The time-varying characteristics include
pancreatic enzyme intake—implying pancreatic insufficiency—and environmental influences
such as neighborhood material deprivation index (as defined by Brokamp et al. 2019), per-
centage of green space, and moving-truck density. Previous research demonstrated that en-
vironmental and community characteristics, alongside clinical and demographic factors, are
critical to comprehensively understand CF progression (Gecili et al. 2023; Palipana et al.
2023).

BMI and ppFEV1 are commonly measured in routine checkups and registered in the
CFFPR. BMI is an important clinical marker used to assess the nutritional status of indi-
viduals with CF, who are at increased risk of malnutrition and poor growth due to impaired
nutrient absorption, pancreatic insufficiency, and increased energy requirements. FEV1 mea-
sures the maximum volume of air that a person can forcefully exhale in the first second of
expiration after taking a deep breath. ppFEV1 compares a patient’s measured FEV1 to
the expected value for a person of the same age, sex, and height with normal lung func-
tion (Stanojevic et al. 2015). We assume that ppFEV1 ranges from 0% to 150%, with a
value of 100% meaning that the patient’s FEV1 is equal to the expected value for a healthy
individual. While it is uncommon, there are instances in which the ppFEV1 is reported as
above 100% owing to early intervention and treatment. Lower BMI and ppFEV1 levels are
associated with worse clinical outcomes (Liou et al. 2001). The median numbers of ppFEV1

and BMI measurements per individual are 47 (interquartile range [IQR] 27–69) and 48 (IQR
28–72), respectively, with corresponding median follow-up times per individual of 11.92 (IQR
6.97–16.76) and 11.72 (IQR 6.85–16.61) years. Figure 2 displays the ppFEV1 (left panel)
and BMI (center panel) evolution experienced by nine randomly selected individuals over
time. The profiles exhibit different follow-up durations and diverse nonlinear trends.

The most common cause of death in cystic fibrosis patients is respiratory failure, often
due to lung damage caused by chronic PEx. For individuals with end-stage lung disease,
lung transplantation is a treatment option. Data acquired after lung transplantation were
excluded. In this study, we treated death by respiratory failure and lung transplantation as
competing events. However, formally, these events are semi-competing, as an individual can
still die after receiving a double-lung transplant. Time-to-event data record the ages at which
individuals experienced these events. During the follow-up period, 10.88% of the individuals
received a lung transplant, 17.97% died from respiratory failure, and the remaining 71.15%

Percentage of greenspace, impervious, and tree canopy areas within the Zone Improvement Plan Code
Tabulation Area (ZCTA) derived from the National Land Cover Database (Jin et al. 2019).
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were right-censored. The median (IQR) ages at lung transplantation, death, and censoring
were 28.52 (22.84–36.55), 26.57 (21.36–35.93), and 23.50 (17.07–32.15) years, respectively.
The right panel in Figure 2 shows the cumulative incidence functions for the competing risks
of death and lung transplantation. We note that both of these events can cause nonignorable
missing data in the measurements of ppFEV1 and BMI.

A PEx is a sudden worsening of CF respiratory symptoms usually caused by an infection
or inflammation in the airways (Flume et al. 2009). In this study, we define the recurrent
PEx event as an episode of care documented in the CFFPR with intravenous antibiotic use.
If a new PEx episode is recorded during an ongoing exacerbation, it is treated as the same
event. This implies the existence of non-risk periods during the episode of care that must be
accounted for during the modeling process. The median number of PEx per individual is 7
(IQR 3–14), with a median interval between consecutive PEx of 0.34 (IQR 0.15–0.77) years.
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Figure 2: Longitudinal and survival outcomes of interest. Left: ppFEV1 measurements
against age for nine randomly selected individuals. Center: BMI measurements against age
for the same individuals. Right: Cumulative incidence functions for the competing events of
death and lung transplantation, with associated 95% confidence intervals.

4.2 Analysis

We fitted the joint model described in Section 2, considering two longitudinal outcomes
(J = 2), one recurrent event process, and two competing events (K = 2). The longitudinal
ppFEV1 and BMI measurements are described using mixed-effects models assuming a beta
and normal distribution, respectively. The formulations for these models are given as follows:

logit {ppFEV∗∗
1 i(t)} = (β1,0 + b1,0,i) + (β1,t + b1,t,i) t+ β1,malesexmale,i + β1,[93,98)YOB[93,98),i+

+ β1,≥98YOB≥98,i + β1,htzF508delhtz,i + β1,othF508deloth,i+

+ β1,ethnethnhisp,i + β1,trucktrucki(t) + β1,deprdepri(t) + β1,pgrnpgrni(t),

11



and

BMIi(t) =
∼

BMIi (t) + εi(t) =

= (β2,0 + b2,0,i) +
2
∑

q=1

(β2,q + b2,q,i) ns2,q(t) + β2,malesexmale,i + β2,[93,98)YOB[93,98),i+

+ β2,≥98YOB≥98,i + β2,htzF508delhtz,i + β2,othF508deloth,i + β2,ethnethnhisp,i+

+ β2,deprdepri(t) + β2,enzyenzyi(t) + εi(t),

for t > 0, where (b1,0,i, b1,t,i, b2,0,i, b2,1,i, b2,2,ib2,t2,i)
⊤ ∼ N (0,D), and εi(t) ∼ N (0, σ2

y2
), with

the two random variables assumed independent of each other. Here,
∼

BMIi (t) is the BMI
response without error, and ppFEV∗∗

1 i(t) is the ppFEV1 response scaled to the interval (0, 1).
For ppFEV1, we assume a linear average evolution over time, while for BMI, we assume

a nonlinear evolution. More specifically, for BMI, we employ natural cubic splines with two
degrees of freedom, denoted by ns2,q(t), q = 1, 2, with knots located at the 0%, 50% and
95% percentiles of the observed follow-up times.

The average ppFEV1 and BMI responses are adjusted for baseline and time-varying
individual characteristics including sex (male vs. female), sexmale,i; birth cohort (< 93,
[93, 98), or ≥ 98), YOB<93,i and YOB[93,98),i; genotype (F508del homozygous, homozy-
gous, or other/unknown), F508delhtz,i and F508deloth,i; ethnicity (hispanic vs. non-hispanic),
ethnhisp,i; and neighborhood deprivation index, depri(t). Additionally, the average ppFEV1

is adjusted for the percentage of green space, pgrni(t), and the annual average daily moving-
truck density in the ZCTA, trucki(t), while the BMI response is adjusted for enzyme intake
enzyi(t). The birth cohort variable aims to account for the evolution in CF care over the
years, including approvals of new therapeutics. For the random effects structure, we assume
a subject-specific random intercept and the same nonlinear effect of time as for the fixed
effects.

We are interested in investigating how individual characteristics affect the risk of death
separately from how they affect the risk of transplantation. Therefore, we postulate two
cause-specific risk models, one for each of these competing events. The hazard functions
for the clinical events of PEx, transplantation, and death are denoted by hR

i (t), h
T

1,i(t), and
hT

2,i(t), respectively, and are defined as follows

hR

i (t) = hR

0 (t− t0l,i) exp
[

γR

PExnPExi(t) + ppFEV∗∗
1 i(t)α

R

1,1 +
1

t

∫ t

0

∼

BMIi (s) ds α
R

2,1 + υR

i

]

,

hT

1,i(t) = hT

01
(t) exp

[

ppFEV∗∗
1 i(t)α

T

1,1,1+
dppFEV∗∗

1 i(t)

dt
αT

1,1,2+
1

t

∫ t

0

∼

BMIi (s) ds α
T

1,2,1+υR

i α
υ
1

]

,

A response restricted to a closed interval between known theoretical limits a and b, so that y ∈ [a, b], can
be mapped to the interval (0, 1) by transforming the observed value y using y∗∗ = {y∗ × (N − 1) + 0.5}/N ,
where y∗ = (y − a)/(b− a) and N is the sample size (Smithson and Verkuilen 2006).
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and

hT

2,i(t) = hT

02(t) exp
[

ppFEV∗∗
1 i(t)α

T

2,1,1+
dppFEV∗∗

1 i(t)

dt
αT

2,1,2+
1

t

∫ t

0

∼

BMIi (s) ds α
T

2,2,1+υR

i α
υ
2

]

,

for t > 0, where υR

i ∼ N (0, σ2
υ), υR

i ⊥⊥ (b1,0,i, b1,t,i, b2,0,i, b2,t,i, b2,t2,i) and υR

i ⊥⊥ εi(t).
Changes in BMI over time occur relatively slowly, whereas ppFEV1 can experience sud-
den declines. Therefore, guided by clinical insights, we include in the hazards’ linear pre-
dictors the ppFEV1’s value, d ppFEV∗∗

1 (t)/dt, and rate of change, d ppFEV∗∗
1 (t)/dt, evalu-

ated at its original scale—applying the expit(·) transformation to the linear predictor de-
scribed in Section 2.1—, and the standardized cumulative effect of BMI’s underlying value,
1
t

∫ t

0

∼

BMI (s) ds. In the PEx model we include the number of previous PEx events, nPExi(t)
and consider the gap timescale. Regarding the baseline hazards, we consider 10 quadratic
P-spline basis functions defined over a grid of equally spaced knots over the domain of the
observed event times. We consider second-order differences in the penalty matrices.

We generated three Markov chains in JMbayes2 (v0.4.5) with 20,000 iterations each, of
which 10,000 were discarded for warm-up. We use the package’s default prior distributions
(see Supplementary Table S1). The traceplots and the R̂ (Gelman and Rubin 1992), with
R̂ < 1.10, showed satisfactory convergence of the Markov chains.

4.3 Results

The effects plots in Figure 3 show the estimated evolution of BMI and ppFEV1 with age.
The results in the left panel suggest an increase in BMI up to early adulthood, followed
by a gradual decrease. The right panel shows a period of rapid ppFEV1 decline during
childhood and adolescence, and a more gradual decline thereafter. When modeling ppFEV1

with a Gaussian distribution and allowing for flexible temporal evolution, the resulting model
produces non-feasible negative values (Figure 3, right panel).

The model parameter estimates are listed in Table 2. The risk of a PEx increases with the
number of previous episodes. The results suggest that both ppFEV1 and BMI are associated
with the risks of experiencing PEx, transplantation, and death. A one-unit decrease in value
and one-unit increase in the rate of ppFEV1 decline increases the hazard of death by 11.58%
(95% CI 11.34–11.82) and 9.15% (95% CI 7.51–10.83), respectively. A one-unit increase in the
standardized cumulative effect of BMI increases the hazard of PEx by 7.06% (95% CI 5.42–
8.70). The incidence of PEx is positively associated with transplantation and death. Frailer
individuals are at a higher risk of PEx and are more likely to receive a lung transplant or
die. A one-standard-deviation increase in the frailty term increases the hazards of death
by 202.71% (95% CI 187.69–219.03). In Supplementary Section D, the reader can find a
detailed explanation of how these conclusions were derived from the association parameters
estimates in Table 2. The estimates for the association between ppFEV1 and the risk of
transplantation are different from that between ppFEV1 and death, illustrating the value of
modeling both events individually, rather than as a composite endpoint.
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Figure 3: Left: Estimated BMI evolution with age, with associated 95% credible interval,
for Hispanic females with CF, F508del homozygotes, who were born before 1993, did not
take pancreatic enzymes, and lived in a community with deprivation index of 0.5. Right: Es-
timated ppFEV1 evolution with age, with associated 95% credible interval, when assuming
either a beta or Gaussian distribution for Hispanic females with CF, F508del homozygotes,
who were born before 1993, and lived in a community with a deprivation index of 0.5, in which
the percentage of green space is 50%, and in which the moving-truck density is 0.18 µtruck-
meters/m2. For a Gaussian distribution, the model generates non-feasible negative values,
despite incorporating flexible temporal evolution via natural cubic splines.
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Table 2: Posterior means and 95% credible intervals for some of the joint model parameters
fitted to the CFFPR dataset. Abbreviations: BMI, body mass index; CI, credible interval;
HR, hazard ratio; PEx, pulmonary exacerbation; ppFEV1, percent predicted forced expira-
tory volume in one second.

Model Parameter/HR Mean 95% CI

ppFEV1

β1,0 0.591 (0.554, 0.629)
β1,t −0.065 (−0.065, −0.064)
β1,male 0.001 (−0.017, 0.018)
β1,[93,98) −0.157 (−0.180, −0.133)
β1,≥98 −0.125 (−0.147, −0.103)
β1,htz 0.019 (0.001, 0.038)
β1,oth −0.024 (−0.050, 0.002)
β1,ethn 0.223 (0.191, 0.256)
β1,depr −0.003 (−0.010, 0.005)
β1,truck −4.44e−5 (−3.16e−4, 3.34e−4)
β1,pgrn −0.266 (−0.519, 0.029)

BMI
β2,0 15.053 (14.858, 15.244)
β2,ns1 12.867 (12.585, 13.143)
β2,ns2 1.881 (1.424, 2.330)
β2,male −0.465 (−0.548, −0.378)
β2,[93,98) 0.242 (0.127, 0.356)
β2,≥98 0.633 (0.523, 0.743)
β2,htz 0.170 (0.080, 0.259)
β2,oth 0.269 (0.140, 0.398)
β2,ethn −0.191 (−0.348, −0.032)
β2,depr −0.038 (−0.101, −0.021)
β2,enzy 0.021 (0.016, 0.026)

Recurrent PEx
exp(γR

PEx) 1.010 (1.009, 1.011)
συ 0.835 (0.822, 0.849)
exp(αR

1,1/150) 0.962 (0.961, 0.962)
exp(αR

2,1) 1.000 (1.000, 1.000)
Transplantation

exp(αT

1,1,1/150) 0.830 (0.825, 0.835)
exp(αT

1,1,2/150) 0.863 (0.839, 0.891)
exp(αT

1,2,1) 1.060 (1.044, 1.076)
exp(αυ

1) 1.203 (1.122, 1.287)
Death

exp(αT

2,1,1/150) 0.884 (0.882, 0.887)
exp(αT

2,1,2/150) 0.909 (0.892, 0.925)
exp(αT

2,2,1) 1.071 (1.054, 1.087)
exp(αυ

2) 1.326 (1.266, 1.389)
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5 Discussion

Motivated by a clinical study on CF, we have developed the first Bayesian shared-parameter
joint model that accommodates multiple continuous (possibly bounded) longitudinal mark-
ers, a recurrent event process, and multiple competing terminal events. Compared with pre-
vious frameworks, our comprehensive joint model enables more efficient use of all available
information in scenarios with multiple markers and event times. In addition, by modeling
a continuous and bounded longitudinal outcome using a beta distribution, we ensure that
the longitudinal submodel predicts feasible values and provides meaningful insights into the
association between the biomarker and the clinical event. This modeling framework can be
particularly valuable for markers in pediatric populations expressed in percentiles or z-scores.
The model is available in the R package JMbayes2 (Rizopoulos et al. 2022) and is flexible
enough to handle a wide range of applications.

The efficient implementation of the Markov chain Monte Carlo sampling algorithms in
C++ ensures fast model fitting. Nonetheless, applying multivariate joint models to large
datasets may require extended computing times. One can speed up model fitting by em-
ploying consensus Monte Carlo methods. Interested readers can find more details on how
this approach can be implemented using JMbayes2 in Miranda Afonso et al. (2023).

It can be argued that all biomarkers are inherently bounded, as they signify measurable
quantities within biological systems and are typically constrained by physiological limits. In
the context of this study, BMI could be seen as inherently bounded like ppFEV1, making it a
suitable candidate for modeling with a beta distribution. However, the normal distribution
continues to be an effective approximation for BMI, as it will be for many other biomarkers,
as the underlying distribution of the outcome lacks extreme skewness or heavy tails.

Although the proposed joint model exhibits great potential for advancing our under-
standing of complex disease dynamics, there remain opportunities for future research. We
initially mapped the ppFEV1 observations to the interval [0, 1] and subsequently to the open
interval (0, 1) using the transformation proposed by Smithson and Verkuilen (2006). In fu-
ture research, it may be worthwhile to explore the application of a zero-and-one inflated beta
distribution to eliminate the need for the second transformation. Additionally, the derivation
of individualized dynamic predictions (Andrinopoulou et al. 2021) represents an important
research direction. Developing appropriate predictive assessment tools is also imperative for
evaluating the model’s performance and enabling its translation into clinical practice.

Our findings shed new light on the progression of CF, and we hope they will contribute to
the effective management of PEx, reducing the frequency and severity of episodes. By making
our model publicly available, we hope to assist applied statisticians and epidemiologists in
performing joint analyses of longitudinal and time-to-event data in other complex settings.
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S., and Rondeau, V. (2016). Joint model for left-censored longitudinal data, recurrent
events and terminal event: Predictive abilities of tumor burden for cancer evolution with
application to the FFCD 2000–05 trial. Biometrics 72, 907–916.

Lang, S. and Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical
Statistics 13, 183–212.

Liou, T. G., Adler, F. R., FitzSimmons, S. C., Cahill, B. C., Hibbs, J. R., and Marshall,
B. C. (2001). Predictive 5-year survivorship model of cystic fibrosis. American Journal of
Epidemiology 153, 345–352.

Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent
events processes in the presence of death, with application to a study on acquired immune
deficiency syndrome. Journal of the Royal Statistical Society: Series C (Applied Statistics)
58, 65–81.

Liu, L., Huang, X., and O’Quigley, J. (2008). Analysis of longitudinal data in the presence
of informative observational times and a dependent terminal event, with application to
medical cost data. Biometrics 64, 950–958.

Mauff, K., Steyerberg, E. W., Nijpels, G., van der Heijden, A. A., and Rizopoulos, D. (2017).
Extension of the association structure in joint models to include weighted cumulative
effects. Statistics in Medicine 36, 3746–3759.

Miranda Afonso, P., Rizopoulos, D., Palipana, A. K., Zhou, G. C., Brokamp, C., Szczes-
niak, R. D., and Andrinopoulou, E.-R. (2023). Efficiently analyzing large patient reg-
istries with bayesian joint models for longitudinal and time-to-event data. arXiv preprint
arXiv:2310.03351 .

Palipana, A. K., Vancil, A., Gecili, E., Rasnick, E., Ehrlich, D., Pestian, T., Andrinopoulou,
E.-R., Afonso, P. M., Keogh, R. H., Ni, Y., et al. (2023). Social-environmental phenotypes
of rapid cystic fibrosis lung disease progression in adolescents and young adults living in
the united states. Environmental Advances page 100449.

Papageorgiou, G., Mauff, K., Tomer, A., and Rizopoulos, D. (2019). An overview of joint
modeling of time-to-event and longitudinal outcomes. Annual Review of Statistics and Its
Application 6, 223–240.

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data: With Appli-
cations in R. CRC Press.

Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for
multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 30, 1366–1380.

19



Rizopoulos, D., Hatfield, L. A., Carlin, B. P., and Takkenberg, J. J. (2014). Combining dy-
namic predictions from joint models for longitudinal and time-to-event data using Bayesian
model averaging. Journal of the American Statistical Association 109, 1385–1397.

Rizopoulos, D., Papageorgiou, G., and Miranda Afonso, P. (2022). JM-
bayes2: Extended Joint Models for Longitudinal and Time-to-Event Data.
https://drizopoulos.github.io/JMbayes2/, https://github.com/drizopoulos/JMbayes2.

Smithson, M. and Verkuilen, J. (2006). A better lemon squeezer? maximum-likelihood
regression with beta-distributed dependent variables. Psychological Methods 11, 54.

Sousa, I. (2011). A review on joint modelling of longitudinal measurements and time-to-
event. Revstat Statistical Journal 9, 57–81.

Stanojevic, S., Bilton, D., McDonald, A., Stocks, J., Aurora, P., Prasad, A., Cole, T. J.,
and Davies, G. (2015). Global Lung Function Initiative equations improve interpretation
of FEV1 decline among patients with cystic fibrosis. European Respiratory Journal 46,
262–264.

Szczesniak, R., Andrinopoulou, E.-R., Su, W., Afonso, P. M., Burgel, P.-R., Cromwell, E.,
Gecili, E., Ghulam, E., Goss, C. H., Mayer-Hamblett, N., et al. (2023). Lung function
decline in cystic fibrosis: Impact of data availability and modeling strategies on clinical
interpretations. Annals of the American Thoracic Society .

Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event
data: An overview. Statistica Sinica pages 809–834.

Williamson, P. R., Kolamunnage-Dona, R., Philipson, P., and Marson, A. G. (2008). Joint
modelling of longitudinal and competing risks data. Statistics in Medicine 27, 6426–6438.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data
measured with error. Biometrics 53, 330–339.

20



Supplementary material

A Posterior distribution

We denote the jth longitudinal marker measured at time t for the ith individual by Yj,i(t),
i = 1, . . . , n, j = 1, . . . , J . The longitudinal responses are collected for each subject at
intermittent time points

{

tj,i,g, j = 1, . . . , J, i = 1, . . . , n, g = 1, . . . , nj,i

}

, where nj,i is
the number of measurements of the longitudinal outcome j for individual i, generating the
vector of repeated measurements Y j,i = (Yj,i,1, . . . , Yj,i,nj,i

)⊤, with Yj,i,g ≡ Yj,i(tj,i,g). That is,
Yj,i,g is the value of the jth longitudinal outcome for individual i at time tj,i,g. The number
of measurements and the time points at which measurements are taken can differ between
individuals, and a given individual can have different outcomes measured at different time
points. Each individual may either experience one of the K distinct competing terminal
events or be right-censored during follow-up. Let Ti denote the observed failure time for the
ith individual, taken as Ti = min

(

T∗
1,i, . . . ,T

∗
K,i,Ci

)

, where T ∗
k,i is their true failure time for

each event k = 1, . . . , K, and Ci is the corresponding independent censoring time. The event
indicator takes values δT

i ∈ {0, 1, . . . , K}, with 0 corresponding to censoring and 1, . . . , K
to the competing terminal events. We assume that the missing values in the longitudinal
measurements, aside from those caused by the K events, are missing at random. Regarding
the recurrent event process, let Rl,i denote the time of the lth recurrent event experienced
by the ith individual, l = 1, . . . , Li, treated as Rl,i = min

(

R∗
l,i,Ti

)

, with R∗
l,i being the lth

true failure time. The event indicator δR

l,i is 1 if R∗
l,i < Ti and 0 otherwise. Joint models

assume a full joint distribution of the longitudinal and time-to-event processes (Yi, Ti,Ri),
where Y i = (Y ⊤

1,i, . . . ,Y
⊤
J,i)

⊤ and Ri = (R1,i, . . . , RLi,i)
⊤.

Let Dn =
{

(Y i, Ti, δ
T

i ,Ri, δ
R

i ), i = 1, . . . , n
}

denote the observed information from a
random sample of n individuals of the target population, where δR

i = (δR

1,i, . . . , δ
R

L,i)
⊤. The

unknown parameters θ, the subject-specific random effects b = (b⊤
1 , . . . ,b

⊤
n )

⊤, and the
frailty terms υ = (υ1, . . . , υn)

⊤ are estimated from the posterior distribution

p (θ,b,υ | Dn) ∝ p (Dn | θ,b,υ) p (θ,b,υ) ,

where p (Dn | θ,b,υ) is the full likelihood of the model and p (θ,b,υ) is the prior distribu-
tion. To evaluate the joint likelihood of the longitudinal and time-to-event outcome data,
we assume that, given all observed covariates and the unobserved random effects, the lon-
gitudinal and survival processes are independent of each other, as are any given subject’s
longitudinal responses. Under this conditional independence assumption, the full likelihood
can be written as

p (Dn | θ,b,υ) =
n
∏

i=1

J
∏

j=1

nj,i
∏

g=1

p
(

Yj,i,g | θ
Y

j , θ
b

j ,bj,i

)

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i )

×
Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (bi | θ
b) p (υR

i | θυ) ,

(2)

where θ =
(

θY⊤, θT⊤, θR⊤, θb⊤, θυ
)⊤

is the combined vector of unknown parameters. The
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longitudinal model parameters are denoted by θY = (θY⊤
1 , . . . , θY⊤

J )⊤, with θY

j = (β⊤
j , σyj )

⊤.

The parameter vector of the competing risks models is represented by θT = (θT⊤
1 , . . . , θT⊤

K )⊤,
with θT

k = (γT⊤
k ,αT⊤

k ,γT⊤
0k

, αυ
k)

⊤. Finally, θR = (γR⊤,αR⊤,γR⊤
0 )⊤ is the parameter vector of

the recurrent time-to-event model, θb ≡ D and θb

j ≡ Dj are the random-effects covariance
matrices, and θυ ≡ συ is the frailty standard deviation.

In (2), the likelihood contribution p
(

Yj,i,g | θ
Y

j , θ
b

j ,bj,i

)

of the gth observation from the jth
outcome of the ith individual is the probability mass or density function of the distribution
considered. For a normal distribution, the contribution takes the form

p
(

Yj,i,g | θ
Y

j , θ
b

j ,bj,i

)

∝ σ−1/2
yj

exp

{

−

(

Yj,i,g − x⊤
j,i,gβj − z⊤j,i,gbj,i

)2

2σ2
yj

}

.

When assuming a beta distribution, this is instead

p
(

Y ∗
j,i,g | θ

Y

j , θ
b

j ,bj,i

)

=
Γ(φ)

Γ(µj,i,g φ)Γ ((1− µj,i,g)φ)
Y ∗
j,i,g

µj,i,gφ−1(1− Y ∗
j,i,g)

(1−µj,i,g)φ−1,

where µj,i,g = G−1(x⊤
j,i,gβj + z⊤j,i,gbj,i), Γ(·) denotes the gamma function, and Y ∗

j,i,g is the
observed response Yj,i,g transformed to the standard unit interval, so that Y ∗

j,i,g ∈ (0, 1).
The ith likelihood contribution of the K competing terminal events in (2) takes the form

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i ) =

K
∏

k=1

exp

[

γT

0,k0
+

Q
∑

q=1

γT

0,kq
bsTkq (Ti) +wT⊤

k,i (Ti)γ
T

k

+

J
∑

j=1

Mj
∑

m=1

HT

k,j,m {ηj,i (Ti)}α
T

k,j,m + υR

i α
υ
k

]I(δTi =k)

× exp

(

−
K
∑

k=1

exp(υR

i α
υ
k)

∫ tTj,i

0

exp

[

γT

0,k0
+

+

Q
∑

q=1

γT

0,kq
bsTkq (Ti) +wT⊤

k,i (Ti)γ
T

k+

+
J
∑

j=1

Mj
∑

m=1

HT

k,j,m {ηj,i (Ti)}α
T

k,j,m

]

ds

)

,

(3)

where I(·) is the indicator function, bsTkq(t) is the P-splines’ qth basis function of degree d,
and γT

0kq
are the corresponding unknown coefficients for the baseline hazard. The likelihood
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contribution of the lth recurrent event experienced by the ith individual in (2) is given by

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

=exp

[

γR

00
+

Q
∑

q=1

γR

0qbs
R

q

(

Rl,i − t0l,i
)

+wR⊤
i (Rl,i)γ

R

+
J
∑

j=1

Mj
∑

m=1

HR

j,m {ηj,i (Rl,i)}α
R

j,m + υR

i

]δR
l,i

× exp

(

− exp(υR

i )

∫ tRj,i

0

exp

[

γR

00
+

+

Q
∑

q=1

γR

0qbs
R

q

(

Rl,i − t0l,i
)

+wR⊤
i (Rl,i)γ

R+

+
J
∑

j=1

Mj
∑

m=1

HR

j,m {ηj,i (Rl,i)}α
R

j,m

]

ds

)

,

(4)

where bsRq (t) is the P-splines’ qth basis function of degree d, and γR

0q is the corresponding
unknown coefficient for the baseline hazard.

The integrals in (3) and (4) do not have analytical solutions. Thus we evaluate them using
a 15-point Gauss–Kronrod quadrature rule, following Rizopoulos and Ghosh (2011). The
random effects p (bi | θ

b) and p (υR

i | θυ) contribute with the probability density functions of
zero-mean multivariate and univariate Gaussian distributions, respectively.

The prior distributions considered for each parameter are listed in Table S1. We assume
normal distributions for the fixed effects in both the longitudinal and survival submodels
{

βj ,γ
T

k

}

, and for the association coefficients
{

αR

j,m, α
T

k,j,m, α
υ
k

}

. We use gamma distributions

for the standard deviations
{

σyj , συ

}

of the frailty and error terms. For the covariance matrix
D, we assume a Lewandowski–Kurowicka–Joe distribution. For the P-spline coefficients in
the baseline hazards, we consider multivariate Gaussian distributions,

γT

0k
| τT

k ∼ N (0, τT

k M
T

k) , τ
T

k ∼ Gam
(

kT

0k
, λT

0k

)

,

γR

0 | τR ∼ N (0, τRMR) , τR ∼ Gam(kR

0 , λ
R

0 ) ,

where MT

k = ∆T⊤
k,u∆

T

k,u + IǫTk and MR = ∆R⊤
u ∆R

u + IǫR are the penalty matrices such that
∆T

k,u and ∆R

u form uth-order differences of adjacent B-splines, and the terms IǫTk and IǫR

introduce a small ridge penalty. The smoothness of the splines is controlled by the gamma
hyperpriors on τT

k and τR. For more details on Bayesian P-splines, see the seminal work by
Lang and Brezge (Lang and Brezger 2004).

The conditional posterior distributions for the parameters θY

j = (βj , σyj ) of the jth
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Table S1: Prior distributions considered for each parameter in the proposed joint model.
Abbreviations: LKJ, Lewandowski–Kurowicka–Joe.

Outcome Parameter Prior

jth longitudinal marker
βj Normal

(

µβj
,Σβj

)

D LKJ
(

η
)

σyj Gamma
(

kyj , λyj

)

Recurrent event
γR

0 | τR Normal (0, τRMR)
τR Gamma (kR

0 , λ
R

0 )
γR

0q Normal
(

µγR

0

, σ2
γR

0

)

γR Normal
(

µγR, σ2
γR

)

αR

j,m Normal
(

µαR

j,m
, σ2

αR

j,m

)

συ Gamma
(

kυ, λυ

)

kth competing terminal event
γT

0k
| τT

k Normal (0, τT

k M
T

k)
τT

k Gamma
(

kT

0k
, λT

0k

)

γT

k Normal
(

µγT

k
,ΣγT

k

)

αT

k,j,m Normal
(

µαυ
k,j,m

, σ2
αυ
k,j,m

)

αυ
k Normal

(

µαυ
k
, σ2

αυ
k

)
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longitudinal outcome and the covariance matrix D are

p
(

βj | Dn,b,υ
)

∝
n
∏

i=1

nj,i
∏

g=1

p
(

Yj,i,g | θ
Y

j , θ
b

j ,bj,i

)

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i )

×
Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (bi | θ
b) p

(

βj

)

,

p
(

σyj | Dn,b,υ
)

∝
n
∏

i=1

nj,i
∏

g=1

p
(

Yj,i,g | θ
Y

j , θ
b

j ,bj,i

)

p(σyj )

and

p (D | Dn,b,υ) ∝
n
∏

i=1

p (bi | θ
b) p (D) .

The conditional posterior distributions for the parameters θR = (γR,αR,γR

0 ) of the re-
current time-to-event outcome are

p (γR | Dn,b,υ) ∝
n
∏

i=1

Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (γR) ,

p (αR | Dn,b,υ) ∝
n
∏

i=1

Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (αR) ,

p (γR

0 | Dn,b,υ) ∝
n
∏

i=1

Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (γR

0 )

and

p (συ | Dn,b,υ) ∝
n
∏

i=1

p (υR

i | θυ) p (συ) .

The conditional posterior distributions for the parameters θT

k = (γT

k ,α
T

k ,γ
T

0k
, αυ

k) of the
kth competing time-to-event outcome are

p (γT

k | Dn,b,υ) ∝
n
∏

i=1

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i ) p (γ
T

k) ,

p (αT

k | Dn,b,υ) ∝
n
∏

i=1

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i ) p (α
T

k) ,

p
(

γT

0k
| Dn,b,υ

)

∝
n
∏

i=1

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i ) p
(

γT

0k

)

,
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and

p (αυ
k | Dn,b,υ) ∝

n
∏

i=1

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i ) p (α
υ
k) .

The conditional posterior distributions for the random effects bi and the frailty term υR

i

are

p (bi | Di,bi, υ
R

i ) ∝
J
∏

j=1

nj,i
∏

g=1

p
(

Yj,i,g | θ
Y

j , θ
b

j ,bj,i

)

p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i )

×
Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (bi | θ
b)

and

p (υR

i | Di,bi, υ
R

i ) ∝p (Ti, δ
T

i | θT, θY, θb, θυ,bi, υ
R

i )

×
Li
∏

l=1

p
(

Rl,i, δ
R

l,i | θ
R, θY, θb, θυ,bi, υ

R

i

)

p (υR

i | θυ) .

We use hierarchical centering for the fixed effects of the longitudinal submodels (Gelfand et al.
1995), and we standardize the covariates of the survival submodels to facilitate the conver-
gence of the MCMC algorithms. Additionally, to speed up the sampling process, we perform
parallel sampling of the random effects from different individuals and run the Markov chains
in parallel on multiple processor cores.
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B An example with JMbayes2

To fit the joint model, users are required to structure their data into two distinct datasets: one
dedicated to capturing information related to competing risks and recurrent events (survival
dataset), and another focused on longitudinal markers (longitudinal dataset). Below, we
provide a subsample of simulated datasets intended as an illustration.

The survival dataset encompasses details pertaining to both competing risks and recur-
rent events as shown below. Each subject is represented by multiple rows, corresponding to
the number of recurrent risk periods, plus one additional row for each competing event. The
strata variable is essential to differentiate between various event processes.

id tstart tstop status strata group

1 1 0.00 5.79 0 R 1

2 1 0.00 5.79 0 CR1 1

3 1 0.00 5.79 1 CR2 1

4 2 0.00 7.55 1 R 0

5 2 7.55 9.67 1 R 0

6 2 9.67 10.00 0 R 0

7 2 0.00 10.00 0 CR1 0

8 2 0.00 10.00 0 CR2 0

The longitudinal dataset describes repeated measurements taken on the same subjects, or-
ganized in a long format. As shown below, each row corresponds to a single observation,
and there might be multiple rows for each subject, representing different measurements over
various time points.

id time y1 y2

1 1 0.00 0.89 0.77

2 1 0.26 0.84 0.76

4 1 2.09 0.29 0.69

5 2 0.00 0.93 NA

6 2 2.87 0.16 0.67

7 2 5.37 0.01 0.57

8 2 8.46 NA 0.46

9 2 8.85 0.02 0.46

To adjust the joint model, users must first fit the mixed effects and proportional hazards sub-
models. Subsequently, these models are provided as arguments in the jm() function. Within
the function call, users specify the preferred functional forms for the longitudinal outcomes
in each relative-risk model, along with the chosen timescale. An illustrative example is
presented below.
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# 1. Load the package

library(JMbayes2)

# 2. Fit the longitudinal and survival submodels

# 2.1 Bounded longitudinal outcome (beta distribution)

beta_fit <- mixed_model(y2 ~ time treat, # fixed-effects formula

random = ~ time | id, # random-effects formula

family = beta.fam(), # distribution family

data = long) # longitudinal dataset

# 2.2 Unbounded longitudinal outcome (Gaussian distribution)

gaus_fit <- lme(y1 ~ time, # fixed-effects formula

random = ~ time | id, # random-effects formula

data = long) # longitudinal dataset

# 2.3 Proportional hazards model

ph_fit <- coxph(Surv(tsart, tstop, status) ~

group : strata(strata), # model formula

data = surv) # survival dataset

# 3. Fit the joint model that links the submodels

jm_fit <- jm(ph_fit, # survival submodel

list(beta_fit, gaus_fit), # longitudinal submodels

time_var = "time", # time variable in the longitudinal

# submodels

recurrent = "gap", # event timescale, or "calendar"

functional_forms = ~ vexpit(value(y1)):strata # func-forms

+ value(y2)):strata) # formula

summary(jm_fit)

Further details about the package usage can be found on the dedicated website:
https://drizopoulos.github.io/JMbayes2/.
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Table S2: Functional forms available in the R package JMbayes2 to link the longitudinal
and time-to-event outcomes, and the associated transformation functions. †: velocity(·)
can be used as an alias for slope(·).

Functional form Function Argument

Underlying value ηj,i(t) value(·)
log {ηj,i(t)} vlog(value(·))
log2 {ηj,i(t)} vlog2(value(·))
log10 {ηj,i(t)} vlog10(value(·))
√

ηj,i(t) vsqrt(value(·))
exp {ηj,i(t)} vexp(value(·))
expit {ηj,i(t)} vexpit(value(·))
a + b ηj,i(t) + c η2j,i(t) poly2(value(·))
a + b ηj,i(t) + c η2j,i(t) + d η3j,i(t) poly3(value(·))
a + b ηj,i(t) + c η2j,i(t) + d η3j,i(t) + e η4j,i(t) poly4(value(·))

Slope d ηj,i(t)/dt slope(·)†

|d ηj,i(t)/dt| vabs(slope(·))
d exp {ηj,i(t)} /dt Dexp(slope(·))
dexpit {ηj,i(t)} /dt Dexpit(slope(·))

Acceleration d2ηj,i(t)/dt
2 acceleration(·)

Standardized cu-
mulative effect

1
t

∫ t

0
ηj,i(s) ds area(·)
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C Simulation study
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Figure S1: Estimated posterior means for joint model coefficients obtained in the simulation
scenario A.
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Figure S2: Estimated posterior means for joint model coefficients obtained in the simulation
scenario B.
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Table S3: Comparison of joint models considered under the simulation scenarios A and B. In scenario A, the fitted model is
equal to the data generation model. In scenario B, the fitted model uses a Gaussian distribution to model the beta longitudinal
outcome from the data generation model. We highlight the differences between the data and fitted models by enclosing varying
elements within boxes in the model formulas. Abbreviations: M1, 1st longitudinal marker; M2, 2nd longitudinal marker; MSE,
mean squared error; PEx, pulmonary exacerbation; R, recurrent event; T1, 1st competing/terminal event; T2, 2nd competing
event.

Scenario A Scenario B

Data/Fit model Data model Fit model

M1

logit {µ1,i(t)} = η1,i(t) =

= (β1,0 + b1,0,i) + (β1,t + b1,t,i)t

logit {µ1,i(t)} = η1,i(t) =

= (β1,0 + b1,0,i) + (β1,t + b1,t,i)t

µ1,i(t) = η1,i(t) + ε1,i(t) =

= (β1,0 + b1,0,i) + (β1,t + b1,t,i)t+ ε1,i(t)

(b1,0,i, b1,t,i) ∼ N

(

0,

[

σ2
1,0 0
0 σ2

1,t

])

(b1,0,i, b1,t,i) ∼ N

(

0,

[

σ2
1,0 0
0 σ2

1,t

])

(b1,0,i, b1,t,i) ∼ N

(

0,

[

σ2
1,0 0
0 σ2

1,t

])

ε1,i(t) ∼ N
(

0, σ2
1,t

)

M2

µ2,i(t) = η2,i(t) + ε2,i(t) =

= (β2,0 + b2,0,i) + (β2,t + b2,t,i)t+ ε2,i(t)
– –

(b2,0,i, b2,t,i) ∼ N

(

0,

[

σ2
2,0 0
0 σ2

2,t

])

ε2,i(t) ∼ N
(

0, σ2
2,t

)

R
hR

i (t) = hR

0 (t) exp
[

wR

i γ
R + υR

i

+ expit {η1,i(t)}α
R

1 + η2,i(t)α
R

2

] – –

T1

hT

1,i(t) = hT

01
(t) exp

[

wT

1,iγ
T

1 + υR

i α
υ
1

+ expit {η1,i(t)}α
T

1,1 + η2,i(t)α
T

1,2

] hT

1,i(t) = hT

01
(t) exp

[

wT

1,iγ
T

1 + expit {η1,i(t)} αT

1,1

]

hT

1,i(t) = hT

01
(t) exp

[

wT

1,iγ
T

1 + η1,i(t) α
T

1,1

]

T2

hT

2,i(t) = hT

02(t) exp
[

wT

2,iγ
T

2 + υR

i α
υ
2

+ expit {η1,i(t)}α
T

2,1 + η2,i(t)α
T

2,2

] – –
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Figure S3: Traceplots for the joint model coefficients’ Markov chains after warm-up, for a
randomly chosen dataset under scenario B. Top: Joint model with a beta submodel. Bottom:
Joint model with a Gaussian submodel.

32



Table S4: Parameter values employed in the joint model for generating data in the sim-
ulation study. Abbreviations: M1, 1st longitudinal marker; M2, 2nd longitudinal marker;
MSE, mean squared error; PEx, pulmonary exacerbation; R, recurrent event; T1, 1st com-
peting/terminal event; T2, 2nd competing event.

Scenario A Scenario B

M1

β1,0 2.000 1.00
β1,t -1.500 -1.50
σ1,0 0.250 0.25
σ1,t 0.150 0.15
φy 104 104

M2

β2,0 0.800 –
β2,t -0.050 –
σ2,0 0.010 –
σ2,t 0.010 –
σy 0.005 –

R
hR

01
0.200 –

γR 0.250 –
αR

1 -2.000 –
αR

2 -1.000 –
T1

hT

01
0.200 0.10

γT

1 0.250 0.25
αT

1,1 -2.000 -2.00
αT

1,2 -1.000 –
αυ
1 1.000 –

T2

hT

02
2.000 –

γT

2 0.250 –
αT

2,1 -2.000 –
αT

2,2 -1.000 –
αυ
2 1.000 –
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Table S5: Outline of the data generation process for scenario A.

Longitudinal outcome (1/2):
1: Generate n = 1000 random samples from N

(

0,Σ−1
)

for the individual-specific random

effects, bi = (b⊤1,i
n×2

, b⊤2,i
n×2

): b
n×4

.

2: Generate (n× (ni−1)) random samples from U (0, 10) for the individual visiting times and
add the time 0, ti: t

(n·ni)×1
.

3: Generate the (n × 2) vectors of ni individual underlying longitudinal responses, µ1,i and

µ2,i: µi,1 = expit(η1,i) and µi,2 = η2,i, where ηj,i
ni×1

=
[

1 ti
]

ni×2

βj
2×1

+
[

1 ti
]

ni×2

bi
2×1

, j = 1, 2.

4: Generate (n×ni) random samples from Beta (p, q), where p = φ×µ1,i(t) and q = φ×{1−
µ1,i(t)}, for the observed beta longitudinal responses: y1

(n·ni)×1

.

5: Generate (n × ni) random samples from N
(

0, σ2
y

)

for the observation measurement error,
ε2,i(t): ε2

(n·ni)×1
.

6: Obtain the observed Gaussian longitudinal response by summing the vectors η2 and ε2:
y2

(n·ni)×1

.

Survival outcome:
7: Generate n random samples from Bern (0.5) for the individual’s group, wi: w

n×1
.

8: Generate (n× 2) random samples from U (0, 1), uT

1,i and uT

2,i: uT

1
n×1

and uT

2
n×1

.

9: Define HT

j,i(t) =
∫ t

0
hT

j,i(t) ds, where hT

j,i(t) = hT

j,0(t) exp
{

wiγ
T

j + expit {η1,i(t)}αT

j,1 +

η2,i(t)α
T

j,2 + υiα
υ
j

}

, j = 1, 2.

10: Numerically solve exp(−HT

1,i(t
T∗
i )) = uT

j,i for t
T∗
j,i (Bender et al. 2005), for j = 1, 2, to obtain

the individual true event times: tT∗
1

n×1

and tT∗
2

n×1

.

11: Calculate the observed event time tTi = min(tT∗1,i, t
T∗
2,i, tmax), where tmax is the deterministic

maximum follow-up time: tT

n×1
.

12: Define the censoring indicator δT

i as 1 if tTi = tT∗1,i, 2 if tTi = tT∗2,i, and 0 otherwise.

Longitudinal outcome (2/2):
13: Remove all y1,i(t) and y2,i(t) for t > ti.

Recurrent outcome:
14: Generate n random samples from U (0, 1), uR

l,i: uR

l
n×1

.

15: Define HR

i (t) =
∫ t

0
hR

i (t) ds, where hR

i (t) = hR

0 (t) exp
{

wiγ
R + expit {η1,i(t)}αR

1 + η2,i(t)α
R

2

}

.

16: Numerically solve exp(−HR

i (t
R∗
l,i )) = uR

l,i for t
R∗
l,i (Bender et al. 2005), to obtain the individual

true lth recurrent event times: tR∗
l

n×1

.

17: Calculate the lth observed event time tRl,i = min(tR∗l,i , t
T

i ): tR

l
n×1

.

18: Define the censoring indicator as δR

i,l as 1 if tRl,i = tTi , and 0 otherwise.
19: Repeat steps 14–18 for each individual until

∑

i t
R

l,i > tTi .
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Table S6: Outline of the data generation process for scenario B.

Longitudinal outcome (1/2):
1: Generate n = 1000 random samples from N

(

0,Σ−1
)

for the individual-specific random
effects, bi: b

n×2
.

2: Generate (n× (ni−1)) random samples from U (0, 10) for the individual visiting times and
add the time 0, ti: t

(n·ni)×1
.

3: Generate the n vectors of ni individual underlying longitudinal responses, µi: µi =
expit(ηi), where ηi

ni×1

=
[

1 ti
]

ni×2

β
2×1

+
[

1 ti
]

ni×2

bi
2×1

.

4: Generate (n×ni) random samples from Beta (p, q), where p = φ×µi and q = φ× (1−µi),
for the observed longitudinal responses: y

(n·ni)×1

.

Survival outcome:
7: Generate n random samples from Bern (0.5) for the individual’s group, wi: w

n×1
.

8: Generate n random samples from U (0, 1), ui: u
n×1

.

9: Define Hi(t) =
∫ t

0
hi(t) ds, where hi(t) = h0(t) exp

{

wiγ + expit {η1,i(t)}αT

1,1

}

.

10: Numerically solve exp(−Hi(t
∗
i )) = ui for t∗i (Bender et al. 2005) to obtain the individual

true event times: t∗
n×1

.

11: Calculate the observed event times ti = min(t∗i , tmax), where tmax is the deterministic max-
imum follow-up time: t

n×1
.

12: Define the censoring indicator as δi =

{

1 ti ≤ tmax,

0 ti > tmax.

Longitudinal outcome (2/2):
13: Remove all yi(t) for t > ti.
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Table S7: Characteristics of the simulated datasets. Abbreviations: ind, individual; IQR,
interquartile range; pct, percentile.

Scenario A Scenario B

Number of replicas 100 100
Number of individuals 1000 1000
Number of observations

M1, median (IQR) 10945.5 (10852–11087.75) 15334 (15211.5–15443.25)
M2, median (IQR) 10945.5 (10852–11087.75) –

Number of observations/individual
M1, median, median (IQR) 10 (10–10) 19 (19–19)
M2, median, median (IQR) 10 (10–10) –

9.0 9.5 10.0 10.5 11.0

0

1

2

3

4

Number of observations/individual

D
e

n
s
it
y

18.0 18.5 19.0 19.5 20.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of observations/individual

D
e

n
s
it
y

Aggregated follow-up duration
M1, median (IQR) 4750.81 (4699.53–4823.44) 7041.97 (6975.63–7103.06)
M2, median (IQR) 4750.81 (4699.53–4823.44) –

Follow-up duration/individual
M1, median, median (IQR) 4.17 (4.09–4.26) 8.42 (8.31–8.53)
M2, median, median (IQR) 4.17 (4.09–4.26) –

3.8 4.0 4.2 4.4 4.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M����� ������	
� �
��
�����������
��

D
e

n
s
it
y

8.0 8.2 8.4 8.6 8.8

0.5

1.0

1.5

2.0

2.5

������ ��������� ������������� �����

D
e

n
s
it
y

Competing/terminal event time
T1, median, median (IQR) 3.97 (3.88–4.07) 5.48 (5.35–5.58)
T2, median, median (IQR) 3.97 (3.88–4.07) –

Censoring, median, median (IQR) 10 (10–10) 10 (10–10)

3.6 3.8 4.0 4.2 4.4

0.5

1.0

1.5

2.0

2.5

Event time

D
e

n
s
it
y

5.0 5.2 5.4 5.6 5.8

0.0

0.5

1.0

1.5

2.0

2.5

Event time

D
e

n
s
it
y

Competing/terminal event
T1, %, median (IQR) 0.42 (0.41–0.43) 0.54 (0.53–0.55)
T2, %, median (IQR) 0.41 (0.4–0.42) –

Censoring, %, median (IQR) 0.17 (0.16–0.18) 0.46 (0.45–0.47)

Number of recurrent events/individual
Median, median (IQR) 3 (3–3) –

Group
1, %, median (IQR) 0.5 (0.49–0.51) 0.5 (0.49–0.51)

36



D CFFPR study

Here, we explain how to interpret the association parameter estimates from the proposed
joint model.

A q-unit increase in the ppFEV1’s expected value changes the hazard rate of PEx by

a factor of exp
{

αR

1,1

150
× q
}

. We divide αR

1,1 by 150 to rescale the parameter to the original

marker scale. The same rationale applies to the association parameters αT

1,1,1 and αT

2,1,1

regarding the risks of transplantation and death, respectively.
A p-unit increase in the rate of decline of ppFEV1’s expected value changes the hazard

rate of transplantation by a factor of exp
{

αT

1,1,2

150
× p
}

. We divide αT

1,1,2 by 150 because we

transform the marker from the range of 0 to 150 to the desired range of 0 to 1, in which the
beta distribution is defined. In other words, ppFEV1 i(t) =

ppFEV∗

1 i(t)

150
, where ppFEV∗

1 i(t)
and ppFEV1 i(t) denote markers in the original and transformed scales, respectively.
Given that d

dt
ppFEV1 i(t) =

1
150

d
dt
ppFEV∗

1 i(t) and noting that αT

1,1,2

(

1
150

d
dt
ppFEV∗

1 i(t)
)

=
αT

1,1,2

150

(

d
dt
ppFEV∗

1 i(t)
)

, we can obtain the association paramter in the original scale by doing

αT∗
1,1,2 =

αT

1,1,2

150
. The same reasoning applies to the association parameter αT

2,1,2 regarding the
risks of death.

An b-unit increase in the BMI’s standardized cumulative value changes the hazard rate of
PEx by a factor of exp

{

αR

2,1 × b
}

. The same reasoning applies to the association parameters
αT

1,2,1 and αT

2,2,1 regarding the risks of transplantation and death, respectively.
An f -unit increase in the frailty term υR

i changes the hazard rate of transplantation by a
factor of exp {αυ

1 × f}. The same reasoning applies to the association parameter αυ
2 for the

risk of death.
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nIDs =24512

NFEV1=!"#$%&%

NBMI =!%""'()

NP*+ =((#%(&

nIDs =24512 (0.00%)

NFEV1=1396585 (0.00%)

NBMI =1533027 (0.00%)

NP*+ =223135 (-2.80%)

1. Remove time-to-next-PEx with z-score >3 (based on all

individuals).

nI,- =24503 (~0.00%)

NF*./=1396585 (0.00%)

NB0I =1442138 (-5.90%)

NPEx =223089 (~0.00%)

2. Remove BMI values outside the interval [15, 40].

nI,- =24503 (0.00%)

NF*./=1396435 (~0.00%)

NBMI =1442138 (0.00%)

NPEx =223089 (0.00%)

3. Remove ppFEV1 values outside the interval [10, 150].

nI,- =24503 (0.00%)

NFEV1=1396435 (0.00%)

NBMI =1437447 (-0.30%)

NPEx =223089 (0.00%)

4. Remove BMI values with z-score >3 (within each

individual).

nI,- =24503 (0.00%)

NFEV1=1389869 (-0.50%)

NBMI =1437447 (0.00%)

NPEx =223089 (0.00%)

5. Remove ppFEV1 values with z-score >3 (within each

individual).

nI,- =23543 (-3.90%)

NFEV1=1194148 (-14.10%)

NBMI =1240784 (-13.70%)

NPEx =215787 (-3.30%)

6. Remove incomplete cases (based on covariates: sex,

MRSA infection, ethnicity, PA infection, pancreatic enzyme

use, F508del mutation, birth cohort, community deprivation,

percentage of green space, and moving truck density).

Figure S4: Cleaning process of CFFPR data sample. The sequence of steps 1–5 was
employed to identify and remove atypical measurements likely arising from data entry errors.
nIDs: number of individuals; nFEV1: number of ppFEV1 measurements; nBMI: number of BMI
measurements; nPEx: number of PEx.
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Table S8: Follow-up, demographic, social, and clinical characteristics of the CF individuals
analyzed. Abbreviations: BMI, body mass index; CF, cystic fibrosis; IQR, interquartile
range; PEx, pulmonary exacerbation; ppFEV1, percent predicted forced expiratory volume
in one second. †: Percentage of greenspace, impervious, and tree canopy areas within the ZIP
Code Tabulation Area (ZCTA) derived from the National Land Cover Database (Jin et al.
2019)

Characteristics

Number of individuals 23,543
Number of measurements

ppFEV1 1,523,40
BMI 1,523,40

Number of measurements/individual
ppFEV1, median (IQR) 46.00 (27.00–69.00)

BMI, median (IQR) 48.00 (27.00–72.00)
Aggregated follow-up duration (years)

ppFEV1 266,345.20
BMI 262,875.00

Follow-up duration/individual (years)
ppFEV1, median (IQR) 11.92 (6.97–16.76)

BMI, median (IQR) 11.72 (6.85–16.61)
Baseline age (years)

ppFEV1, median (IQR) 11.37 (6.36–20.19)
BMI, median (IQR) 11.80 (6.66–20.15)

Age at end of follow-up (years)
Censoring, median (IQR) 23.50 (17.07–32.15)

Lung transplantation, median (IQR) 28.52 (22.84–36.55)
Death, median (IQR) 26.57 (21.36–35.93)

Competing terminal event
Censoring 16,751 (71.15%)

Lung transplantation 2,562 (10.88%)
Death 4,230 (17.97%)

Number of PEx/individual
Median (IQR) 7.00 (3.00–14.00)

Interval between consecutive PEx (years)
Median (IQR) 0.34 (0.15–0.77)

Baseline ppFEV1

Median (IQR) 80.30 (59.70–95.90)
Baseline BMI

Median (IQR) 17.17 (15.66–20.31)
Birth cohort

<1993 13,895 (59.02%)
[1993, 1998) 3,672 (15.60%)

≥1998 5,976 (25.38%)
Genotype (F508del)

Homozygous 11,236 (47.73%)
Heterozygous 8,655 (36.76%)

Neither 3,652 (15.51%)
Sex

Female 11,829 (50.24%)
Ethnicity

Hispanic 1,767 (7.51%)
Other 21,776 (92.49%)

Neighborhood deprivation index
Median (IQR) 0.33 (0.27–0.40)

Percentage of green space†

Median (IQR) 89.81 (71.81–96.94)
Moving-truck density (truck-meters/m2)

Median (IQR) 0.18 (0.00–0.94)
Pancreatic enzymes intake

At baseline 6,887 (29.25%)
Throughout follow-up 1,868 (7.93%)

Sometime during follow-up 22,564 (95.84%)
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