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A B S T R A C T   

Objectives: As current health technology assessment (HTA) frameworks do not provide specific guidance on the 
assessment of medical artificial intelligence (AI), this study aimed to propose a conceptual framework for a broad 
HTA of medical AI. 
Methods: A systematic literature review and a targeted search of policy documents was conducted to distill the 
relevant medical AI assessment elements. Three exemplary cases were selected to illustrate various elements: (1) 
An application supporting radiologists in stroke-care (2) A natural language processing application for clinical 
data abstraction (3) An ICU-discharge decision-making application. 
Results: A total of 31 policy documents and 9 academic publications were selected, from which a list of 29 issues 
was distilled. The issues were grouped by four focus areas: (1) Technology & Performance, (2) Human & 
Organizational, (3) Legal & Ethical and (4) Transparency & Usability. Each assessment element was extensively 
discussed in the test, and the elements clinical effectiveness, clinical workflow, workforce, interoperability, 
fairness and explainability were further highlighted through the exemplary cases. 
Conclusion: The current methodology of HTA requires extension to make it suitable for a broad evaluation of 
medical AI technologies. The 29-item assessment list that we propose needs a tailored approach for distinct types 
of medical AI, since the conceptualisation of the issues differs across applications.   

Introduction 

The number of publications on medical AI has skyrocketed in recent 
years [1], with the majority concerning clinical diagnostics [2]. AI is for 
instance leveraged to detect diabetic retinopathy in retinal images and 
[3] to detect large vessel occlusions on computed tomography angiog
raphy (CTA) images [4]. AI has also been used in treatment support for 
mental health issues [5,6], error prevention in medicine prescription 
[7], AI-based risk prediction and triage [8], patient flow prediction & 
management [9], telemonitoring & alerting [10], etc. 

Consistent with the hype surrounding medical AI, increasing atten
tion has been given to its regulation and evaluation. In Europe, guide
lines were introduced through the Medical Device Regulation (MDR) in 
2021. This regulation presents a novel classification of medical devices 
and overall requires more comprehensive evidence of efficacy and safety 
[11] The MDR targets medical devices including medical AI, but lacks 

full-fledged guidance on the regulation of AI and its unique issues. This 
regulatory gap is also evident in the USA [12]. Nevertheless, pro
ceedings in AI regulation are ongoing in Europe in the form of the AI Act 
[11], as well as through various whitepapers in the USA [12]. 

Whilst the regulations are lagging, health technology assessment 
(HTA) could play a vital role in valuing health technologies. The HTA 
Core Model constitutes a good starting point, as it includes a broad se
lection of topics to include in the evaluation, including legal, ethical, 
social, and organizational aspects [13]. Despite the wide scope, how
ever, certain AI-specific assessment elements remain unaddressed [14, 
15]. These include challenges regarding how to assess continuous 
learning AI technologies, explainability (i.e., insight into how the AI 
decision was made) [15], and interoperability (i.e., the degree to which 
an application interacts smoothly with other hospital systems) [14]. 

Against this background, we address this methodological gap by 
reviewing the policy and academic literature to identify the assessment 
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elements that should be included in the evaluation of medical AI. By 
drawing from this body of literature, we propose a list of elements 
relevant to a comprehensive HTA of medical AI. We furthermore illus
trate some of the more AI-specific assessment elements by three exem
plary cases, one taken from stroke care, one from clinical data 
abstraction, and one from intensive care unit (ICU) decision-making. 

Methodology 

Systematic literature review of the academic literature 

We conducted a systematic literature review (SLR) of the academic 
literature, targeting publications that discuss the methodological gaps in 
HTA of medical AI. The Preferred Reporting Items for Systematic Re
views and Meta-Analyses (PRISMA) flow diagram is depicted in Fig. 1. 
The search was conducted in multiple databases: Medline, Embase, Web 
of Science, Cochrane, CINAHL Plus, and Scopus. We utilized a combi
nation of Medical Subject Heading (MeSH) terms related to HTA and AI. 
The search strategy (provided in supplementary Table 1) was created in 
collaboration with an information specialist from the Erasmus Univer
sity Medical Centre’s academic library and carried out on November 10, 
2023. The search yielded 548 eligible records after de-duplication. 
These were screened independently by WKR and BJB, after which BJB 
conducted a full-text assessment of 44 articles. Papers were included if 
they provided a direct description of barriers and challenges in the HTA 

of medical AI. The criteria for exclusion are shown in Fig. 1. This 
resulted in 9 included publications that provided input for the 
comprehensive list of assessment elements that need to be addressed in a 
comprehensive HTA of medical AI [15–23] (Supplementary Table 3). 

Targeted review of the policy literature 

We also conducted a targeted literature search of English policy 
publications addressing challenges and barriers surrounding medical AI, 
including publications of international organizations (e.g., World Health 
Organization), national institutions (e.g., the UK National Health Ser
vice), supranational organizations (e.g., the European Parliament), or
ganizations representing industry (e.g. European Confederation of 
Pharmaceutical Entrepreneurs (EUCOPE), and consultancies (e.g., Pri
cewaterhouseCoopers). Relevant publications were identified in three 
ways: 1) searching the websites of regulatory bodies, HTA agencies, 
governmental and non-governmental healthcare organizations, industry 
organizations, consultancies, and other relevant organizations consid
ering the regulation and/or barriers of medical AI; 2) a Google search in 
August 2022 with the prompt “Report on issues of medical Artificial 
Intelligence”; and 3) through a snowballing in the already found pub
lications until saturation was reached. This resulted in a list of 31 
included documents. A full overview of all publications is provided in 
the supplementary Table 3. 

Fig. 1. PRISMA flow diagram depicting the study selection process and exclusion criteria.  
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Elements to address in HTA of medical AI 

A synthesis of the academic publications and policy documents 
resulted in a comprehensive list of assessment elements for the HTA of 
medical AI. The EUnetHTA HTA core model served as the foundation in 
which we infused the additional AI-specific assessment elements [13]. 
All new elements were recorded and integrated into the list, regardless 
of how extensive they were presented in the publications. They were 
recorded by three iterations of full-text reading by BJB to ensure that 
nothing was missed. The HTA Core Model served as a foundation to 
ensure that our synthesized framework is sufficiently comprehensive. 
The elements were furthermore clustered in an iterative process be
tween the authors, presented in a table, and explained in the text. 
Exemplary cases have been described in Boxes (Box 1,2,3) further 
clarifying some of the relevant assessment elements involved in each 
case. We focus on those elements that benefit from further explanation, 
particularly those specific to AI. The first case is an AI technology 
designed to assist in stroke diagnosis and decision-making. The second 
involves an AI technology dedicated to drawing insights from unstruc
tured data in electronic health records. The third case describes an AI 
technology that supports discharge decisions for ICU patients. 

Results 

A total of 31 policy documents and 9 academic publications were 
identified for in-depth reading (see supplementary materials for refer
ence to all documents). The academic literature included various HTA 
frameworks, which were mostly compiled by expert stakeholders and 
focused on the more AI-specific assessment elements. Our efforts in 
combining these existing HTA frameworks with more pragmatic insights 
from policy documents, as well as the HTA Core Model, resulted in a 
well-rounded list that can be the starting point of a comprehensive HTA 
of medical AI. 

Our framework compromises 29 assessment elements across four 
main domains: Technology & Performance, Human & Organizational, 
Legal & Ethical, and Transparency & Usability. Table 1 shows the ele
ments, together with brief elaborations. Fig. 1 depicts the frequency of 
appearance of the elements across publications. Elements such as patient 
privacy, conformity to regulation, training data, and fairness are 
addressed relatively often, whereas elements such as budget impact, 
environmental impact, reporting quality, and local governance are only 
mentioned occasionally. The following sections contain details about the 
different elements. 

Technology and performance 

The Health Problem & PICO (Patient, Intervention, Comparator, 
Outcome) element emphasizes the importance of understanding and 
communicating the context in which the AI is to operate. The targeted 
health problem must be clearly described: particularly the disease 
mechanism or treatment pathway that the AI technology addresses [13, 
24]. Doing so should demonstrate the AI’s theoretical basis and its 
relevance to successfully address the problem being targeted. Identi
fying the Population involves specifying the patients’ demographics and 
clinical characteristics that the AI is designed to target. The Intervention 
must be carefully detailed in terms of the AI’s functionality (including 
the algorithm design, training data, data processing methods, etc.). The 
Comparator should be defined as the existing treatment or diagnostic 
tool that the AI is meant to improve upon or replace. The Outcomes are 
the health benefits or risks the AI is expected to produce, which could 
range from diagnostic accuracy to patient survival rates. Formally 
defining these components can contribute to an understanding of the 
context in which the AI is to operate. 

Training data revolves around the “garbage in garbage out” principle, 
prescribing that high-quality representative datasets are required to 
train an AI technology to perform well [25,26]. Such datasets can be 

Table 1 
Broad health technology assessment framework for a comprehensive assessment 
of medical artificial intelligence technologies.  

Elements Elaboration 

Technology & 
Performance  
Health problem & 
PICO 

To what extent is the targeted health problem, as well as 
the target population, (AI) intervention, comparator, and 
outcome (PICO) defined and communicated? 

Training data To what extent is the AI technology trained on high 
quality and representative data that are adequately 
annotated? 

Patient safety To what extent is patient safety ensured? 
Clinical validation To what extent is the AI technology validated in a clinical 

setting? 
Clinical effectiveness What is the clinical effectiveness of the AI application? 
Cost-effectiveness What is the cost-effectiveness of the AI technology 

compared to the standard of care? 
Budget impact What is the impact of adopting the AI technology on the 

budget? 
Generalizability To what extent does the AI technology’s performance 

generalize across institutions / countries etc.? 
Continuous learning To what extent is the continuous learning component of 

the AI technology monitored? 
Environmental 
impact 

To what extent is the environmental impact of the AI 
technology clear? 

Human & 
Organizational  
Clinical workflow To what extent are changes in clinical workflow 

necessary to facilitate the AI technology’s 
implementation? 

Workforce To what extent are workforce alterations and re- 
education necessary to facilitate the AI technology’s 
implementation? 

Stakeholder 
involvement 

To what extent are relevant stakeholders (patients, 
clinician, etc.) involved in the AI technology’s 
development process and to what extent is their 
satisfaction and willingness to adopt assessed? 

User bias To what extent does the human-AI collaboration pose 
risks concerning automation bias, aversion bias, or alert 
fatigue? 

Interoperability To what extent is the AI technology interoperable with 
other systems and data in place? 

Equipment To what extent are investments in equipment required? 
Local governance To what extent do institutions have a clear AI governance 

system in place? 
Legal & Ethical  

Regulation To what extent does the AI technology comply with 
legislation and regulation? 

Intellectual property To what extent is it clear who holds ownership over the 
data, algorithm, and platform? 

Fairness To what extent might the AI technology treat different 
subgroups unfairly? 

Patient privacy To what extent is patient privacy sufficiently addressed? 
Informed consent To what extent is patient consent with the use of AI 

technology ensured? 
Accountability To what extent is it clear who is held accountable in case 

of failure? 
Cybersecurity To what extent is cybersecurity ensured? 
Environmental 
impact 

To what extent is the environmental impact of the AI 
technology clear? 

Transparency & 
Usability  
Explainability To what extent are the AI technology’s decisions 

explainable and should it be? 
Access & availability To what extent are data available and accessible to 

clinicians and researchers? 
Communication To what extent is it clearly explained what the AI 

technology can (and cannot) do? 
Usability To what extent is it clearly explained how the AI 

technology should be used? 
Reporting quality To what extent is the reporting conforming to relevant 

guidelines (e.g., EQUATOR guidelines, such as 
CONSORT, PRIMSA, CHEERS, etc.) 

AI: Artificial Intelligence, CHEERS: Consolidated Health Economic Evaluation 
Reporting Standards, CONSORT: Consolidated Standards of Reporting Trials, 
EQUATOR: Enhancing the QUAlity and Transparency of health Research, PICO: 
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created by linking separate datasets into large multifaceted datasets 
[26]. High-quality annotations are an essential component of 
high-quality data and good AI performance [27,28], however, this is 
often very resource-intensive due to the need for labor-intensive expert 
annotation [27]. Poor annotation may also result in fairness concerns 
(see fairness element). For instance, using historical healthcare costs as 
an annotation proxy in predicting the healthcare needs of US citizens led 
to the disadvantageous treatment of black respondents (because previ
ous costs were strongly correlated to affordability) [29]. High-quality 
annotated training data is thus an essential factor in AI quality and 
should be addressed in the assessment. 

Patient safety refers to any unwanted or harmful effects that may be 
caused by the AI technology [24]. Clinical safety is one aspect of patient 
safety, constituting the AI’s potentially negative impact on the 
well-being of patients and clinicians, as well as any incident of adverse 
events. Technical safety is another vital aspect, for instance requiring 
that the IT systems that facilitate the AI are robust towards technical 
failures that could comprise patient safety [20], also related to the 
cybersecurity element. 

Clinical validation is important because the clinical reality is often 
messier than the context in which the AI was trained, potentially jeop
ardizing generalizability [26,30,31]. Real-world validation is therefore 
vital. Furthermore, many clinicians insist on seeing the tool operate 
within the clinical setting before fully trusting it [26], adding to the 
importance of clinical validation. Clinical validation is not only relevant 
in HTA but is also required in regulatory approval [26]. It lastly provides 
essential insight into how the AI fits into the actual workflow [31], 
further discussed in the clinical workflow element. 

Clinical effectiveness largely depends on how the AI technology 
changes the existing workflows and how humans adapt to these changes 
and utilize the AI in daily practice. Some medical AI technologies are 
even more complex interventions because they change dynamically due 
to continuous learning. Conducting randomized controlled trials (RCTs) 
may consequently be challenging. This is endorsed by a 2022 systematic 
review, reporting on a scarcity of RCTs of medical AI applications [32]. 
Alternative approaches to assessing clinical effectiveness are therefore 
necessary for complex AI applications, such as quasi-experimental de
signs (Box 1 & Box 3). 

Cost-effectiveness can be addressed by various approaches, such as 
cost-effectiveness analysis (CEA) or cost-utility analysis (CUA) if health 
benefits are gained (Box 3), and cost-minimization analysis (CMA) when 
the AI intends to only reduce costs (Box 2) [33]. A 2021 systematic 

review of these assessments of medical AI found various expenses to be 
widely overlooked (e.g., any costs accrued due to equipment investments, 
cybersecurity, workforce re-education, etc.) [34]. All relevant costs 
accrued in the different elements we propose should be incorporated, as 
neglecting them paints an unrealistic assessment of cost-effectiveness. 

Budget impact analysis (BIA) assesses the affordability of the AI 
technology in terms of the local budget and the consequences for the 
budget holder. A medical AI technology may be affordable on a large 
scale but not in a smaller hospital (“economy of scale” principle). In
stitutions of different sizes may have varying affordability thresholds for 
medical AI applications, and BIA helps to assess affordability on the 
institutional level. An assessment on the local level is essential if it in
tends to inform decision-making locally [35]. 

Generalizability refers to the ability of AI to work adequately on data 
from a new, independent cohort of patients. Real-world data can be 
messier than curated data used during training and development, 
harming the AI’s generalizability [30,31] (see also training data). 
Furthermore, if an AI algorithm is trained on data representing only a 
certain subgroup (e.g., a certain ethnicity), it may not generalize well to 
a more diverse population (see also fairness). Additionally, single-source 
training data (e.g., from a single institution or type of equipment) may 
not generalize well to other institutions or equipment [30,36] (Box 2). 
Generalizability can mostly be safeguarded by ensuring high diversity in 
training data [37]. 

Continuous learning refers to the ability of AI to continuously learn 
from processed data throughout its life cycle. This is a potential strength 
of AI, but ongoing monitoring is crucial in ensuring safety. Ongoing 
monitoring is furthermore essential since clinical AI is sensitive to model 
drift, which is defined as diminishing performance over time that occurs 
post-implementation due to changing circumstances [38]. In 2022, the 
UK National Institute for Health and Care Excellence (NICE) updated its 
evidence standards framework (ESF), introducing an outline for a 
pre-specified plan for reporting evidence of continuously learning AI 
technologies [39]. The FDA advocated a similar approach [12], though 
in both cases this is currently not implemented legally. 

Environmental impact is underrepresented in medical AI, due to which 
the net carbon footprint remains unclear. Training and utilizing AI re
quires extensive computational resources, negatively impacting the 
carbon footprint [40]. Certain applications could, however, also reduce 
emissions, for instance through a reduction in commuting because of 
telemonitoring. Regardless, the net impact of AI in terms of carbon 
emission is often expected to be negative. Embedding environmental 
impact into HTA could very well become more commonplace, which is 
especially legitimate in AI assessment. 

Patient, Intervention Comparator and Outcomes, PRISMA: Preferred Reporting 
Items for Systematic reviews and Meta-Analyses. 

Box 1 
Stroke care decision-making.  

Application. Stroke care requires fast diagnosis, triage, and treatment, which is captured by the idiom “time is brain”[71]. Rapid diagnosis and treatment minimize the patient’s risks 
of mortality and long-term morbidity: the longer the brain is deprived of oxygen and nutrients, the higher the risk of severe long-term damage, due to which it is vital to restore blood 
flow as quickly as possible[72]. AI can speed up various aspects of the stroke care workflow, for instance in processing and interpreting computed tomography angiography (CTA) 
images and generating a PDF report highlighting potential occlusions, which are a common and treatable cause of ischemic stroke[73].  

Relevant HTA elements. The introduction of AI throughout the stroke pathway may pose implications for the clinical workflow. The traditional stroke workflow is highly optimized, as 
it requires coordination between the emergency, radiology, and neurology departments. Introducing AI may alter the workflow of involved clinical stakeholders. For instance, there 
may be a shift from detecting and classifying stroke type to overseeing the characterization of the AI. Changes in the workflow of one party may also have consequences for another, 
as stroke care requires careful alignment between the stakeholders. It is vital to include this in the HTA process, as it would constitute an important consequence of adopting the 
technology. 

In the context of stroke care an optimized workflow is vital. Introduction of the AI technology may require changes in workforce, as all involved actors must be well-adapted to the novel 
workflow. Education on the fundamental principles, pitfalls, and situations in which the AI assessment requires careful monitoring is essential to facilitate safe and optimal usage of 
the technology. 

The automated and fast dispersion of information to all involved actors has implications for interoperability, prescribing health technologies to be able to operate jointly with 
technologies already in place. For instance, an imaging AI technology for stroke should integrate with the utilized Picture Archiving and Communication System (PACS), electronic 
health record, etc. 

Stroke AI technologies are relatively complex interventions that leverage AI to automate and optimize multiple aspects of the pathway. As mentioned, this may result in actual health 
improvements. The assessment of clinical effectiveness for such a multifaceted technology may not be straightforward, as argued in the text. Assessment of clinical value may therefore 
require quasi-experimental approaches since the workflow affects the entire organization, and patient-level randomization is not possible. Positioning the technology to be able to 
result in health outcomes also has implications for cost-effectiveness, for which a CUA or CEA may be best suited.  
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Human and organizational 

Clinical workflow. Early research often compared AI with human 
performance [41], facilitating a direct comparison between the two. 
Recent studies, however, have focused more on the human-AI collabo
ration [27,30,31,42], with the potential for significant time savings 
[25]. The adoption of medical AI may often require adaptations in the 
workflow of clinical personnel, shifts in task delegation, and (re-)dis
tribution of “invisible” work (e.g., reassuring and reminding patients) 
[43]. Financial implications and willingness to adopt these changes 
should be addressed in the assessment (Box 1). 

Workforce. Changes in the clinical workflow may call for workforce 
considerations such as training sessions on safe and responsible use, 
common pitfalls, etc. This could also include training in digital literacy 
and data science [26], which is important as AI illiteracy may encourage 
irrational fear (e.g., concerning job displacement). The extent to which 
workforce re-composition is necessary should be considered, as well as 
its acceptance and financial implications (Box 1 & Box 3). 

Stakeholder involvement is essential in successful medical AI devel
opment. Relevant stakeholders oftentimes include clinicians, as they are 
in many cases the intended users of the product. Their involvement 
throughout the AI developmental cycle is vital, as it ensures alignment of 
the product with clinical needs. Stakeholder involvement furthermore 
contributes to the readiness of organizations to adopt AI [16]. Ensuring 
this involves clear communication with stakeholders (see also commu
nication), setting up a training strategy for end-users (see also workforce), 
and management strategies that resonate with stakeholders. Involving 
stakeholders is thus vital in ensuring clinical utility and organizational 
readiness, which are both conducive to the successful adoption of 
medical AI. 

User bias could hinder successful collaboration between the AI and 

the human user [31]. One type is automation bias, which reflects the 
tendency to accept AI decisions uncritically, to which inexperienced 
clinicians are more prone [30]. Experienced clinicians are more at risk of 
aversion bias, reflecting the tendency to disregard an AI technology’s 
decision to rely on personal experience. Alert fatigue bias could occur if 
alerts provided by an AI system are largely ignored due to a history of 
too many false positives [31]. Assessments should be conducted to 
ascertain these biases, and proper education to prevent them. 

Interoperability is the ability of digital systems to work together, often 
ensured by using standardized formats. The importance of achieving 
interoperability is widely recognized but remains challenging in many 
circumstances [44]. Interoperability should be included in the assess
ment, for instance, with the UK National Health Service (NHS) digital 
technology assessment criteria that guide interoperability in program 
interface, data format, electronic health record communication, and 
communication with other devices [45] (Box 1 & Box 2). 

Equipment requirements in the form of hardware investments should 
be considered since utilizing AI may demand substantial computational 
resources [30]. Commercial technologies, however, typically run in the 
cloud, due to which extra on-site hardware investments are not always 
relevant. Furthermore, equipment is closely linked to the cybersecurity 
element as ensuring this may require higher investments in equipment. 
The assessment should incorporate any (financial) implications 
including acquisition, maintenance, and operation. 

Local governance structures are vital in the management of hospital- 
wide medical AI. Most publications advocate for a multidisciplinary 
team to facilitate and oversee the adoption of AI, which could include 
the identification of institutional processes that can be automated with 
AI [46], making an inventory of potential solutions, and upholding 
ethical principles and legal oversight [47]. An institution-wide gover
nance structure for AI thus plays an important role in upholding 

Box 2 
Clinical data abstraction.  

Application. The electronic health record (EHR) contains structured and unstructured data. Unstructured data is often not annotated and contains many different documents such as 
clinical notes, radiology reports, genomic test-results, etc. Extracting insights from unstructured data (i.e. clinical data abstraction) is highly useful, but also challenging and labor- 
intensive[74]. AI and Natural Language Processing (NLP) offer solutions to unlock a rich body of information from unstructured data[74,75]. AI comes in to construct a structured 
patient database from (unstructured) EHR data, which can be utilized to unlock a rich composite of real-world evidence. For instance, detailed patient cohorts with non-small cell 
lung cancer (NSCLC) can be extracted, resulting in a rich source of data with which scientific inference can be conducted[75]. Another application of clinical data abstraction with AI 
is the ability to detect risk profiles of patients with a rare disease, such as Transthyretin Amyloid Cardiomyopathy (ATTR-CM)[74]. Leveraging AI in clinical data abstraction may 
alleviate labor-intensive human work, but also has the potential to improve health outcomes by identifying patients with (rare) diseases.  

Relevant HTA elements. Standardization of the EHR format has been attempted, but different institutions and departments still use varying structures and standards[76], making 
interoperability essential. The application must be adaptable to different EHR structures, which developers can for instance achieve by offering different application programming 
interfaces (APIs). 

Differences may furthermore exist in EHR content (e.g., regarding what information is generally retained) across departments, disciplines, and institutions. Different countries 
furthermore retain information in different languages. AI for clinical abstraction should be generalizable to these different contexts, mostly ensured by diversity in the training dataset 
(e.g., by including different institutions and different disciplines). 

Fairness can be jeopardized when the records of certain patients tend to be less populated (e.g., subgroups that have limited healthcare access). The AI may perform subpar within these 
groups, resulting in unfair performance. Addressing this is mostly a matter of ensuring adequate representation of such patients in the training data, which can be achieved through 
actively ensuring diverse representation, or post-hoc corrections (e.g., weighting or dataset linking).  

Box 3 
Intensive care unit discharge decision-making.  

Application. Optimizing the moment of discharge on the intensive care unit (ICU) is crucial, as too late ICU discharge causes mental distress in patients and their loved ones and too 
early discharge increases the risk of re-entry and mortality, posing vital concerns regarding patient safety[9]. Optimizing discharge timing is also crucial in optimal resource 
management, ensuring that beds are available for those patients in need[9]. AI can be used to optimize the discharge decision-making process by leveraging patient demographic data 
(e.g., age and sex), clinical observations (e.g., nursing scores and Glasgow Coma Scale score), and automated physiological measurements from equipment and devices[77]. This may 
result in positive patient health gains, which has been shown by an early cost-effectiveness analysis[9].  

Relevant HTA elements. When using a wide variety of sensitive patient data, biases may be amplified, and fairness concerns arise. Physiological health markers used by ICU discharge 
technologies[77] (e.g., as arterial blood pressure) depend upon lifestyle and may differ across socio-demographic subpopulations. If such patients were underrepresented in the 
training data, the AI is prone to reach subpar performance and exacerbate health inequalities. The fact that AI influences the allocation of scarce resources (ICU beds) gives further 
rise to the importance of fairness across subgroups[67]. An increased fairness risk gives rise to an increasing importance of explainability, since ensuring explainable AI (especially 
when sensitive data is used) will help to uncover any violations of fairness. 

An elevated fairness risk furthermore raises concerns surrounding accountability, since clear legal assertion of who should be held accountable in case of unfair treatment may foster 
more awareness. This may contribute to reducing the risk of unfair treatment, which is especially important in a situation where the stakes are high, such as ICU decision-making. 

Lastly, it is vital for such a high-stake AI application that adequate workforce re-education is conducted. Intensivists should be educated on the potential pitfalls of the AI application, to 
ensure that any potential shortcomings are recognized and handled.  
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oversight and could play a role in assessment. 

Legal and ethical 

Regulation for medical AI is vital, but guidelines often lag techno
logical advancement. This is endorsed by a survey of various public 
authorities across the European Union (EU), which found that clear 
legislation was lacking in 75 % of the cases [48]. Regulation on broader 
digital health technologies has been overhauled in the EU MDR, but 
dedicated AI regulation is coming in the form of the EU AI act [11]. 
Although exact regulatory demands are often unclear, developers of AI 
technologies should conform to regulations to the extent possible. 

Intellectual property (IP) legislation is critical for data ownership. 
Developers of medical AI should be aware of local IP laws for patient 
data, especially if data is monetized [49]. From a developer’s perspec
tive, challenges may arise in the IP protection of their algorithms, as they 
can be a black-box and difficult to protect [50]. It is thus vital to consider 
IP rights as part of the assessment. 

Fairness issues are mostly related to unrepresentative training data
sets. Heterogeneous data is especially for AI processing socio- 
demographic and clinical characteristics (such as genotypes and phe
notypes). If certain subgroups are underrepresented in the training data, 
AI performance will be subpar for these groups in the clinical reality [37, 
49,50], resulting in discriminatory outcomes [37]. Incorporating fair
ness into the assessment is therefore vital (Box 2 & Box 3). 

Patient privacy is highly relevant in medical AI due to the need for 
large, multifaceted, and rich training datasets. Stricter privacy regula
tions (as occurred through the EU’s General Data Protection Regulation) 
could limit the widespread availability of such data and affect perfor
mance. Pseudonymization and anonymization of data can increase pa
tient privacy [49], but privacy violations remain possible (e.g., trough 
linkage) [51]. A state-of-the-art approach is differential privacy, which 
adds the exact amount of random noise such that any individual dataset 
remains completely private [51]. Privacy is furthermore the most 

frequently appearing element among the included publications (Fig. 2) 
and should naturally be incorporated into the assessment (Box 1). 

Informed consent prescribes that patients should actively consent to 
the use of a particular intervention [36]. This is often not the case when 
medical AI is used, especially if it is part of routine procedures [52]. A 
reason for this is a lack of clear regulation, although this is under 
development [53]. It might not always be necessary to ask patients for 
informed consent, for instance when the medical AI is primarily used to 
improve efficiency with little impact on clinical decision making. 
However, clear guidance on when to ask or not to ask for approval is 
needed. 

Accountability concerns responsibility in case of AI misprediction or 
failure. In reality, clinicians are typically held accountable, but there is 
often a lack of clarity surrounding this [50]. This ambiguity is especially 
problematic with opaque algorithms that lack explainability, as this 
leaves clinicians unable to reassure the logic of the AI’s choice. A lack of 
clarity on accountability is harmful and impedes the clinician’s will
ingness to adopt [36]. Clear legislation on accountability is therefore 
essential, and any accountability issues should incorperated (Box 3). 

Cybersecurity measures are necessary as medical AI often processes 
sensitive medical data. It could be ensured through multi-factor 
authentication or anomaly detection of unusual activity [50]. Ensuring 
the security of the algorithm itself is also crucial, calling for security 
measures throughout the entire IT sphere (e.g., protecting data storage, 
defending against DDoS attacks, etc.) [50]. Cybersecurity must be 
considered, which can be done with the NHS’s extensive checklist for 
data and algorithm security [45] (Box 1). 

Transparency and usability 

Explainability refers to AI technology’s ability to present an outcome 
in understandable terms to the human user [54]. Various publications 
argue that explainability is a precursor to user trust [47,55–57], fairness 
[55], and clarification of accountability [36]. Some argue, however, that 

Fig. 2. Appearance of relevant elements across the included publications (grey and white literature). The green bars reflect the number of publications in which the 
respective elements have appeared. Elements were marked to appear if mentioned as relevant anywhere throughout the publication, regardless of how extensive the 
elaboration was. 
PICO: Patient, Intervention Comparator and Outcomes. 
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fully explainable AI is often impossible to reach due to the complexity of 
most models [26,55]. In applications where explainability is imperative, 
they argue, we should rely on naturally explainable techniques such as 
regression methods. This may be feasible in some circumstances, but 
simpler models perform substantially worse with highly complex data, 
such as medical images, genomic data, etc. Explainability is perhaps not 
required if safety and robustness are guaranteed, but it becomes 
increasingly important when fairness is jeopardized [55], for instance, if 
the AI contributes to the allocation of scarce resources between patients 
(Box 3). Explainability should thus become integral to the assessment of 
various subtypes of medical AI, especially where high-stake decisions 
are involved. 

Access & availability of the data concerns availability to clinicians, 
researchers and (AI) developers. Large datasets are important (see also 
training data), but potentially endanger patient privacy. Creating large 
datasets from scratch is very expensive, due to which more widespread 
availability of existing data is highly beneficial. This would, however, 
raise concerns about patient privacy and cybersecurity. This is where 
synthetic data could come in, which is a newly generated dataset based 
on the original source, but respecting patient privacy [58]. 

Communication should be clear and transparent about AI capabilities 
and limitations to establish (user) trust [27,58–60]. Over-hype in the 
1970s resulted in the AI winters, where funding diminished due to un
realistic expectations [27,60]. A clear and realistic communication 
strategy helps to manage realistic expectations, fosters user trust, and 
should therefore be assessed. 

Usability is considered a major driving force behind adoption [61], as 
users are often clinicians without expertise in AI. Creating an easy-to-use 
product with clear guidelines is therefore vital. The NHS provides 
guidance to ensure usability [45], and including this in HTA is vital. 

Reporting quality in HTA studies that evaluate medical AI technolo
gies leaves room for improvement. This has been underscored by various 
systematic reviews, showing that HTA studies failed to report on key 
elements [19,34]. Standardized reporting guidelines could help to 
improve reporting quality, such as those offered by the EQUATOR 
Network (specifically the CHEERS guidelines for economic evaluations) 
[62]. The list of elements outlined in this paper can contribute to 
ensuring adequate reporting on HTA for medical AI. 

Discussion 

We have performed a systematic review of the academic literature 
and a targeted review of policy documents on barriers, challenges, and 
HTA assessment elements to inform an extension of the methodology for 
HTA of medical AI. This resulted in a comprehensive list of 29 elements, 
divided over four domains. We elaborated on all elements in the text, 
and some of the more AI-specific ones were further elaborated on with 
reference to the exemplary cases. As for the assessment of many health 
technologies, we think that the EUnetHTA Core Model is an adequate 
start for HTA of medical AI, despite that it does not address various el
ements presented in Table 1. This research could firstly provide an 
amendment of existing HTA frameworks to AI-specific assessment ele
ments, and secondly, help reposition original elements for medical AI. 
Consequently, our list could benefit (HTA) researchers, clinicians 
considering the adoption of medical AI in their work, healthcare in
stitutions tasked with the acquisition of medical AI, as well as developers 
creating it. 

We found a sizable difference in how often elements appeared across 
publications, with patient privacy, training data, regulation, and fair
ness appearing most frequently. This could be because they are most 
important, most discussed in the public discourse, or a combination. 
Various publications specifically targeted a single element such as fair
ness [37] or explainability [56], and many publications focused on a 
specific subset of legal and ethical elements [36,42,47,59,63–65]. Some 
publications focused on delineating a subset of AI-specific HTA elements 
[16,17,20–22] but did not intend to provide a comprehensive list. By 

drawing from all these publications, our list comprehensively covers 
HTA of medical AI broadly. 

Most publications presented the elements one-dimensionally, 
without acknowledging that urgency varies between different types of 
medical AI. Contemplation of elements, such as informed consent and 
accountability, in relation to the risk factor of a particular medical AI 
technology helps to illustrate this. The risk of a medical AI device is 
legally determined by (1) the state of the patient’s condition (from non- 
serious to critical) and (2) the AI’s impact on clinical decision-making 
(from low to high influence) [66]. If the AI application has little influ
ence on the decision-making, the clinician’s decision is mostly inde
pendent, making concerns surrounding informed consent and 
accountability less pressing. As medical AI influences diagnostic or 
treatment decisions more strongly, concerns surrounding consent and 
accountability become increasingly pressing. 

Differences in AI applications and their most pressing elements were 
likewise seen across the exemplary cases. For instance, how to approach 
cost-effectiveness depends largely on the purpose of the AI technology 
and its clinical objective (i.e., health outcomes, workflow efficiency, or 
both). When the objective is to enhance efficiency a relatively simple 
cost-minimization analysis can suffice, but a technology setting to in
crease patient health might require cost-effectiveness or cost-utility 
analysis. 

A similar consideration surrounds the elements of explainability, 
characterized by opposing views in the literature. If an AI technology 
involves the allocation of (scarce) resources and/or leverages sensitive 
information, explainability becomes more pressing in monitoring 
whether patients with different socio-demographic profiles are treated 
fairly [67]. In scenarios where the AI technology performs diagnostic 
tasks with a proficiency comparable to that of clinicians, explainability 
becomes less urgent as clinicians can use their own expertise to validate 
or override the AI’s decisions, for instance in radiology. We do not argue 
that explainability should be neglected, as there is still a benefit in it 
[68], but rather it illustrates the point that assessment elements have 
varying urgency across different applications. 

This upholds similarly for patient privacy and cybersecurity which 
become more urgent if sensitive data is processed. Accountability and 
workforce become more pressing when the AI technology has a strong 
influence on decision-making and/or the stakes are high. Workforce and 
clinical workflow become more urgent if the integration of the appli
cation is highly disruptive to the current standard of care. 

It may be clear that elements carry a different urgency across ap
plications. It is therefore vital that the HTA approach is tailored to the 
specific application under assessment. One could do this by weighting 
the various elements according to their importance for the case, as is 
done with multi-criteria decision analysis [69]. 

The assessment furthermore strongly relies on the local context in 
which the AI technology might be embedded. This translation is vital, as 
the general assessment of an AI technology does not necessarily translate 
towards the local context, calling for a different perspective [35]. In 
follow-up research we endeavor to explore and employ the elements in 
an HTA of a medical AI technology, taking the next step towards 
adequate HTA of AI. 

Our approach has various shortcomings. In our targeted literature 
review of policy documents, we may have missed relevant publications 
from institutions that were not targeted or did not appear in the Google 
searches. In our systematic review of the academic literature, we might 
have missed publications that were not available in one of the six tar
geted databases. Moreover, we restricted both searches to publications 
written in English. In the targeted search of policy documents, we 
focused on publications from institutions in the UK, US, European 
Union, and globally operating. This is expected to be no issue, however, 
as institutions from those countries are the most active explorers of 
medical AI strategies. Both the UK and the US are furthermore classified 
within the top four “AI-ready countries” [70], due to which it is unlikely 
that broadening to other national institutions would have revealed novel 
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elements. 

Conclusion 

This review of the literature on barriers, challenges, and assessment 
elements has identified and explored the vital elements in conducting a 
health technology assessment of medical AI. We have advocated for an 
extension of the current methodology that incorporates elements such as 
interoperability, explainability, accountability, and cybersecurity. A 
total of 29 elements were identified and organized over the focus areas: 
(1) Technology & Performance, (2) Human & Organizational, (3) Legal 
& Ethical and (4) Transparency & Usability. With reference to our list of 
elements, HTA researchers ensure a comprehensive overview of the 
value of a particular medical AI application for different stakeholders. 

Author contribution 

Concept and design: Boverhof, Redekop, Rutten-van Mölken 
Acquisition of data: Boverhof 
Analysis and interpretation of data: Boverhof, Redekop, Rutten-van 

Mölken 
Drafting of the manuscript: Boverhof 
Critical revision of the paper for important intellectual content: 

Boverhof, Redekop, Rutten-van Mölken, Visser, Uyl-de Groot 
Supervision: Redekop, Rutten-van Mölken 

Funding 

None. 

Competing interests 

Jacob J. Visser is medical advisor for Contextflow, Quibim, Noaber 
Ventures, NLC Ventures. 

Ethical approval 

Not required. 

Acknowledgements 

None. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.hlpt.2024.100868. 

References 

[1] Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of 
artificial intelligence in healthcare: a structured literature review. BMC Med Inform 
Decis Mak 2021;21(1):1–23. 

[2] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in 
healthcare: past, present and future. Stroke Vasc Neurol 2017;2(4). 

[3] Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep 
learning. Ophthalmology 2017;124(7):962–9. 

[4] van Leeuwen KG, Meijer FJA, Schalekamp S, Rutten M, van Dijk EJ, van 
Ginneken B, et al. Cost-effectiveness of artificial intelligence aided vessel occlusion 
detection in acute stroke: an early health technology assessment. Insights imaging 
2021;12(1):133. Sep 25. 

[5] Woebot Health. Woebot Health. 2022 [cited 2022 Sep 10]. What powers Woebot. 
Available from: https://woebothealth.com/what-powers-woebot/. 

[6] Darcy A, Daniels J, Salinger D, Wicks P, Robinson A, others. Evidence of human- 
level bonds established with a digital conversational agent: cross-sectional, 
retrospective observational study. JMIR Form Res 2021;5(5):e27868. 

[7] Rozenblum R, Rodriguez-Monguio R, Volk LA, Forsythe KJ, Myers S, McGurrin M, 
et al. Using a machine learning system to identify and prevent medication 
prescribing errors: a clinical and cost analysis evaluation. The Joint Commission 
Journal on Quality and Patient Safety 2020;46(1):3–10. 

[8] Babylon Health [Internet]. [cited 2022 Sep 12]. Our AI-powered Symptom Checker 
can analyse your symptoms, potential causes and possible next steps. Available 
from: https://www.babylonhealth.com/en-gb/product/ask-babylon. 

[9] de Vos J, Visser LA, de Beer AA, Fornasa M, Thoral PJ, Elbers PW, et al. The 
Potential Cost-Effectiveness of a Machine Learning Tool That Can Prevent Untimely 
Intensive Care Unit Discharge. Value in Health 2022;25(3):359–67. 

[10] Halcox JP, Wareham K, Cardew A, Gilmore M, Barry JP, Phillips C, et al. 
Assessment of remote heart rhythm sampling using the AliveCor heart monitor to 
screen for atrial fibrillation: the REHEARSE-AF study. Circulation 2017;136(19): 
1784–94. 

[11] Det Norske Veritas. AI Medical Device Software under the MDR. Det Norske Veritas 
2022. 

[12] U.S. Food and Drug Administratio. Artificial intelligence and machine learning 
(AI/ML) software as a medical device action plan [Internet]. U.S. Food and Drug 
Administration; 2021. Available from: https://www.fda.gov/medical-devices/soft 
ware-medical-device-samd/artificial-intelligence-and-machine-learning-software 
-medical-device. 

[13] Kristensen FB, Lampe K, Wild C, Cerbo M, Goettsch W, Becla L. The HTA Core 
Model®—10 Years of Developing an International Framework to Share 
Multidimensional Value Assessment. Value in Health 2017;20(2):244–50. 

[14] Kolasa K, Kozinski G. How to Value Digital Health Interventions? A Systematic 
Literature Review. International Journal of Environmental Research and Public 
Health [Internet] 2020;17(6). Available from: https://www.mdpi.com/ 
1660-4601/17/6/2119. 

[15] Alami H, Lehoux P, Auclair Y, de Guise M, Gagnon MP, Shaw J, et al. Artificial 
intelligence and health technology assessment: anticipating a new level of 
complexity. J Med Internet Res 2020;22(7):e17707. 

[16] Alami H, Lehoux P, Denis JL, Motulsky A, Petitgand C, Savoldelli M, et al. 
Organizational readiness for artificial intelligence in health care: insights for 
decision-making and practice. J Health Organ Manag 2021;35(1):106–14. 

[17] Belisle-Pipon JC, Couture V, Roy MC, Ganache I, Goetghebeur M, Cohen IG. What 
Makes Artificial Intelligence Exceptional in Health Technology Assessment? Front 
artif intell 2021;4:736697. 

[18] Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal 
and social implications of using artificial intelligence systems in breast cancer care. 
BREAST 2020;49:25–32. Feb. 

[19] Farah L., Davaze-Schneider J., Martin T., Nguyen P., Borget I., Martelli N. Are 
current clinical studies on artificial intelligence-based medical devices 
comprehensive enough to support a full health technology assessment? A 
systematic review. Artif Intell Med. 6AD;140:102547. 

[20] Fasterholdt I, Kjølhede T, Naghavi-Behzad M, Schmidt T, Rautalammi QTS, 
Hildebrandt MG, et al. Model for ASsessing the value of Artificial Intelligence in 
medical imaging (MAS-AI). Int J Technol Assess Health Care 2022;38(1):e74. Jan. 

[21] Fasterholdt I., Naghavi-Behzad M., Rasmussen B.S.B., Kjolhede T., Skjoth M.M., 
Hildebrandt M.G., et al. Value assessment of artificial intelligence in medical 
imaging: a scoping review. BMC med imaging. 10 31;22(1):187. 

[22] Hendrix N, Veenstra DL, Cheng M, Anderson NC, Verguet S. Assessing the 
Economic Value of Clinical Artificial Intelligence: Challenges and Opportunities. 
Value in Health 2022;25(3):331–9. 

[23] Willem T, Krammer S, Böhm AS, French LE, Hartmann D, Lasser T, et al. Risks and 
benefits of dermatological machine learning health care applications—An 
overview and ethical analysis. J Eur Acad Dermatol Venereol 2022;36(9):1660–8. 

[24] EUnetHTA. HTA core model ® version 3.0 (Pdf) [Internet]. EUnetHTA. EUnetHTA; 
2016. Available from: www.htacoremodel.info/BrowseModel.aspx. 

[25] Topol EJ. High-performance medicine: the convergence of human and artificial 
intelligence. Nat Med 2019;25(1):44–56. 

[26] EIT Health, McKinsey & Company. Transforming healthcare with ai. EIT Health; 
2021. 

[27] Medical Futurist. A guide to artificial intelligence in healthcare. Medical Futurist; 
2021. 

[28] Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: 
promises and perils. Ann Surg 2018;268(1):70. 

[29] Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an 
algorithm used to manage the health of populations. Science (1979) 2019;366 
(6464):447–53. 

[30] The Academy of Medical Sciences. Artificial intelligence and health. The Academy 
of Medical Sciences; 2019. 

[31] National health service (NHS) ai lab, health education england. understanding 
healthcare workers’ confidence in ai. National Health Service (NHS); 2022. 

[32] Lam TYT, Cheung MFK, Munro YL, Lim KM, Shung D, Sung JJY. Randomized 
Controlled Trials of Artificial Intelligence in Clinical Practice: Systematic Review. 
J Med Internet Res 2022;24(8):e37188. Aug 25. 

[33] Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for 
the economic evaluation of health care programmes. Oxford university press; 2015. 

[34] Voets MM, Veltman J, Slump CH, Siesling S, Koffijberg H. Systematic Review of 
Health Economic Evaluations Focused on Artificial Intelligence in Healthcare: The 
Tortoise and the Cheetah. Value in Health 2021. 

[35] Boverhof B.J., Redekop K., Bos D., Starmans M., Birch J., Rockall A., et al. 
Radiology AI Deployment and Assessment Rubric (RADAR) for value-based AI in 
Radiology. Insights into Imaging. In press. 

[36] European Parliamentary Research Service. Artificial intelligence in healthcare: 
applications, risks and ethical and societal implications. European Parliament; 
2022. 

[37] Imperial college London. Addressing racial and ethnic inequities in datadriven 
health technologies. Imperial college London; 2022. 

B.-J. Boverhof et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.hlpt.2024.100868
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0001
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0001
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0001
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0002
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0002
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0003
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0003
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0004
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0004
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0004
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0004
https://woebothealth.com/what-powers-woebot/
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0006
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0006
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0006
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0007
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0007
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0007
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0007
https://www.babylonhealth.com/en-gb/product/ask-babylon
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0009
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0009
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0009
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0010
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0010
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0010
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0010
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0011
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0011
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0013
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0013
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0013
https://www.mdpi.com/1660-4601/17/6/2119
https://www.mdpi.com/1660-4601/17/6/2119
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0015
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0015
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0015
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0016
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0016
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0016
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0017
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0017
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0017
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0018
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0018
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0018
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0020
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0020
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0020
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0022
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0022
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0022
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0023
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0023
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0023
http://www.htacoremodel.info/BrowseModel.aspx
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0025
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0025
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0026
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0026
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0027
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0027
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0028
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0028
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0029
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0029
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0029
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0030
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0030
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0031
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0031
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0032
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0032
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0032
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0033
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0033
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0034
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0034
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0034
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0036
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0036
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0036
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0037
http://refhub.elsevier.com/S2211-8837(24)00031-5/sbref0037


Health Policy and Technology 13 (2024) 100868

9

[38] Feng J, Phillips RV, Malenica I, Bishara A, Hubbard AE, Celi LA, et al. Clinical 
artificial intelligence quality improvement: towards continual monitoring and 
updating of AI algorithms in healthcare. npj Digit Med 2022;5(1):1–9. May 31. 

[39] National Institute for Health and Care Excellence (NICE). Evidence standards 
framework for digital health technologies. National Institute for Health and Care 
Excellence (NICE); 2018. 

[40] Organisation for Economic Co-operation and Development. Laying the foundations 
for artificial intelligence in health. Organisation for Economic Co-operation and 
Development; 2021. 

[41] Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 
2022:1–8. 

[42] High-Level Expert Group on Artificial Intelligence. Assessment list for trustworthy 
artificial intelligence (ALTAI). European Commission; 2020. 

[43] Carboni C, Wehrens R, van der Veen R, de Bont A. Conceptualizing the 
digitalization of healthcare work: A metaphor-based Critical Interpretive Synthesis. 
Soc Sci Med (1967) 2022;292:114572. Jan 1. 

[44] European Commission. Interoperability of electronic health records in the eu. 
European Commission; 2021. 

[45] National Health Service (NHS). The digital technology assessment criteria for 
health and social care (DTAC). National Health Service (NHS); 2021. 

[46] Deloitte. The future of artificial intelligence in health care. Deloitte; 2019. 
[47] High-Level Expert Group on Artificial Intelligence. Ethics guidelines for 

trustworthy ai. European Commission; 2019. 
[48] PricewaterhouseCoopers. Sherlock in health. how artificial intelligence may 

improve quality and efficiency, whilst reducing healthcare costs in europe. 
PricewaterhouseCoopers; 2021. 

[49] Academy of Medical Royal Colleges. Artificial intelligence in healthcare. Academy 
of Medical Royal Colleges; 2021. 

[50] Cloud Security Alliance. Artificial intelligence in healthcare. Cloud Security 
Alliance; 2022. 

[51] Zhu T, Li G, Zhou W, Yu PS. Differentially Private Data Publishing and Analysis: A 
Survey. IEEE Trans Knowl Data Eng 2017;29(8):1619–38. Aug. 

[52] Cohen I.G. Informed Consent and Medical Artificial Intelligence: What to Tell the 
Patient? [Internet]. Rochester, NY; 2020 [cited 2023 Feb 21]. Available from: htt 
ps://papers.ssrn.com/abstract=3529576. 
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