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SUMMARY
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) enzymes mutate specific DNA
sequences and hairpin-loop structures, challenging the distinction between passenger and driver hotspot
mutations. Here, we characterized 115 whole genomes of metastatic urothelial carcinoma (mUC) to identify
APOBEC mutagenic hotspot drivers. APOBEC-associated mutations were detected in 92% of mUCs and
were equally distributed across the genome, while APOBEC hotspot mutations (ApoHMs) were enriched in
open chromatin. Hairpin loops were frequent targets of didymi (twins in Greek), two hotspot mutations char-
acterized by the APOBEC SBS2 signature, in conjunction with an uncharacterized mutational context (Ap
[C>T]). Next, we developed a statistical framework that identified ApoHMs as drivers in coding and non-cod-
ing genomic regions of mUCs. Our results and statistical frameworkwere validated in independent cohorts of
23 non-metastatic UCs and 3,744 samples of 17metastatic cancers, identifying cancer-type-specific drivers.
Our study highlights the role of APOBEC in cancer development and may contribute to developing novel tar-
geted therapy options for APOBEC-driven cancers.
INTRODUCTION

Cancer genomes accumulate somatic mutations via different

mutagenic processes, and one of the most common is attributed

to the apolipoprotein B mRNA-editing enzyme catalytic polypep-

tide-like (APOBEC) family.1 APOBEC has a specific mutational

signature, which is characterized by C>T/G mutations in the

TpC context and is captured in the SBS2 and SBS13 signatures,

as defined by the Catalog of Somatic Mutations in Cancer

(COSMIC).2 In some tumor types with high APOBEC activity,

the contribution to the tumor mutational burden is substantial,

which increases the neoantigen load, favoring response to im-

mune checkpoint inhibitors.3,4 However, APOBEC is also respon-

sible for the emergence of driver mutations that contribute to can-

cer development, as shown in mouse models.5 Discriminating

driver events from passenger events is essential to reconstruct

the evolutionary history of cancers and identify effective novel

drug targets in APOBEC-driven tumors.

The mutational process of APOBEC has been extensively

studied, revealing its preference for single-stranded DNA struc-
This is an open access article under the
tures that form hairpin loops.6 This characteristic of APOBEC

could result in identical somatic mutations in tumors from multi-

ple patients, so-called hotspot mutations or hotspots. Due to

their high prevalence, these hotspots can be assigned errone-

ously as driver mutations, especially in the non-coding area of

the genome. However, the vast majority of mutations are pas-

sengers and do not contribute to cancer development, and

the same principle may also apply to hotspot mutations.7

Although bioinformatics strategies to identify driver hotspot mu-

tations have been developed,8,9 the unique characteristics of the

APOBEC mutagenic process require specific considerations to

accurately account for all co-variables.

APOBEC-derived mutations are a dominant contributor to

the mutational landscape in urothelial carcinoma (UC). There-

fore, we analyzed whole-genome DNA sequencing data of 115

metastatic UC (mUC) and matched blood samples10 to identify

driver hotspot mutations in the context of APOBEC mutagen-

esis. The comprehensive characterization of APOBEC-enriched

tumors identified a novel mutational signature associated with

DNAmismatch repair as well as genomic co-variates associated
Cell Genomics 4, 100528, April 10, 2024 ª 2024 The Authors. 1
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with APOBEC-derived hotspot mutations (ApoHMs), which we

used to develop a statistical framework and identify driver

ApoHMs. Furthermore, our findings were validated in whole ge-

nomes of an independent cohort of 23 non-mUCs, and the anal-

ysis was extended to include 442 metastatic breast cancer

(mBC) and 3,302 samples of 16 other metastatic cancer types.

RESULTS

APOBEC mutagenesis dominates the mutational
landscape of UC
The analysis of whole-genome sequencing (WGS) data of mUCs

and matched blood samples revealed a median of 20,667 (Q1

[quartile1]=14,304,Q3 [quartile3]=31,411) single-nucleotidevar-

iants (SNVs) per tumor. mUCs with a significant enrichment (E) for

C>T mutations in the TCW (W = A or T) context were considered

APOBEC positive (92%). These tumors were further stratified ac-

cording to APOBEC enrichment as APOBEC high (41%, E > 3),

APOBEC medium (33%, 2 < E < 3), and APOBEC low (18%,

E > 1) (Figure 1A). The median contribution of APOBEC COSMIC

signatures (SBS2+SBS13) in APOBEC-high, -medium, and -low

tumors was 61%, 37%, and 15%, respectively. For the remaining

8% of tumors lacking APOBEC mutations, the median APOBEC

signature was less than 2%, potentially reflecting the noise of the

mutational signature calling. We associated the APOBEC stratifi-

cation with multiple factors to better assess the different

APOBEC subtypes. Tumor purity, for instance, declined with

increasing APOBEC mutagenesis (Figure S1). Moreover, age

was associated with the enrichment of APOBEC mutations (Fig-

ure S1). The median clonal fraction of SNVs was lower in tumors

withAPOBECmutations than in non-APOBEC tumors, suggesting

higher tumor heterogeneity in APOBEC-enriched tumors (Fig-

ure S1). Localized hypermutation events (kataegis) strongly corre-

latedwithAPOBECenrichment (Spearman r=0.80,p<0.001).Ho-

mologous recombination (HR) deficiency (n = 3) was only present

in APOBEC-low tumors (Fisher’s exact test, p = 0.005), while none

of the patients with microsatellite instability (MSI; n = 4) had evi-

dence of APOBEC mutagenesis (Fisher’s exact test, p < 0.001).

Structural variants were more frequent in APOBEC tumors than

in non-APOBEC tumors (Figure S1). Additionally, APOBEC tumors

had a higher ploidy (median ploidy = 3) and a higher number of

genes affectedby copy number alterations (CNAs) than non-APO-

BEC tumors (Figure S1), suggesting genomic instability in

APOBEC-driven mUC tumors. APOBEC mutagenesis was not

associatedwith sex, the primary origin ofmUC (upper tract versus

bladder), or chromothripsis.

APOBEC mutagenesis is an ongoing process in
metastatic lesions of UC
Next, we analyzed RNA sequencing data of 90 matched samples

ofmUC. Pathway activity based ondownstreamgene expression,

such as cell cycle or p53, was similar between the APOBEC

groups (Figure S2). Similarly, analysis of APOBEC expression of

all genes of the APOBEC family (APOBEC1 was not expressed)

revealed no significant differences between APOBEC and non-

APOBEC tumors (Figure 1B). We detected a weak positive corre-

lation between the expression of APOBEC3A and APOBEC3B

(Figure 1C). To further investigate the mutagenic activity of both
2 Cell Genomics 4, 100528, April 10, 2024
enzymes, the fold enrichment of C>T and C>G mutations, at the

DNA level, in the tetrabase YTCA (related to APOBEC3A; Y are py-

rimidine bases) and RTCA (related to APOBEC3B; R are purine

bases) context was calculated11 (Figure 1D). In both cases,

YTCA and RTCA mutations did not correlate with expression of

APOBEC3A or APOBEC3B (Figure S3). The lack of correlation

might be linked to the heterogeneous expression of APOBEC en-

zymes that oscillate throughout the cell cycle.12,13 Furthermore,

we detected that both APOBEC3A and APOBEC3B contributed

to APOBEC-associated mutations (fold enrichment above 1.0).

Nevertheless, APOBEC3A appeared to be the main contributor,

as suggested in primary cancers.11,14 Considering the mRNA

expression of both APOBEC3A and APOBEC3B enzymes, we

calculated the APOBEC expression score (the sum of the normal-

ized expression ofAPOBEC3A and APOBEC3B). It appeared that

the level of APOBEC enrichment correlated with the APOBEC

expression score (Figure 1E). This analysis confirmed the link be-

tween APOBECRNA expression at the time of biopsy and the his-

torical accumulation of APOBEC-associated mutations in mUC

that others have reported in primary UC.15,16

Recently, it was proposed that edited DDOST mRNA can be

used to measure ongoing APOBEC mutagenesis.17 We found

that the frequency of C>U alterations in theDDOSTmRNA at po-

sition chr1:20981977 was enriched in tumors with APOBEC

mutagenesis, with up to 15%of mRNA reads edited in one single

sample (Figure 1F). Additionally, we analyzed ongoing APOBEC

mutagenesis in mUC by WGS of eight tumors from patients who

had undergone serial biopsies of metastatic lesions (Figure S4).

We observed that the APOBEC mutational signature was pre-

sent in private mutations of the second biopsy of these patients,

suggesting that APOBEC mutagenesis could be active in the

period between the first and second biopsy (Figure S4A). A lower

cancer cell fraction (normalized allele frequency by copy number

and purity; STARMethods) in private SNVs of the second biopsy

compared with shared (trunk) mutations confirms that these mu-

tations were acquiredmore recently, as they are only present in a

subpopulation of cancer cells (Figure S4B). This result, together

with the APOBEC signature detected in the subclonal mutations

(Figure S5), suggests that the presence of subclonal populations

due to APOBEC mutagenesis may contribute to the ongoing

evolution of UC in the metastatic setting.

ApoHMs are enriched in highly accessible genomic
regions
The high resolutionachievedbyWGSallowed us to investigate the

enrichment of APOBEC and non-APOBEC mutations (non-TpC

context) in specific genomic regions. We found that the number

of non-APOBEC-associated SNVs, for instance, varied across

the genome (Figure 2A). When this distribution overlapped with

DNAaccessibility and overall geneexpression level, the frequency

of non-APOBEC mutations decreased in open chromatin (highly

accessible regions) and highly transcribed regions (Figure 2B). In

contrast, the frequency of APOBEC-associated mutations was

nearly constant across the genome. When restricting the analysis

to APOBEC tetrabase mutations, we found that the difference in

the distribution of Y/RTCAmutations across genomic regions de-

creaseswith the level ofAPOBECenrichment (Figure2C). Interest-

ingly, in APOBEC-high tumors, YTCA mutations were evenly
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Figure 1. Genomic landscape and APOBEC activity of mUC (n = 115) stratified by APOBEC enrichment

(A) WGS data of metastatic urothelial carcinoma (mUC) were classified according to the enrichment of APOBEC-associated mutations as having high, medium,

low, or no APOBEC enrichment. The genomic features are displayed from top to bottom as follows: APOBECmutagenesis; genomic subtype (GenS1–GenS5) as

described previously;10 genome-wide tumor mutational burden (TMB); mutational signatures grouped by etiology, with both APOBEC signatures shown

separately; absolute frequency of structural variants (SVs); relative frequency of SV categories; clonal fraction; ploidy; tumor purity; microsatellite instability (MSI)

status; homologous recombination (HR) deficiency status; samples with at least one chromothripsis event; frequency of kataegis events; female patients; and

primary origin of mUC (upper tract versus bladder).

(B) Expression of APOBEC and AICDA genes in 90 samples with available RNA sequencing data.

(C) Pearson correlation of RNA expression of APOBEC3A and APOBEC3B.

(D) Fold enrichment of C>T andC>G alterations in the YTCA (related to APOBEC3A; Y are pyrimidine bases) andRTCA (related to APOBEC3B; R are purine bases)

context.

(E) APOBEC score (normalized expression of APOBEC3A + APOBEC3B).

(F) Percentage of mRNA C>U mutations in DDOST at position chr1:20981977.

In (B), (E), and (F), the Wilcoxon rank-sum test was applied to compare APOBEC tumors vs. non-APOBEC tumors. p values were Benjamini-Hochberg corrected

in (B). Box plots show themedian, inter-quartile range (IQR: Q1–Q3) and whiskers (1.53 IQR fromQ3 to the largest value within this range or 1.53 IQR fromQ1 to

the lowest value within this range). See also Figures S1–S5.
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distributed. In contrast, RTCA mutations were enriched in low-

DNA-accessible and low-transcribed regions, although this

enrichment was considerably less compared with tumors with

lower levels of APOBEC mutations.

Because of the highcorrelationbetween kataegis andAPOBEC

enrichment, we analyzed the distribution of kataegis loci across

the genome. Contrary to the overall distribution of SNVs, our

data suggest that kataegis events are more likely to occur in re-
gions with high DNA accessibility and high transcriptional activity

(Figure 2B).Moreover, we also evaluated the genome-wide distri-

butionof all hotspotmutations (twoormoremutations ina specific

genomic position), representing 0.35% of all mutated genomic

positions. We found that the frequency of highly recurrent (n R

4) ApoHMs were enriched in high-DNA-accessibility and highly

transcriptionally active regions (Figure 2D). Thus, while general

APOBEC mutagenesis seemed to occur uniformly across the
Cell Genomics 4, 100528, April 10, 2024 3
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Figure 2. Distribution of APOBEC-associated mutations across genomic regions of mUC

(A) Whole-genome sequencing data (n = 115) were analyzed to estimate the mean number of single-nucleotide variants (SNVs) in windows of 1 mega base-pair

(Mbp) across the entire genome. The circos plot shows, from outer to inner circles, the genomics ideogram from chromosome 1 to X, where the centrosomes are

indicated in red; the mutational load of APOBEC- and non-APOBEC-associated mutations (mutations in the TpC or non-TpC context, respectively); the density of

kataegis events; average RNA counts (expression) from tumors with available RNA sequencing data (n = 90); and DNA accessibility estimation from different

chromatin immunoprecipitation sequencing (ChIP-seq) experiments of multiple histone marks from normal urothelial samples derived from the Encyclopedia of

DNA elements (ENCODE).18 Peaks represent highly accessible DNA.

(B) Linear regression of the mutational load for APOBEC- and non-APOBEC-associated mutations as well as the density of kataegis events across the genome

with DNA accessibility and expression data.

(C) Relative distribution of APOBEC YTCA (related to APOBEC3A; Y are pyrimidine bases) and RTCA (related to APOBEC3B; R are purine bases) mutations

acrossDNA-accessible andRNA expression regions. Samples were stratified according to the level of APOBECmutagenesis. TheWilcoxon signed-rank test was

applied, and p values were Benjamini-Hochberg corrected. Box plots show themedian, inter-quartile range (IQR: Q1–Q3) and whiskers (1.53 IQR fromQ3 to the

largest value within this range or 1.5 3 IQR from Q1 to the lowest value within this range).

(D) Frequency of hotspot mutations grouped according to APOBEC- and non-APOBEC-associated mutations and DNA accessibility or RNA expression level.

Error bars represent the mean ± standard error.
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genome, kataegis and ApoHMs seemed to occurmore frequently

in open chromatin and highly transcribed loci.

Recurrent hotspot mutations correlate with APOBEC
mutagenesis
Next, we investigated the genomic consequence of hotspot

mutations and found that the most frequent hotspot mutations
4 Cell Genomics 4, 100528, April 10, 2024
in mUC occurred in non-coding regions of the genome (Fig-

ure 3A). Hotspot mutations in the TERT promoter were pre-

sent in 62% of tumors. In line with previous reports,19,20

TERT expression did not differ between tumors with hotspot

mutations and those being wild type (Figure S6A). However,

differential gene expression analysis showed that tumors

with hotspot mutations in the TERT promoter had high
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Figure 3. Recurrent hotspot mutations of mUC correlate with APOBEC mutagenesis

(A) Overview of recurrent hotspot mutations present in at least five samples, including all substitutions occurring in the same genomic position. Hotspot mutations

occurring in the TpC context are highlighted in red.

(B) The association of hotspot mutations and APOBEC fold enrichment (continuous values) was interrogated with a logistic regression analysis applying theWald

test. p values were corrected using the Benjamini-Hochberg method and ordered accordingly. Bars above the dashed line (�log10(0.05)) are statistically sig-

nificant and indicated in red. See also Figure S6 and Table S1.
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expression of genes related to the biological oxidation

pathway (Figure S6B; Table S1). Besides TERT, other frequent

hotspot mutations were identified in the non-coding regions

near ADGRG6 (40%), PLEKHS1 (33%), LEPROTL1 (20%),

and TBC1D12 (15%). Similarly, these hotspot mutations did

not affect the expression of these genes but were associated

with transcriptomic effects in several genes (Figure S6) and

biological pathways (Table S1). These hotspot mutations
strongly correlated with enrichment for APOBEC-associated

mutations, suggesting their origin in APOBEC mutagenesis

(Figure 3B).

All frequent hotspot mutations in the coding region have been

described previously and affected known driver genes: FGFR3

S249C/R248C (8% and 4%), PIK3CA E54K (7%), RXRA

S427F/Y (7%) and TP53 E285K/* (6%). Comparing the expres-

sion of these known driver genes affected by hotspot mutations
Cell Genomics 4, 100528, April 10, 2024 5
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vs. the wild type, only FGFR3 hotspot mutations significantly

affected the expression of this gene (Figure S6A).

Hairpin loops are targets of twin hotspot mutations
called didymi
Wenoticed that the hotspotmutations nearADGRG6, PLEKHS1,

LEPROTL1, and TBC1D12 are located within DNA hairpin-loop

structures. It is known that DNA hairpin loops are targets of

APOBEC3A (Figure 4A);21,22 therefore, we predicted DNA hairpin

loops for all mutated genomic positions (STAR Methods). The

predicted hairpin loops near ADGRG6, PLEKHS1, LEPROTL1,

and TBC1D12 are each affected by two hotspot mutations,

which are referred to as twin mutations.22 Moreover, we noticed

that the twin mutations were not mutually exclusive, which

differs from the hotspot mutations in the TERT promoter (mutual

exclusivity test, p < 0.001). Only the twin hotspot mutations in

TBC1D12 co-occurred more frequently than expected among

APOBEC-high tumors (p = 0.02). Further analysis of co-occurred

twin hotspot mutations revealed that very few had identical

variant allele frequencies, suggesting that most twin mutations

in the same tumor occurred in independent events, as they

were also found on different alleles (Figure S7).

Next, we investigated the properties and origin of these twin

mutations. A comprehensive analysis of all DNA hairpin-loop

structures in the human genome affected by two mutations in

their loops revealed 2,387 twinmutations (4,774 altered genomic

positions), representing 0.16%of all mutated genomic positions.

The distance between twin mutations varied, but when the

frequency of mutations increased, the distance decreased to

mainly one or two bases and the loop sizes to mainly three to

four bases (Figure 4B). Additional examination of the 96 tri-nucle-

otide contexts of all twin mutations revealed that both APOBEC

COSMIC signatures, SBS2 and SBS13, were dominant (Fig-

ure 4C). However, at higher mutational frequencies (n R 5),

only signature SBS2 remained. We also observed a secondary

signature of C>T mutations in the ApC context that does not

resemble any known COSMIC signature (Figure S8, and

Table S2). The absolute contribution of this signature was similar

across all APOBEC tumors, and its prevalence in themUCcohort

correlated with spontaneous deamination (SBS1) and defective

DNA mismatch repair signatures (Figure S9; SBS6, SBS15,

SBS20, and SBS26).

Furthermore, APOBEC-driven tumors were enriched for twin

mutations occurring only in the TpC context (Figure 4D). Con-

trary to the general pattern of ApoHMs (enriched in DNA-acces-

sible regions), twin mutations with a high number of alterations

were similarly distributed between high- and low-DNA-acces-

sible regions (Figure 4E).

Additionally, we found that, at higher mutational frequency,

at least one of the twin mutations occurs in the TpC context

(Figure 4F) and that the sequence between the two is 1001

or 101 (0 = A/T, 1 = G/C; underlined are the positions of the

twin mutations) (Figure 4G). Because of the unique character-

istics of frequently affected twin mutations, we named them

didymi (twins in Greek). In summary, didymi are two C>T

hotspot mutations found in DNA hairpin loops separated by

one or two A/T base pairs in which at least one of the twin

mutations is located in the TpC context and the other in
6 Cell Genomics 4, 100528, April 10, 2024
NpC (N = any base pair; most N bases are A or T). Applying

this definition, we identified 231 didymi in the mUC cohort

(Table S3).

Driver hotspot mutations in UC
After identifying several hotspot mutations that could be attrib-

uted to APOBEC activity, we assessed whether these hotspot

mutations had a selective advantage (drivers) or not (passen-

gers). Recent attempts relying on the stability of hairpin loops

have been proposed to differentiate passengers from driver

ApoHMs.8,21 We confirmed that a more stable loop (Gibbs free

energy DG; STAR Methods) leads to a higher number of alter-

ations (Figure 5A). Taking this into account, we developed a sta-

tistical model to identify driver hotspot mutations, considering

not only the stability of hairpin loops but also the tri-nucleotide

context, DNA accessibility, and the potential for didymi via

sequences in the loop (Figure 5A).

Putative ApoHMs were divided into those located outside or

inside the loop of DNA hairpin-loop structures. In the case of

ApoHMs outside of hairpin loops, only those in the TpC context

were considered. For ApoHMs within loops, all alterations in the

TpC, ApC, CpC, and GpC context were included in the analysis

to account for didymi. In the case of TpC, the distribution of

hotspot mutations in the trinucleotide context was considered.

A background distribution was modeled as a Poisson process,

and the significant enrichment of mutations in a particular

genomic site was estimated.

We identified 0.40% (n = 27) of ApoHMs as drivers (adjusted

p < 0.05; Figure 5B). Known driver genes affected by hotspot

mutations included coding alterations in TP53, PIK3CA,

FGFR3, RXRA, and the TERT promoter. All other putative

driver ApoHMs affected non-coding regions, including didymi

in ADGRG6, PLEKHS1, TBC1D12, and LEPROTL1, proposed

as drivers by other studies.9,23 Other potential driver ApoHMs

include RNF169 (involved in DNA damage repair),24 BTG3

(angiogenesis),25 ADM (adrenomedullin, a vasodilator),26

GDF3 (regulation of transforming growth factor b [TGF-b]),27

and WDR74 (ribosome biogenesis).28

To validate our method and confirm the driver ApoHM assess-

ment, we used an independent cohort of non-mUC of the

bladder (n = 23) of the Pan-cancer Analysis of Whole Genomes

(PCAWG) study29 (Figure S10). This analysis confirmed the pre-

viously identified ApoHMs as potential cancer drivers of UC.

Moreover, in this cohort, 96% of tumors were APOBEC driven,

APOBEC enrichment correlated with kataegis, and the largest

group (35%) had high enrichment for APOBEC-associated

mutations.

Furthermore, the performance of the model to identify driver

ApoHMs in hairpin loops was tested. The quantile-quantile

(Q-Q) plots show that the empirical distribution of ApoHMs de-

viates from the theoretically expected distribution (Kolmogorov-

Smirnovtest, p < 0.001). However, when outliers that represent

highly frequent ApoHMs (>10) are excluded, which, according

to our analysis, are all drivers, we observed a good agreement

between our model and the theoretical distribution (Figure S11A;

Kolmogorov-Smirnovtest, p = 0.19). By simulating a synthetic

genome of mUCs, we showed that an 80% statistical power

is reached when the cohort size is �75 samples for highly
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Figure 4. Genomic characteristics of twin hotspot mutations in mUC

(A) Hairpin-loop structures affected by frequent hotspot mutations in ADGRG6, TBC1D12, PLEKHS1, and LEPROTL1. The positions of hotspot mutations are

marked in red for TpC context and blue otherwise.

(B) Distribution of twin mutations according to the distance between twin mutations and loop size. Error bars represent the mean ± standard error.

(C) Mutational signatures (COSMIC v.3.3) of twinmutations according to their frequency. The stability of the signature call was tested by applying 1,000 bootstrap

iterations (error bars represent the mean ± 1.96 standard deviations). Only SBS2 was very stable in highly frequent (n R 5) twin mutations.

(D) Frequency distribution of hairpin loops affected by twin mutations according to APOBEC mutagenesis. The Wilcoxon rank-sum test was applied to compare

APOBEC vs. non-APOBEC tumors, and p values were Benjamini-Hochberg corrected. Box plots show the median, inter-quartile range (IQR: Q1–Q3) and

whiskers (1.5 3 IQR from Q3 to the largest value within this range or 1.5 3 IQR from Q1 to the lowest value within this range).

(E) DNA accessibility, (F) Number of mutations in the TpC context within a loop and (G) DNA sequence between twin mutations. Error bars represent the mean ±

standard error. See also Figures S7–S9 and Tables S2 and S3.
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Figure 5. Driver hotspot mutations associated with APOBEC mutagenesis in UC

(A) Frequency distribution of variables (trinucleotide context, DNA accessibility, DNA hairpin-loop stability, and sequence in the loop) considered to identify

hotspot mutations that were more frequently mutated than expected outside (top) and within (bottom) hairpin-loop structures. Error bars represent the mean ±

standard error.

(B) Driver hotspot mutations were estimated separately for mutations outside and within hairpin loops. Per group, p values were corrected using the Benjamini-

Hochberg method (adj p value). See also Figures S10 and S11 and Table S4.
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frequent (>10%) driver ApoHMs (Figure S11B). However, the

power to detect rare driver ApoHMs (%10%) is considerably

reduced, and a larger cohort is needed. We also evaluated

the contribution of different genomic features as covariates

(Table S4) to identify driver ApoHMs. The McFadden’s R2 in

the model that only considers the trinucleotide context is low

(R2 = 0.04), but the goodness of fit increases when considering

the hairpin loop (R2 = 0.23) and hairpin loop + sequence in the

loop (R2 = 0.27) and when adding DNA accessibility regions

(R2 = 0.28) into the model. DNA accessibility shows a high

(anti-)correlation with other genomic features: GC content,

RNA expression levels, mutational load, methylation, and repli-

cation timing (Figure S11C). Therefore, the addition of the other

variables in the model has limited added value (Figure S11D).

Driver hotspot mutations in mBC
To test our statistical framework in other cancer types and to

evaluate whether our findings were UC specific, we analyzed a

cohort of 442 mBCs (Figure 6).30 Similar to UC, breast cancer

is commonly affected by APOBECmutagenic activity.1 We iden-

tified APOBEC-enriched tumors in 76% of patients, and only

19% of mBC tumors were APOBEC high. In most patients

(39%), tumors were classified as APOBEC low and were en-

riched for HR deficiency (two-sided Fisher’s exact test,

p < 0.001).

Themost frequent coding hotspotmutations affectedPIK3CA,

ESR1, and AKT1. Twin mutations in hairpin loops displayed a

similar mutational signature as those in mUC, including the

APOBEC signature SBS2 in conjunction with the uncharacter-

ized C>T mutations in the ApC context that define didymi

(Figures S12A and S12B). Didymi in PLEKHS1 and ADGRG6

were the most frequent non-coding hotspot mutations, while

LEPROTL1 and TBC1D12, two other didymi frequently found in

mUC, only affected 1% or less of mBCs. A total of 694 didymi

were identified in mBCs (Table S5), but only 19 (2.7%) were

shared with mUC (Figure S12C).

Our analysis revealed 51 driver ApoHM in APOBEC-enriched

mBCs (Figure 6B), representing only 0.07% of all ApoHMs.

Drivers included missense hotspot mutations in PIK3CA,

AKT1, and TP53 and hotspot mutations outside of the protein-

coding region of MAPKAPK2 and STAG1 and including didymi

in PLEKHS1 and ADGRG6. In contrast to mUC, and despite be-

ing one of the most frequently affected genes by hotspot muta-

tions in mUC, LEPROTL1 was not a driver of mBC. This analysis

suggests that driver mutations derived fromAPOBEC activity are

cancer type specific.

Driver hotspot mutations across multiple metastatic
cancers
APOBEC mutagenic activity is widespread across multiple can-

cer types. Here, we analyzed the genome of 16 additional meta-

static cancers, which, in total, represents 3,302 whole genomes

(+ 115 mUCs + 442 mBCs = 3,859). Urothelial, breast, and uter-

ine cancers have the highest proportion of APOBEC-high tumors

(Figure 7A). In mUC and mBC, 95% of hotspot mutations affect

non-coding transcripts, introns, or intergenic regions. This pro-

portion varies per cancer type and can represent up to 99% of

all hotspot mutations in esophageal cancer. Missense hotspot
mutations are rare, but the highest proportion is found in liver

cancer, reaching 5%.

The frequency of ApoHMs increases with the strength of

APOBEC mutagenesis, and they are more recurrent in hairpin

loops (Figure 7B). However, skin cancer does not follow this

pattern, which has been proven to be problematic in other

studies due to its hypermutated nature, inflating the number of

driver events.31,32 These studies make special considerations

or exclude skin cancer altogether from their analysis. We found

that skin cancer is mostly defined as an APOBEC-low cancer

type, and we suspected that a large proportion of mutations

that have the APOBEC signature may not have been derived

from APOBEC mutagenic activity. This is supported by the rela-

tively low number of driver ApoHMs in skin cancer that correlates

with APOBEC enrichment (Figure 7C), despite many ApoHMs

defined as drivers by our model (Table S6). These driver

ApoHMs, considered ‘‘true’’ APOBEC-derived mutations, are

more frequent in breast, urothelial, lung, and uterine cancers.

TERT, PIK3CA, PLEKHS1, and ADGRG6 are the most affected

genes by driver ApoHMs. All four genes harbor two driver

ApoHMs, which are targeted by APOBEC, except for TERT,

which has only one ‘‘true’’ ApoHM (C250T). TP53 is another

gene that is frequently affected by driver ApoHMs; however,

only one of nine is a ‘‘true’’ APOBEC-derived mutation. The

pan-cancer overview exhibits the distribution of driver ApoHMs

in APOBEC-enriched cancers, and the power gained by inte-

grating 3,859 samples revealed that, of all potential drivers,

only 31 might be ‘‘true’’ APOBEC-derived mutations.

DISCUSSION

In this study, we describe the genomic landscape of APOBEC-

driven tumors, characterize ApoHMs, and identify potential can-

cer drivers in mUC. The in-depth analysis of 115 whole genomes

of mUC identified chromatin accessibility, hairpin loop stability,

and specific sequences within the hairpin loop as variables asso-

ciated with ApoHMs. These variables, in combination with the

mutational context, were used to identify ApoHMs that were

more frequently mutated than expected by chance.

The substrate of APOBEC enzymes is single-stranded DNA

(ssDNA),1 which has led to the following conflicting hypotheses:

(1) APOBEC enzymes are mainly active during replication,33 and

(2) APOBEC is mainly active in open chromatin and transcrip-

tionally active genomic regions.34 The equal distribution of all

APOBEC-associated mutations across genomic regions sup-

ports the hypothesis that these mutations had been generated

during replication, when APOBEC enzymes have equal access

to ssDNA across the genome.33 However, kataegis, which has

been linked previously to APOBEC activity,35 and ApoHMs

were enriched in high-DNA-accessible and highly transcribed

regions. This observation reconciles both views, claiming that

APOBEC is active during DNA replication (non-clustered and

non-hotspot mutations) and in transcriptionally active regions

(clustered and hotspot mutations). Additionally, we observed

that APOBEC3A-preferred YTCA mutations are dominant in

mUC and evenly distributed across genomic regions. This result

is in line with experimental observations in human cancer

cell lines,35 suggesting that APOBEC3A is the main driver of
Cell Genomics 4, 100528, April 10, 2024 9
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Figure 6. Genomic landscape and driver hotspot mutations associated with APOBEC mutagenesis in mBC

(A) WGS data from 442 mBCs were analyzed, and patients were classified according to the enrichment of APOBEC-associated mutations. The genomic features

are displayed from top to bottom as follows: APOBEC mutagenesis, genome-wide TMB, COSMIC mutational signatures, frequency of kataegis, HR deficiency

and its probable origin, cancer subtype, and the most frequent hotspot mutations (known hotspot mutations in LEPROTL1, TBC1D12, and TERT were also

included).

(B) Putative driver hotspot mutations in APOBEC-enriched breast cancer. p-values were adjusted using the Benjamini-Hochberg method (adj p value).

See also Figure S12 and Table S5.
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APOBEC mutagenesis. For YTCA mutations as well as for

APOBEC3B-preferred RTCA mutations, the gap between the

number ofmutations across genomic regions is smaller at higher
10 Cell Genomics 4, 100528, April 10, 2024
APOBEC mutagenesis, which strongly suggests that APOBEC

enzymes do not have a preference for specific genomic regions.

However, the enrichment of highly frequent ApoHMs (n R 4) in
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Figure 7. Pan-cancer overview of ApoHMs and drivers

(A) Proportion of APOBEC-enriched tumors and hotspot mutations across cancer types.

(B) Distribution of APOBEC-associated hotspotmutations (ApoHMs) across cancer types of APOBEC-enriched tumors. Box plots show themedian, inter-quartile

range (IQR: Q1–Q3) and whiskers (1.5 3 IQR from Q3 to the largest value within this range or 1.5 3 IQR from Q1 to the lowest value within this range).

(C) The 10%most frequent genomic positions or genes affected by driver ApoHMs. Drivers of a specific cancer type are indicated by asterisks. The association of

driver ApoHMs with APOBEC fold enrichment (continuous values and using all tumor samples) using logistic regression analysis and applying the Wald test

(adjusted p < 0.05) shows the ‘‘true’’ APOBEC-derived mutations. All ‘‘true’’ APOBEC-derived driver ApoHMs are included. See also Tables S6 and S7.
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open chromatin, of which many are drivers, according to our

analysis, may imply a functional effect of these putative driver

mutations occurring near gene-regulatory elements.23

The extensive examination of ApoHMs in hairpin loops re-

vealed twin mutations we termed didymi, which are character-

ized by a unique mutational pattern. Didymi comprise the

APOBEC SBS2 signature and an unknown signature delineated

by C>Tmutations in the ApC context. It is remarkable to see only

one of the APOBEC signatures in didymi loci when they usually

appear together in tumor samples with APOBEC mutagen-

esis.36,37 The fact that only C>T mutations that characterize

SBS2 are present in didymi suggests that these mutations may

arise predominantly by replication across the uracil bases38,39

and that the mechanisms to generate C>G mutations that char-

acterize SBS13 are not operational in this context. Furthermore,

the unknown mutational signature of didymi correlates with

spontaneous deamination (SBS1) and defective DNA mismatch

repair signatures (SBS6, SBS15, SBS20, and SBS26), suggest-

ing a potentially different mechanism in ApC from the putative

TpC APOBEC mutations. Although there is a strong correlation

with APOBEC mutagenesis,22 it is unclear whether both muta-

tions in didymi loci are direct targets of APOBEC3A or whether

the non-TpC mutations are just the result of spontaneous deam-

ination followed by DNA mismatch repair.

Compared with breast cancer, twice as many bladder cancer

tumors were APOBEC high (19% vs. 41%). Most driver ApoHMs

were cancer specific, possibly reflecting different selective pres-

sures that each cancer type endured. In both tumor types,

APOBEC-low patients had enrichment for HR deficiency, while

APOBEC-high tumors had a high tumormutational burden, which

may indicate different treatment options for these two groups of

patients with different levels of APOBEC mutagenesis.40–43

The in-depth analysis performed in this study to characterize

the mutational landscape of APOBEC mutagenesis revealed

the correlation of ApoHMswith the stability of DNA hairpin loops,

DNA accessibility, and the potential for didymi associated with

these recurrent mutations. These features are key to modeling

the background distribution of hotspot mutations and identifying

potential drivers. Most potential driver ApoHMs were in the non-

protein-coding regions, including didymi. The similar frequency

of these drivers in the metastatic and primary settings of UC in-

dicates a general phenomenon in UC, and the drivers could

cause early events of tumorigenesis of UC. APOBEC-associated

mutations have also been identified in normal tissue;44,45 how-

ever, it is unclear whether the driver ApoHMs we report here

are also present in healthy tissue and to what extent they

contribute to cancer development from normal cells. Neverthe-

less, experimental validation will be needed to confirm the can-

cer driver status of these hotspot mutations.

Althoughseveral hotspotmutationsaredefinedasdriversbyour

model, the inclusion of other cancer types increased the statistical

power, revealing that only 31 driver ApoHMs have a strong corre-

lation with APOBECs and may be considered ‘‘true’’ ApoHMs.

In this study, we characterized the genomic landscape of

APOBEC-driven mUC and identified novel mechanisms of

genomic alteration patterns associated with APOBEC mutagen-

esis. Themutational signatures associatedwithDNA hairpin loops

targeted by APOBEC in two distinct hotspot positions are unique,
12 Cell Genomics 4, 100528, April 10, 2024
demonstrating the exclusive mutational signature of ApoHMs.

These findings were confirmed in non-mUC and in mBC. Addi-

tional studies are needed to clarify the role of APOBEC in these

recurrent twin mutations. Also, the enrichment of ApoHMs and

kataegis in high DNA accessible regions suggests a different

mechanism compared with the general APOBEC mutagenesis

(non-hotspot mutations) that seems to occur independent of

genomic regions, which may be linked to different mechanisms

of APOBEC3A and APOBEC3B.13 As APOBEC is a major source

of hotspot mutations, it is crucial to identify those in coding and

non-coding regions of whole genomes that may play an important

role in cancer development. The statistical framework we devel-

oped could aid to identify potential driver hotspot mutations

derived from APOBEC activity, which may offer novel targeted

therapy options for APOBEC-driven cancer patients.

Limitations of the study
Despite the thorough analysis we performed, caution should be

exercised when considering these outliers as true APOBEC-

derived driver hotspot mutations, as other unknown factors may

still explain the distribution of these highly frequent APOBEC-

related hotspot mutations. The sample size for some tumor types

is a limitation when identifying driver hotspot mutations in a can-

cer-specific manner as we did.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Harmen

J.G. van de Werken (h.vandewerken@erasmusmc.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d WGS, RNA-seq and clinical data frommUC,mBC and from other metastatic cancers are available through the HartwigMedical

Foundation at https://www.hartwigmedicalfoundation.nl/en/data/data-access-request/, under request numbers HMF: DR-

314, DR-026, and DR-041, respectively. For mUC, samples that were previously analyzed (HMF: DR-031) by Nakauma-Gon-

zález et al.10 were retrieved from HMF: DR-314. WGS data from primary UC was requested to the NCBI dbGAP and granted

access through request NIH-dbGaP: #33427.

d ChIPseq, replication timing and methylation data experiments, are freely available through The ENCODE Project Consortium52

and the Roadmap Epigenomics Consortium53 on the ENCODE portal (https://www.encodeproject.org).18

d The scripts, including the algorithm to find hairpin-loops and estimate the thermodynamic stability have been deposited in a

public repository available at https://github.com/ANakauma/ApobecHM_drivers. Additionally, the version v1.0.0 of the code

used for this study (ApobecHM_drivers) is available as Data S1 and at Zenodo (https://doi.org/10.5281/zenodo.10362579).54

Pre-processed WGS data was provided by the Hartwig Medical Foundation and scripts are available at https://github.com/

hartwigmedical/hmftools. R2CPCT v0.4 was used for additional processing of the WGS (https://github.com/J0bbie/R2CPCT),

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohorts
The mUC cohort of this study has been previously described (NCT01855477 and NCT02925234).10 In short, patients with advanced

or mUCwere prospectively enrolled in thesemulticenter clinical trials and were scheduled for 1st or 2nd line palliative systemic treat-

ment. Following protocols of the Hartwig Medical Foundation (HMF),55 WGS, with a depth close to 100X10, was successfully
e1 Cell Genomics 4, 100528, April 10, 2024
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performed on DNA from freshly obtained biopsies frommetastatic sites, and matched RNA-sequencing (RNA-seq) was available for

90 patients (97 samples). Sequential biopsies of a metastatic lesion taken at the time of clinical or radiological disease progression

from eight patients were additionally sequenced. Similarly, the cohorts of other cancer types have been previously described,30 and

the DNA extraction and sequencing were performed according to the HMF protocols.55 Only cancer types with >50 samples were

included in the analysis.

METHOD DETAILS

Whole-genome sequencing and analysis
Alignment and pre-processing of WGS data, detection of genomic subtypes, HR deficiency, MSI, structural variants, chromothripsis

events, APOBEC mutagenesis, and pathway activity have been previously described.4,10,55,56 Mutational signatures and kataegis

were detected with MutationalPatterns v3.10.050 and Katdetectr v1.2.0.51 APOBEC enriched tumors (adj. p < 0.01, otherwise

non-APOBEC tumors) were classified as high when the fold enrichment (E) for C>T and C>G mutations in TCW (W = A or T) context

was ER 3, medium when 2% E < 3 and low when E < 2. Similarly, the fold enrichment for C>T and C>Gmutations in the tetra YTCA

(Y = T or C) and RTCA (R = G or A) context was calculated.

Clonal fraction and cancer cell fraction
The clonal fraction of mutations was estimated as previously described.57 Correcting for tumor purity and copy number, the variant

copy number nSNV of each SNV was calculated as follows

nSNV =
fm
p
½pCt + ð1 � pÞCh�; (Equation 1)

where fm is the relative frequency of themutant variant reads, p is the tumor purity,Ct is the copy number affecting the region where a

particular SNV was located and Ch is the healthy copy number (2 for autosomes and 1 for allosomes). In this study, mutations were

considered clonal when the variant copy number was >0.75.

To identify the proportion of cancer cells carrying a specific mutation, the cancer cell fraction (CCF) was estimated as previously

described.58,59 Given the number of reference and mutant reads and assuming binomial distribution, we estimated the expected

number of allelic copies (nchr) carrying the observed SNV resulting from fm values when themutation is present in 1, 2, 3,.,Nchr allelic

copies. The resulting estimated nchr with the maximum likelihood is used to calculate the CCF as nSNV/nchr.

Mutational load across genomic regions
The genome was divided into regions (bins) of one mega base-pair (Mbp). The number of SNVs was counted in each bin, and the

mean number of SNVs was estimated from the entire cohort. These values represented the average SNVs/Mbp reflecting the muta-

tional load in each genomic region. The average SNVs/Mbp was smoothed by applying a moving average with a window of k = 3. For

visualization reasons, in Figure 2 a k = 9 was used.

DNA accessibility estimation (ChIPseq)
ChIPseq data for healthy urinary bladder, breast and other tissues of adult humans (H3K4me1, H3K4me3, H3K36me3 and H3K27ac)

were downloaded from the ENCODE portal (https://www.encodeproject.org) to our local server. The bed.gz files were imported with

narrowPeak format for analysis. Only peaks with q < 0.05 were kept for analysis. The signal of each experiment was divided into re-

gions of one Mbp, and a moving average with k = 3 bins was applied. The signals were normalized using the mean and standard

deviation. This procedure was applied to each chromosome. The sum of all four ChIPseq experiments was considered an approx-

imation of DNA accessibility. High DNA accessible regions (open chromatin) had values above the median considering the whole

genome. All other regions were considered to be of low DNA accessibility (condensed chromatin). DNA accessibility for all healthy

tissues is available in Table S7 (for urinary bladder see Table S4 along with other covariates). In case that matched normal ChIPseq

with tumor type was not available, an average of all ChIPseq experiments was used.

Detection of hairpin loops
All SNVs were assessed to determine whether they occur in the loop of hairpin-loop structures and their thermodynamic stability. A

total of 50 bases upstream and downstream of the mutation site were considered. The minimum length of the stem was 2 base-pairs

and the minimum and maximum loop size was 3 and 10 bases, respectively (not considering the closing base-pair). Since multiple

configurations are possible, only the structure with the highest stability was considered. One mismatch was allowed which could be

either a non-matching base-pair or a single nucleotide bulge loop.

Stability of hairpin loops
We implemented the nearest neighbor stability algorithm (NNSA) to estimate the thermodynamic stability of hairpin-loops. This al-

gorithm calculates the Gibbs free energy (DG) of the DNA hairpin-loop structure based on known biophysics properties of the

base pairs and their interactions.60,61
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The NNSA was applied to the target DNA sequence allowing mismatches in the stem. Each base-pair contributes to the stability of

the stem considering the immediate neighboring base-pairs. Adding the local DG’s calculated per base and accounting for the size

and sequence of the loop results in a finalDG for the whole hairpin-loop structure. All parameters are available in the literature and the

UNAFold web server was used to infer parameters for mismatches.60–62 For loops larger than 4, no data was available for specific

sequences and only the loop size was considered.

Driver hotspot mutations
To identify driver hotspot mutations, all genomic positions with 2 or more mutations were considered for analysis. Hotspot mutations

were divided into two groups either located within loops of hairpin-loops or outside of these DNA structures. For hotspot mutations

outside of loops, only those in the TpC context were considered, as these are likely initiated by APOBEC enzymes. For hotspot mu-

tations falling within loops, all hotspot mutations in NpC (N = any base) context were considered, as APOBEC3A may also mutate

these bases that are not in the TpC context.22

In cancer, only a few somatic mutations are drivers, while the vast majority are passenger mutations.31 Under this consideration,

we modeled the distribution of the remaining hotspot mutations as a Poisson process per focal hotspot mutation. For more accurate

modeling, we considered the tri-nucleotide context TCW (TCA, TCC, TCG, TCT). In the case of hotspot mutations that do not occur in

hairpin loops, DNA accessibility was used as a predictor variable that can influence the distribution of hotspot mutations. We

modeled this in R as model_TCW_noloop = glm(n_mut_genpos+DNA_access). Where, n_muts_genpos is a vector with the number

of mutations per genomic position linked to the DNA accessibility region (DNA_access). Accessibility regions were divided into 10

regions based on percentiles. Since DNA-accessibility varies per tumor-tissue of origin,63,64 this was estimated for mUC, mBC

and other tumor types using ChIPseq experiments from normal tissue as described above.

In the case of hotspot mutations within hairpin-loops, the model was extended to include mutations in non-TCW context

(grouped as ApC, CpC or GpC context), the hairpin loop stability (hairpin_stab) and the DNA sequence in the loop (loopSeq):

model_TCW_loop = n_mut_genpos+DNA_access+hairpin_stab+loopSeq. The loop sequence was a binary variable to indicate

whether the mutation occurred in the following sequence: 1001 or 101 (0 = A/T, 1 = G/C; underlined is the position of the hotspot

mutation).

Using these models, we estimated the expected number of mutations of the specified hotspot mutation for which the model was

built. Then, the exact Poisson test was applied to estimate the significance of observing the same ormoremutations than expected in

a specific genomic position. p-values were Benjamini-Hochberg adjusted. In rare occasions, only a fewmutations (<2) were available

to represent the background distribution of a particular tri-nucleotide. To include these ApoHM in the analysis, a model that did not

consider the tri-nucleotide was used instead.

RNA-sequencing
Alignment, pre-processing of RNA-seq data and transcript normalization have been previously described.10,30 The transcriptomic

subtype of each mUC sample was identified when the mean (normalized) expression of all genes associated with a specific subtype

was the highest across all subtypes.

mRNA editing
Jalili et al. identified hotspot mutations in themRNA ofDDOST that is targeted by APOBEC3A.17 The genomic position of this hotspot

mutation reveals a hairpin-loop structure that is an ideal substrate for APOBEC3A. Due to the short life-time of mRNAmolecules, the

presence of this hotspot mutation reflects ongoing APOBEC mutagenesis. The proportion of C > U mutations in chr1:20981977 was

estimated to identify the RNA-editing activity of APOEBC3A.

Transcriptome expression data mapped to genomic regions
MultiBamSummary from deepTools v1.30.046 was used to read BAM files and estimate the number of reads in genomic regions with

a size of oneMbp. The average raw read count per Mbpwas calculated, and amoving average with k = 3 bins was applied. The scale

of the read counts was normalized per chromosome using the mean and standard deviation. High transcriptional regions were

defined as such when the expression value of one region was above the median of the whole genome.

Simulations and power calculation
A synthetic genome with 1,000,000 hotspot mutations was reconstructed from the original cohort of mUC. To reach the number of

hotspot mutations, non-hotspot mutations were randomly selected and the number of mutations per genomic position was drawn

from a Poisson distribution using the empirical lambda from the mUC cohort. The same number of driver ApoHM identified in mUC

were simulated as hypothetical drivers to replicate a 3%–15% prevalence. Hypothetical cohorts with 10–500 samples were simu-

lated 100 times, using a random number of ApoHM derived from the empirical distribution of the mUC cohort. The statistical power

was estimated as the proportion of driver ApoHM that were correctly identified. The performance of the model on simulated cohorts

of 100 samples, was also tested with other genomic covariates. These covariates were replication timing and methylation from HeLa

cell lines, and the proportion of GC content from the reference build hg19.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Analyses were performed using the statistical analysis platform R v4.1.0.47 Fisher’s exact, Wilcoxon-rank sum andWilcoxon signed-

rank tests were used for comparison between groups. The correlation coefficients of continuous values with categorical values were

estimated with logistic regression analysis applying the Wald test. Residuals for QQ plots and the Kolmogorov-Smirnov test were

estimated using DHARMa v.0.4.6.48 The exact Poisson test was applied to identify potential driver hotspot mutations. The Pois-

son-binomial method was applied for mutually exclusive mutation events using Rediscover v0.3.249 and the Fisher’s exact test

was applied for the significance of co-occurred mutations. In all cases, p values were adjusted using the Benjamini-Hochberg

method.
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