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Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after 
ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed 
sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in 
interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose 
using machine learning to predict the optimal order of tests for each child, reducing the number of tests required 
to identify the most severe neurocognitive deficiencies.

Methods: We have compared the current clinical approach against several machine learning methods, mainly 
multi-target regression and label ranking methods. We have also proposed a new method that builds several 
multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive 
outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial 
(ClinicalTrials .gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards 
at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098).

Results: Our proposed method managed to outperform other machine learning methods and also the current 
clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, 
in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label 
ranking, respectively.

Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the 
current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the 
number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes 
are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more 
personalized follow-up after ICU discharge leading to preventive care rather than curative.
1. Introduction

Critically ill children may suffer from impaired neurocognitive func-

tions years after pediatric intensive care unit (PICU) discharge, which 
severely hinders their overall quality of life [1]. These impairments can 
be measured in a follow-up evaluation [2]. More specifically, the previ-

ously hospitalized patients are subjected to a sequence of clinically and 
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internationally validated tests which evaluates outcomes related to in-

telligence, visual-motor integration, alertness, motor coordination and 
memory. The sequence of tests is fixed and the same for all patients.

Undergoing all tests is, however, arduous, time-consuming and ex-

pensive. The completion of all tests may require up to four hours. 
Furthermore, the tests are sometimes performed at the residence of the 
patients, if they are too fragile to commute to the hospital. Altogether 
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these factors often result in interrupted evaluations where approxi-

mately 30% of the patients do not complete all tests [2], which leads to 
undetected neurocognitive deficiencies. Hence, reducing the number of 
tests required to identify the most severe neurocognitive deficiencies is 
of paramount importance in follow-up evaluations.

To the best of our knowledge, we present the first study to address 
this problem using machine learning. Several studies have developed 
machine learning models to assist medical decision making in the PICU, 
including mortality prediction [3], sepsis [4], cardiac arrest [5] and 
acute kidney injury [6]. In our case, the objective consists of building 
a model that predicts a personalized sequence of tests for each patient. 
This sequence prioritizes tests associated to neurocognitive functions 
that are expected to be affected, and, differently from the approach 
currently employed in clinical practice, considers the features of each 
patient to perform individual predictions.

Our work provides a first step towards deciding who should be 
followed-up and for which outcomes. This will provide valuable clinical 
validation for the use of individualized follow-up programs of critically 
ill children at risk of worse neurocognitive functioning after PICU dis-

charge.

We model this problem as a label ranking task, a field of machine 
learning that aims to build predictive models capable of predicting a 
ranking of outcomes according to a relevance criterion [7]. Label rank-

ing has already been applied in medical applications, in the context of 
antibiotic treatment in primary care [8,9]. In the context of long-term 
outcome prediction, however, to the best of our knowledge, the litera-

ture still lacks studies on it.
More precisely, we propose a new label ranking approach that ini-

tially builds a multi-target prediction model per neurocognitive func-

tion that only predicts its outcomes, i.e. one separate model for: in-

telligence, visual-motor integration, alertness, motor coordination and 
memory, making a total of five models. Further, we combine the out-

put of each model into a ranking where worse neurocognitive outcomes 
are placed in higher positions, and, thus, recommended to be evaluated 
first in the follow-up evaluation.

As input to our approach, we employ the data obtained in the 
2 years follow-up of the PEPaNIC-RCT study (ClinicalTrials .gov-

NCT01536275), a multicenter, randomized and controlled trial, which 
compared early and late parenteral nutrition in PICUs [2]. The insti-

tutional review boards at each participating site have approved this 
follow-up study (ML8052; NL49708.078; Pro00038098).

The outcomes of this dataset (i.e., the results of neurocognitive tests) 
are numerical values in different ranges, which means that they are not 
directly suitable for our task. In order to adapt the dataset, we propose 
a procedure that transforms the absolute outcome values into relative 
ones according to their deficiency in the patient and relative to sim-

ilar healthy subjects. This way, new outcomes are associated to each 
patient which reflect how adverse their neurocognitive functions are in 
comparison to healthy individuals.

Using the transformed dataset, our experiments reveal that our pro-

posed approach manages to perform better than the current standard-

ized expert approach employed in clinical practice. Furthermore, we 
also show that, despite its simplicity, our approach outperforms several 
of its machine learning competitors, including the current state-of-art 
approach in label ranking, called BoostLR [10].

The main contributions of this work are:

• We present the first study that applies machine learning to predict 
adverse long-term neurocognitive outcomes after pediatric inten-

sive care unit hospitalization;

• We propose a new label ranking approach which relies on build-

ing a separate multi-target model for each group of outcomes and 
combining the output of each model in a final ranking;

• We propose to transform the outcomes by incorporating informa-

tion from healthy individuals, allowing for a more objective inter-
2

pretation of the neurocognitive status of a patient;
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• We perform a comparison between our proposed approach, the ap-

proach used in clinical practice and the state-of-art approach in 
label ranking using several evaluation measures and different fea-

ture subsets;

• We provide concrete examples of the benefits of our approach com-

pared to the fixed sequence of tests currently employed in clinical 
practice;

The remainder of this paper is organized as follows: Section 2

presents a more detailed description of our methods, including dataset 
acquisition, our approach to the problem and evaluation measures; 
Section 3 discusses our experiments where we validate different param-

eters, compare our method against several competitors using different 
age groups and features and provide a concrete case analysis; Section 4

briefly summarizes our results and its implications in clinical practice; 
Finally, Section 5 brings our conclusions and future work directions.

2. Methods

2.1. Dataset acquisition

We employed the data from the PEPaNIC trial. PEPaNIC is a multi-

center, randomized and controlled trial that compared early parenteral 
nutrition with withholding supplemental parenteral nutrition for 1 
week in the PICU [2,11]. The PICU data was collected from June 18, 
2012 to July 27, 2015 in three PICUs located in Leuven (Belgium), Rot-

terdam (The Netherlands) and Edmonton (Canada) [11], whereas the 
2 year follow-up was performed between August 4, 2014 and January 
19, 2019. Its main objective consisted of investigating the long-term im-

pact on physical and neurocognitive outcomes of critical illness and of 
early versus late parenteral nutrition as compared to matched healthy 
controls [2].

Precisely, we made use of the data obtained in a pre-planned 2-year 
follow-up. All patients included in the trial were approached for as-

sessment of physical and neurocognitive outcomes, in comparison with 
healthy children, matched according to age and sex, who had never 
been admitted in the PICU. To minimize genetic, socioeconomic and 
environmental background, siblings and relatives, which demographi-

cally matched the patients age and sex, were prioritized to form the 
control group. Exclusion criteria from the control group include previ-

ous admission to PICU or neonatal ICU and history of suspicious chronic 
metabolic diseases that require a special diet [2]. The dataset consists of 
786 previously hospitalized patients and 405 control group individuals.

As for features, each patient is represented by 23 numerical features 
and 22 categorical features. These features, presented in Table 1, are 
separated into two groups: i) 35 features available at discharge from 
PICU and ii) 10 extra features available at the 2 years follow-up.

As features available at PICU discharge, this dataset presents de-

mographics, such as: age, gender and socioeconomic status. It also 
contains features available at PICU, for instance, Pedriatric Index of 
Mortality 3 (PIM3 score), STRONGkids risk score (a screening tool for 
risk on nutritional status and growth), Pediatric Logistic Organ Dys-

function (PELOD score), and acute effects post randomization, namely 
duration of ICU stay, duration of mechanical ventilatory support, duration 
of treatment with anti-biotics, duration of treatment with benzodiazepines, 
a pre-randomization syndrome or a prior illness defined as affecting or 
possibly affecting neurocognitive development, among others.

Features available at the 2 years follow-up were obtained through 
validated and internationally recognized questionnaires. These ques-

tionnaires are related to several emotional, behavioral and executive 
functions which are completed by parents or caregivers. In the PEPaNIC 
follow-up study [2], the results of these questionnaires were considered 
outcomes. In this work, however, we use them as input features, since 
they can be obtained before assessment of the child and may contain 

relevant information.

https://clinicaltrials.gov
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Table 1

A detailed description of the features in our dataset. Numerical attributes (N) are further described 
by their mean and standard deviation in parentheses, whereas the number of occurrences and their 
percentage are used for categorical attributes (C).

Demographic characteristics Controls (n=405) Patients (n=786)

Age (N) 6.0 (4.7) 5.7 (4.5)

Sex (C)

Female 186 (46%) 331 (42%)

Male 219 (54%) 455 (58%)

Known non-white race (C) 33 (8%) 63 (8%)

Known non-European origin (C) 54 (13%) 152 (19%)

Known not exclusive Dutch or English language (C) 76 (19%) 184 (23%)

Socioeconomic status: Parents educational (C)

Level 1.0 13 (3%) 37 (5%)

Level 1.5 23 (6%) 54 (7%)

Level 2.0 55 (14%) 184 (23%)

Level 2.5 76 (19%) 131 (17%)

Level 3.0 215 (53%) 200 (25%)

Level unknown 23 (6%) 180 (23%)

Socioeconomic status: Parents occupational (C)

Level 1.0 2 (1%) 10 (1%)

Level 1.5 25 (6%) 76 (10%)

Level 2.0 47 (12%) 127 (16%)

Level 2.5 26 (6%) 77 (10%)

Level 3.0 83 (20%) 121 (15%)

Level 3.5 40 (10%) 54 (7%)

Level 4.0 116 (29%) 108 (14%)

Level unknown 66 (16%) 213 (27%)

Test location(C)

Hospital NA 502 (64%)

Home NA 279 (35%)

School NA 4 (<1%)

COS NA 1 (<1%)

Parental smoking between birth and PICU admission (C)

Yes NA 354 (45%)

No NA 432 (55%)

Maternal smoking during pregnancy (C)

Yes 16 (4%) 52 (7%)

No 389 (96%) 734 (93%)

Parental smoking during pregnancy (C)

Yes 77 (19%) 315 (40%)

No 328 (81%) 471 (60%)

Maternal smoking pre-pregnancy (C)

Yes 84 (21%) 278 (35%)

No 321 (79%) 508 (65%)

Parental smoking pre-pregnancy(C)

Yes 378 (48%) 141 (35%)

No 408 (52%) 264 (65%)

Hand preference(C)

Right 371 (92%) 706 (90%)

Left 34 (8%) 80 (10%)

Randomization to late vs. early initiation of PN (C)

Early parenteral nutrition NA 395 (50%)

Late parenteral nutrition NA 391 (50%)

Centrum (C)

Leuven 243 (60%) 465 (59%)

Rotterdam 162 (40%) 301 (38%)

Edmonton 0 (0%) 20 (3%)
More specifically, these questionnaires are related to executive func-

tioning and emotional and behavioral problems of the children. Execu-

tive functioning is evaluated using the BRIEF (Behavior Rating Inven-

tory of Executive Function) preschool version for children aged between 
2.5 and 5 years, whereas BRIEF was used for patients older than 6 
[12,13]. The overlapping scales and indexes of these questionnaires, (in-

hibition, flexibility, emotional control, working memory, planning and 
organization) and (meta-cognition index, comprising the scales work-

ing memory and planning and organization), respectively, and the total 
score were reported. Similarly, the Child Behavior Checklist [14,15]

(CBCL 1.5–5 years or CBCL 6–18 years) questionnaires were used to 
3

assess emotional and behavioral problems.
As outcomes, this dataset presents neurocognitive functions evalu-

ated using validated clinical tests. In our work, we focus on 5 groups 
of neurocognitive functions where each contains a different number of 
tests (represented in parentheses): general intelligence (3), visual-motor 
integration (1), alertness (4), motor coordination (4) and memory (11), 
resulting in 23 tests. The outcomes are further detailed in Table 2.

General intelligence was measured using the appropriate versions 
of the Wechsler intelligence according to the age of the patients. For 
younger children, aged between 2.5 years and 5 years 11 months [16], 
the Wechsler intelligence scale for children (WPPSI-III-NL) was used 
[17]. The WISC-III-NL version was employed for children aged between 

6 years and 16 years 11 months. Lastly, the Wechsler adult intelligence 
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Table 1 (continued)

Patient characteristics on PICU admission

STRONGkids risk level (C)

Medium NA 707 (90%)

High NA 79 (10%)

PELOD score, first 24 h in PICU (N) NA 20.0 (11.6)

PIM3 score (N) NA –3.5 (1.4)

Diagnostic category (C)

Surgical: abdominal NA 70 (9%)

Surgical: burns NA 2 (<1%)

Surgical: cardiac NA 339 (43%)

Surgical: neurosurgery or traumatic brain injury NA 71 (9%)

Surgical: thoracic NA 42 (5%)

Surgical: transplantation NA 14 (2%)

Surgical: orthopedic surgery or trauma NA 23 (3%)

Surgical: other NA 27 (3%)

Medical: cardiac NA 26 (3%)

Medical: gastrointestinal or hepatic NA 3 (1%)

Medical: oncological or hematological NA 8 (1%)

Medical: neurological NA 44 (6%)

Medical: renal NA 0 (0%)

Medical: respiratory NA 83 (11%)

Medical: other NA 34 (4%)

Malignancy (C) 0 (0%) 42 (5%)

Diabetes (C) 0 (0%) 1 (1%)

Syndrome (C) 5 (1%) 79 (10%)

Acute effects of randomization and post-randomization treatments in PICU

Duration of stay in the PICU, days (N) NA 7.4 (15.1)

Number of patients who acquired a new infection in PICU (N) NA 105 (13%)

Duration of mechanical ventilatory support, days (N) NA 4.7 (11.0)

Hypoglycemia 40 mg/dL (C) NA 0.1 (0.5)

Hypoglycemia NA 717 (0.91)

No Hypoglycemia NA 69 (0.09)

Duration of antibiotic treatment, days (N) NA 5.1 (13.4)

Duration of hemodynamic support, days (N) NA 2.5 (7.2)

Duration of treatment with opioids, days (N) NA 4.7 (8.8)

Duration of treatment with benzodiazepines, days (N) NA 4.2 (9.8)

Duration of treatment with hypnotics, days (N) NA 1.4 (5.6)

Duration of treatment with 𝛼2 agonists, days (N) NA 1.0 (6.4)

Duration of treatment with corticosteroids, days (N) NA 1.2 (3.7)

Features available at the 2 years follow-up

Child Behavior Checklist (CBC)

Internalizing problems (N) 46.7 (10.7) 51⋅1 (13⋅5)

Externalizing problems (N) 46.8 (10.1) 49⋅8 (13⋅2)

Overall problems (N) 46.1 (10.4) 50⋅9 (13⋅2)

Behavior Rating Inventory of Executive Function (BRIEF)

Inhibition (N) 46.3 (11.5) 49⋅9 (15⋅2)

Flexibility (N) 46.7 (11.3) 49⋅9 (15⋅3)

Emotional (N) 47.7 (11.2) 49⋅7 (13⋅5)

Working memory (N) 46.7 (12.1) 51⋅4 (16⋅7)

Planning and organization (N) 46.9 (11.9) 50⋅3 (14⋅7)

Meta-cognition index (N) 46.8 (12.5) 50⋅2 (15⋅2)

Overall (N) 45.9 (11.6) 50⋅2 (15⋅4)
scale (WAIS-IV-NL) was computed for patients who were 17 years or 
older [18]. For all of these tests, total IQ, verbal IQ, and performance 
IQ scores were calculated.

As for visual–motor integration, the Beery developmental test [19]

was used for children aged 2.5 years and older to compute the ability 
to integrate visual and motor functions.

The validated computerized Amsterdam neuropsychological tasks 
(ANT) program [20] was employed to measure alertness and motor co-

ordination in children aged 4 years or older. More specifically, alertness 
was measured using the reaction time of both hands, and their respec-

tive standard deviation within person.

Similarly, ANT-Tapping was used to measure motor coordination 
[20]. In this case, the number of right hand, left hand, alternating and 
synchronous taps.

The assessment of memory is possible only in children aged between 
5 years and 16 years 11 months, and it involves four tests from the Chil-
4

dren’s Memory Scale (CMS) [21]: CMS-Numbers (2), CMS-Word pairs 
(4), CMS-Picture locations (1), CMS-Dot locations (3) and CMS-Learning 
(1).

CMS-numbers measures short-term verbal memory span and ver-

bal working memory load; CMS-Word Pairs measures short and long-

term verbal memory; CMS-Picture Locations measures immediate visual 
memory; and CMS-Dot Locations measures immediate and delayed vi-

sual memory. Lastly, the CMS-Learning index corresponds to the learn-

ing abilities of the child. Subsequently, the CMS-Learning Index is pre-

sented (1).

Missing features and outcomes, due only to incomplete evaluations 
and not to age restrictions, were imputed using MICE [22] with 31 itera-

tions as reported in [2]. All experiments were performed using a pooled 
version of the imputed datasets, which summarizes the 31 imputed ver-

sions.

We have created two versions of the dataset, using different sets of 

features described in Table 1.
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Table 2

A detailed description of the outcomes in our dataset. All outcomes are numerical and are 
further described by their mean and standard deviation in parentheses.

Outcomes Controls (n=405) Patients (n=786)

Group: Intelligence (range, 45–155)

Total IQ 100.7 (13.0) 90.6 (16.5)

Verbal IQ 100.8 (14.1) 92.0 (18.2)

Performance IQ 100.7 (13.8) 91.5 (16.4)

Group: Visual–motor integration (range, 0.9–20)

Visual-motor integration 9.6 (2.4) 8.2 (3.5)

Group: Alertness

Reaction time right hand, ms 480.8 (290.2) 561.1 (700.4)

Within-person SD of repeated tests 219.3 (276.0) 278.8 (715.0)

Reaction time left hand, ms 459.7 (239.2) 536.2 (538.1)

Within-person SD of repeated tests 217.3 (222.4) 287.4 (542.7)

Group: Motor coordination (number of taps in 10 s)

Number of right hand taps 41.4 (16.1) 37.9 (41.1)

Number of left hand taps 36.3 (14.4) 34.9 (36.6)

Number of valid alternating taps 18.3 (23.2) 18.6 (63.8)

Number of valid synchronous taps 23.9 (15.1) 21.9 (35.8)

Group: Memory

Verbal–auditory

Numbers (range 1–19)

Memory span (forward) 10.2 (2.9) 8.6 (5.7)

Working memory (backward) 10.3 (3.0) 8.7 (4.5)

Word pairs (proportion of correct responses)

Learning 0.50 (0.2) 0.43 (0.8)

Immediate memory 0.47 (0.2) 0.33 (0.6)

Delayed memory 0⋅40 (0.3) 0.31 (0.8)

Recognition 0.95 (0.2) 0.87 (0.5)

Non-verbal, visual–spatial

Pictures (proportion of correct responses) 0.85 (0.1) 0.78 (0.3)

Dots (proportion of correct responses)

Learning 0.86 (0.2) 0.78 (0.5)

Immediate memory 0.87 (0.2) 0.80 (0.8)

Delayed memory 0.87 (0.2) 0.80 (0.8)

Learning index (range 50–150) 100.2 (22.5) 92.2 (85.5)
• Discharge features: In this version, we include only features ob-

tainable at PICU discharge, which results in a total of 25 features;

• Discharge and 2 years follow-up features: In this second version, 
the discharge features were augmented with the CBCL and BRIEF 
values. As aforementioned, both CBCL and BRIEF values are pro-

vided by caregivers and are related to emotional and behavioral 
problems and executive functioning, respectively. This version in-

cludes a total of 35 features;

Both dataset versions were used as input to the data transformation 
procedure described below (for all data driven comparison approaches). 
All numerical features were normalized.

2.2. Our proposed approach

First, we propose a data transformation procedure to the dataset. 
Second, we introduce label ranking as a predictive task and we present 
our approach.

2.2.1. Data transformation

In its original version, all outcomes were presented in a numeri-

cal format where each outcome has its own range of values. For this 
study, however, we transformed the absolute outcome values into rel-

ative ones where worse outcomes are associated with higher numbers. 
The motivation for this step is that we are not interested in predicting 
the exact numeric outcomes, but rather in predicting a ranking of the 
outcomes according to their deficiency in the patient and relative to 
similar healthy subjects. In order to do so, we have adopted the proce-

dure described in Fig. 1.

This procedure consists of two steps (shown in the upper and bottom 
5

part of the figure, respectively). In the first step, we aim to find the most 
similar control subjects to a given patient. To achieve this, we have em-

ployed the K-NN algorithm2 [23]: a well-established machine learning 
algorithm that, given an instance (patient), identifies its most similar 
instances in the dataset. As input, we used its descriptive features and 
all control group individuals. As output, in this particular case, K-NN 
provides the 𝐾 most similar control group individuals to the patient in 
question.

In the second step, we seek to build the ranking of outcomes. This is 
accomplished by using the outcomes of the control group (output from 
the first step) as normalizing factors. That is, all outcomes of the patient 
are scaled, generating, thus, rankings that represent a relative compar-

ison of the patients with their most similar control subjects. Hence, the 
control group individuals are used exclusively to transform the dataset.

A similar normalization procedure, without the notion of control 
group, was also adopted by Cheng [24] to generate benchmark datasets 
for label ranking.

2.2.2. Label ranking as a local multi-target problem

Label ranking can be defined as a predictive task that aims to pre-

dict rankings of labels according to a relevance criterion, for instance, 
the severity of a neurocognitive function. More formally, given an in-

stance space 𝑋 and a set of labels 𝑌 , the goal is to map 𝑋 to a set 
of permutations of 𝑌 , such that the relevance criterion is maximized 
[7,24].

Label ranking problems can be tackled in different manners. Tradi-

tional classification algorithms, such as K-NN and decision trees, can be 

2 We have employed the Euclidean distance for numerical attributes. As for 
the categorical ones, the hamming distance was used. Features not available in 

the control group, e.g. ICU related features, were not considered.
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Fig. 1. Example of procedure to generate the dataset using only one outcome where the outcome of Patient 1 is transformed from 75 to 0.6875. The values obtained 
are considered the gold standard where higher values are always associated to worst outcomes.
adapted to consider the ranking aspect of the labels [24]. From a differ-

ent perspective, label ranking tasks can also be decomposed into simpler 
prediction tasks. At first, the labels are divided into several groups, and 
a model is trained for each of them. Afterwards, the predictions of each 
model are combined into a final ranking. Despite well-fundamented 
[25], current local approaches in label ranking can result in an un-

desirable number of models, especially if the number of labels is too 
high.

The current state-of-the-art approach in label ranking, BoostLR [10], 
employs boosting with decision trees as base models where the loss 
function is adapted to label ranking. More specifically, the loss function 
is measured based on the number of swaps needed to obtain the cor-

rect label ranking, which is formalized using Kendall’s Tau-b coefficient 
[26]. Despite being the state-of-the-art, this approach might struggle if 
the number of labels is too high.

Motivated by the relatively high number of labels of our application 
and also by the fact that our task is naturally divided in groups (Ta-

ble 2), we propose a novel approach to label ranking. More specifically, 
we build multi-target models responsible to rank only the labels within 
a specific group, addressing, thus, each group separately. The rationale 
behind this is that labels within a specific group are expected to be more 
correlated, and superior performance can be achieved by making them 
explicit to the model. The final predictions are obtained by combining 
and ranking the output of each model in the solution.

Given the groups described in Table 2, we build models responsible 
for predicting the ranking of the labels from: i) intelligence, ii) visual-

motor integration, iii) alertness, iv) motor coordination and v) memory. 
As for the underlying model, any off-the-shelf multi-target prediction 
algorithm is applicable. In this work, we employ multi-target random 
forests [27]. Random forests is an ensemble method that relies on mul-

tiple decision trees built on data sampled using bagging and random 
feature sampling per split. Further, they are robust, efficient, and of-

ten considered the state-of-the-art in problems with tabular datasets 
6

[28,29]. We call the resulting algorithm Label Ranking per Group of 
Outcomes (LaRGO). A representation of our approach is provided in 
Fig. 2.

2.3. Evaluation setup

In this section, we present the comparison approaches and the eval-

uation measures employed. All approaches were implemented using 
Python version 3.7.4 and the libraries Pandas 0.25.1, Numpy 1.17.2 
and Scikit-learn 0.21.3. Graphs were generated using the Plotly library 
version 4.5.

2.3.1. Comparison approaches

We compared the performance of our proposed LaRGO machine 
learning approach to the following approaches, which are grouped into 
data driven and expert approaches.

Data driven approaches

• LaRGO machine learning approach: Our proposed approach (Fig. 2) 
which contains one random forest with 50 trees per group of out-

comes shown in Table 2: i) Intelligence, ii) visual-motor integra-

tion, iii) alertness, iv) motor coordination and v) memory. Thus, 
our approach directly exploits the correlations within the groups of 
labels;

• Global machine learning approach: A single random forest with 50 
trees that concurrently predicts all labels [27]. Thus, it is used to 
validate the idea of grouping labels related to the same neurocog-

nitive outcome;

• BoostLR [10]: A recently proposed label ranking approach which 
relies on a single ensemble with 50 trees built using boosting. This 
approach is thus also a global approach and it is currently referred 
to as the state-of-art in label ranking. BoostLR adapts the loss func-
tion by using Kendall’s Tau-b coefficient [26];
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Fig. 2. Representation of our proposed approach using multi-target random forests as base models. In this example, we are exemplifying a case with only 3 groups 
of outcomes: Intelligence, visual-motor integration and alertness.
• Linear regression (LinReg) [30]: A baseline approach that employs 
one linear regression for each outcome, resulting in 23 models. The 
final prediction consists of sorting the outcomes provided by each 
model;

• Mean prediction: A baseline approach which predicts the mean 
ranking of the data (fixed sequence) for all patients;

Expert approaches These are the current approaches employed in neu-

rocognitive outcome assessment which consistently follow a predefined 
order of tests. We have included two orders of tests.

• Expert 1: An expert approach which adopts the order of the 
PEPaNIC follow-up [2]: <intelligence, visual motor integration, mem-

ory, alertness, and motor coordination>;

• Expert 2: An expert approach which adopts the neurocognitive hi-

erarchy order: <intelligence, visual motor integration, alertness, motor 
coordination and memory>;

For the expert approaches, the tests within each group of outcomes 
follow the same sequence presented in Table 2.

2.3.2. Evaluation measures

Since the evaluation of a patient might be interrupted at any given 
point, it is necessary to employ a metric capable of estimating perfor-

mance regardless of the number of tests performed by the patient.

Hence, we propose to use Precision@N [31].3 Given a value of 𝑁 , 
Precision@N provides the proportion of correct predictions within the 
subset of top 𝑁 predictions. Formally, Precision@N is defined in Equa-

tion (1) where 𝑇𝑃 stands for true positives, 𝑁 is an integer related to 
the number of labels to be considered and 𝑋 is the number of instances 
being evaluated.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 = 1
𝑋

𝑋∑

1

𝑇𝑃𝑁

𝑁
(1)

We provide an example in Table 3 considering a single instance and 
three outcomes, where the true ranking of outcomes is as follows: [In-

telligence, Alertness, Memory], and the predicted ranking is [Alertness, 
Memory, Intelligence]. When 𝑁 equals to 1, only the label predicted 
with highest priority (Alertness) is compared against the true label with 

3 In the literature, Precision@N is normally referred to as Precision@K. For 
the sake of readability, we have replaced 𝑁 by 𝐾 since 𝐾 is a parameter in 
7

K-NN.
highest priority (Intelligence). Since the prediction does not match, 
the value of the Precision@1 equals 0. Likewise, when 𝑁 = 2, Pre-

cision@N evaluates the subset of (Alertness and Memory) against (IQ 
and Alertness). In this case, Precision@2 equals 0.5 since half of the la-

bels evaluated were correctly predicted. Lastly, the Precision@3 = 1 
since all three labels were correctly predicted.

The Precision@N measure is plotted in graphs where 𝑁 ranges from 
1 to 23 (the number of outcomes). The graphs allow to visualize the 
evolution of the performance for different values of 𝑁 and also allow 
to compare the approaches for a fixed value of 𝑁 (i.e., if we would 
perform 5 tests on the patients, how accurate would our test selection 
be?)

In a complementary manner, we can summarize these performance 
values in the Mean Average Precision (MAP, Equation (2)) value which 
averages the Precision@N values for all values of 𝑁 .

𝑀𝐴𝑃 = 1
𝑋

𝑋∑

1

𝑁∑

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 (2)

Lastly, inspired by the related field of information retrieval [32], 
we also propose two new evaluation measures: Average True Ranking 
(ATR) of the worst predicted outcome and Average Predicted Ranking 
(APR) of the worst true outcome. They both provide a value between 
1 and 𝑁 , where 𝑁 is the number of labels. In both cases, lower values 
are associated to superior performance.

As its name suggests, ATR computes the true ranking of the out-

come that was predicted as first. That is, it reflects the performance in 
scenarios where a patient is only able to perform one neurocognitive 
test. Following the example presented in Table 3, its ATR would be 2 
since Alertness was predicted as the worst outcome and its true ranking 
is 2. Formally, ATR is presented in Equation (3) where 𝑇 𝑟𝑢𝑒𝑅𝑎𝑛𝑘1𝑥 is 
the true ranking of the outcome predicted in the first position.

𝐴𝑇𝑅 = 1
𝑋

𝑋∑

𝑖

𝑇 𝑟𝑢𝑒𝑅𝑎𝑛𝑘1𝑥 (3)

Likewise, APR (Equation (4), where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑅𝑎𝑛𝑘1𝑥 stands for the 
predicted ranking of the first relevant label for instance 𝑥), reports the 
average predicted ranking of the worst true outcome. More specifically, 
it measures the number of neurocognitive tests that would be sufficient 
to guarantee that the worse neurocognitive function is diagnosed.

1
𝑋∑
𝐴𝑃𝑅 =
𝑋

𝑖

𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑅𝑎𝑛𝑘1𝑥 (4)
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Table 3

Example of measurement of Precision@N up to 𝑁=3.

N Predicted True Labels Precision@N

1 Alertness Intelligence 0

2 Alertness,Memory Intelligence,Alertness 0.5

3 Alertness,Memory,Intelligence Intelligence,Alertness,Memory 1
Still following the example from Table 3, the APR would be 3 since 
Intelligence is ranked in the third position in the predicted ranking and 
it is the worst outcome in the true ranking. Obtaining, for instance, an 
APR of 2.5 means that on average 2.5 tests are necessary to diagnose 
the worst outcome.

3. Results

We present our results in five separate sections:

• Determining the optimal value of 𝐾 : We first find the optimal 
value of 𝐾 to generate the dataset using the procedure described 
in Fig. 1;

• Comparison of the different approaches: Using the optimal 𝐾
value determined in the previous step, we provide a comparison 
between the performance of machine learning approaches and ex-

pert approaches;

• Age restricted analysis: Due to some tests being age restricted, 
we also evaluate the performance of our approach on a subset of 
patients whose outcomes are completely known;

• Inclusion of features from the 2 years follow-up: We evaluate 
whether the inclusion of data available at the 2 years follow-up is 
beneficial;

• Concrete case analysis: We illustrate some concrete patient pro-

files where the approach employed in clinical practice would fail to 
detect the most severe neurocognitive problems if the assessment 
was ended early, while our approach would successfully identify 
them;

All experiments were repeated following a 10 × 5-fold cross vali-

dation procedure, resulting in 50 folds in total. We reported the Preci-

sion@N (Equation (1)) for all patients and possible values of 𝑁 (1 to 
23), the MAP (Equation (2)), the ATR (Equation (3)) and APR (Equa-

tion (4)), averaged over the 50 repetitions. All figures in this section are 
best viewed in colors.

Experiments evaluating two other subsets of patients: i) patients 
older than 4 and no memory related neurocognitive functions and ii) 
neurocognitive functions related only to intelligence and visual-motor 
integration, and the feature importance of all features are available in 
Appendix A and Appendix B, respectively.

3.1. Determining the optimal value of K

First, we investigated which value of 𝐾 should be employed in this 
application. In order to do so, we have compared the following values 
of 𝐾 {20, 100, 200, 300 and 405 (entire control group)} using separate 
validation sets (20% of each training fold) and our proposed LaRGO

approach. Precisely, for each of the 50 training folds (10 × 5-fold cross 
validation), a separate subset of the training dataset is employed as 
validation set. We report the average MAP and Precision@N on these 
validation subsets.

As shown in Fig. 3, a rapid increase of performance can be noticed 
for increasing 𝑁 , using all values of 𝐾 , reaching precision values above 
0.7 with just 4 outcomes. This is followed by a constant but less pro-

nounced improvement as the number of evaluated outcomes raises.

Higher values of 𝐾 (200, 300 and 405) are mostly associated with 
superior performance. A visible difference is already perceived with 
four outcomes, where 𝐾=405 reaches approximately 80% of preci-
8

sion, whereas 𝐾=20 and 𝐾=100 are slightly over 75%. This behavior 
Fig. 3. Precision@N for different values of 𝑁 obtained using our proposed 
approach with varying 𝐾 values on validation sets. Each curve corresponds to 
the average obtained using the 10 × 5-fold cross validation.

Table 4

MAP obtained using our proposed approach and a sep-

arate validation dataset. Each value corresponds to the 
average obtained using the 10 × 5-fold cross valida-

tion. The symbol ⋆ indicates statistically significantly 
difference between K=405 and K=300 measured us-

ing the Wilcoxon signed-rank test (p-value < 0.05).

K 20 100 200 300 405

MAP 0.799 0.804 0.829 0.832 0.834⋆

is maintained as the number of evaluated outcomes increases until the 
performance of all values of 𝐾 converges. This is further reinforced by 
the MAP values presented in Table 4 where 𝐾=405 always led to better 
results. This difference is, however, rather minimal, specially compared 
to 𝐾=200 and 𝐾=300.

Intuitively, we could expect that using a small number of controls 
would provide superior results since fewer and more similar control 
individuals are being used as comparison, nonetheless considering all 
the data available from the group consistently leads to superior results.

Hence, we suggest the use of higher values of 𝐾 . More specifically, 
we recommend to set 𝐾 equal to 405, which was used in the rest of the 
experiments, since the results slightly favor its usage over other values 
of 𝐾 .

3.2. Comparison of the different approaches

Most of the data driven approaches are associated with superior 
results, as seen in Fig. 4. Similarly to the previous experiments, the 
performance of most of the machine learning approaches increases very 
swiftly with just a few labels.

This is related to the number of labels available per patient. As afore-

mentioned, intelligence (3 tests) and visual motor-coordination (1 test) 
are the only neurocognitive functions available for children younger 

than 4, which comprises a considerable part of the data, as seen in Ta-
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Table 5

Patients grouped according to their age, and the neurocognitive functions available per 
group.

Age Neurocognitive functions available Number of patients

Younger than 4 Intelligence and Visual-Motor Integration (4) 546

Between 4 and 5
Intelligence, Visual-Motor Integration,

Alertness and Motor coordination (12)
37

Older than 5
Intelligence, Visual-Motor Integration, Alertness,

Motor coordination and Memory (23, all)
203
Fig. 4. Precision@N for different values of 𝑁 obtained using all comparison 
approaches. Each curve corresponds to the average obtained using the 10 ×
5-fold cross validation.

ble 5. Hence, when 𝑁=4, all outcomes associated to those children are 
correctly predicted, leading to such rapid increase in performance.

Our LaRGO proposed approach is capable of providing the best re-

sults overcoming the current state-of-art in label ranking (BoostLR), its 
Global counterpart and also the baseline LinReg. Since it was specifi-

cally designed for this task, LaRGO exploits the correlations within each 
group of outcomes, leading to better performance.

Surprisingly, the baseline, LinReg, which was not designed for this 
type of predictive task, is also competitive. Despite being often em-

ployed as a simple comparison, it was only slightly outperformed in 
almost all cases. This small difference is further highlighted by the MAP 
values presented in Table 6, where LaRGO obtains 84% and LinReg 82%. 
However, LaRGO requires only 5 models, whereas LinReg relies on 23 
models, one per outcome, making it more complex and its interpreta-

tion cumbersome, since combining the coefficients associated with each 
regressor may not be straightforward. Further, LinReg overlooks the cor-

relation among the outcomes as models are totally independent from 
each other.

Additionally, the mean prediction should not be perceived as a de-

ployable solution, since the same ranking is predicted for all patients, 
respecting the age restrictions of the tests, regardless of their features. 
Although reasonably competitive, its performance is associated with the 
distribution of the data. Tables C.20 and C.21 show that the Mean pre-

dicts labels that are more frequent. For instance, the top-1 outcome 
predicted by Mean prediction, Intelligence: Total IQ, is the first expected 
outcome in 41 patients which leads to Precision@1=26%, as the eval-

uated fold contains 158 patients. This value is further increased, since 
the Mean predicts Motor coordination: Number of valid alternating taps

as the top-1 outcome for patients who are capable of undergoing this 
test, resulting into 23 more correct predictions and a total of Pre-

cision@1=41% (with some variation due to Motor coordination tests 
9

being age-restricted). This behavior persists when a higher number of 
Table 6

Mean average precision obtained using the values from Fig. 4. The sym-

bol ⋆ indicates statistically significantly difference between LaRGO and 
LinReg, Mean and Expert 1 measured using the Wilcoxon signed-rank test 
(p-value < 0.05).

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

0.84⋆ 0.73 0.82 0.82 0.80 0.73 0.71

outcomes is considered, leading to such competitive performance. It, 
however, fails to detect outcomes that are less frequent. It is noticeable 
that LaRGO provides a more diverse, an even personalized, prediction 
since outcomes as: Intelligence: Performance IQ and Visual-motor integra-

tion, are also often predicted.

The state-of-art approach in label ranking, BoostLR [10], presented 
a competitive performance overall, but it was slightly outperformed by 
the three approaches discussed above. The Global approach was out-

performed by all other machine learning approaches. Although this 
approach does have the advantage of requiring only a single model, 
concurrently addressing all 23 outcomes is seemingly challenging. We 
perceive this finding as an indication that local approaches are prefer-

able in our application, and possibly in other label ranking applications 
where the number of outcomes is similar to ours.

The expert approaches struggled to be competitive. A sharp increase 
of performance with increasing 𝑁 is also noticed in both approaches, 
nonetheless they are still underwhelming when compared to all the data 
driven approaches, except Global. Expert 1 outperforms Expert 2 in a 
handful of cases (4 <= 𝑁 <= 13), nonetheless Expert 2 has the up-

perhand when a larger number of outcomes is considered. Similarly, 
according to MAP, both experts approaches performed poorly where 
Expert 1 scored 73% and Expert 2 (the approach currently employed 
in clinical practice) scored the lowest performance of 71%. The Global

approach is the only machine learning approach which performs iden-

tically to Expert 2.

The main contrast in performance between experts and machine 
learning is noticed in ATR and APR. According to these measures, pre-

sented in Table 7, the LaRGO approach requires on average 3 tests 
to guarantee that the worst outcome is predicted (APR), whereas it 
would require approximately twice the number of outcomes, 6, for both 
expert approaches. Likewise, the ATR of the LaRGO and both expert ap-

proaches are also 3 and 6, respectively. Surprisingly, BoostLR and LinReg

were outperformed by the Mean prediction.

We consider this is an indication that machine learning approaches 
not only tend to present a more personalized solution, but also a more 
effective one in terms of precision and also in terms of performance in 
comparison to the worst expected outcome.

Furthermore, the feature importance analysis (Table 8) reveals that 
the attribute Age At Randomization has a pivotal role. Similar findings 
were also reported by Verlinden et al. [33] where an interaction be-

tween age and deficiencies in several neurocognitive functions, such as 
memory, were identified, highlighting the age-dependent nature of the 
vulnerability to critical illness and its long-term impact. Additionally, 
the occupational and educational level of the parents seemed to be as 
relevant as the PIM3 which evaluates the severity of the illness at PICU 

admission. Also relevant are features describing the progression of the 
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Table 7

APR and ATR measured on all comparison approaches. We have reported the 
average obtained in each of the 10 × 5-fold cross validation. The symbol ⋆
indicates statistically significantly difference between LaRGO and LinReg, Mean

and Expert 1 measured using the Wilcoxon signed-rank test (p-value < 0.05).

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

ATR 3.02⋆ 5.24 3.11 3.16 3.47 6.23 6.23

APR 3.29⋆ 6.03 3.79 3.58 3.58 6.41 6.41
Table 8

Feature importance averaged on the random forests used 
in the LaRGO approach. Here, we present only the top 10 
features. A complete list is available in Appendix B.18.

Features Importance

Age at randomization 83.48

Diagnostic category 23.50

Occupational level parents 18.40

Educational level parents 17.37

PIM3 score 17.17

Center 12.15

Duration of stay in the PICU 9.76

PeLOD score first 24 hrs 9.59

Duration of treatment with benzodiazepines 8.20

Duration of treatment with antibiotics 8.19

illness, such as the PELOD score for the first 24 hours and the overall 
duration of the stay in the PICU. Other important features pertain to the 
duration and need of treatments such as antibiotics for new infections 
or benzodiazepines, which were previously found to be associated with 
poorer neurological outcomes [2].

3.3. Age restricted analysis

Considering that 3 groups of tests (alertness, motor coordination and 
memory) are only available for children who are older than 5, we have 
evaluated the Precision@N considering only this cohort. In this case, 
we have reported the results for patients older than 5 at follow-up in 
each of the 50 test folds.

When compared to the previous experiments, this task is more chal-

lenging since all 23 targets are evaluated for all patients, whereas the 
results reported before contain children with only 4 and 12 known out-

comes (younger than 5 years) due to age-restricted tests, as shown in 
Table 5.

As can be seen in Fig. 5, the previously observed rapid improve-

ment is less accentuated in this case. More specifically, the precision 
of all approaches is considerably inferior. In the previous experiments, 
a precision of 80% is reached within 4 labels, whereas, in this case, 
it requires about 10 labels. On a similar fashion, the performance of 
BoostLR deteriorates significantly, becoming comparable to both Expert 
approaches.

Consequently, the values of the MAP measure (Table 9) also de-

crease, where LaRGO presented 74%, whereas Expert 1 and 2 achieved 
merely 58% and 54%, respectively.

According to ATR and APR (Table 10), both Expert 1 and 2 present 
poor performance (11 for both evaluation measures). These values are 
rather surprising, since it means that the experts seldom recommend 
the outcome expected to be most affected to be evaluated first. The 
LaRGO approach, however, manages to provide more desirable results 
with 4.56 and 4.98 for ATR and APR, respectively.

Despite these differences, the performance of all compared ap-

proaches is analogous to the previous experiments. That is, machine 
learning approaches tend to provide better performance, whereas hu-

man approaches achieve less prominent results. Hence, machine learn-

ing approaches are capable of performing satisfactorily in this subset of 
the cohort as well. Similar conclusions can be drawn when analyzing 
10

other subsets (children older than 4 years excluding outcomes related 
Fig. 5. Precision@N for different values of 𝑁 obtained on patients older than 
5 at follow-up, using all comparison approaches. Each curve corresponds to the 
average obtained using the 10 × 5-fold cross validation.

Table 9

Mean average precision obtained using the values from Fig. 5 (children 
older than 5). The symbol ⋆ indicates statistically significantly differ-

ence between LaRGO and LinReg, Mean and Expert 1 measured using the 
Wilcoxon signed-rank test (p-value < 0.05).

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

0.74⋆ 0.56 0.72 0.72 0.58 0.58 0.54

to memory and excluding outcomes related to alertness, motor coordi-

nation and memory), as shown in Appendix A.

3.4. Inclusion of features from the 2 years follow-up

Since the LaRGO approach yielded superior performance in the pre-

vious experiments, we have used it to evaluate whether the inclusion of 
the features available at the 2 years follow-up improves performance.

More precisely, we have compared the Precision@N of the LaRGO

approach using the two versions of the datasets discussed in Section 2.1: 
i) Discharge features and ii) Discharge features and 2 years follow-up 
features. We report results using all children in the datasets and using 
10 × 5-fold cross-validation.

Despite containing relevant information, the inclusion of the CBCL 
and BRIEF values as features does not lead to a distinguishable improve-

ment in performance, as shown in Fig. 6. Regardless of the number of 
outcomes considered, both solutions present overlapping results. These 
identical performances reinforce our results by showing that, the fea-

tures available at discharge are exceptionally representative in this task 
to the point that they match the predictive power of features available 
at 2 years follow-up.

Although we observe equivalent performance, the feature impor-

tance (Table 11) reveals that the most important features differ from 
the previous experiments (Table 8). More specifically, the CBCL and 

BRIEF outcomes replace the attributes: Center, duration of stay in the 
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Table 10

APR and ATR measured on children older than 5 and all comparison approaches. 
We have reported the average obtained in each of the 10 × 5-fold cross val-

idation. The symbol ⋆ indicates statistically significantly difference between 
LaRGO andLinReg, Mean and Expert 1 measured using the Wilcoxon signed-rank 
test (p-value < 0.05).

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

ATR 4.56⋆ 8.90 4.78 4.79 11.71 11.15 11.15

APR 4.98⋆ 11.07 6.31 5.70 9.84 11.74 11.74

Table 11

Feature importance averaged on the random forests used in the LaRGO approach built 
using features available at discharge and features from the 2 years follow-up. A complete 
list is available in Table B.19.

Feature Importance

Age at randomization 77.28

Diagnostic category 21.21

Occupational level parents 16.61

Executive functioning: Working memory as reported by parents/caregivers 16.26

Executive functioning: Flexibility as reported by parents/caregivers 14.57

Educational level parents 13.64

PIM3 score 13.41

Executive functioning: Inhibition as reported by parents/caregivers 12.63

Emotional/Behavioral: Internalizing problems as reported by parents/caregivers 11.94
Fig. 6. Precision@N for different values of 𝑁 obtained on the LaRGO approach 
using two different versions of the dataset. Each curve corresponds to the aver-

age obtained using the 10 × 5-fold cross validation.

PICU, PeLOD score in the first 24 hours and duration of treatment with ben-

zodiazepines. On a practical level, this indicates that the CBCL and BRIEF 
outcomes may be used as a replacement for these features in the very 
exceptional cases where they are not available, since their inclusion is 
not associated with a deterioration in performance.

3.5. Concrete case analysis

In this section, we present concrete cases where clinical practice (Ex-

pert 1) would fail to detect the most severe neurocognitive problems if 
the assessment ended prematurely. Concretely, we have analyzed cases 
where Expert 1 would require more than 20 tests to predict the top-5 
worst outcomes in patients older than 5 (60 patients).

When performing this analysis, we could only identify 8 (13%) cases 
where the LaRGO approach would fail to predict the top-5 outcomes in 
its top-20 predictions. As opposed to that, when employing Expert 1 
approach, our analysis led to 43 patients. That means that, in approxi-
11

mately 71% of analyzed cases, the outcomes expected to be worst would 
plausibly not be diagnosed by Expert 1, since the patients would have 
to undergo at least 20 tests. For better assessment, we investigate 3 of 
these patients further in Tables 12 and 13.

For Patient#1, we could notice several outcomes related to Motor 
coordination. More specifically, there are 4 outcomes related to the 
number of hands taps. Similarly, Patient #2 also presents several out-

comes related to Motor coordination. Lastly, the intelligence of Patient 
#3 is the most affected one, since all three of its tests are expected to 
be in the worst 5.

Additionally, Table 13 reveals that features of the patients also 
present differences where their Age at randomization corresponds to 
7.23, 4.38 and 9.58, respectively. Patient #1 was admitted for abdomi-

nal surgery while Patients #2 and #3 were admitted for cardiac surgery. 
Furthermore, Occupational level parents and Educational levels parents

also differ and it is the lowest in Patient #3. Of the three examples, 
Patient #3 was the sickest, requiring prolonged critical care after car-

diac surgery with a PICU stay of 7 days, further needing treatment with 
benzodiazepines in addition to antibiotics for the majority of the stay. 
The severity of illness and the intensity and duration of the required 
therapy are features that in part explain the prediction for low overall 
intelligence scores for this patient at follow-up

3.6. Limitations

A limitation of the study is that despite a very high follow-up rate, 
many children were too young at the time of follow-up and thus not 
amenable to evaluation of all neurocognitve tests. The statistical power 
for the tests only possible in the older children was therefore reduced.

4. Discussion

We have presented the first step in developing a more focused ICU 
follow-up model for neurocognitive assessment for children, where un-

necessary tests are omitted while important developmental problems 
can still be detected early. If such assessment is to be implemented in 
clinical practice, practical challenges would include establishing and 
maintaining direct communication between the different healthcare dis-

ciplines involved such as: intensivists, ICU nurses, pediatricians, and 
psychologists, among others. Besides these, introducing any software in 
the ICU requires many IT resources, a.o. to guarantee safety of patients’ 

data and to adhere to legislation (e.g. GDPR and the AI Act).
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Table 12

Top-5 outcomes of 3 patients where the Expert 1 approach would require more than 20 tests to identify the top-5 worst outcomes. 
In this analysis, we could observe that 8 (13%) patients were identified using the LaRGO approach, whereas 43 (71%) were detected 
using the Expert 1 approach. In the first column, #LaRGO represents the number of tests required by the LaRGO approach to identify 
the top-5 worst outcomes and #Expert 1 corresponds the number of tests required by Expert 1 to identify the top-5 worst outcomes. 
The second column (Top 5 Worst Outcomes) contains the top-5 worst outcomes. Lastly, the third column (Top 5 Predicted Outcomes) 
contains the top-5 predicted by the LaRGO approach.

Top 5 Worst Outcomes Top 5 Predicted Outcomes

Patient#1

#LaRGO = 5

#Expert 1 = 23

Visual-motor integration

Motor coordination: Number of valid alternating taps

Motor coordination: Number of right hand taps

Motor coordination: Number of left hand taps

Motor coordination: Number of valid synchronous tap

Motor coordination: Number of valid alternating taps

Motor coordination: Number of right hand taps

Visual-motor integration

Motor coordination: Number of left hand taps

Motor coordination: Number of valid synchronous taps

Patient#2

#LaRGO = 7

#Expert 1 = 22

Motor coordination: Number of valid alternating taps

Memory: Verbal-auditory, word pairs immediate memory

Motor coordination: Number of right hand taps

Motor coordination: Number of left hand taps

Memory: Verbal-auditory, word pairs delayed memory

Motor coordination: Number of valid alternating taps

Memory: Verbal-auditory, word pairs immediate memory

Motor coordination: Number of right hand taps

Memory: Learning index

Motor coordination: Number of left hand taps

Patient#3

#LaRGO = 6

#Expert 1 = 22

Intelligence: Total IQ

Intelligence: Performance IQ

Intelligence: Verbal IQ

Visual-motor integration

Motor coordination: Number of valid alternating taps

Motor coordination: Number of valid alternating taps

Visual-motor integration

Intelligence: Performance IQ

Intelligence: Total IQ

Motor coordination: Number of right hand taps

Table 13

Most relevant features, according to the feature importance (Table 8), of three patients evaluated in 
the concrete case analysis.

Feature Patient#1 Patient#2 Patient#3

Age at randomization 7.23 4.38 9.58

Diagnostic category Surgical Abdominal Surgical Cardiac Surgical Cardiac

Occupational level parents 3,5 2,5 2

Educational level parents 3 3,5 1,5

PIM3 score 0 32 31

Center Leuven Leuven Leuven

Duration of stay in the PICU 1 2 7

PeLOD score first 24 hrs -4.55 -3.98 -3.12

Duration of treatment with benzodiazepines 0 0 2

Duration of treatment with antibiotics 1 1 6
Despite of that, it is clear that any reduction in the number of tests, 
would reduce the psychological and socio-economic burden on the fam-

ilies of the patients and on the healthcare system, provided that the 
detection of the adverse outcomes is not compromised. Additionally, 
patients and caregivers would experience less stress during the evalua-

tion procedure.

In this work, we have addressed this challenge, by predicting a per-

sonalized ranking of tests, such that if the tests are performed in the 
predicted order, the worst expected outcomes will be evaluated first. 
More specifically, we have used a real dataset with neurocognitive out-

comes measured 2 years after hospitalization, for participants from the 
PEPaNIC trial. This trial consisted of a large international study car-

ried out in Belgium, The Netherlands and Canada. Thus, increasing the 
likelihood that our findings will generalize to other centers as well. To 
model this problem, we have first transformed the dataset to change 
absolute outcome values into relative measures, by using information 
from a healthy control set. Second, we have proposed a new label rank-

ing approach that builds a multi-target prediction model per group of 
tests, and combines their outputs by ranking them into a final predic-

tion.

Our results have revealed that our proposed approach is able to 
reach excellent performance, even outperforming current clinical prac-

tice as recommended by experts. We have also shown that our approach 
slightly outperforms other machine learning based approaches, with 
higher differences visible in age-restricted subset analyses. Such better 
predictive results could lead to a better assessment of the patient condi-

tion. In practice, this means that, in the likely case that the evaluation 
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procedure must be interrupted prematurely, more adverse outcomes 
would be tested, since our proposed method is able to identify a higher 
number of adverse outcomes in comparison to the current clinical prac-

tice.

We could also notice that features available at discharge are already 
highly informative in this context, despite the 2 years gap between fea-

tures and outcome measurement. This allows the practice of preventive 
care, starting immediately at discharge, rather than curative after possi-

ble follow-up. Consequently, healthcare related costs will be reduced as 
curative care is substantially more expensive than preventive. Addition-

ally, specific patients can be prioritized to receive better, necessary and 
more personalized care. Further, this tailored care will develop the on-

going follow-up care programs available for some specific populations 
[34] to a broader individualized follow-up program for all critically ill 
children. This will ultimately have a positive effect on societal partici-

pation of critically ill children at risk.

5. Conclusion

We have presented the first work to address adverse long-term neu-

rocognitive outcomes assessment after pediatric intensive care unit ad-

mission using machine learning. More specifically, we have shown that 
data driven methods can surpass the current clinical practice employed 
by experts, which could possibly lead to more personalized care and 
consequently better life quality after discharge.

Further, we also aim to incorporate data from the 4 years follow-up 
study [35]. More specifically, we will employ the data from the 2 years 
follow-up to enhance the predictions for the outcomes at 4 years. This 

will require the adaptation of the LaRGO method introduced here. Such 
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future studies will enable a comprehensive and realistic assessment of 
the progress of the neurocognitive function outcomes, possibly leading 
to the prediction of the whole trajectory of the patient after discharge. 
For the purpose of further external validation we will additionally ex-

plore the use data from similar studies outside the scope of PEPaNIC 
trial, such as [36].

Furthermore, developing a new heuristic for the random forests, 
which explicitly focuses on the ranking of the data, could improve the 
results further. We believe that other applications, which also require 
the prediction of a ranking of outcomes, could benefit from the method-

ology developed in this work. Lastly, we would like to implement our 
model at discharge and at follow-up. Our ultimate aim is to develop 
an application that will provide, at time of discharge from the PICU, 
a proposal for a focused patient-centered follow-up. This personalized 
follow-up should constantly be monitored during the growth and de-

velopment of children since interventions and new life-events during 
follow-up might influence the outcomes. Consequently, specific patients 
could be selected for additional dedicated care, tutoring and psycho-

logical help. Future studies should also clearly delineate the practical 
challenges of implementing our approach.
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Table A.14

Mean average precision obtained using the values from Fig. A.7 (chil-

dren older than 4 excluding outcomes related to memory).

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

0.72 0.63 0.67 0.72 0.65 0.59 0.59

Fig. A.7. Precision@N obtained on children older than 4 and excluding out-

comes related to memory (not available), using all comparison approaches and 
𝑁 = (1,12). Each curve corresponds to the average obtained in each of the 10 
× 5-fold cross validation. In this case, Experts 1 and 2 predict the same order 
since outcomes related to memory are not present.

Table A.15

APR and ATR measured on children older than 4, excluding outcomes related 
to memory. We have reported the average obtained in each of the 10 × 5-fold 
cross validation.

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

ATR 2.63 5.69 2.78 2.66 11.06 6.83 6.83

APR 2.70 5.49 3.63 2.76 9.01 7.80 7.80

Fig. A.8. Precision@N obtained when outcomes related to alertness, motor co-

ordination and memory are excluded, using all comparison approaches and 𝑁
= (1,4). Each curve corresponds to the average obtained in each of the 10 ×
5-fold cross validation. In this case, Experts 1 and 2 predict the same order since 

outcomes related to alertness, motor coordination and memory are not present.
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Table A.16

APR and ATR measured on all comparison approaches excluding outcomes 
related to alertness, motor coordination and memory. We have reported the 
average obtained in each of the 10 × 5-fold cross validation.

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

ATR 2.03 2.36 2.15 2.08 3.47 2.87 2.87

APR 2.09 2.57 2.26 2.11 3.58 2.81 2.81

Table A.17

Mean average precision using the values obtained from Fig. A.8 (exclud-

ing targets related to alertness, motor coordination and memory).

LaRGO Global Mean LinReg BoostLR Expert 1 Expert 2

0.72 0.63 0.67 0.72 0.65 0.59 0.59

Table B.18

Complete feature importance list using only features available at 
discharge.

Features Importance

Age at randomization 83.48

Diagnostic category 23.5

Occupational level parents 18.4

Educational level parents 17.37

PIM3 score 17.17

Center 12.15

Duration of stay in the PICU 9.76

PeLOD score first 24 hrs 9.59

Duration of treatment with benzodiazepines 8.2

Duration of treatment with antibiotics 8.19

Duration of treatment with opioids 8.07

Duration of mechanical ventilatory support 7.33

Duration of treatment with hypnotics 6.87

Syndrome vs. no syndrome 6.27

Duration of hemodynamic support 5.6

Known non-European origin 5.58

Duration of treatment with corticosteroids 5.56

Parental smoking during pregnancy 3.79

Hand preference 3.58

Test location 3.27

Parental smoking between birth and PICU admission 3.18

Duration of treatment with alpha-2-agonists 3.15

Sex 2.91

Maternal smoking pre-pregnancy 2.52

Randomization to late vs. early initiation of PN 2.3

Known not exclusive Dutch or English language 2.29

Parental smoking pre-pregnancy 1.84

Malignancy vs. no malignancy 1.44

STRONGkids risk level 1.37

Known non-Caucasian 1.2

New infection 1.17

Maternal smoking during pregnancy 1.05

Days with hypoglycemic event 0.81

Hypoglycemia < 40 mg/dl 0.68

Diabetes vs. no diabetes 0.02

Appendix B. Feature importance

See Tables B.18 and B.19.

Appendix C. Comparing the predictions obtained the LaRGO and 
Mean approach

See Tables C.20 and C.21.
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Table C.20

Count of the most frequent true outcomes (Labels), predictions provided by the Mean prediction and predictions provided 
by the LaRGO approach, considering the Top 1 and 2 outcomes in a single fold, presented in a non-accumulative manner. 
Despite always predicting a fixed order, the Mean prediction presents more than one outcome because it respects the age 
restrictions of the outcomes.

Labels

Top#1 Count Top#2 Count

Intelligence: Total IQ 41 Intelligence: Verbal IQ 34

Visual-motor integration 29 Intelligence: Total IQ 25

Motor coordination: Number of valid alternating taps 23 Intelligence: Performance IQ 24

Intelligence: Performance IQ 16 Visual-motor integration 17

Mean Prediction

Intelligence: Total IQ 85 Intelligence: Performance IQ 85

Motor coordination: Number of valid alternating taps 73 Memory: Verbal-auditory, word pairs immediate memory 52

Motor coordination: Number of right hand taps 21

LaRGO

Motor coordination: Number of valid alternating taps 67 Intelligence: Performance IQ 58

Intelligence: Total IQ 52 Memory: Verbal-auditory, word pairs immediate memory 28

Intelligence: Performance IQ 20 Motor coordination: Number of right hand taps 23

Visual-motor integration 16 Intelligence: Total IQ 18

Table C.21

Count of the most frequent true outcomes (Labels), predictions provided by the Mean prediction and predictions 
provided by the LaRGO approach, considering the Top 3 and 4 outcomes in a single fold, presented in a non-

accumulative manner. Despite always predicting a fixed order, the Mean prediction presents more than one outcome 
because it respects the age restrictions of the outcomes.

Labels

Top#3 Count Top#4 Count

Intelligence: Performance IQ 43 Visual-motor integration 43

Intelligence: Total IQ 26 Intelligence: Verbal IQ 25

Intelligence: Verbal IQ 19 Intelligence: Performance IQ 18

Visual-motor integration 16 Intelligence: Total IQ 12

Mean

Visual-motor integration 85 Intelligence: Verbal IQ 85

Memory: Learning index 52 Motor coordination: Number of right hand taps 52

Motor coordination: Number of left hand taps 21 Motor coordination: Number of valid synchronous taps 21

LaRGO

Intelligence: Verbal IQ 38 Intelligence: Verbal IQ 44

Memory: Learning index 26 Visual-motor integration 42

Visual-motor integration 23 Intelligence: Total IQ 13

Intelligence: Total IQ 23 Memory: Learning index 12
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