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2 Chapter 1 – Introduction

The first steps in brain-behaviour research took place in the end of the 19th
century and, since then, the subject has fascinated scientists and engineers.
In the early 1940s, the first mathematical model of a Neural Network (NN)
was proposed, inspired by brain behavior [12]. Contrary to the typical com-
puter system based on the Von Neumann model, also introduced around
the same time, a neural network does not execute explicit sequential in-
structions to solve its computational problems [4]. The network is a group
of processing elements interconnected to each other. Each function on
each node (or neuron) is computed in parallel and the relation between
input and output of the NN is determined by the network topology and
method of interconnectivity. This topology can also be adaptive, in terms
of its computational dynamics, mimicking further the biological behaviour
(Figure 1.1). This achievement paved the way to further explore the idea
of Artificial Neural Networks (ANNs) for creating more advanced systems
that abstractly mimic biological behaviour. Such research as the percep-
tron [13] and other works on connectionist networks are more suitable for
certain computational problems. This made neural networks a significant
computational tool over the decades even though far removed from repli-
cating the actual brain behaviour.

Advances in neuroscience and engineering eventually led to the creation
of mathematical models of networks that do not simply mimic biological
behaviour in an abstract fashion but emulate it in significant detail. Such
an example is the Spiking Neural Network (SNN) [14]. An SNN can
model a variety of additional behavioural characteristics, like encoding data
and adapting according to a spike train‘s amplitude, frequency and general
precise pattern of arrival of spiking events on a neuron. As a result, an
SNN can have greater computational potential than typical ANNs [15,16].

This, alongside with the advances of technology in computer science and
engineering, has opened up the possibility of implementing larger-scale NNs
that have the ability to more accurately simulate brain behaviour. This
made neural networks a viable research tool for neuroscience, in addition
to a powerful computational tool [4]. A multitude of possibilities then arise
in using in-silico simulations both as an experimentation tool to understand
brain function ] [17] but also as the basis of novel computing systems beyond
the current Von Neumann-based technology [18]. These large scale, in-
silico neuron simulations with added features come with high computational
cost, often beyond the capabilities of typical computing platforms [19, 20].
The primary focus of this thesis, then, is to utilize advanced technologies
specifically designed to address the high computational demands incurred
by SNNs.
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Figure 1.1: von Neumann and neural network computing approaches [4].

1.1 Motivation for in-silico brain simulations

The United States National Academy of Engineers has already classified
brain simulation as one of the Grand Engineering Challenges [21]. Brain
simulation in-silico presents a number of potential benefits (Figure 1.2) for:

• Neuroscientific Research: Neuroscientists plan to gain greater
understanding of brain behaviour by simulations based on biologi-
cally plausible models. As powerful experimentation as tools in-vivo
and in-vitro experiments are, they have limited scale and are time-
consuming to conduct reliably. In-silico models (based on biological
data) can provide insight from single-cell behaviour [22] to network
dynamics of whole brain sections [17] in a much more controlled en-
vironment. Then findings can again be validated with more targeted
biological experiments greatly accelerating brain experimentation.

• AI research: The natural potential of biologically inspired neural
networks for artificial intelligence can also be an important benefit.
ANNs have already been successfully used in this field even though
they cannot even begin to reach the computational capacity of bio-
logical systems. It is believed that greater understanding of biological
systems and their richer computational dynamics can lead to more
advanced, bio-inspired artificial intelligence models for autonomous
and robotic applications [11].
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Brain Simulations

A.I.

Medical Use

ComputingNeuroscience

Figure 1.2: Applicability of brain simulation research.

• Computing research: this type of research could lead to new com-
puter architecture paradigms, alternatives to the typical von Neu-
mann architectures [18]. Such architectures can be very useful for
massively parallel applications (such as Digital Signal Processing or
inference) and could potentially provide defect-tolerant systems em-
ulating the brain’s adaptability.

• Medical use: One important eventual goal of the field is brain re-
covery. If brain function can be emulated in silicon accurately enough
and in real time, it can lead to brain prosthetics and implants that
can recover lost brain functionality due to health conditions and ac-
cidents [23].

The main challenge of complex, biologically accurate SNNs is the com-
putational load they often entail. Furthermore, the biological NNs simu-
lated execute these computations alongside high communication traffic be-
tween neurons, something that often conventional CPU execution cannot
cope with very well. As a result, the speed of simulations and population
of executed models is quite low when running on traditional workstations
(usually implemented using MATLAB or standard neuron modeling lan-
guages such as NEURON [24] and GENESIS [25]). For example, a 96-
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neuron network of the inferior olive model in [22], simulating just 6 seconds
of brain time takes close to 1.2 hours to complete in MATLAB in a typi-
cal workstation [3]. This greatly impedes the efficiency of brain research.
High Performance Computing (HPC) solutions need to be employed,
if such simulations are to be accelerated to speed-up the research process.

1.2 The era of accelerated brain simulations

The process of accelerating a neuroscientific application intuitively follows
the same process of any typical acceleration efforts in other fields. Ini-
tially the neuroscientific question is formulated. Based on that, a relevant
neuroscientific computational model is defined. Then, the computational
neuroscientist develops the model using a simulation language. Typical
examples include MATLAB, NEURON [26], PyNN [27] etc. To achieve op-
timized acceleration of simulation, an acceleration engineer needs to subse-
quently take over, in a sense to mediate between the scientist and the HPC
hardware (as the hardware is often too specialized), porting the initial de-
scription to the acceleration platform.

An increasingly popular HPC platform for brain simulations is the
Graphics Processing Unit (GPU). Since GPUs are ideal for repetitive and
highly parallel operations they are an good fit for executing neuron network
models and provide good performance and scalability( [28,29]). Yet, in the
cases of complex models or very large-scale networks, they may not be able
to provide real-time performance, due to the high rates of data exchange
between the computational elements of models. Additionally, applications
are required to fully utilize the parallel elements of the GPU before the
device can show its full efficiency, but the network sizes in which the tech-
nology can realistically provide real-time performance for complex models
often cannot do that due to the computational intensity of models.

An alternative would be the use of multithreading using supercomputer
setups. These systems can emulate the behaviour and parallelism of bio-
logical networks with sufficient speed [30]. Supercomputer systems require
immense physical space, have high implementation overheads, high main-
tenance and energy consumption costs [31] while lacking any kind of mobil-
ity. A solution using similar multithreading programming environments at
a smaller package would be many-core-CPUs such as the Xeon Phi. It has
been proven to be efficient for SNNs before [32] but can also suffer from
drawbacks similar as GPUs when it comes to real-time experimentation
while also cache communication overheads can also affect performance.

Mixed-signal Very Large Scale Integration (VLSI) circuits is another
widely used option for SNNs due to combining advantages both from the
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digital (flexibility and performance) and analogue domain (low power and
large scale) [33]. Mixed-signal VLSI designs are, on the other hand, much
more difficult to implement, while often encumbered by simulation accuracy
issues, such as transistor matching. Additionally they lack flexibility since
each system must be tailor-made for a certain neuron model. Thus, would
be problematic to use during model fitting where there is constant need to
edit the developing model [34], especially with more biophysically complex
modeling.

Implementing the neural network in parallel custom digital hardware
can naturally exploit the parallelism of biological models fully and provide
real-time or hyper real-time performance useful for simulations, prosthetics
and robotics applications. Digital Application Specific Integrated Circuit
(ASIC) design, as otherwise called, does suffer from other drawbacks. They
are expensive and time consuming to implement while not flexible. A digital
ASIC chip, when implemented, cannot be altered. Minor model changes,
again often required in fitting, would require a new development cycle, just
like Mixed-signal VLSI.

Many of the aforementioned drawbacks of digital ASIC and mixed-VLSI
hardware options can be avoided with the use of Field Programmable Gate
Arrays (FPGAs). FPGAs are similar to ASICs, in the sense that they are
application specific digital circuits but have the added benefit of being “field
programmable”. The nature of the implemented hardware on an FPGA can
be modified (reconfigured) on the fly without the need of redeveloping the
chip from scratch, like with digital ASICs or mixed-signal VLSI. FPGAs,
though slower than ASIC designs, still provide enough performance & par-
allelism for real-time and hyper real-time neuron simulations. Besides being
able to be used as an embedded platform, the reconfiguration property of
FPGAs gives the ability for the same device to be used for different SNN
models, providing good flexibility in simulations, model fitting and proto-
typing. Reconfigurability can also potentially provide a way to emulate the
plasticity of biological neural networks in ways other solutions cannot.

1.3 Thesis scope

Because of the aforementioned reasons and the fact that FPGA design were
less explored for the specific application domain compared to other HPC
platforms like GPUs [35], the work presented in this thesis, initially focused
on FPGA-based acceleration of complex biophysically meaningful SNNs,
assuming that this would be the best choice for serving both large-scale
and real-time SNN simulations. The FPGA solutions were later compared
with other typical HPC solutions to validate its benefits. It was clear,
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though, during the evaluation of the FPGA proof-of-concept designs that
the problem of accelerating brain simulations is far more complex than just
the engineering challenge of the acceleration:

• The large variety of experiment types, even when focusing on a single
model type, cannot be always supported efficiently by a single HPC
platform.

• The acceleration devices are too complex to be programmed and set-
up reliably (assuring reproducibility and portability) by non-engineer
experts (something not unique on brain model acceleration). Thus
mediation by the accelerator engineer is required. This, holds true
not only for the more specialized FPGA platforms but also for more
widely familiar technologies. But the dynamic nature of computa-
tional modeling creates significant delays and even forces the complete
repetition of engineering development cycles adding significant delays
to experimental process that could balance out the performance ben-
efits of the acceleration.

The above limitations made apparent that the ideal HPC platform
for large-scale and real-time-brain simulations requires programming con-
structs familiar to the neuroscientist that are portable and accessible and
even potentially provide multi-node support (for larger-scale experiments).
Thus, the final part of the work proposes and argues in favor of a uni-
fied, flexible, cloud-based, heterogeneous HPC simulation platform, called
BrainFrame. The BrainFrame front-end provides a familiar (to neuroscien-
tists) interface using on a Python-based simulation language, PyNN [27].
The back-end integrates FPGA-based, GPU-based and CPU-based HPC
resources, operating transparently to the user, removing the engineering
work from the critical path of the experiment.

1.4 Thesis contributions

The contributions of this thesis can be summarized as follows:

• An extensive review of the modelling aspects of Spiking Neural Net-
works as HPC workloads that reveal the main characteristics that
can affect performance and scalability when using different HPC so-
lutions. This analysis can be used as a guide to assess suitability of an
HPC technology in relation to the neuron network application that
is the focus of the in-silico experiment.
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• A comprehensive analysis of prior art on the field using on FPGA
technology and the identification of FPGA potential and shortcom-
ings based on this prior art.

• The acceleration of a biologically realistic, Hodgkin-Huxley (HH) [36]
based model of the Inferior Olive [22], an important subsystem of the
Olivocerebellar brain system using various FPGA-based HPC tech-
nologies. Besides the scientific usefulness of the model itself, the In-
ferior Olive model is complex enough to provide generalized insights
on the benefits and drawbacks of executing HH models on FPGAs.

• The evaluation of the FPGA-based acceleration effort and a compre-
hensive comparison with other HPC technologies implementing the
same application highlighting the need for heterogeneity.

• The proposal and development of the BrainFrame HPC platform,
supporting the Inferior Olive and standard Hodgkin-Huxley models.
BrainFrame provides both a powerful heterogeneous platform for ac-
celeration and also a familiar to the neuroscientist front-end that hides
the HPC-platform porting intricacies from the neuron modellers.

1.5 Thesis organization

The thesis is organized as follows: Chapter 2 presents some basic back-
ground about computational neuron models (such as the Hodgkin-huxley
model) and biological systems (such as the inferior olive) which collectively
form the focus of the thesis. Chapter 3 presents a review of the modelling
aspects of Spiking Neural Networks as HPC workloads. It provides a com-
prehensive overview and description of what kind of characteristic network
neuron models have; characteristics that directly affect how well they are
executed in HPC hardware. The chapter concludes with an analysis of
prior art of FPGA-based SNN implementations. Chapter 4 presents all the
FPGA-based acceleration efforts conducted on the Inferior Olive model as
part of this thesis. The goal of the work in this chapter is to employ the
use case of the inferior olive to assess the limits of the FPGA platform
when accelerating such complex neuron models. The next chapter presents
a comparison and analysis of the aforementioned FPGA designs with other
potentially beneficial HPC technologies and reveals the merits of various
HPC solutions for these workloads. Chapter 6, informed by the previous
chapters’ conclusions, proposes and evaluates a heterogeneous HPC system
for neuron networks, BrainFrame. Finally, the thesis work is summarized
in chapter 7 with conclusions and future work.
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Figure 2.1: Basic illustration of a biological neuron [5].

2.1 The workloads of computational neuroscience

The biological neuron is comprised in general (in truth it is a much more
complicated system) by three parts (called compartments by neuroscien-
tists and modelers). The dendrites, soma and axon (Figure 2.1) [26].
The dendritic compartment represents the cell input. The dendrites receive
input via electrical and chemical synapses from other cells and transfer
them to the soma. The soma processes the stimuli and generates them
into a Membrane Potential, which in turn generates a response (Action
Potential). This response is transferred through the axon, that basically
represents the cell output, to other cells. The soma accumulates inputs,
influencing the membrane potential which subsequently (based on its elec-
trochemical characteristics) may or may not generate (or fire) a pattern of
spikes as output. A connection between axon and dendrite of two neurons
is referred to as a synapse, which also greatly influences network behaviour.
Neuron models try to represent this behaviour.
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Figure 2.2: Generalized simulation flowchart of a neuronal model.

2.1.1 Abstract view of neuronal models

In order to execute such models on HPC resources, complex, task-intensive
applications that can run in parallel need to be generated, usually denoted
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as workloads. Model characteristics, naturally, can greatly affect the HPC
workload behaviour. A typical representation of a neuronal network simu-
lation workload can be seen in Figure 2.2. Of course, the various workloads
in the field can be much more complex, but this flow can be generally found
in the vast majority of workloads. A simulation is separated into simula-
tions time steps. The computations of the previous step are required to
be completed to move to execution of the next one. Within a simulation
step the various compartmental and network connectivity influences on the
state of the neuron compartments (represented by state variables) are
calculated. If network connectivity is present, data from other neurons
need to be retrieved first and their contribution added to the neuron and
compartment states.

In the simplest abstract view of a neuronal network model the cells of
the network are connected with each other and exchange information (po-
tentially) in each time-step. These connections can be simple data transfers
but could also incur additional computations on top of the computation
within a cell, modeling specific electrochemical activities of the connections
between biological neurons. In each step they can also receive external
evoked inputs (network input). The cell system works in lock-step comput-
ing discrete state and output values for each cell that, when aggregated in
time, contribute to form the electrical waveform response of the network.

2.1.2 Neuron model types

There are a number of mathematical models describing the behaviour of
compartments of spiking neurons. The more complex the model,it can
emulate more biological dynamics and is a more biologically meaningful
representation of the real cell (Figure 2.3). This does not mean that the
more complex the model the more useful it is. Models of every complexity
have merit. The level of complexity required is highly dependent on which
scientific question is being explored. Without exhausting the field, there
are two main subfamilies of spiking neural models that are widely used;
phenomenological and biophysically plausible models.

Phenomenological models use simple solvers that emulate the In-
put/Output behavior of a neuron but are not emulating the biophysical
properties of a cell (chemical channels, compartments etc.) of the neuron as
shown in Figure 2.1. Some typical examples of widely used phenomenolog-
ical models are the Integrate-and-fire, Izhikevich [6] and AdEx [37] (AdEx
is a middle ground between phenomenological and more biophysically plau-
sible models but for simplicity grouped here) models.
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Figure 2.3: Examples of Basic I/O responses of neuronal behavior [6].

Integrate-and-Fire (IaF) models, emulate the most basic property of
a spiking neuron. It is essentially modelling an integrator function. The
model accumulates spikes coming from other cells as inputs, and for every
spike it receives, increases the membrane potential. When the potential
surpasses a set threshold, the neuron fires an output spike. Then, the
membrane potential is reset to a resting value in which it cannot fire any
output spikes, from which it gradually returns to a state whence it can begin
again to accumulate inputs. There are a number of extensions upgrading
the basic model to include more behavior found in biology, which on its
own is very simple and models a very small portion of biological behaviour.

One immediate and simple extension is the Leaky-Integrate-and-Fire
model [6]. Here, an extra property of membrane potential decay is added.
The potential reduces in value over time as no new inputs are coming to
the cell. Another extension is an integrate-and-fire model with adaptation.
The model’s response adapts according to the frequency of spike inputs and
not only to their number. Smith et al. [38] proposed an Integrate-and-Fire-
or-Burst model. It was developed as a model of thalamo-cortical neurons.
The extension provides the model with extra neuron behaviours, such as
bursting instead of just tonal spiking of the original models. Another ex-
tension of the IaF is Resonate-and-Fire [39]. Here, the model incorporates
the characteristics of a resonator. A resonator neuron only responds (fires)
to a certain frequency of spiking inputs, instead of all. Under certain pa-
rameters the model becomes again an integrator. Finally, an interesting
alternative is the Quadratic Integrate-and-Fire model, referred also as the
Theta-neuron [40,41]. The model is powerful enough to incorporate spiking
latencies, input-dependent threshold value and bi-stability characteristics.

Izhikevich neurons [42] are a special type of model which emulate an
impressive fraction of the biological-neuron behaviour. It is presented as
a interesting compromise between IaF models and biophysically plausible
models attempting to bridge the gap between the biophysically-meaningful
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model, which provide high biological plausibility but also high computa-
tional demands, and IaF models that are computationally efficient but of-
ten too simple. It boasts the ability to emulate most input/output spiking
activity found in the biological neuron such as spiking, bursting, and mixed
mode firing patterns, post-inhibitory (rebound) spikes and bursts etc [6].
At the same time, it has similar computational demands as the more com-
plex IaF models. Its flexibility permits computational neuroscientists to
create very accurate high-level representations of large-scale, biological-
neural-network behaviour.

The Adaptive Exponential integrate-and-fire model, also called AdEx
[37], model that combines properties from the Izhikevich and the exponen-
tial versions of IaF models. It has similar complexity to and can reproduce
all features the Izhikevich model can, with the main difference being that
the rate of change of cell voltage is not quadratic (as in Izhikevich) but
exponential. The Izhikevich model suffers from the upswing of its action
potential being too slow compared to the biological neuron, a problem that
the AdEx neuron does not have, due to the exponential voltage depen-
dence. As a result, the AdEx provides a much more realistic representation
of the biological neuron, even though technically supporting the exact same
features as the Izhikevich model.

If the topic of research is focused on the internal dynamics of a neuron
and how that affects its input and output behaviour, a phenomenologi-
cal neuron representation cannot be employed. Biophysically plausible
models need to be used then. A typical subfamily of biophysically plau-
sible models are conductance-based models. These models capture the
biophysical properties (multiple compartments, electrochemical channels
and gates etc) of the biological neuron. The first and most pivotal conduc-
tance model is the one presented by Hodgkin and Huxley (HH) in 1952 [36].
It is considered one of the most accurate mathematical representations of
neuron behaviour. The main challenge with HH models is their extreme
computational costs required to model all neuronal characteristics (about
2 orders of magnitude more computational demanding than Izhikevich and
AeEx neurons [6]). This has huge impact on simulation times and can
be prohibiting for achieving real-time simulations speeds or modeling large
scale networks.

For this reason, simplifications of the HH model have been created over
the years, with reduced capability in biological emulation, but lighter com-
putational needs. Such simplifications are the FitzHugh-Nagumo [43] and
Wilson [44] models. FitzHugh-Nagumo has significantly less computational
demands but cannot represent chaotic spiking dynamics and bursting. The
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Figure 2.4: General STDP modification function [7].

Wilson model is much simpler than the HH model but significantly more
complex than the FitzHugh-Nagumo. It can model almost all possible be-
havior with correct parameter tuning (also known as fitting). Correctly
fittingWilson models, on the other hand, is often characterized as a cumber-
some process [6]. Another example is the BoothRinzel model [45], which
is a two-compartmental model created to study bi-stability properties of
dendrites in motor neurons.

2.1.3 Network connectivity modeling

An important role in the neural network dynamics of biological systems
is network connectivity. There are various types of connections between
neurons within a network. One is the synapse which, as mentioned previ-
ously, is the connection between the axons and dendrites of different cells.
Synapse modeling can be as simple as a data transfer, an accumulator or
even modeling more complex electrochemical behavior, that can add to the
overall network computation requirements significantly. The synapses have
strength that is represented by weights influencing the inputs coming from
other cells and affect the resulting membrane potential. These weights can
also be adaptive based on the state of the network (synapse plasticity).
In 1945, Donald Hebb formulated the theory that synaptic plasticity is de-
pendent on synapse usage [46]. If a synapse stimulates a cell repeatedly
and causes the cell to fire, then the synapse efficiency (weight) increases.
Synapse weight decreases when a connection is rarely used.

An approximation of the hebbian rule useful for synapse modeling is the
Spiked Time Dependent Plasticity (STDP) algorithm (Figure 2.4) [47,
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48]. This learning rule is based on the time difference between post-synaptic
spikes and pre-synaptic spikes. According to this rule, a reference time span
is defined, usually in the order of tens of milliseconds. If a pre-synaptic
spike arrives in that timespan before a post-synaptic spike, it is considered
to contribute to the cell spiking activity. According to the rule, this synapse
should be strengthened. If it arrives in the timespan after the occurrence
of a post-synaptic spike, the synapse weight is reduced, assuming that cell
activity is independent of the activity of this synapse. A hybrid STDP and
Genetic Algorithm (GA) learning rule was even published in 2006 [49],
in which the GA was controlling network topology adaptation.

Another type of connection between neuron cells is the Gap Junction.
Gap junctions are electrical connections that can develop between any part
of neighboring neurons due to physical proximity. Thus gap junction con-
nections do not only manifest between axon and dendrite but between any
neuron compartment (like between somata or dendrites of neighboring neu-
rons). Since gap junctions are virtually channels through which charged
ions move, they are represented by complex electrical equations that in-
crease the per time-step computations significantly.

When modeling a neuron network, a neuroscientist can usually com-
bine most cell models types with most connectivity models into the same
network, depending on the biological network they want to represent. This
adds even more to how dynamic and diverse the field of computational
neuroscience is in terms of workloads.

In many cases, neuronal network models are effectively behaving like
an assortment of integrators. This is often the case with networks using
Phenomenological cell models or simple connectivity modelling. In such
cases event driven simulation flows can be employed. Each time step cal-
culations are only done in case of a spiking event that affects the output of
a cell. Otherwise that specific cell is ignored, assuming that its state is un-
changed, thus computations are skipped. For non-complex networks, event
driven flows can be used to reduce computation requirements greatly. On
the other hand, complex connectivity modeling or the use ofBiophysically
Plausible cell models often create coupled oscillators that need to be co-
simulated in strict lockstep among them even with the absence of a spiking
event in the input. This enforces the use of cycle-accurate, transient simu-
lators where simulation steps are hardly compressible and all neuron states
need to be completely updated at each simulation step. Here, event-driven
execution cannot be employed, thus computation requirements increase sig-
nificantly.
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Figure 2.5: Depiction of the Olivocerebellar System (left) [8] and ab-
stract depiction of main Olivocerebellar loop (right). PC=Purkinje cell,
DCN=Deep Cerebellar Nuclei, IO=Inferior Olive.

2.2 The inferior olive

The inferior-olivary nucleus forms an intricate part of the olivocerebellar
system (Fig 2.5), which is one of the most dense brain regions and plays
an important role in sensorimotor control. Activity in the inferior olive
only directly triggers movements, when it is synchronized among multi-
ple neurons [50, 51]. In addition, the olivary neurons can provide rhythm
and coordination signals for motor functions [8]. It is considered to be
imperative for the instinctive learning and smooth completion of motor ac-
tions [52]. The olive provides one of the two main inputs to the cerebellum
through the climbing fibers.

What makes the inferior-olive neurons special is their dense interconnec-
tion through gap junctions (GJs). The gap junctions facilitate the synchro-
nization behavior between the olivary neurons and, subsequently, influence
the synchronization and learning properties of the entire olivocerebellar
system [8]. A model of the inferior olive will be a main benchmark for
the work in this thesis. The multiple compartments, GJ connectivity and
synchronization characteristics result in a highly demanding workload for
use with HPC technology, as shown in later chapters.
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CHAPTER 3

Accelerated SNNs on Reconfigurable Hardware



22 Chapter 3 – Accelerated SNNs on Reconfigurable Hardware

In this chapter, we shall review the modelling aspects of Spiking Neural
Networks as HPC workloads for reconfigurable hardware. This includes an
analysis of the explanatory strength and the computational complexity of a
model, the effects of the numerical implementation. This analysis allows us
to form some key observations that can be key for a beneficial acceleration of
such workloads in HPC technologies and FPGAs specifically. This chapter
will also present a summary of the state-of-the-art of FPGA-based neuron
model acceleration and present the platforms place in the field, both for the
use in A.I. applications and simulations for brain experimentation. Finally,
based on this survey, observe the strong and weak aspects of such FPGA
implementations to identify possible topics for improvement.

3.1 Explanatory power and computational com-
plexity of neuron models

The choice of which neuron model to use for an experiment as mentioned
above is not an easy one. Just because a model’s representation is more ac-
curate and more detailed it does not mean it is the most suitable for use in
any possible simulation scenario, compared to a model with a more coarse
representation. Suitability depends heavily of the topic of research. For
example if the research question revolves around large scale experiments
that do not require small time-steps, I&F neurons can be suitable [53] even
if limited in the features they support. There is also a trade-off between
computational simplicity and explanatory power (behavioral feature sup-
port) of a model. The explanatory power of a model is directly tied to the
input/output or electrochemical behavior it tries to represent. The more
behaviors or biophysical details are modeled, the greater the number of the
state variables will be needed to describe the neuron. Thus, we can make
the reasonable assumption that the number of neuron state variables a neu-
ron contains is an indication of its explanatory power. A more powerful
model also tends to be more computationally complex, thus poses a more
challenging workload for a computing system and vice versa. It would be
interesting to quantify the biological explainability that a given neural net-
work offers – i.e., how faithfully to biology it can explain certain phenomena
– with respect to the compute complexity it requires. If this relationship
is not linear, it means that there will be interesting model niches offering
sufficient explainability to modelers at a proportionally lower compute cost.

We can plot model explainability as a function of model type employed
for different sizes of brain networks all the way to the size of a whole human
brain (ca. 1 liter in volume), assuming average anatomical characteristics
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Figure 3.1: Computational complexity ( #State Variables vs model di-
mentionality and brain size modeled. n-d/mcomp assume an example of a
3 compartmental neuron) - Higher complexity denotes higher explainability.

of the human brain [54], within a single graph (Figure 3.1). Typical 1-d
models would be the integrate and fire variants that usually implement
5-10 floating point operations per neuron (FLOPs). Typical 2-d models
are the Quadratic IaF and AdEx model that vary between 7-30 FLOPs
while single compartmental models are often characterized as 4-d mod-
els. Single compartmental model can vary from tens of FLOPs (like the
FitzHugh–Nagumo with 72) to a few thousands like the Hodgkin-Huxley
(1200 FLOPs) [6]. Adding multicompartmental models (denoted in the
graph as n-d) the compute complexity increases significantly. It must be
noted though, that the greater increase in the state variable number comes
when adding biophysically meaningful network connectivity (like for ex-
ample Gap Junction modeling - n-d/mcomp/gj on the graph) and multi-
compartmental models making their computation, potentially, the most
challenging type of workload when such high explanatory power is required.
The IO model that is the focus of the work later in this thesis is such a
model.

3.2 Numerical analysis

Biophysically plausible SNN models are in practice dynamical systems. The
behaviour of the SNNs are described by state variables that change over
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time, as mentioned in section 2.1.1. The models consists of ordinary dif-
ferential equations) [55], describing the derivatives of the state variables.
These equations, in most cases, cannot be solved analytically and therefore,
require the use of numerical methods. In this case the model assumes a
uniform voltage potential on each cell membrane.

The type of numerical methods used to solve these ODEs directly affects
the size of the time-step ∆t , and subsequently has an huge influence on
the computation time of a simulation. A smaller ∆t gives more accuracy,
however, requires more computation steps than a larger ∆t for the same
simulation. Furthermore, how accurate the solution is for a certain time-
step size is dependent on which numerical method is used and, thus, the
numerical methods have a significant influence on the both the performance
and accuracy of the simulations. To give some insight on the behaviour of
different numerical methods, different varieties and method characteristics
will be discussed further.

3.2.1 Numerical methods

Numerical methods approximate the solutions of the mathematical equa-
tions numerically. This is done by using finite computational processes.
Consequently, the continuous problems are solved using discretization, in-
troducing truncation errors. Furthermore, as a computer can only represent
numbers with a finite precision, rounding errors are also introduced. To
analyse the sources of the errors introduced by the use of numerical meth-
ods three concepts are used: stability, consistency and convergence. A
numerical method is called stable if the error remains bounded after the use
of multiple iterations. The consistency of a numerical method signifies that
the discretization error of the method goes to zero if the step size goes to
zero. Finally, convergence describes that the error of a numerical method
is always lower than a certain arbitrary value. Furthermore, stiffness is
used to measure the difficulty of solving an ODE system. A system is stiff
when the different equations in the system are numerically unstable except
when the step size is small.

Another categorization of numerical methods is whether they are using
explicit or implicit solvers. An example of an explicit method, meaning
that the calculation of future steps in time only requires the values of the
current step, is the forward-euler method [56]. In an implicit method, on
the other hand, the calculation of the future time steps, implicitly involves
the values of the current and future steps in its calculations. An example
of an implicit method is the backward-euler method [56].
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Both the forward-Euler and backward-Euler method are methods of the
first order. Meaning that only one evaluation per time-step is computed
and resulting in a truncation error bounded by O(∆t). Generally, the error
bound is p where p is the solver order. Thus, the truncation error is defined
as O(∆tp). Higher-order methods do multiple evaluations per time-step
to get better accuracy. As the number of evaluations per time-step scale
linearly and the error bound exponentially, extra computation is required
per time-step, which in turn will result in a larger time-step for the same
accuracy in comparison to lower-order solvers.

All aforementioned methods used a fixed time-step size. The maximum
value of the time-step is determined by the most rapid changes in a sim-
ulated spiking neuron, during active phases like during an output spike.
During the less active (silent) phases, e.g., before or after an output spike,
an accurate solution might be possible with a larger time-step size than
when the output is changing rapidly. To exploit this behavior, methods
with adaptive step size can be used. In models using adaptive methods the
time-step will be large during silent phases and small during active phases
to give an accurate solution. This reduces the total number of time-steps
of a given simulation providing greater performance. For this method to
be applied, an indication of the local truncation error (truncation error per
time-step) is required to be calculated. This error can, for example, be
calculated by the difference between solutions of different orders [57].

Another way of solving the ODE system is with the use of exponential
time differencing (ETD). The idea behind ETD is to freeze some variables,
so that the equations become linear and then solve them analytically. The
simplest ETD method is called the exponential-Euler method. Using an
ETD method will, on the one hand, take longer per computation, especially
when the linear system that needs to be solved is large. Furthermore, due
to the linearization, the solution will be less accurate. On the other hand,
if the problem is tolerant to the lower accuracy then larger time-step values
can be used increasing potential simulation speed [58].

3.2.2 Behaviour of numerical methods on SNNs

As discussed before, there is a wide variety of numerical methods to solve
ODE systems. There is not a single method which performs best when
applied on simulations of SNNs, as the performance of the numerical meth-
ods depends on the model used, the network size, the connectivity of the
network, the desired accuracy and the spiking activity.
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Henker et al. in [59] evaluate the accuracy of numerical methods specifi-
cally on simulations of integrate-and-fire neuron models, which were linearly
solvable. The results reveal that:

• The error of explicit fixed time-step methods is independent of the
order. Consequently, a higher order method only adds extra compu-
tation without increasing the accuracy.

• Decreasing the size of the time-step led to an increase in accuracy for
adaptive time-step methods compared to fixed time-step methods.

• The error thresholds, used within the adaptive methods, have a sig-
nificant influence on the accuracy and have to be set manually before
using the solver.

• The ETD method only fails for large time-step sizes. However, the
accuracy does not increase with smaller time-step sizes, which is the
result of the behaviour of solving linear equations.

The previous results presented the behaviour of linearly solvable meth-
ods of integrate-and-fire models. However, many ODE systems describ-
ing SNNs are non-linear and analytically unsolvable (like HH networks).
Börgers et al. [58] discuss the behaviour of numerical methods on non-
linear HH models. The paper analyzes the rising phase of a voltage spike
which defines the accuracy. Since this is an active phase of the simulation,
the time-step size must be small to achieve good accuracy independent
of the order of the method. This small time-step is only required during
spiking behaviour and, between the spikes, much larger time-steps achieve
good accuracy. This would indicate that the use of adaptive time scaling
methods is suitable, however, this might be not beneficial when the cells are
connected and produce asynchronous spikes. In such cases, even if only one
spike is present in the network, the time-step has to be sufficiently small
for an accurate solution.

Furthermore, the use of implicit methods is not useful for the case of
complex, non-linear SNNs. In order to solve the non-linear system con-
straints, the time-step size for an implicit method has to be of the same
order as the respective explicit method to provide accurate results, thus
providing no further benefit. The use of ETD methods shows accurate re-
sults with larger time steps. However such ETD methods are only useful
when an accurate and precise shape of the spikes is not required. Therefore,
when features like gap junctions are present, this method cannot be used
as the shape of the spikes has an effect on overall network synchronization.
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3.2.3 Model fitting

When building new models, neuroscientists need to perform so-called model
fitting; a process by which they subject their models to different input or
state conditions and measure their output. This is an essential step for
matching the in-silico to the biological behavior of a modeled neuron, and it
typically calls for large parameter-space sweeps. This way the modeler can
decide, based on these trial runs, the correct parameters for the models and
numerical solvers chosen and ensuring stability and functional correctness
before the actual simulation runs. This process is of course very time-
consuming and includes significant amount of trial and error, often more
time consuming than the actual experiments [34]. Model fitting makes
acceleration relevant not only for the experimentation but also for the model
development process.

3.3 Complexity analysis

As is clear from the previous sections, the computational-neuroscience field
is diverse and it is difficult to provide a complete picture of the various
SNN models, seen as computational workloads. Still, it is useful to at-
tempt to perform a complexity analysis on a few, representative models
among those discussed. For this, we choose to analyse three of the most
feature-rich models in their category: The Resonate IaF, the AdEx and the
HH models. We measure computational complexity of SNNs in terms of
performed single-floating point operations (FLOPs) and as memory com-
plexity in terms of required memory space. We also assume that memory
data need to transfer at least once from memory to the processing unit per
simulation time-step (as per time-step parameters and connectivity data
should be fetched at least once), thus, the memory footprint is also an
indication of the required memory traffic in an execution of the model.
Estimations of the cell-model operation number are taken from [6] assum-
ing a 1 ms time step. To accurately calculate memory and computational
requirements, we use three use cases of connectivity modeling, which are
representative of typical neuroscientific neuroscience simulations:

1. Realistic Gap Junctions (GJ) – Cells are modeled with (biophysically)
realistic GJ interconnectivity, based on the GJ modeling of [22], pro-
filed as in section 4.1.3. The highest amount of detail is included in
this connectivity modeling from our list of use cases.

2. Simplified connection – Cells modeled with the Gjs replaced by sim-
plified, passive connections. This instance essentially models a sim-
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Figure 3.2: FLOPS vs Network size per simulation step for the Resonate
Integrate and Fire model.

ple input accumulator. The accumulation is parameterized using the
weights that are assigned to each connection between two neurons.
The implementation does not have a specific biological meaning. It
is dummy paradigm that is a good tool to see how workload be-
haviour when connections have significantly lower processing require-
ments while keeping the connectivity the same.

3. Cells modeled without any interconnectivity (0% connectivity den-
sity). This is the simplest use case, whereby the neurons are mod-
eled as separate computational islands; no updates among them are
needed. In practice such simulations can be useful when connectiv-
ity data are processed on the host or when single neuron models are
explored. This drastically simplifies simulations and, from a graph
standpoint, makes them embarrassingly parallel.

In Figures 3.2, 3.3 and 3.4 we can see the FLOPs per simulation step for
each cell model type vs network size. The top lines of each area represent
the FLOPs for the maximum connectivity density which is 100%. The area
below these lines, up until the line for the 0% connectivity use case, repre-
sent all the possible FLOPs for each use case for all connectivity densities
between 0% and 100%. The 0% connectivity area (red) also represents the
part of the computation that comes purely from the neuron computations
without the influence of connectivity computations. If we focus on the
cell computations only (ignoring any connectivity) we can see clearly the
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Figure 3.3: FLOPS vs network size per simulation step for the AdEx
model.

Figure 3.4: FLOPS vs network size per simulation step for the Hodgkin-
Huxley model.

significant difference in cell computations between the phenomenological
and the bio-physically meaningful HH model. An interesting observation is
also the significant influence on computations when connectivity is present,
especially for higher connectivity densities. The presence of connectivity
computations causes a quadratic increase in operations for higher network
sizes, even for the simplified connection that is just a simple accumula-
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Figure 3.5: Arithmetic Intensity vs Network size for the Resonate Inte-
grate and Fire model.

tion operation, compared to the more complex GJ connections, that have
around 6 times more operations per connection.

Another useful aspect to analyze is the arithmetic intensity of the work-
loads (Figures 3.5, 3.6 and 3.7). We define arithmetic intensity as the
compute to memory ratio for each use case (FLOPs/Byte). In essence,
this metric attempts to quantify the amount of operations performed on
every Byte of data fetched from memory, since data movement is nowa-
days the largest challenge in high-performance computing [60, 61]. Thus,
a larger arithmetic intensity signifies a more efficient use of memory. The
main source of memory footprint in the SNN applications are the neuron
state variables and the connectivity information, which takes the form of
a connectivity matrix. The matrix stores the weights of the connections in
floating point format. If a value is equal to 0 then the specific connection
is not present. With the assumption that each byte of data will need to be
transferred at least once within a time-step, an arithmetic intensity higher
than 1 can signify that the workload is compute bound (more than 1
floating point operation for each byte transferred ), while lower than 1 sig-
nifies a memory-bound workload (more than 1 byte transferred for each
floating point operation).
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Figure 3.6: Arithmetic Intensity vs Network size for the AdEx model.

Figure 3.7: Arithmetic Intensity vs Network size for the Hodgkin-Huxley
model.
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We can see right away that the connectivity density, for the cases of the
simpler IaF and AdEx models (Figures 3.5 and 3.6), is a major factor in
deciding if a workload is compute or memory bound for the two phenomeno-
logical models. When connections between neurons are complex (GJ) and
dense (50% and over) the workloads for both the IaF and AdEx models
are compute bound. But the GJ-enabled workloads with lower density and
all other use cases with simpler or no connectivity actually are memory
bound. It must be noted here that the connectivity density in experiments
is user defined and it would change often during/between simulation runs.
This means that the same workload with different connectivity densities
can under certain circumstances be either memory or compute bound. The
situation becomes even more interesting for the HH models (Figure 3.7)
where the cell computations are a lot more than the computations within
the connections compared to the the I&F and AdEx cases. The HH model
use cases in smaller network sizes begin largely as compute bound as the
cell computations dominate compared to the memory needed for the con-
nectivity matrix. As the network sizes increase the connectivity matrix
increases at a higher rate to the total computations and the workloads be-
come less compute bound and around the 1000 neuron mark, they revert
to a similar situation as the the I&F and AdEx models; the use cases with
the higher density and complex connections remain compute bound but all
other cases become memory bound.

Summarizing the key observations from the aforementioned analysis:

• Neuron model computational requirements increase with network (prob-
lem) size and with model complexity/type.

• Memory (and I/O) requirements stay more or less the same and are
somewhat independent from model/synapse type, for a given network
size . The size of the connectivity matrix keeping the connection data
is far larger compared to any other neuron model data, except for very
small network sizes (assuming no storage/data optimizations) or the
complete lack of connectivity.

• Compute-to-memory ratio also highlights the impact of the network/sy-
napse modeling when simple phenomenological models are used. Very
high density and complex synapse modeling make a workload com-
pute bound. With sparser connections or a simpler synapse, the ap-
plication can become memory bound.

• For bio-physically meaningful modeling (HH): Depending on the den-
sity and complexity of the connectivity an HH application is heavily
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compute bound for small problem sizes and becomes memory bound
with increasing problem size, depending on density and synapse model
complexity.

– On small problem sizes, the neuron computation dominates while
the size of the connectivity matrix storing the connectivity infor-
mation in memory and the synapse computations remain small.
The HH neuron model operations are dominant and the work-
load is compute bound.

– As problem size increases (over 1000 neurons), the connectiv-
ity matrix increases quadratically but also the computations for
the synapse modeling. The applications with complex synapses
of high density still remain compute bound. Computational re-
quirements increase fast enough to keep up with the increased
memory requirements of the larger matrix.

– For less dense networks (50% connectivity ratio and under) or
simpler synapse modeling, applications turn from compute bound
to memory bound. The increase of the memory requirements
overcomes the increase in operations.

• The complex behavior of network neuron models (especially for the
biophysically meaningful cases), poses a significant challenge for ac-
celerating in an HPC environment, as a “one size fits all” implemen-
tation strategy that caters to each model’s needs – even to the same
model’s needs under different starting conditions – does not exist.

3.4 Summary of design considerations and trade-
offs

Taking into account all the aspects of SNN modeling and acceleration dis-
cussed in the previous sections, we can derive a comprehensive list of trade-
offs when designing neuron models while having in mind their performance
and acceleration potential. Some of the design considerations should be
kept in mind from the start of the process, as basic modeling decisions can
affect the potential performance of the eventual workload substantially. In
practice a neuroscientist developing a model may not often be aware of
how their modeling decisions are affecting the end performance, and sub-
sequently the speed and network capacity of their in-silico experiments
(Table 3.1).

Model complexity and connectivity density have a clear effect
on performance and supported network size, as discussed in the previous
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Table 3.1: Design factor trade-offs for neuron model workloads with regard
to performance and supported network sizes.

Design Factor Performance Supported network size

Increased # of compute units ↑ ↓
Larger time step ↑ -
Event Driven Execution ↑ ↑
Off-chip memory ↓ ↑
On-chip memory ↑ ↓
Higher Conn. Density ↓ ↓
Transient simulation ↓ ↓
Higher model complexity ↓ ↓

sections. A less obvious factor, caused by the chosen numerical implemen-
tation, is time step duration of the model. Besides the time step, the
numerical implementation can also affect the requirement to run the model
using a transient simulator, that is much more challenging computation-
ally, or if it is possible for the model to be executed in a event driven
fashion, which is better performing and less computationally demanding
for HPC acceleration.

A separate kind of trade-off is also related to the architectural decisions
taken in the accelerated implementation. The memory architecture of the
accelerator can have an important effect. For example, the use of on-chip
memory for storing neuron states and connectivity matrices can result in
significant performance benefits. On the other hand, on-chip memory tends
to be significantly small in capacity resulting in the maximum supported
network size to be limited compared to using the larger off-chip (on-board
or system) memory [62].

An interesting aspect is also the size of the compute units provided
or implemented on the HPC platform. Larger but fewer compute units
within the same accelerator can enhance performance per neuron by pro-
viding more computation resources. But larger compute units also consume
more logic resources that can limit the number of neurons that can be eval-
uated per time step and visa-versa. Whether a workload is more suited to
be accelerated by small but numerous compute units or by fewer but more
powerful ones is strictly application dependent and can be significantly af-
fected by modeling and numerical decisions.
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3.5 FPGA spiking neural network implementa-
tion categorization

In this section, we collect and present the most significant works in litera-
ture on the implementation of SNNs on FPGAs. We divide them in 2 main
categories, each bearing its own significance. First, we shall present the
largest group, that of implementations targeting either simulation acceler-
ation or general neural modelling or, even, explicit experimental applica-
tions. The second group covers a number of bio-inspired SNN implementa-
tions for the purposes of specific applications, such as pattern matching and
robotic control. Later in this section we present and discuss other notable
aspects of prior art such as architectural characteristics and performance
efficiency.

3.5.1 SNN applications for brain simulations

A significant amount of work has been conducted for the purpose of brain
simulations/exploration. The choice of model and type of neural network
varies based on the required simulation accuracy and resource constraints,
and can range from the simplest models to full HH representations.

Implementations of IaF models vary for networking sizes from a few
dozens or hundreds [63–70] in the early implementations, to hundred of
thousands [71–74], in more mature ones. FPGA implementations have also
successfully incorporated learning, most notably STDP algorithms [67,75].
A notable example of such an implementation is presented by Glackin et
al. [53] that managed to emulate the function of the Medial Superior Olive
in terms of sound localization. The brain uses the time difference of the
same sound coming to different ears to establish the general direction of
the sound source. The network implemented simulated 1029 neurons (49
physical model instances time-multiplexed) and 25221 STDP synapses. It
performed in real time and boasted very accurate sound localization results.
The implementation was done on a Xilinx Virtex-4 FPGA. Based on the
FPGA resources used, the authors estimated that the model could simulate
at most 7.5k neurons with 1.35M synapses. A population that is quite close
to the human superior olive subsystem, estimated around 10-11 thousand
neurons.

The need for more complex or high scale networks for the emulation of
more realistic brain systems has lead researchers to employ multi-FPGA
designs for simulating IaF models [76, 77]. Kousanakis et al. [78] have
developed a multi-FPGA system that emulates the cerebral cortex neurons
using IaF models and highly complex dendrites modelling alongside NMDA
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synapses. The design was demonstrated on a system simulating 240 neurons
with about 12000 dendrites and more than 800000 synapses. Even though
it was not able to reach real-time performance it boasted a speed-up of
×923 compared to a conventional single-threaded CPU solution. As the
complexity of synapses and dendrites were configurable the design could
theoretically support network sizes up to 15360 neuron with 521 synapses
per neuron. Another multi-FPGA implementation was proposed by [62]
realizing a system incorporating 35 Zynq-7000 devices for the simulation of
a maximum network of 89600 IaF neurons, that was demonstrated by the
simulation of a cortical microsection.

One of the first attempts to make an FPGA implementation of an
Izhikevich neuron was done in 2005 by La Rosa et al. [79]. The goal was
to test the applicability of the model on an FPGA. For this reason, just
2 interconnected neurons were implemented. The model was converted
to discrete time by Euler integration and the results showed accurate be-
havior at faster than real-time performance. Soon after, more advanced,
larger scale implementations appeared [80–82], some even often including
advanced connectivity between neurons like gap junctions [83]. Very large
scale Izhikevich networks have also been achieved using very simple fixed-
point arithmetic [84]. Here, the focus was large scale, real-time performance
alongside high energy efficiency. The demonstrated network was of 28.9k
neurons with the system supporting up to 250K neurons. FPGA implemen-
tations of this type often use event-driven implementations [19,85], allowing
them to alleviate the computational requirements and achieve large scale
network simulations. Impressive implementations designed for multi-FPGA
setups have been also developed such as the hybrid neuromorphic compute
(HNC) node of [86] and the Bluehive system [20].

As discussed previously, if the goal is to simulate and study the neu-
ronal behavior in greater detail, one has to use more complex models, like
conductance-based models. Moreover, for future possible implantable
devices, a more biophysically meaningful representation than the previ-
ous models might be required [23]. However, the added complexity cre-
ates greater limitations in terms of network size and simulation speed but
hardware implementations are still capable of providing real-time behavior.
Consequently, there have been some attempts to create FPGA implementa-
tions of typical conductance models [87,88]. Additionally, there are quite a
few conductance model implementations using fixed-point precision [89–91].
Although fixed-point arithmetic reduces resource cost, compared to floating
point, whether it can provide small enough precision errors to accurately
implement biophysically-meaningful neuron models without alteration in
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Living Neuron

Figure 3.8: Basic organization of hybrid network adapted from [9].

behavior is not self-evident. The fixed-point analysis of a neuron model
(initially designed with floating-point arithmetic in mind), is a rigorous
process and not guaranteed to give functionally correct results. For this
reason, alongside the gradual maturity of floating-point arithmetic on FP-
GAs, a more recent trend is to employ floating-point arithmetic instead of
fixed-point for such implementations [1, 92–99].

A notable use of FPGAs in conductance-based modeling was presented
by Sorensen in [9]. The research did not just tackle the real-time demand
for hardware implementations but also the actual interconnection of a pos-
sible artificial neuron with its biological counterpart. Here, a number of
neuron models were implemented (from an HH model to simpler IaF mod-
els) to model the behavior of a heart neuron of a leech. These models
were deployed on a Virtex II FPGA which was then included on a hybrid
network including a live leech neuron. Two interconnected heart-neurons
have oscillatory behavior. That was also the behavior of the network that
included the live and the artificial neuron on the FPGA. The Input/Output
from both neurons were captured by a dynamic clamp and DAC devices
were used for communication with the host PC. The FPGA model runs 36
times faster than real-time and so downsampling was incorporated to pro-
vide real-time Input/Output (Fig.3.8). These experiments proved that such
a network can operate as the biological system and that also the behavior
of the biological neuron can be influenced and controlled by tweaking the
parameters of the artificial neuron. Finally, the influence and differences in
behavior of using simpler models for the silicon neuron were explored.
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Table 3.2: A.I. applications of FPGA-based SNNs.

Application FPGA implementations

Visual [107], [108], [109], [109], [110]
Olfactory [70]
Taste [111]
Sound [64], [76], [53], [112]
General Pattern Matching [113], [114], [115]
Robotic Control [105], [106], [116], [10], [117], [118], [119], [120]

Besides standardized models, attempts have been made to accelerate
completely custom-made (not adhering to typical conductance-based model
implementation) conductance models. The design choices and type for
these models vary depending on the simulation demands, complexity and
the specific scientific question explored [100–106].

3.5.2 SNNs for specific AI applications

Besides the attempt to accelerate simulation for brain exploration, there
has been work on applying biologically plausible NNs for specific applica-
tions like AI control and visual recognition. In these cases the demand for
accuracy, modeling details and network size are less strict since the system
has a specific task usually less demanding than a complete biological sys-
tem. Especially for simple models, FPGA SNN implementations have been
used for a number of AI tasks including visual, olfactory, auditory and con-
trol applications providing advanced computational power with satisfactory
performance (Table 3.2).

One of the more notable AI applications for SNNs was proposed by
Johnston et al. in 2010 [10] which created a control SNN for the Khepera
robot. The researches developed an FPGA-based SNN using IaF neurons
with synapses including both STDP learning and learning with a Genetic
Algorithm (GA). The STDP controlled synaptic weights, while the GA
adapted network characteristics, mainly axonal delays and synapse polar-
ity. The network had 10 neurons, 8 of them receiving sensory input and 2
providing output for motor function according to the sensory neuron out-
puts (Figure 3.9). It provided control so that the robot navigates itself
through a small maze, while also avoiding obstacles. The I/O interface
between motor, sensors and the NN was done by UART and the design in-
cluded a microprocessor downloaded on the Virtex II FPGA to execute the
GA. The final implementation was 105 times faster than PC simulation.
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Figure 3.9: Neural Network implementing navigation control in the Khep-
era robot (adapted from [10]).

Figure 3.10: Whiskerbot block diagram adapted from [11].

Another notable use of SNNs demonstrating its use for robotic control
was presented by Pearson et al. [117–119]. The architecture implemented
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IaF neurons that included axonal delays and noise. Two types of archi-
tectures were implemented: The a-architecture had neural cores featuring
112 neurons with 9 synapses per neuron (912 synapses, in total). The sys-
tem had 10 such processing elements bringing the total network size to
1,100 neurons. Since the amount of synapses is as important for biological
plausibility as the network size, a second version was implemented with 64
neurons per processing element (640 neurons for the whole network using
10 elements), but with 16 synapses per neuron (b-architecture). The ar-
chitectures included input and output modules using buses and data were
stored on FPGA block RAMs. The device used was a Virtex II FPGA and
the network was run at real-time performance.

The b-architecture core was later used to provide control for theWhisker-
bot [11]. The Whiskerbot is a robot using a sensory system emulating the
whisker sensory system of a mouse (Figure 3.10). A tactile sensory system
(such as the mouse whiskers) has the advantage of sensing the environment
without the need of any kind of illumination using either visual, sonic or
Infrared (IR) signals. It is ideal if a robotic system needs to operate in
confined, completely dark or noisy environments. The researchers created
6 artificial whiskers used to acquire sensory input (similarly to the actual
mouse) and used a population of 6 networks with 24 neurons each, im-
plemented with the b-architecture for control. The robot was tested on a
test arena and the SNN provided navigation control based on the whisker
sensory input with similar procedures as in the biological system.

3.5.3 Model choice, network size and real-time performance

The amount of work conducted in the recent decades shows a growing inter-
est for the use of more biologically plausible NNs because of their superior
computational capabilities [15, 16]. It is also clear, from the previous sec-
tions, that the computational complexity of such networks poses difficult
challenges for their implementation into practical applications. Hardware,
and FPGA implementations specifically, seem quite promising because of
their inherent use of parallelism.

Although any model complexity can be of scientific use, depending on
the experiment conducted, the more detailed the models, the closer they
are to the biological counterparts and the more behaviors can be studied
and replicated. SNN implementations are a natural option for brain sim-
ulations. Still, the constraints and issues of incorporating complex models
in FPGAs are apparent in many cases. These could include either model
choice and network size, system design automation, tool availability and
resource constraints.
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Table 3.3: Performance efficiency of works that achieve real-time perfor-
mance on conductance models.

Design RT Per. Efficiency Arithmetic
Net. Size # (MFLOPS) Precision

Zhang et al. [1] 4 0.0044 Floating Point
Beuler et al. [97] 400 0.44 Floating Point
Sorensen [9] 1 0.001 Fixed Point
Weinstein [121] 40 4.4 Fixed Point
Luo et al. [89] 500 11 Fixed Point
Graas et al. [88] 17 18 Fixed Point
Christiaanse et al. [99] 1,188 19 Floating Point
Yang et al. [91] 160,000 183 Fixed Point
Pourhaj et al. [96] 1,024 189 Fixed Point

Brain simulation demands are more versatile, depending on the design-
ers’ simulation and study goals. IaF neurons can create very large networks
but the behavioral detail of the neurons is too basic for most studies and
probably unusable for brain recovery. These models are useful as a case
study and easier to implement in large networks. Yet, such models seem to
fall sort for other purposes. As such, there is a significant tendency to begin
using more complex models in FPGA implementations, such as Izhikevich
and also conductance models. A significant amount of implementations
incorporate conductance models, either HH and their simplifications or
custom tailored ones to specific characteristics.

In order to make meaningful observations on the real-time performance
of conductance SNNs on FPGAs, we can compare the performance effi-
ciency of designs that achieve real-time performance in terms of MFLOPS
per FPGA device. We only take into consideration the main neuron model
and not the computation overhead of the connectivity. Although connectiv-
ity is an important aspect of the neuron-application computational part,
it is not possible to make reasonable estimations of their computational
requirements from the data that most works present. On the contrary,
we can make a reasonable estimation for the main neuron model based
on the FLOPS estimation presented in [6], by using the model time step
size. We also assume real-time performance even for designs that provide
hyper-real time performance. Even though, theoretically, they can achieve
higher than the reported network sizes on real-time performance, there are
other aspects of the design that may prevent higher than the reported sizes
(memory storage and I/O for example) which is not possible to reasonably
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Figure 3.11: Neuron-model types implemented in each topic.

estimate in most cases. Looking at the comparison (Table 3.3) we can see
FPGAs give promising results in supporting real-time conductance mod-
elling in meaningful sizes.

In Figure 3.11, we can see an overview of SNN-based models chosen
for AI applications and brain simulations, within the works presented in
this chapter. In contrast to brain simulations, AI applications so far tend
to opt for simpler SNNs mostly owing to the complexity of the task en-
tailed. Tuning more complex models seems unnecessary when the task can
be tackled with simpler models. Thus we can see a trend to use as simple
as possible models in FPGA AI implementations. Most designers are sat-
isfied with using IaF models and a few tried using Izhikevich models that
basically have similar resource and computational costs. There is much less
interest in using more complex models for specific tasks. In general FPGA
implementations seem to be one of the promising platforms for AI use as
they offer the necessary compute power and low latency for demanding AI
applications.

3.5.4 Architectural choice and their effect on FPGA designs

FPGA-based SNN simulation speeds are drastically affected – perhaps even
more than moderate differences in model detail – by (a) the memory archi-
tecture, and (b) the overall compute architecture; namely, whether the SNN
simulation is implemented following a control-flow or a data-flow paradigm.
FPGAs employing BRAMs (on-chip memory) provide a very high speed
choice for data storage, thus potentially a significant performance boost.
Indeed the vast majority of surveyed FPGA implementations do employ
On-chip memory for the performance benefits (Figure 3.12) and, on aver-
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Figure 3.12: Percentage of FPGA SNN implementations utilizing (only)
on-chip and utilizing on-board memory.

Table 3.4: Average Performance efficiency of FPGA SNN implementa-
tions utilizing (only) on-chip and utilizing on-board memory.

on-chip on-board
Per. Efficiency (GFLOPS) 8.38 0.93

age, have higher performance efficiency than designs using on-board mem-
ory only (Table 3.4). Even though the comparison is not completely fair
(since the FPGAs used in the various works are very varied), it is still an
indication of what has been accomplished using either design choices. This
is related to the classic memory wall problem in computing [122] in which
processing of the computational elements outpace the ability of the mem-
ory to transfer the data fast enough to be processed, thus becoming the
performance bottleneck. That is why metrics such as arithmetic intensity
(section 3.3) are relevant in understanding the HPC potential of such work-
loads.

BRAM is limited, though, and larger scale network size would require
significant data resources. So, using the on-chip memory would provide
significant performance benefits but could potentially limit the size of the
simulated network. So often there is a network size/performance trade-off
when using the BRAM.

The other important choice is that of control-flow vs data-flow architec-
ture. In a control-flow schemes the execution is organized into tasks whose
execution is centrally controlled. It leads to elegant designs that can be
easily maintainable and extended. The centralized control does, though,
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Figure 3.13: Percetage of FPGA SNN implementations utilizing control-
flow and data-flow architecture.

add an overhead that can affect performance in certain cases. Most prior
art tended to use control-flow architectures, as this is the more direct and
traditional choice (Figure 3.13). Data-flow schemes, on the other hand,
abstract and remove the central control of execution. The computational
units just execute their operations the moment data are available in their
input without waiting for any centralized control signals. Such a scheme
can be beneficial for specific kind of applications, like embarrassingly par-
allel workloads, which by nature fit into a data-flow scheme. Big parts of
the computations in an SNN are actually embarrassingly parallel. Specifi-
cally the computation within each neuron within a single simulation step.
Thus, a data-flow scheme can be suitable. On the other hand, connectivity,
especially computationally complex connections between neurons like gap
junctions, can break the data-flow nature of the computations, removing
some of the benefits of the data-flow scheme. So the suitability of a data-
flow depends a lot on the model of the SNN being implemented and the
density and complexity of neuron connections. Nevertheless, the designs
that attempted to utilize data-flow architectures managed to present im-
pressive results. Many of them even use data-flow optimized reconfigurable
hardware platforms, like the Maxeler Dataflow Engine (DFE) [85,123].

3.6 Tool-flows

In terms of the tool-flow used for the hardware implementation of the SNN,
some trends are also forming. Most engineers seem to initially implement
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their models directly on a Hardware Description Language (HDL). Espe-
cially for simpler models, this does give great control over the design and
can produce efficient results. The most common choice is VHDL (Fig-
ure 3.14). The main problem is, of course, that only hardware experts
have the knowledge to code directly on an HDL language such as VHDL
or Verilog. Additionally conductance models, like HH, are so complex that
manually describing them in HDL can be cumbersome even for a hardware
expert. As a result, there is a trend to begin using High Level Synthesis
(HLS) tools for the implementation of SNNs designs.

Such an alternative that is often used in SNNs is Handel-C. This lan-
guage describes HW in a sequential fashion, much more natural for non-
hardware designers. A Handel-C description is afterwards easily converted
to an HDL synthesizable code. Many researchers (especially in the non-
computer engineering realm) are more familiar with MATLAB code and so
there is also the trend of using MATLAB as the initial code and using au-
tomated tools (such as the Xilinx System Generator) for HDL descriptions.
Another reason is that tools like Simulink can be easily used for validation
and data-process purposes. A more recent option used by Cheung et al. [85]
is the Maxeler Dataflow Machines that include their own java-based HLS
language (MaxJ). Although HLS greatly automates the procedure, generic
automated tools, not specifically developed for such designs, may not al-
ways have the best possible results. Additionally even with HLS tools, a
good knowledge of hardware design is required, if the capabilities of FPGAs
are to be fully exploited.

The lack of an automated tool for hardware neuron modeling, which
does not required hardware expertise to efficiently use, is apparent. Several
works have attempted to not just create a one-off SNN implementation
but make a more general framework for SNN FPGA design to remove the
difficulty of designing with HDL/HLS languages from scratch [124], [125],
[126], [127], [128], [129].

All these works have tried to create a complete design framework only
for very simple neuron models. Weistein and Lee studied the possibil-
ity of creating an architectural framework for more complex conductance
models to emulate biological behavior accurately. They begin with a man-
ual FPGA implementation of a 10-compartment conductance motorneuron
model [130]. Each neuron channel was implemented in HW and a 10-stage
pipeline provided a throughput of 1 compartment state per cycle. The
model was deployed on a Virtex II and run almost 4 times faster than real-
time and 12 times faster than the software simulation.
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Figure 3.14: Initial code description environment for HDL generation for
SNN FPGA designs.

Using the experience of their first design, researchers later developed
an architectural framework for SNN FPGA modeling of a Fitz-Nagumo
neuron [131]. In this research 3 architectures were developed. One of a
single neuron model (including both single and multi-cycled versions), one
simulating 10 unconnected neurons exploiting pipelining/time-multiplexing
and one with 10 interconnected (coupled) neuron models. The architec-
tures were based on standardized IP hardware modules provided by the
Xilinx tools. Using this as a basis, a semi-automatic strategy was later
presented for implementing neural networks and a pre-Bötzinger complex
(PBC) simulation was designed as an example [132]. The model included
3 compartments having HH type conductances. The semi-automatic tool
flow begins with MATLAB code that is translated into VHDL, and using
the same HW libraries as before, produces the design to be deployed on re-
configurable hardware. The model parameters/inputs of the system were
stored on shared RAMs and the design communicated with the Host PC
for on-line configuration purposes. The network output was captured and
displayed using DACs. Four fully interconnected NNs of various sizes were
implemented as a proof of concept, the largest one comprised of 40 HH
neurons running 8.7 times faster than real-time.

The results of this previous research led to the creation of the DYNAMO
modeling language and compiler that implemented a fully automated de-
sign framework for SNN modeling on FPGAs [121] . The Dynamo Modeling
Language (DML) is a general mathematical modeling language, although
developed for use in neural models. The execution flow is organized in a
loop and can be translated to C (and from C to JAVA), MATLAB and
VHDL code, either for simulation or HW implementation purposes. The
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compiler included an application scheduler and floating-to-fixed-point con-
version for the FPGA modeling. Model parameters in the produced systems
were stored in shared RAMs and constantly feed in the models by registers.
Input/Output was given in the FPGA through FIFO buffers. A number
of SNNs using conductance models were presented as proof of concept, all
of them running at higher than real-time performance. The largest HH
network presented was a fully interconnected, 10-neuron neural network,
deployed on a Virtex 4 device.

The DYNAMO compiler creates a fully automated process beginning
with a custom generic modeling language that could potentially model ev-
ery complexity. A mathematical modeling language, like the one developed
under the DYNAMO compiler, is much more comprehensible to a variety
of other fields, including neuroscience, than HDL languages are. Although
DYNAMO did bridge the gap between modelling definition and HDL im-
plementation, one drawback it had was precision problems stemming from
the fixed-point conversion, although the compiler included numerous opti-
mization techniques to reduce them. A final drawback of the design was
also that DML was relatively complex to use and still unfamiliar to the
neuroscientific field.

Experience from efforts such as DYNAMO (which had very limited
adoption even though functionally sound) makes it quite obvious that a
framework that attempts to create a more general tool for neural networks
used in Computational Neuroscience requires to use pre-existing frame-
works that scientists are already familiar with and validated by their com-
munity. Additionally using a front-end that neuroscientists already use
seem essential for community adoption. Most modelers use Matlab, NEU-
RON [26] and GENESIS [25] and there is an extensive library of models in
these descriptions that any complete tool-flow targeting FPGAs should be
able to use, in order to be immediately useful for the scientific community.
That is the gap that NeuroFlow [123] is trying to fill by using a PyNN front
end, translating the source into MaxJ and conducting HDL generation for
the Maxeler DFE hardware.

Proposed by Cheung et al. NeuroFlow [123] integrates PyNN (an estab-
lished python-based neuroscientific development framework) to their Max-
eler Dataflow Machine hardware library. Neuroflow also provides a very
complete library of IPs in the back-end, covering a great portion of possi-
ble applications, thus providing FPGA-based high performance with user
friendliness. It supports HH, IaF and Izhikevich neurons with a number
of different synapse implementations. Performance results are only pre-
sented for the Izhikevich use case supporting almost 100K neurons per



48 Chapter 3 – Accelerated SNNs on Reconfigurable Hardware

device. It supports multi-DFE designs providing significant scalability to
Neuroflow. The performance and efficiency analysis is only presented for a
single use case of a generally simpler model (Izhikevich) and with connec-
tivity modelling of medium complexity (STDP) and relatively lower neuron
inter-connectivity density (about 10%). The behaviour and performance of
the system for the rest of the supported features is not self-evident and
is expected to be significantly different, especially for accurate modelling
such as the HH with high connectivity densities, for example. Furthermore,
many of the performance benefits are accomplished using event-driven sim-
ulations (neurons are evaluated only when their inputs are triggered), that
cannot always be employed with complex conductance models.

3.7 Summary

In this chapter an extensive review of the modeling aspects of Spiking Neu-
ral Networks was presented. The review reveals the high diversity of model
and subsequently produced workloads this field includes. Workload behav-
ior is also decisively affected by early model decisions that complicated their
execution in HPC resources even more. Modeling aspects like the model
numerical methods and time-step sizes can affected HPC execution as much
as hardware implementation design decisions, like memory organization.

Advances in the development of FPGAs make them a natural design
option for practical SNNs, especially for smaller and more computationally
complex neuron simulations. Looking at prior FPGA-based implementa-
tions, we can see that FPGAs can in practice provide good performance for
many A.I. applications of SNNs. Additionally such designs can exploit their
modularity, speeding up prototyping and making on-field system updates
possible. In terms of SNNs for brain simulations and recovery, FPGAs also
show promise as a design paradigm. The potential of real-time performance
of complex models on FPGAs, in network sizes not possible before, could
have an important impact in brain research. The area and memory con-
straints that are present in FPGAs should be relaxing as newer and better
devices emerge. The real-time performance potential also makes brain im-
plantable devices prototyped on FPGAs a possibility, although the power
consumption/budget issue would need to be also solved if actual FPGAs
are to be used on implants. FPGAs can also provide reliability; the regular
and re-configurable nature of the device can also be exploited to provide
fault-tolerance.

What is severely missing in the field, though, is a process to streamline
and automate the design procedure in a way that the engineering work re-
quired for the FPGA acceleration is transparent to the neuroscientist. Any
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work that attempted to provide user friendliness with more typical ways
(like GUIs) and custom-made modelling languages had limited scope and
success. Additionally, developing these systems manually directly using
HDL descriptions requires great design effort; an automated system, opti-
mized for the specific domain, would be an extremely useful tool. Finally,
bridging the gap between HDL descriptions and the vast verified work on
traditional neuroscietific environments (GENESIS, NEURON, PyNN) is a
relevant goal to be pursued as very few prior published works have tried to
tackle the problem holistically.
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In this chapter the initial effort of accelerating the Inferior Olive (IO) model
that existed in-house within Erasmus MC, a state-of-the-art model accel-
erated as a first step towards building a high-performance olivocerebellar
simulation platform is presented. The choice to focus the effort on FPGA-
accelerated technology was made using the conclusions from looking at
the prior art of the previous chapter. One extra constraint was the use
of single-precision floating-point (FP) arithmetic computations. Biophysi-
cally meaningful models such as the IO model are quite stiff, meaning that
the use of fixed-point arithmetic could severely affect functional correct-
ness. The complexity and stiffness of the IO model would allow for the use
fixed-point computation only after a substantial arithmetic analysis that
moved way beyond the scope of the acceleration effort, making it a non-
viable option to pursue at the time. In short, the IO FPGA acceleration
had these immediate goals:

• The analysis of the Inferior Olive model to recognize characteristics
and possible performance bottlenecks.

• The optimization of the original model algorithm achieving perfor-
mance improvements in hardware.

• The design, implementation and validation of the FPGA-based accel-
erator, achieving significant speed-up and real-time performance.

• The performance evaluation of the designed accelerator and evalua-
tion of precision error, issued by design optimizations, to guarantee
preservation of the biological behavior reflected in the original model.

4.1 Application description

The IO model not only divides the cells in multiple compartments but
also creates a network in which neurons are interconnected. We start by
describing the single-cell model, while the rest of the section deals with the
cell-network model.

4.1.1 The IO-cell model

The IO cell model we have implemented has been originally developed by
de Gruijl et al. [22]. The model contains active conductances based on
the original HH-based model [36] and divides the neuron into three com-
putational compartments – closely resembling their biological counterparts
– as shown in Figure 4.1(b). For every compartment, a few ion channels
are present in the model so as to contribute to the total compartment
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Figure 4.1: Graphical representation of the inferior-olivary network
model. a) 6-neuron network b) single-neuron model in detail c) sample
axon response.

membrane potential. Every compartment has a state that holds the elec-
trochemical variables and, on every simulation step, the state is updated
based on: i) the previous state, ii) the other compartments’ previous state,
iii) the other neuron’s previous state and iv) the externally evoked input.

The computational model operates in a fashion that allows concurrent
execution of the three compartments. The model is calibrated to produce
every per-neuron output value with a 50 µsec time step. This means that, in
order to support real-time simulations, all neurons are required to compute
one iteration of compartmental calculations within 50 µsec.
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4.1.2 The IO-network model

The IO network interconnectivity is implemented with Gap Junction (GJ)
modelling based on the implementation of [133]. The GJs are associated
with important aspects of cell behavior as they are not just simple con-
nections; rather, they involve significant and intricate electrical processes,
which is reflected in their modeling details [50].

Figure 4.1a depicts a representation of the IO network model. The
GJs are part of the dendritic compartment, thus the compartment receives
the extra input coming from the inter-neuron connection. This network
model defines effectively a transient simulator through computing discrete
output axon values in 50 µsec time steps which, when integrated in time,
recreate the output response of the axon (Figure 4.1c). The IO network
must be synchronized in order to guarantee the correct exchange of previous
dendritic data within a step. Thus, the execution can only be parallelized
in space (simultaneous evaluation of neurons within a simulation step), but
not in time (parallelization of multiple simulation steps). The cells – even
when not actively spiking – present an oscillatory behavior, thus affecting
network synchronization. As a result, event-driven execution of the network
model is not an option.

4.1.3 C-code profiling

The IO-network model was initially available to us in Matlab but was
re-written in C for profiling purposes and so as to be used in High-Level
Synthesis (HLS) tools (Vivado 2013.2 targeting an Virtex 7 XC7VX485T
device).

By profiling the application using an operation and memory-access pro-
filer [134], it is revealed that the GJs have great impact on the total model
complexity. As seen in Table 4.1, the total number of floating-point (FP)
operations needed for simulating a single step of a single cell including a
single GJ are 871. In an N -cell network, assuming that each neuron main-
tains a constant number of connections C to neighboring cells, the overall
GJ computation cost exhibits linear complexity: Ogj(N). For many com-
plex experiments, it is not the number of connections C but, rather, the
connectivity density that is indicative of neuron interconnectivity. That
is, the average percentage of the total neuron population to which
neuron cells are connected (measured in %), whereby the complexity
becomes quadratic: Ogj(N

2). This makes GJ computations the prevalent
contributor, as they break the dataflow nature of the application and dom-
inate computational demands. This is true even for small-scale networks.
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Table 4.1: Neuron compute requirements per simulation step.

Computation FP Operations per neuron
Gap Junction 12 per connection
Cell Compartment 859

I/O and storage FP values per neuron
Neuron States 19
Evoked Input 1
Connectivity Vector 1 per connection
Neuron Conductances 20
Axon Output 1 (Axon Voltage)

Neuron Computation Task % of FP ops for 96 cells
Compartmental Computations 43
Gap Junctions 57

Figure 4.2: Software profiling of the arithmetic operations in the model
for a 96-cell, fully interconnected network.

As an example, for a 96-cell, all-to-all connected network (Table 4.1)
the GJs comprise almost 60% of the overall computations. Figure 4.2 shows
the profiling of the arithmetic operations performed in the model, for one
iteration of the whole IO-network. We differentiate the operations be-
longing to the gap-junction compartment from the rest again, to show its
importance. Results show that (FP) multiplications performed in the gap-
junction compartment dominate the distribution. Finally, we can see that
the gap junctions contain the largest fraction of operations for all operation
types and will, therefore, consume more FPGA resources.
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4.2 HLS FPGA-based inferior olive implementa-
tion

After profiling the C code based on the Matlab model, we used it as the
basis for generating the proposed hardware solution using the Vivado HLS
tool. The resulting hardware accelerator simulates the behavior of multiple
IO-cells step by step based on the aforementioned model. The hard-
ware accelerator is designed to work alongside a softcore or host CPU that
controls the total number of simulation steps and handles the I/O of the
accelerator. The CPU feeds the accelerator with initialization data (initial
state) and with evoked-current inputs (external stimuli of neurons) and
outputs the result of the computations at every simulation step. Output
data can be stored in on-board memory (e.g., SD cards) or sent to an off-
board PC host.

Both, neuron states and evoked inputs – required at every simulation
step – are stored in on-chip BRAMs, so as to avoid incurring off-chip la-
tency. The performance benefit of using on-chip storage is substantial com-
pared to going off-chip, especially for complex models such as ours, which
require handling large amounts of data to represent the network state. On
the other hand, this creates a constraint on the maximum network size
that can be simulated, which depends on the storage capacity of the FPGA
BRAMs.

The remainder of this section offers the details of our FPGA-based
approach and the optimizations performed to improve the performance and
area efficiency of our design.

4.2.1 Overview of the hardware design

The general block diagram of the proposed system can be seen in Figure 4.3.
The actual execution is performed at the “IO Network” component, which
consists of multiple identical parallel neuron-processing modules, each mod-
eling the dendrite, soma and axon parts of a single IO cell. Our design fur-
ther includes a set of BRAMs for storing the evoked inputs to the neurons
as well as their state, which is updated after each simulation step. The ex-
ecution flow of the IO network is controlled by a – local to the accelerator –
kernel control unit. Our actual implementation of the IO network consists
of eight hardware neuron-processing modules, which are able to simulate
eight IO-cells in parallel.

The accelerator was designed to give run-time control over a number of
simulation parameters, providing flexibility and the ability for more com-
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Figure 4.3: Block diagram of the Olivocerebellar neuromodeling hardware
design.

plex experiments. During execution, each neuron state parameter can be
modified. Interconnectivity density is also adjustable during simulation.

Next, we describe the functionality of our FPGA-based accelerator.
First, the neurons in the network are initialized with data streamed from
the CPU to the FPGA. The initialization data are either produced by the
CPU itself or read by on or off-board resources. This introduces a delay
which is however paid only once at the IO-network simulation onset.

After initialization, the actual execution of the network simulation is
performed. Each simulation step begins with storing new evoked inputs
of the neurons in BRAM, representing the network external input vector.
Following the storing of this vector, the kernel-control copies to dedicated
BRAM banks part of the other cells’ state (the dendritic voltages) needed
for computing the gap-junction effect. Each hardware neuron-processing
module has a separate dual-port, BRAM bank to store its respective gap-
junction data. By making this design choice, we improve the memory band-
width during the gap-junction processing and allow the HLS-tool schedul-
ing techniques to maximize parallelism. This would not be possible if both
compartment and gap-junction logic shared the same memory banks.

With all input data ready, the next state of each neuron is computed.
Each hardware neuron-processing module executes in parallel. It is worth
noting that all three compartments (dendrite, soma, axon) within a neu-
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ron module could execute in parallel, as they have no dependencies with
each other. In practice, the axon and soma execute sequentially (soma
first, axon second) to save on resources, while the dendrite compartment
executes concurrently with the axon and the soma. That is due to the exe-
cution time of the dendrite which is longer than that of the axon and soma
compartments combined. The final phase of the execution involves storing
the newly produced IO-cell states in the BRAMs, to be used in the next
simulation step, and streaming the output values needed by the experiment
outside the accelerator. For our test cases, this output is the axon volt-
age of each neuron for every simulation step, representing the IO-network
response. Presumably, the output could be any part of the neuron states,
depending on the requirements of the neuroscientific experiment.

4.2.2 Time-multiplexing execution

For the accelerator to achieve real-time performance, each simulation step
must be completed within the same time window of 50 µsec. Obviously,
such a ”real-time” constraint does not have a counterpart in biological
neurons (as they operate in continuous fashion). It is imposed by our
IO network simulator which is a self-contained, fixed-timestep, transient
simulator – similar to most HH-based simulators – with a constant step
∆t = 50µsec in our case. Respecting this time-step duration is essential
for generating biologically-plausible signals that can be interfaced to living
tissue.

Of course, our hardware neuron network (and hardware modules in
general) runs significantly faster than the real-time constraint at hand. We
exploit this latency slack by using our hardware resources more efficiently
and maximizing the number of simulated neurons by time-multiplexing
of hardware blocks. More precisely, we use the same hardware neuron-
processing module multiple times within a simulation step to compute
states of different simulated neurons. As illustrated in Figure 4.4, each
hardware neuron-processing module evaluates multiple simulated neurons
that together comprise the total simulated network. By adjusting online the
number of simulated cells each hardware neuron is simulating (i.e. the time-
multiplexing factor), the network size can be altered without re-synthesizing
the hardware kernel, even during the simulation, if experiments indeed re-
quire it (for instance, to emulate synaptic plasticity). This is achieved
by storing different input vectors and cell states for each simulated neu-
ron evaluated in each hardware neuron-processing module. However, the
input vectors and cell states need to be stored in the BRAM; this ulti-
mately means that the maximum network size shall be constrained by
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Figure 4.4: Time multiplexing of hardware neurons.

the amount of available of on-chip memory. The BRAMs are stati-
cally allocated before synthesis to support the maximum number of possible
simulated cells at runtime.

4.2.3 HLS C-Code optimizations

A number of optimizations for increasing the efficiency and performance of
the hardware design were implemented in the C code, motivated by code
inspection and the profiling information presented in Section 4.1.3. Accord-
ing to profiling results of the reference C code, the most computationally
intensive compartment in the model is the dendrite, more specifically, the
gap-junction computations. These are responsible for accumulating the in-
fluence of all other neurons in the network and include complex arithmetic
operations such as FP exponents and divisions performed for every other
cell state, as shown in Listing 4.1. In such an all-to-all interconnected net-
work, the amount of gap-junction computations increases quadratically
with the network size.

Without changing the actual functionality described in Listing 4.1, we
rewrote and simplified the gap-junction code. As shown in Listing 4.2, we
removed from the for-loop any operations that are common for all itera-
tions, thus reducing the required computations substantially. In short, we
removed computations simulating the total gap-junction influence (Ic) from
the accumulation loop, saving three multiplications and one addition per
for-loop iteration. In the optimized code, the gap junctions accumulate
only the input parameters of Ic and compute the total influence only once,
after the accumulation has been completed. This modification yielded a
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notable increase in the network size supported by our design for real-time
simulations.

Listing 4.1: Original gap-junction code [50].

for (i=0; i<IO_N_INPUT; i++) {

V = prevVdend - neighVdend[i];

f = 0.8 * exp(-1 * V * V/100) + 0.2;

Ic = Ic + (CONDUCTANCE * f * V);

}

return Ic ;

Listing 4.2: Optimized gap-junction code.

for (i=0; i<IO_N_INPUT; i++) {

V = prevVdend - neighVdend[i];

f_new = V * exp(-1 * V * V/100);

F_acc =+ f_new;

V_acc =+ V;

}

Ic = CONDUCTANCE * (0.8* F_acc + 0.2* V_acc); return Ic ;

A second modification in the original code that helped increase both
performance and area efficiency was the replacement of any division-by-
constant with an arithmetic equivalent (but less computationally intensive)
multiplication-by-constant (e.g. A

100 ⇔ A ∗ 0.01). In computer arithmetic,
the above modifications can introduce precision error in the computations
performed; in the evaluation section we measure the effect of our opti-
mization in the quality of the simulations. As shown next, the IO-model
computations have a large number of divisions-by-constant operations, the
replacement of which can influence both area and performance without
introducing a significant precision error that would affect correct model
behavior. This optimization had to be performed manually as the HLS
tool does not support it automatically so as to avoid introducing potential
precision error without the developer’s consent.

In Table 4.2, we can see the performance and area benefits for the ap-
plication, for each code modification. Opt1 denotes the gap-junction code
modifications. The other two optimizations refer to the replacement of
divisions-by-constant with multiplications-by-constant. Opt 2 replaces di-
visions only in the slowest part of the model (dendrite compartment), while
Opt3 in the entire code. We initially attempted replacing the divisions only
in the dendrite, since our main concern is performance while making sure
that the arithmetic error would not be significant. As Opt1 and Opt2 had
only favored the dendrite/gap-junction compartments, Opt3 was eventually
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Design Area Real-Time One Cell
Network Size Latency

Baseline 99% of LUTs 48 cells 603 cycles
Opt1 99% of LUTs 84 cells 347 cycles
Opt2 96% of LUTs 96 cells 333 cycles
Opt3 91% of LUTs 96 cells 323 cycles

Table 4.2: Synthesis Estimation for each optimization case with Vivado
HLS 2013.2 for a Virtex 707 evaluation board. Opt1: Gap-junction calcula-
tions’ optimizations. Opt2: Division-by-constant replacement in dendritic
compartment. Opt3: Division-by-constant replacement in all 3 compart-
ments. LUT: look up tables.

also deemed useful as the balance changed and it lead to an extra perfor-
mance benefit.

Overall, these modifications achieved an almost 50% decrease in single-
neuron execution latency, doubling the maximum network size able to be
simulated at real-time speed. There is also some area improvement which
is not substantial due to the fact that both multiplications and divisions
use – in most cases – the same number of DSP slices.

4.3 Evaluation of the Vivado HLS implementa-
tion

We evaluate, next, the performance and area cost of our proposed approach
and measure its speedup compared to a software implementation. More-
over, we estimate the precision error after our modifications and, finally,
discuss the efficiency of our approach compared to other related works.

4.3.1 Experimental methodology

The development of the Inferior-Olive design, as previously mentioned, was
performed using the Xilinx Vivado High Level Synthesis Tool (HLS v2013.2).
The tool gives the ability to describe hardware IPs using a subset of ANSI
C and then automatically handles production of the IP control logic, hard-
ware scheduling of the operations and translation of the described design
in SystemC, VHDL or Verilog code. Vivado HLS also supports algorithm
validation using the C code, as well as integration with RTL simulators for
validation of the produced HDL code. The tool actually provides the RTL
simulation with the correct input vector according to C test-benches. This
allows for explicit RTL hardware validation with testbenches simulating
the complete CPU/IP system operation.
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Design Speed-up

C Code – Double Floats ×58.64
C Code – Single Floats ×60.82
FPGA Accelerator ×731.23

Table 4.3: Speed-up of C implementations and the FPGA-based accelera-
tor compared to original Matlab code for simulating a real-time network of
96 neurons.

The IO-network design was translated to VHDL code using HLS and
validated using QuestaSim 10.1 in RTL. Our testbench highlighted the
basic behavior of the IO-model. All neurons are initialized with identi-
cal states, and left without any outside stimuli, remain synchronized with
their axon voltage values oscillating. After 20,000 simulation steps, evoked
current signals are issued to all neurons for 500 simulation steps. The IO
neurons respond to these stimuli by producing a complex spike as seen in
Figure 4.8(a) before returning back to their oscillating steady state. The
testbench simulates 6 seconds of real brain time, taking 120,000 simulation
steps to complete.

4.3.2 Experimental results

The accelerator achieves real-time execution for a 96-neuron network
with 100% (full) interconnection ratio at an operating frequency of 100 MHz1

using a Virtex 7 XC7VX485T FPGA. In Table 4.3 we can see a performance
comparison of the C code and the hardware accelerator against the original
Matlab implementation; both the C-code and Matlab model run on a Xeon
2.66GHz machine with 20GB RAM. The double-FP C implementation is
about ×58 faster that Matlab, while the use of single-FP arithmetic gives a
speedup of almost ×61. The FPGA IO-network kernel achieves an impres-
sive ×731 speedup compared to the Matlab version and ×12.5 compared
to the C implementation.

The on-chip memory (BRAM) resources available allow for maximally
simulating a 14,440-cell network (non-real-time). Figure 4.5 plots the ex-
ecution time of our designs for different network sizes. It can be observed
that the execution time scales with the network size slightly worse than
linearly due to the gap-junction computations which increase quadrati-
cally with the network size for an all-to-all interconnected network. How-
ever, this is still significantly better than execution-time trends in software.
This point is better illustrated in Figure 4.6 which plots the FPGA-based

1The operating frequency is limited by the Xilinx IP blocks used in the design.
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Figure 4.5: Accelerator step execution time for different network sizes.

Figure 4.6: Accelerator performance comparison to double-FP C imple-
mentation.

speedup compared to the double-FP C implementation. As the network size
increases above 96 cells, our FPGA-based simulation becomes slower than
real-time, however it achieves an increasingly better speedup compared to
the C implementation. This shows that the increasing gap-junction compu-
tations scale more gracefully in our parallel FPGA-based solution than in
software. For a network of 96 cells, the speedup is about ×12.5 compared
to the C code implementation and goes up to ×45 for a network size of
1,056 neurons.

Finally, the initialization delay also increases for higher network sizes,
but in a linear fashion (Figure 4.7). It reaches a little over 100 µsec for a
1,056-neuron simulation. It should be noted that this time becomes propor-
tionally smaller and even negligible for longer simulation times. Naturally,
it also represents the time penalty incurred for re-initializing the cell-states
at runtime.

Place-&-Route area results are retrieved using Vivado IDE 2013.2 (Ta-
ble 4.4). Our accelerator has been designed to utilize the maximum of the
FPGA resources; in practice, it uses 83% of available LUT logic, 78% of
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Figure 4.7: Initialization delay for different network sizes.

Area Component Utilization % of Available

LUTs 251485 83%
BRAMs 804 78%
FF 162217 27%
DSPs 1600 57%

Table 4.4: Area utilization for the Virtex 707 evaluation board.

BRAMs, 27% of Flip-Flops and 57% of the available DSPs on the FPGA
chip.

4.3.3 Error estimation

As previously mentioned, the original IO-network model performed all com-
putations with double-FP precision. The main reason was that its modelers
(as so many peers in the neuromodeling field) have arbitrarily opted for
double-FP precision since this is the highest intrinsically supported preci-
sion in many modern programming languages (here: Matlab). However,
early in our design effort, we realized that double-FP precision would tax
the FPGA with such high performance and area costs that no significant
acceleration of the application could be achieved. We, therefore, resorted
to switching to single-FP precision calculations for the hardware version of
the IO-network model.

To make such a decision, we had to first make sure that single-FP
precision would be sufficient for the application at hand. Due to the fact
that correct, “reference” brain-simulation traces do not exist (in fact, this is
one of the goals of model simulators like the one we are porting in this work),
only empirical metrics of correctness can be given by neuroscientists at the
moment. That is, over a practically infinite amount of simulation time –
for instance 1 day of real-time brain simulation (amounting to approx. 1.73
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(a) Double−FP precision trace (baseline)
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(b) Single−FP precision trace (with optimizations 1,2 and 3)
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Figure 4.8: Graphical comparison of numerical-precision error. Exter-
nally evoked input current (Iapp) in green, axonal voltage in blue and error
signal in red (Va). (a) Reference trace in double-FP precision. (b) The
same trace generated with single-FP precision and all three code optimiza-
tions. (c) The error signal (i.e. difference) between the two traces. Observe
the amplitude units of the error.

billion simulation steps) – the double-FP and single-FP simulation traces
should not exhibit any biophysically different results.

Multiple tests have been run. As a simple illustration, in Figure 4.8 both
the dynamic (complex spike) and steady-state (subthreshold oscillations)
behavior of a single IO cell between 700 and 2000 msec of a simulation trace
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have been captured. Figures 4.8(a) and (b) illustrate runs with double-FP
and single-FP precision, respectively. In the single-FP case are also included
the 3 code optimizations discussed in Section 4.2.3 which contribute an
additional precision error. In Figure 4.8(c), the error signal (i.e. difference
of the two signals) is plotted over the same simulation period. Analysis of
the error reveals that there is no phase error. A very low amplitude
error is observed which ranges from 0.0%, at cell resting state (when
most internal cell variables change slowly), to about 2.1%, at cell firing
state. Such a low error signal does not affect the simulator functionality,
especially since the model itself cannot guarantee such high accuracy to the
real biological system. In conclusion, computations in single-FP precision
along with the 3 performed optimizations are considered to not compromise
the IO-network simulation correctness and are permanently adopted. It is,
of course, conceivable that a more constrained numerical range could also
be used (i.e. fixed-point precision), but extensive precision analysis of the
mathematical model would be required to identify such an (integer) range
with certainty.

4.3.4 Comparison to related work

We discuss next the efficiency of our design and related SNN FPGA-based
approaches and attempt to analyze and compare them. A direct compari-
son is not possible as different works consider different neuron-models with
radically different characteristics, which potentially change completely the
requirements of each design. Moreover, despite its complexity, each model
type has its own merits for neuroscience and potential usefulness in appli-
cations. Depending on application constraints or the subject of simulation
experiments different models can be of use.

Table 4.5 summarizes a few of the best performing related FPGA-based
brain-modeling works. The Izhikevich neuron models, as expected with
their simplicity, allow for the implementation of very large network sizes
in FPGA devices, as described in [85], achieving sizes already significant
to actual brain subsystems (tens of thousands of neurons). Each Izhike-
vich neuron model requires 13 operations per 1ms. On the other hand,
biophysically-meaningful models such as the HH models used in [1], are
one to two orders of magnitude more costly in terms of operations, which
is one of the main reasons why real-time network sizes achievable in such
designs are much smaller. Another interesting observation is that HH mod-
els have a much shorter simulation timestep (tens of µseconds) compared
to Izhikevich models (1 msec), which increases their complexity and their
accuracy. The IO-model used in the present work has a simulation step of
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Design [19] [85] [1] IO Design
Model Izhikevich HH Extended HH
Time Step (ms) 1 - 0.05
Real-Time

64000 4 96
Network Size
Arithmetic Fixed Floating Floating
Precision Point Point Point
Operations

>13 <1200 22200
per Neuron in 1ms
Neuron Model
OPs * Net. Size >832 4.8 2131.2
(MFLOPS)
Interconnectivity 1.5%
Density (1000 per neuron) 100% 100%
Speed-up x12.5 (C Coce)
vs. CPU x12 (C Code) x731.23 (Matlab)
FPGA Virtex 6 SX475T Spartan 3 Virtex 7
Chip Maxeler Machine XC3SD1800a XC7VX485T
Device Capacity 297600 33280 303600
(LUTs/ALMs) 6-input LUTs 4-input LUTs 6-input LUTs
Performance density

2796* 576 7019
(FLOPS/LUT**)
* Fixed-point operations ** 6-input LUTs

Table 4.5: Overview of FPGA SNN Implementations on achievable real-
time network sizes. For [1] compared to a Pentium 4 3GHz/3GB RAM and
for the IO design to a Xeon 2.66GHz/20GB RAM.

50 µsec, ×2-×20 shorter than other models, making it have the tightest
real-time constraint among the related works reported.

Especially for the IO-cell model considered in this chapter, the complex-
ity is even greater than the other HH models. The design accurately models
3 compartments and the gap junctions that account for more than 22,000
FP operations per 1 msec, about ×19 more than the second most complex
related model. Moreover, the use of simpler models to increase efficiency is
not an option when modeling the Inferior Olive. Izhikevich and IaF models
only have two basic output responses for their neuron: resting and firing
states. The biological behavior of the Inferior Olive requires greater resolu-
tion, since neurons are constantly oscillating even in their resting state and
have the property to synchronize. Such behavior could not be simulated
with such simpler models.

A strategy that improved performance in some of the related works,
however not applicable in the IO-model, is the event driven execution, e.g.,
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in [85]. Another important performance advantage that the designs of
simpler models have is the use of fixed-point arithmetic. In such models,
precision errors can be insignificant for correct behavior. That is not self-
evident in HH models as discussed earlier.

Although the above approaches are radically different, in Table 4.5 we
attempt to quantify their complexity and evaluate their efficiency. We take
into account the amount of computations per neuron in 1 msec and the
network size to estimate the performance of each work in FP operations
per second (FLOPS) and properly marking those that use fixed-point. It
must be noted that estimations for the computing capabilities of each design
are based on data presented in [6] and cannot account for the computations
due to the extra custom-made characteristics in the network models of each
design, as we do not have this information available. We assume that the
majority of the computations come from the simulation of the main neuron
model. Our design achieves 2,131.2 MFLOPS, when matching the real-
time constraints. [85] supports 832 million fixed-point operations per second
mostly due to the size of the simulated networks. Taking into account the
area resources used in each work, we define a metric for performance density
and measure operations per second per unit area (LUT). Our design has
the highest performance density, with second best being at least ×2.5 lower
(without taking into account the difference between fixed- and floating-
point) [85]; the higher number of DSP-slices in our FPGA device (2,800 vs.
2,015) is however in our advantage. Finally, our design achieves a ×731.23
speedup compared to the original Matlab code and ×12.5 compared to the
double-FP C code. This speedup reaches almost ×45 for higher network
sizes.

To summarize although our accelerator implements an IO-network which
is ×19 more computationally intensive and has ×2-×20 tighter real-time
constraints compared to related models, it achieves at least ×2.5 better
performance density supporting 2.13 GFLOPS with a single FPGA device.
The empirical precision-error analysis revealed that using our optimiza-
tions and single-FP arithmetic create a very slim amplitude error and no
phase errors, preserving the correct biological behavior while benefiting in
performance. Our design, implemented in a Virtex 7 XC7VX485T FPGA,
can maximally support a 14,400-cell network with online parameter config-
urability for neuron state and network size. Although this design offered
considerable speedup over a reference CPU implementation, it was still
unable to fully exploit the parallelism of the model, which essentially is
a dataflow application that can benefit from finer-grain parallelism which
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Figure 4.9: Illustration of (a) A single instance of the FPGA IO Kernel
(b) A single instance of the DFE IO Kernel.

needed considerable restructuring of the initial model that the HLS infras-
tructure did not readily allowed for.

4.4 DFE-based inferior olive implementation

The data-flow engines (DFEs) design presented in this section was a
continuation of the work of previous section’s accelerator [3]. The FPGA
kernel using the control-flow methodology that the Vivado HLS infrastruc-
ture provides cannot fully exploit the parallelism of an essentially dataflow
application.

On the other hand, a Maxeler Dataflow Computing Machine [135],
based on DFEs, has the ability to better exploit the inherent parallelism
of the model and has the potential to achieve even greater speed-ups with
minor changes in the model architecture. The device is essentially a recon-
figurable hardware-based HPC accelerator, specializing on dataflow appli-
cations.



70 Chapter 4 – The Inferior Olive on FPGA-based Hardware

Its tool flow is designed and optimized to accommodate the accelera-
tion of dataflow applications; that is, applications with the bulk of their
implementation using purely raw computations with the absence (partially
or totally) of branching execution or feedback paths. The Maxeler tools
can exploit the nature of dataflow application to implement very fine-grain
pipelined designs, maximizing the throughput and overall performance.
The DFE boards also incorporate high-speed design for the communication
between the reconfigurable chip and the on-board memory resources. The
DFEs can also accommodate several GBs of on-board, high-speed RAM
making it ideal for scientific applications manipulating large amounts of
data. What makes Maxeler DFEs stand out from the rest of the FPGA-
based solutions is the excellent high-level programming language employed
for kernel coding (Java with Maxeler-related extensions) and the ability to
form scaled up, multi-DFE platforms in a seamless (i.e. user-transparent)
manner [135].

4.4.1 The IO-kernel DFE architecture

The DFE implementation of the IO network can be seen in Figure 4.9(b).
The design incorporates 3 internal pipelines one for each part of the cell
(Dendrite, Soma, Axon), executing the respective computations. The cell
states consist of 19 FP values. Each parameter for each neuron is stored
on its own BRAM block, for fast read/update of the network state. Since
every new cell state is dependent only on the network state of the previous
simulation step, only one copy of each neuron state is required. The input
stream of the DFE kernel comes from the on-board RAM and represents
the evoked inputs (one value for each neuron per simulation step) used in
the dendritic computations comprising the network input. Only for the first
simulation step the initial state and neighboring (gap-junction) influence
are also streamed-in from the on-board memory as each neuron begins
its first simulation step. The network output (represented by the axonal
voltage) is also streamed to the on-board memory at the same point as it
is updated on its respective BRAM block.

Due to the dataflow paradigm followed, the DFE kernel executes the
complete simulation run when activated, as opposed to the control-flow-
based FPGA kernel that only executes the simulation step by step, under
the supervision of a MicroBlaze core. As such, the DFE kernel additionally
receives scalar input parameters, denoting the simulation duration and the
network size to be simulated. Program flow is monitored using hardware
counters monitoring gap-junction loop iterations, neurons executed and the
number of simulation steps concluded. All scalar parameters, activation of
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the kernel, input-data preparation before execution and output visualiza-
tion after execution is handled by an off-board host processor. The data
flows through the DFE pipelines with each kernel execution step (or tick),
consuming the respective input or producing the respective output and
state. Each kernel tick represents the completion of one gap-junction loop
iteration. As a result, the DFE execution naturally pipelines not only the
gap-junction loop iterations but the execution of different neurons within
one simulation step as well, as opposed to the FPGA kernel that was capa-
ble of only the former (Figure 4.9(a)). Simulation steps are not pipelined
in an all-to-all network, as every neuron must have the previous state of all
other neurons ready for its gap-junction computations before a new step
begins. The DFE pipeline is, thus, flushed before a new simulation step
begins execution. The execution of a single simulation step requires N2

ticks to be completed, where N is the network size.

4.4.2 Additional design optimizations

There are two straightforward ways to speed up execution of the DFE ker-
nel. One is to use multiple instances of the kernel in a single DFE, if the
DFE spare resources allow it, thus doubling the network size achievable
within a certain time frame. The other is to unroll the gap-junction loop
by replicating the single-iteration hardware logic, essentially executing mul-
tiple iterations of the loop per kernel tick. If U is the unroll factor of the
loop, the number of ticks required for a network simulation step is N ∗N/U ,
denoting potentially a considerable speed-up. Both of these techniques are
subject to area but also timing constraints. Loop unrolling, in particular,
could cause extra pressure in the routing of the hardware, limiting the max-
imum achievable frequency of the DFE kernel.

4.5 Evaluation of the DFE implementation

The design was implemented on a Maxeler device using the Vectis architec-
ture. The Vectis boards include a Virtex 6 SX475T FPGA in their DFEs.
The maximum frequency that an IO kernel achieved on the DFE board was
150MHz. This design could be optimized by either using a second kernel
instance within the same DFE or unrolling the gap-junction loop. Unfor-
tunately, the spare resources did not enable the use of both optimizations
simultaneously. As a result, 2 versions of the design were tested, one with 2
IO kernels within the DFE and one with a single kernel and loop unrolling.
The maximum unroll factor achieved for the frequency of 150MHz was 8.
One last design was also evaluated. By reducing the DFE frequency to
140 MHz, the unroll factor could be raised to 16 expecting to balance out
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Figure 4.10: Simulation step execution time for the DFE kernels and the
FPGA kernel of section 4.2.1.

Figure 4.11: Speed-up vs network size of best DFE and FPGA imple-
mentations compared to single-FP CPU-based execution on an Intel Xeon
2.66GHz with 20GB RAM.

the performance loss due to the lower frequency. Larger unroll factors were
not achievable due both to timing and area constraints.

In Figure 4.10 we can see the execution time for all the DFE-based de-
signs and the FPGA-kernel version (deployed on a Virtex 7 XC7VX485T
device running at 100 MHz2) which includes 8 instances of the IO kernel
shown in Figure 4.9(a). Indeed, the best-performing Vectis implementa-
tion is the one with the lowest frequency but the highest unroll factor.
The gain of loop unrolling supersedes the gains of using the extra kernel
instance or the higher frequency. The FPGA implementation incorporates
also unrolling optimizations but of lower factor (4) and, combined with
its coarser-grain pipelining and lower operating frequency, performs worse
than the DFE implementation. In effect, the DFE can simulate up to 330
Inferior-olivary cells at real-time speed (within the 50-µsec deadline) and is

2For fairness in comparisons, the Maxeler DFE and the Xilinx FPGA board contain
similar resources.
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Design Cheung et al. [85] IO of section 4.2.1 DFE

Model Izhikevich Extended HH Extended HH

Time Step (ms) 1 0.05 0.05

Real-Time
64000 96 330

Network Size

Arithmetic Fixed Floating Floating
Precision Point Point Point

Neuron Model
OPs * Net. Size > 832* 2131.2 24684
(MFLOPS)

Speed-up x12.5 (C Code) x92 - x102 (C Code)
vs. CPU -

FPGA Virtex 6 SX475T Virtex 7 Virtex 6 SX475T
Chip Maxeler Machine XC7VX485T Maxeler Machine

Device capacity 297,600 303,600 297,600
(LUTs) 6-input LUTs 6-input LUTs 6-input LUTs

Computation density
2,796* 7,019 82,943

(FLOPS/LUT)

* Fixed-point operations

Table 4.6: Overview of current and related work SNN Implementations
on achievable real-time network sizes. CPU Speed-up for the IO designs is
compared to a Xeon E5430 2.66GHz/20GB RAM.

×7.7 to ×2.26 faster than the FPGA implementation. In terms of speed-up
compared to single-core CPU execution 3, the fastest DFE implementation
has a speed-up of ×92 to ×102 compared to the single-FP C implemen-
tation (Figure 4.11). It uses about 74% of the total logic available in the
DFE hardware; more specifically, about 64% of LUTs, 60% of FF, 30% of
DSPs and 41% of on-chip BRAMs. The maximum network size that can
be simulated is 7,680 IO neurons before we run out of resources.

To quantify the computation density of the design, we use the same
method of calculating FP operations per second (FLOPS) per logic unit
(LUTs) as in [3]. To the best of our knowledge at the time, the only other
SNN implementation on a Maxeler DFE is the one by Cheung et al. [85]. A
comparison of this work to the FPGA-based kernel and our new Maxeler-
based design can be seen on Table 4.6. The Maxeler-based design can
achieve 24.7 GFLOPS when executing its maximum real-time network (330
cells) and has a computation (performance) density of 82,943 FLOPS/LUT

3We use the single-core C implementation as a reference point. It would be possible
and interesting explore a multi-core implementation and assess the speedups, but this
subject is out of the scope of this work.
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(6-input LUTs), as opposed to 2.1 GFLOPS and 7,019 FLOPS/LUT for
the conventional FPGA kernel, respectively.

To summarize, the dataflow implementation of the model of the Inferior-
olivary Nucleus has achieved significant speed-ups compared to the CPU
implementation of the same model and related works. The inherent applica-
tion parallelism was exploited to a much greater extent when implemented
in a single DFE of a Maxeler Dataflow Machine. This, alongside with
the higher operating frequency, led to a significant improvement over the
previous design implemented on a conventional FPGA board. The fastest
DFE implementation achieved a real-time network of 330 neurons – ×3.4
larger than the FPGA one – and achieved almost ×2-×8 greater speed-ups
compared to the FPGA port. The real-time network supports about 24
GFLOPS and has almost ×11 greater computation density than the con-
ventional FPGA.

The larger real-time-network size, as well as the high modeling accu-
racy, have the potential to enable deeper exploration of the Olivocerebellar
microsection behavior compared to the previous FPGA implementation.
Besides the speedup, this DFE-based implementation has also opened new
possibilities for future simulation-based brain research: The Maxeler DFE
platforms offer extended capabilities and significantly higher programming
ease compared to conventional FPGAs. Such capabilities include the use
of the large DRAMs located on the DFE boards, fast network connections
directly to the DFE fabric and the ability to combine multiple DFE boards
for running massive-scale network simulations.

4.6 Satellite efforts on FPGA implementations

Additionally to the main effort there were other side-efforts to the HPC
development exploring other aspects of the FPGA environment. This re-
sulted into two basic parallel threads:

• An Embedded-HPC implementation of the Inferior Olive referred as
ZedBrain

• A manually non-HLS based FPGA implementation to assess the ben-
efit of custom FPGA design.

4.6.1 Embedded-HPC inferior olive - ZedBrain

Additionally to the main effort around accelerating the IO application,
embedded-HPC solutions are also relevant. Mostly related to brain-rescue
prototyping or artificial experiment setups, such embedded, cost-efficient
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implementations can see considerable use on the research field. ZedBrain [136,
137] is using relatively cheap heterogeneous boards such as Avnet’s Zynq
7020-based ZedBoard, building a standard HPC framework using Message
Passing Interface (MPI). The previous approaches follow the straightfor-
ward strategy of deploying the whole neuronal model on the FPGA’s re-
sources, even though the size of the network has a linear impact on mem-
ory capacity. Additionally, due to the basic routing programmability of
a typical, RAM-based FPGA, FPGAs are not capable of clocking at the
maximum speed provided by the CMOS node in which they are fabricated.
For example, the ARM core on a Zynq 7020 runs at 667MHz, while design-
ers will consider themselves lucky at achieving more than 200MHz for the
FPGA fabric.

ZedBrain presents a heterogeneous hardware-software co-designed im-
plementation of the inferior olivary nucleus. Experimentation on parti-
tioning the algorithm and its implementation and evaluating the use of a
bare-metal approach versus the use of an operating system (OS), has been
conducted.

The processing region of the Zynq (denoted as PS) includes a dual
core ARM A9 CPU, with NEON SIMD capabilities, plus several I/O con-
trollers. The integrated Artix-7 FPGA fabric (called the PL region) is
interconnected via several channels to the PS. The problem consists now
in determining which processing elements could take care of which sections
of the model in a more efficient way. Distributing tasks is the first obvious
answer (for instance, using MPI), as it would provide flexibility and some
scalability. Secondly, based on a prior complexity analysis, the GJ opera-
tions were ported to the system on chip (SoC)’s PL, keeping the rest of the
operations embedded in the PS. An overview of the proposed architectural
solution is given in Figure 4.12. The GJs are mapped via AXI-Lite to the
PS for programming and monitoring. Calculation data is transferred via
AXI4-DMA from the DDR3 RAM.

The final proposed system offers:

• A balanced HW/SW co-design that takes advantage of several fea-
tures of the Zynq platform (DMA and cache access from the FPGA
fabric, programming and data downloading via TCP-IP and hard-
ware resources administration via OS).

• A C++ flexible design that is portable to other Zynq platforms with
more processing power.
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Figure 4.12: Overall system architecture of Zedbrain. The GJ is managed
by one thread of the ARM A9, via AXI4, while the other thread resolves
software calculations and I/O outside of the ZedBoard.

• A noticeable improvement in processing speed (over 18 times when
compared with the same algorithm, optimized with NEON instruc-
tions, running single-threaded on the Zynq’s ARM A9) [137].

4.6.2 Custom (non-HLS-based) acceleration of the inferior
olive

In this work [138] the custom design of the IO kernel is explored. All subse-
quent efforts have used HLS infrastructure for the IO implementations. For
practical considerations, HLS is required as custom designing the hardware
on the HDL can lead to non-scalable design effort. But as HLS synthesis
and place & routing are based on heuristics, it cannot be optimal and does
not reveal the full potential of the FPGA as a platform.

This work proposes an efficient multi-chip dataflow architecture for the
IO neuron cell and its subsequent interconnected network, which exploits
data locality and minimizes network communications over one or multi-
ple FPGA devices. Operationally, the neuron network needs to compute
and communicate simulated IO responses to their neighbors and the axon.
Both operations are executed concurrently, and separate hardware architec-
tures for computation (based on the multi-compartmental extended HH)
and communication are devised. A neuron computation unit is referred
as a physical cell (PhC). Within a PhC, the topology-dependent (i.e., in-
corporating the neighbors coupling) dendrite calculation, and topology-
independent Axon+Soma (a+ s) calculation run in parallel (Figure 4.13).
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Figure 4.13: Dataflow of a PhC.

The Axon+Soma computational unit computes the axon and soma
state, and updates a set of cell parameters, based on the current cell com-
partment states and cell parameters. Internally, the dendrite calculation
is dependent on the result of the Axon+Soma calculation to calculate the
new dendrite state. Externally, both calculations use the same exponent
co-processor (ExpC). The exponent operations, compared to standard oper-
ations, require relatively more resources and cycles to complete. To reduce
the required amount of resources without adverse effect on the calculation
latency, a single exponent instance over multiple neuron calculations in a
Kahn process network is utilized.

The neuron cells are connected with decreasing probability the further
they are apart. The individual computation units, i.e., physical cells that
are in a close proximity to each other are placed within a confinement of a
(neighbor) cluster. The amount of clusters k implemented in the FPGA is
based on the critical resources. The cluster controller relates new values to
the calculation architecture when requested, and store and route their re-
sponses. Each cluster controller is designed around several parallel running
hardware architectures, that are synchronized by FIFO’s. In Figure 4.14,
an example is given of a cluster controller with two connected PhCs.

The final contributions of this work are:

• Close to linear growth in the communication cost: with proposed data
localization scheme and the resulting linear growth in communication
cost, x31 to over x200 more neurons could be simulated in comparison
to many of prior work, which are limited by the exponential growth
in the communication cost [138].



78 Chapter 4 – The Inferior Olive on FPGA-based Hardware

Figure 4.14: A diagram showing how the controllers are housed within
the cluster controller

• A high run-time configurability, which reduces the need for resyn-
thesizing the system. Additionally, adaption of routing tables, and
changes to the calculation parameters are also possible. In this way,
the system reduces the time required for experiments with biophysi-
cally accurate neurons.

• A custom-made simulator designed for high precision spiking neuron
network simulations, but flexible enough to be used for smaller neu-
ral networks. The simulator features configurable on- and off-chip
communication latencies as well as neuron calculation latencies. All
parts of the system are generated automatically based on the neuron
interconnection scheme in use.

4.7 The Problem of traditional FPGA workflow

The previous works have demonstrated a clear potential for FPGA-based
technology and reconfigurable hardware in general to serve the research
effort around computational neuroscience. But the experience of developing
the accelerated application of the Inferior Olive using the FPGA toolflows
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Figure 4.15: Typical workflow for accelerating neuron applications using
HPC devices.

revealed a certain weakness for the platform when it comes to serving such
a dynamic and diverse research field.

Initially, the process begins with the neuroscientific question and the
lab/biological measurements that give the data required to formulate the
neuroscientific computational model. In the case of this thesis, the subject
was the research of the Inferior Olive. Then the computational neuroscienist
develops the model using a familiar environment. Typical examples include
MATLAB, NEURON, PyNN etc. Then for the acceleration to be imple-
mented, the acceleration engineer needs to take over, in a sense mediate
between the scientist and the HPC hardware. In the case of FPGA devel-
opment, this means porting the initial model to VHDL/HLS descriptions,
as the designs described in this chapter. This is essential as it is unrealistic
for most neuroscience experts to be expected to acquire the knowledge and
expertise for programming HPC hardware, let alone something as special-
ized as FPGA hardware.

Generally, computational neuroscientists tend to prefer their own fa-
miliar coding tools. Experience from custom made intermediate languages
created to bridge the gap between neuron modelling and FPGA descrip-
tion, like DYNAMO, implies that unless the scientist is exposed to tools
with already familiar constructs for development, wider adoption of the
acceleration paradigm will be limited. In the absence of such familiar tools
the mediation of the engineer is thus required (Figure 4.15).

The main issue especially, for FPGA development, though is the addi-
tional time to implement the accelerated application in combination with
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Design Relative FLOPS Dev. Time (months)

Semi automatic porting [2] ×1 6
Xilinx HLS tools [3] ×159 4
Maxeler DFE HLS tools [98] ×1083 5
Fully custom Design [138] ×1277 12

Table 4.7: Performance in FLOPS and development time for the various
IO FPGA-based works presented in this chapter. Performance is normal-
ized to the design of [2] which was a preliminary exploratory design before
the implementation of section 4.2.1 was made. It achieved to simulate a
single IO neuron and its immediate neighbouring GJ connections in real-
time.

the constant re-evaluation that the neuroscientific studies often require.
The development does not stop after initial porting. The usage of neuron
models on simulations or experiment requires the constant exploration and
update of the models (model fitting) after initial porting. Updates than
can often change the behavior of the application and its optimality on the
FPGA hardware, that might require considerable additional development
effort from the engineering side. Sometimes to the extend that any benefit
gained from the greater speed of the application, can be lost in the inter-
mediate work that the engineer might require to do. In Table 4.7 we can
see a relative comparison between performance benefits and development
time for the designs related to the FPGA-based acceleration of IO model
that has been the topic of this chapter.

In all cases the development took several months, adding significant
overhead to the neuroscientific process. As a result practical use on real-life
computational research, using this method of work, would require consid-
erable manpower and can only really be functional on a small scale and on
a case by case basis.

4.8 Summary

In this chapter, we presented the full FPGA-focused effort on accelerat-
ing the inferior olive application. As an extended-HH representation with
advanced connectivity modelling, the acceleration of this application does
not only serve the specific research on the cerebellum exploration, but it
is also useful to assess the FPGA platform for neuroscientific applications.
The model used is quite demanding both in terms of throughput and la-
tency and able to take any HPC platform to its potential limit. The FPGA
development leads to promising performance results not only with custom
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designs but also HLS toolflows that significantly reduce development time.
FPGAs have proven suitable for small-scale embedded-HPC uses as well.
The various efforts though reveal a very specific weakness of FPGA develop-
ment that has less to do with the silicon itself and more of its programming
environment. The FPGA tools are very inaccessible to non-experts, thus
any acceleration effort would require the engineer (and the FPGA devel-
opment time) to be in the critical path of the research process. This is
creating an extra hurdle of development that will issue extra delays to the
research process, which could balance out some of the acceleration benefits.
Although such a development method can be beneficial on a case-by-case
basis, it provides a significant obstacle for wider adoption of FPGAs, and
HPC technology in general, by the computational neuroscience field.
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In this chapter we will present efforts involving the porting of the Inferior
Olive into different acceleration technologies, besides FPGA-based technol-
ogy. Using the IO as a respective complex neuroscientific benchmark can
allow us to derive conclusions on the viability off each acceleration technol-
ogy explored and make comparisons to the aforementioned FPGA designs.

There are a number of candidates that could be explored as competi-
tive technologies to FPGA-based platforms. A good alternative would be
the execution of neuron models in GPUs. Since DSP applications have
repetitive and quite parallel functions to compute, GPUs are more capable
to efficiently run neuron models. Yet, in the cases of complex models or
very large-scale networks, they may not be able to provide real-time perfor-
mance, due to the high rates of data exchange between the computational
elements of models.

Another alternative would be the use of supercomputer implementa-
tions. Although these systems can emulate the behaviour and parallelism
of biological networks with sufficient speed, the sheer size and complexity
of these solutions makes them useful only for behavioural simulations. Su-
percomputer systems require immense space, implementation, maintenance
and energy consumption costs while lacking any kind of mobility. A solu-
tion using similar programming environments to supercomputers would be
many-core-CPUs such as the XEON PHI or the Epyc Multi-core CPUs,
which present a much more cost-efficient alternative.

An option that can possibly implement brain simulations on extreme
scales with very little cost is also volunteer computing. Middleware sys-
tems such as BOINC [139] can allow for the exploitation of the cumulative
processing power of the billions of mobile devices in the wild, by users
volunteering their devices in idle time. Even though not suitable for low
latency requirements, when the requirement is scale the seer size of the
embedded mobile market can potentially provide it.

Based on the above, three platforms were explored to compare with the
FPGA-based implementations:

• Volunteer Computing [140]

• CUDA-based GPGPU designs [141]

• The Intel XEON PHI many-core platform [142]

5.1 The inferior olive on volunteer computing

Volunteer computing is a form of distributed computing. It pertains to
computer or mobile device owners (volunteers), who donate their processing
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power and/or storage resources to scientific projects that need to execute
computationally intensive software routines (tasks). Volunteer computing
was first applied by the ”Great Internet Mersenne Prime Search” project1

in 1996. However, it was mainly established in the early 2000’s, when the
University of California, Berkeley released the BOINC middleware [139] to
the public.

To date, BOINC is still the most widely used middleware that scientists
and companies utilize to launch research projects on distributed networks
of desktop computers and mobile devices (smartphones and tablets)2.

Although many companies and universities have acknowledged the power
of volunteer computing, it is still applied with limitations mainly due to
the following reasons:

• Available middleware frameworks do not support inter-node task de-
pendencies, hence limiting the nature of projects and applications
that are applicable for volunteer computing. Task dependencies are
only supported at intra-node level, where developers manually divide
an application into sets of dependent tasks, and assign each set to a
virtual machine hosted on a client node [143].

• Setting up available middleware frameworks and launching research
projects based on volunteer computing requires (a) skills and experi-
ence in computer-science aspects, and (b) significant effort and time
(the very same experience that this team had while carrying out this
work). As a result, scientists from other research domains (e.g. as-
trophysics, seismology, biology, biomedical, financial) find very hard
starting such projects, which also impacts volunteer computing.

To alleviate these issues, the mCluster software framework for IoT-based
volunteer computing is proposed. It strives to facilitate the deployment of
applications on distributed networks consisting of IoT devices. mCluster
targets to minimize the enormous effort and knowledge currently required
to successfully launch research projects powered by volunteer computing.

Towards this, mCluster adopts a task-based programming model that
requires simple pragma-based annotations of the application software, in
order to dynamically resolve task dependencies. In other words, scientists
and developers need only to insert certain key-words in their original soft-
ware to describe task dependencies, which mCluster automatically handles
at runtime. The Inferior Olive application was one of the use cases em-
ployed to demonstrate the benefits of the mCluster.

1http://www.mersenne.org/
2https://boinc.berkeley.edu/
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5.1.1 The mCluster framework and programming model

Similarly to widely adopted frameworks (e.g. OpenMP), mCluster
adopts a task-based programming model that requires developers to simply
pragma-annotate the application code to dynamically resolve task depen-
dencies. Figure 5.1 illustrates an example of a simple code that processes
1-d vectors. There are three tasks, namely ”v add”, ”v sub” and ”v mult”.

To define application tasks, developers need to insert above each task
the #pragma mcluster string, followed by the input keyword. This
defines all task inputs, where developers insert within parenthesis each
input type, starting address and size, all separated by commas. Similarly,
developers can define all task outputs with the keyword output, followed
within parenthesis by each output type, starting address and size.

The framework also provides manual task synchronization with the
mClusterSync(). The latter essentially works as a sync barrier that sus-
pends further application execution, until all currently dispatched tasks
have returned their outputs. It should be noted also that the mCluster
API imposes certain limitations, such as nested task annotation. In other
words, developers are not allowed to annotate a task within an already
annotated task.

5.1.2 mCluster implementation

Figure 5.2 illustrates the mCluster-BOINC implementation. Considering as
example application the source code depicted in Figure 5.1, the workflow
proceeds as follows:

1. Remove data hazards and generate BOINC-compatible back
end files: The original annotated code is source-to-source translated,
in order to (a) remove any WAW and WAR hazards among tasks, and
(b) generate the required BOINC-compatible back end files for task
generation / management. In order to tackle inter-node tasks depen-
dencies and, at the same time, follow the strict project/application
BOINC structure, we associate each task with a BOINC applica-
tion [139]. Thus, the mCluster back end BOINC files (a) parse the
original code to keep all task metadata (i.e. unique id, inputs/outputs
parameters and their sizes) in private structures, (b) run the required
BOINC scripts to generate a new full BOINC project (including its
internal databases and other structures), and (c) automatically gen-
erate a unique BOINC application associated to each annotated task
in the original code, excluding its Work Generator (WG) [139], thus
suspending execution. As soon as all applications are created, every
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// vectors addition task

void v_add(int *vA,int *vB, int *vC) {

// vectors addition code

..

}

// vectors subtraction task

void v_sub(int *vA,int *vB, int *vC) {

// vectors subtraction code

..

}

// vectors multiplication task

void v_mult(int *vA,int *vB, int *vC) {

// vectors multiplication code

..

}

int main (){

// vectors declaration

..

// vectors initialization

..

#pragma mcluster input (int &v1[0], VECTOR_DIM ,int &v2[0],

VECTOR_DIM) output (int &v3[0], VECTOR_DIM)

v_add(&v1[0],&v2[0],&v3[0]);

#pragma mcluster input (int &v3[0], VECTOR_DIM ,int &v5[0],

VECTOR_DIM) output (int &v4[0], VECTOR_DIM)

v_sub(&v3[0],&v5[0],&v4[0]);

#pragma mcluster input (int &v4[0], VECTOR_DIM ,int &v6[0],

VECTOR_DIM) output (int &v3[0], VECTOR_DIM)

v_mult (&v4[0],&v6[0],&v3[0]);

return 0;

}

Figure 5.1: Application-task annotation with the mCluster pragma key-
words. Developers need only to define the input/output starting addresses
and sizes.
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Figure 5.2: The mCluster BOINC implementation: the original pragma-
annotated code is source-to-source translated as described in the previous
section and generates the BOINC-oriented back-end files, where each task
is associated with a BOINC application and a task graph describes all task
dependencies. At runtime, the mCluster starts all applications that have
their inputs ready. When an application reports that assimilated results are
ready, mCluster traverses deeper in the graph to start new applications that
now have their inputs ready. Processing is finished when all applications
have reported their assimilated results.

client device that is registered to the BOINC project will receive all
task executables and be ready to accept task instances for execution.

2. Start ready BOINC applications: mCluster traverses the gener-
ated task graph and starts all BOINC applications with ready inputs
by automatically generating its WG.

3. Wait assimilated results: mCluster halts further execution of the
back end files, until at least an application reports new results in
its corresponding BOINC assimilator [139]. Based on the updated
ready data, mCluster traverses further into the task graph to identify
which BOINC applications have their inputs now ready, in order to
proceed to step 2. mCluster also deletes all BOINC applications
whose outputs are no longer needed, keeping at minimum resource
utilization on the server side. If all BOINC applications are done, it
exits.

It should be noted that the number of concurrently ”active” BOINC
applications depends on the server resources capacity (e.g. CPU power,
available memory, etc). For this reason, mCluster has the option to con-
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Figure 5.3: Illustration of the Inferior-Olive application execution proce-
dure; in each simulation time step (simStep) each task calculates a cell’s
state within the 2-d cell grid with dimensions DIM X × DIM Y.

strain them up to a predefined limit, in order not to overload the server
machine. Such a case can occur for example within for-loops iterated hun-
dreds or thousand times that call independent task(s).

The IO application is tackled using the mCluster system by distribut-
ing neuron-cell computations in the virtual cluster of IoT devices (many of
them based on commercial GPGPUs). Even though there would be a sig-
nificant data-transfer penalty due to the wireless communication involved,
data-transfer demands in the case of accurate-model simulations are low
compared to the computational demands. By taking into account the fact
that almost 200 million devices are sold to the public every quarter year, an
mCluster implementation of this application shall give the ability to per-
form brain simulations (a) with biologically accurate neuron models, (b) in
the realistic sizes of several millions of neurons, and (c) in a small fraction
of the cost compared to investing on a CPU or GPGPU cluster.

In its current version, the application models, in time steps of 0.05 msec
each, the state of a 2-d neurons grid (cells), all interconnected with their
8 neighbours. Figure 5.3 illustrates this procedure for N simulation time
steps (simSteps). At every simStep, a task calculates a cell’s state within
the 2-d cell grid with dimensions DIM X x DIM Y, while all tasks can be
executed concurrently.
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Figure 5.4: Our experimental system consisted of four Asus Nexus 7
(2013) tablets and two Samsung Galaxy S4 smartphones. The BOINC
client app is installed in each device.

5.1.3 Evaluation of the IO on the mCluster

To verify the BOINC-compatible implementation, an experimental system
consisting of one BOINC server machine and six client devices is deployed.
The BOINC server is hosted on a 64-bit Ubuntu 12.04 LTS virtual machine
(VM) with a single-core CPU at 2.1 GHz, 4GB RAM and 20GB storage.

The client machines are two Samsung Galaxy S4 smartphones and four
Asus Nexus 7 (2013) tablets under different Android versions. Figure 5.4
shows the client machines while executing tasks of the Inferior-Olive appli-
cation.

Figure 5.5 provides the average simStep execution time for 96, 192, 288
and 384 cell grid sizes, divided into the following segments: server work,
download task data, task execution, and upload task results.

The server work segment represents an average 13% overhead intro-
duced by (a) the mCluster framework that creates / deletes the required
BOINC applications associated with the original tasks, and (b) run the
BOINC middleware. On average, 67% of the overall time is spent on the
tasks execution, thus indicating the benefit and need of having more pro-
cessing resources available, in order to reduce the execution time. Finally,
approximately 20% of the time is spent on exchanging data (upload and
download) between the clients and the server.
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Figure 5.5: Average simStep execution time of the Inferior-Olive appli-
cation on all client devices. Overall time is divided into data download-
/upload, execution and the mCluster scheduling overhead, such as BOINC
application creation/deletion and graph traversing.

According to our experiments, an Inferior-Olive task requires on average
1.46 sec, 0.93 sec and 4.87 sec for data transfers, server work (create and
manage the corresponding BOINC application) and actual execution on a
client device, respectively. In our current analysis we consider the mouse,
cat and human Inferior-Olive nuclei, that consist on average of 15,000,
146,000 and 1,000,000 neurons. Figures 5.6a, 5.6b and 5.6c show the pro-
jected processing time for evaluating a single simStep when simulating the
aforementioned different brain complexities.

Powered by volunteer computing, it can be assumed, within each sim-
Step, up to 10,000 devices can be utilized to estimate concurrently each
neuron’s state. A conservative assumption as the typical participation in
similar volunteer computing projects number in the hundreds of thousands
of devices [144] and the total theoretical potential participants are esti-
mated in the order of billions [145]. In other words, nowadays there are
ample and available distributed processing resources, ready to be utilized
for solving complex problems from various research domains.

Distributed-processing platforms based on the concept of volunteer com-
puting, work on a ”best-effort” approach. Processing nodes are unreliable
in terms of availability and connectivity, thus execute tasks only when cer-
tain parameters and circumstances apply. As a result, they can not compete
against high-performance (and dedicated) computing platforms.
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Figure 5.6: Projected processing time of a single simStep when simulating
different brain types using up to 10,000 IoT devices; execution time is lower
bounded by the server work.

Table 5.1 presents a simple comparison with the FPGA works from the
previous chapter (Xilinx Virtex-7 FPGA platform [3] and a Maxeler Maia
DFE [98]). The table reveals that both implementations can execute a sin-
gle simStep at least 3 orders of magnitude faster compared to the mCluster
system (we include the server-work and data-transfer overheads). How-
ever, [3] and [98] can process up to 14,400 and 7,840 neurons respectively
due to their limited resources. In contrast, an mCluster-powered system is
only limited in terms of resources by the available IoT devices in terms of
processing resources and by the time budget.

In addition, commercial platforms introduce significant acquisition and
maintenance costs. In contrast, mCluster-powered systems are solidly based
on IoT devices owned by external users. Furthermore, as described in the
beginning of this section, mCluster projects can be deployed even on VMs
hosted on already available server machines, hence not imposing extra setup
and maintenance costs.

5.2 The inferior olive on GPGPUs

The second platform explored was the GPGPU. This implementation is
conducted quite early in the IO acceleration effort, thus a simpler instance
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Table 5.1: Platform comparison table

platform max. cell # simStep exec. time cost

FPGA Virtex-7 [3] ≤ 14,400 6.4 msec $8,500
Maxeler Maia [98] ≤ 7,840 0.04 msec >$25,000

mCluster (10k nodes) 1,000,000* [7.26 sec – 2,578.80 hr] $0**
* No real upper limit exists for mCluster; human-sized Inferior Olive selected
here for comparison purposes.

** A small cost may be applied, in case mCluster is hosted to a dedicated
server machine instead of a VM.

(8-way connectivity) of the application was used as a reference design to
assess if the platform has potential to explore further.

The work is focused on simulations of large-scale networks and encom-
passes the following goals:

• To simulate successfully the IO-cell network for a relatively large num-
ber of cells while providing significant performance benefits compared
to an execution on CPUs, as the FPGA counterparts are limited by
their resource on the maximum supported network

• To present a comparison among multiple GPU platforms in order
of effectiveness for simulating this model in particular, and complex
neuron-model simulation in general.

5.2.1 The GPU implementation

In Figure 5.7a, a depiction of the original C application, which begins by
initializing all cell parameters with a predefined value, is shown. After
initializing all cell states and feeding inputs, three for-loops are employed
to compute the model of the cells one by one and update new states at
each time-step. The C implementation in Figure 5.7a includes one loop for
120,000 time-steps (in this particular modelling experiment) and two loops
of visiting all elements of the network rows and columns. The compute-
intensive part of the program is located within the two inner loops of sim-
ulation. A function in the third loop computes all cell parameters such as
dendrite, soma and axon voltages. Thus, the CUDA implementation (as
shown in Figure 5.7) focuses on resolving this critical part. Firstly, the two
inner loops (2nd and 3rd loop) are mapped onto a 2-dimensional grid of
CUDA threads. With this setting, every CUDA thread corresponds to an
IO cell. Each thread computes parameters of the dendrite, soma and axon
for every time step. Each time step corresponds to one iteration of the
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Figure 5.7: a) C implementation; (b) Un-optimized CUDA implementa-
tion; (c) Optimized CUDA implementation.

1st loop. The three compartments interact tightly with each other as the
parameters of one compartment are used to compute other compartment
parameters in the next iteration.

Three compartment parameters can be computed in parallel within one
iteration. The synchronization across steps is carried out on the CPU side
(host) while computing cell parameters at each step is performed on the
GPU side (device). This implementation reveals a memory bottleneck.
As the input size scales with the number of simulated neuron cells, the
device (GPU) memory is not sufficient for a large input size. In addition,
the bigger the amount of memory used, the more time-consuming memory
fetches becomes. Hence, various optimizations should be applied on the
implementation to reduce memory usage and access time.

Further optimization on the CUDA code were implemented as depicted
in Figure 5.7c, by (i) coalescing global-memory accesses,(ii) eliminating
branching divergence by using the texture memory.

5.2.2 GPU evaluation

A CPU platform (Intel Core i5-2450M (2.5 GHz) with 4GBs of RAM) is
used as the baseline platform to run the simulation of the sequential im-
plementation. The performance of the implementation is used to compare
with that of the parallel implementation on GPU platforms. The GPU plat-
forms chosen to investigate simulation speed-ups are four NVIDIA GPU
platforms: Tesla K20c (Kepler), Tesla C2075 (Fermi), GeForce GTX480
(Fermi) and GeForce GT640 (Kepler). These platforms represent two
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Figure 5.8: Performance comparison between unoptimized vs optimized
implementation (Fermi platforms - Block size 64).

NVIDIA families in which Kepler has higher processing capabilities and
energy efficiency than the Fermi architecture. The IO network model is
ported onto each GPU both in single-floating-point and in double-floating-
point precision (referred to as single- and double-precision simulation, re-
spectively). Two of our exploration dimensions are the L1 cache usage
and the optimal thread block size, which represents partly the GPU pro-
cessing capability. The thread block size is the number of threads which
are processed on the same GPU streaming processor. According to the
GPU specifications, it should be a multiple of 32 for best benefits in mem-
ory transfers and fine-grain execution of all the threads. The idea behind
choosing the thread block size is to maximize the occupancy of the GPU
processors when executing the application. The bigger the thread block
size is, the higher occupancy the application should get. Preliminary test-
ing shows that the optimal block size for the this application is 64 and the
the final performance results were taken using this block size.

In order to evaluate the optimization methods, the the unoptimized im-
plementation on the Fermi platforms (Tesla C2075 and GeForce GTX480)
is also simulated. Figure 5.8 reveals at least a 3x speedup of the opti-
mized implementation as compared to the unoptimized one. The speed-up
in comparison with CPU-based implementation reaches 9.2 times for the
Tesla C2075 and 10.5 times for the GeForce GTX480. Apart from the
high execution time, the unoptimized implementation also has drawbacks
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Figure 5.9: Performance comparison to the CPU execution among all 4
GPU platforms.

in term of high memory usage due to the large number of variables per cell.
Hence, the simulation only facilitates small input sizes.

Figure 5.9 shows a comparison of maximum speed-ups achieved by the
four platforms with respect to the reference CPU platform. The figure
shows that speed-up is low for small input sizes and increases with increas-
ing input size until it reaches a saturation point beyond the input size of
40,000 cells (except for Tesla K20c, which has the saturation point at a
larger input size and was not shown in this figure). After reaching the sat-
uration point, speed-up on different platforms stays constant. This is the
point that the problem size is big enough to use the GPU parallel resources
to their full extend. As expected previously, the performance of the single
precision is always better than that of the double precision on the same
platform. The Tesla K20c achieves the best performance for both single
and double precision. The GeForce GTX480 performs the simulation signif-
icantly faster than the Tesla C2075. Even the double precision performance
on the GeForce GTX480 is better than the single-precision performance on
Tesla C2075. GeForce GT640 scores the worst performance, however, it
still achieves speed-up (up to 20x) in comparison with the CPU platform.

Table 5.2 shows the maximum network size that can be simulated on
each platform. This number depends on the global memory size on the GPU
side. The optimized implementation achieves 3.3x larger network size than
the unoptimized one by optimizing the number of required variables. Thus,
the optimized version is able to simulate a realistic human IO network size
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Table 5.2: Maximum achievable network size (cells) on dif-
ferent platforms of unoptimized and optimized implementa-
tion.

GPU K20c C2075 GT640 GTX480

Unoptimized 7,225,344 5,760,000 2,876,416 2,166,784
Optimized 23,658,496 18,939,904 9,437,184 7,054,336

that is approximately 1,000,000 cells. The number of simulated cells in all
the GPU platforms is much higher than any biological IO network such
as in rat (53,000 cells), chicken (21,600 cells), or cat (146,000 cells) [20].
Hence, GPUs are shown to be promising for HPC simulation of complex
biologically accurate neural networks. Further exploration of the platforms
capabilities on the field is quite relevant.

5.3 The inferior olive on a many-core Processor

In this section the goal was to analyse the class of the HH models on many-
core processors and their direct comparison with the Maxeler DFE which
produced the most promising results on FPGA-based platforms, using the
IO as a benchmark. Before delving into the accelerator platforms, we start
with a more detailed, platform-independent analysis of the application.
Then, plausible IO use cases are defined and ported and evaluated on the
two accelerator technologies. To the best of our knowledge, this work is the
first to attempt a characterization of the class of HH models on state-of-
the-art accelerator computing fabrics. The contributions of this work can
be summarized as:

• We perform a detailed performance and scalability evaluation on two
accelerating platforms: an Intel Xeon Phi and a Maxeler Vectis Data-
Flow Engine (DFE).

• We compare and contrast the two platforms, in view of the three IO
workload use cases defined in 3.3 and comment on the suitability and
usability of each accelerator.

5.3.1 InfOli use cases

For our analysis, we use the three use cases defined in 3.3, which are rep-
resentative of the memory and computational requirements in typical IO
workloads.

The biology of each neuron is characterized by the internal conductances
of the ion channels modelled in each compartment. In all use cases, the
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user can set each neuron ion channel conductance separately with every
experiment and for each cell, giving the greatest possible control over the
biological behavior of the simulated network. Additionally, the application
allows for the connectivity of the IO network to be programmable by the
user before the simulation is deployed. The network connectivity is defined
by an N ×N connectivity matrix (where N is the network size) of FP
values signifying the weight of each connection. The weight value is used in
the GJ computations to calculate the connection impact on the neuron. A
weight of 0.0 denotes the absence of the corresponding GJ connection. As
a reminder the three use cases are focused around the biological complexity
of the neuron connections:

1. IO with Realistic Gap Junctions (RGJ) – IO cells modelled with
(biophysically) realistic GJ interconnectivity. The highest amount of
detail is included in the GJ modeling.

2. IO with Simplified Gap Junctions (SGJ) – IO cells modelled
with GJs replaced by simplified , passive connections. This consti-
tutes a simpler implementation in comparison to the previous use
case.

3. IO with No Gap Junctions (NGJ) – IO cells modelled without ac-
counting for GJs and without any interconnectivity implementations.
This is the simplest use case, whereby the neurons are modeled as
separate computational nodes.

5.3.2 Quantifying neuron interconnectivity

While the IO application can implement any neuron interconnectivity (through
a simple connectivity matrix), for the purposes of this work we feed the IO
application with connectivity maps that were created a priori in order to
reflect a certain connectivity density. Thereby, inter-neuron communica-
tion (and its associated computing complexity and memory overheads) can
be manipulated for profiling purposes. To fully enable this configuration,
we have implemented a connectivity generator which prepares the in-
put of the IO application. The network to be simulated is, in the general
case, expressed as a three-dimensional mesh of neurons. Each neuron is
assigned a set of three integers representing the neuron’s normalized Carte-
sian coordinates. These sets can be used to calculate the distance between
each neuron pair. The distance between neurons adjacent to each other is
considered as the unit of distance measurement. Based on the distance of
each neuron pair, the probability of them forming a synaptic connection
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Figure 5.10: Example of connection probability, using the exponential
distribution with mean value µ and the distance between neurons (r). Both
quantities are measured per unit (p.u.).

can be computed, according to a pre-defined distribution. Figure 5.10 il-
lustrates an example of the probability of a connection being formed (Pc)
for a variety of distances between neurons (r) and a range of exponential
distributions (differentiated by their average value µ). For each evaluated
pair of neurons in the network, Pc is calculated and a random number x is
produced between 0 and 1. Iff x < Pc, then we assume that a connection
will be implemented for these two neurons. As a result, by tuning distribu-
tion parameters (µ in the example of Figure 5.10), a different intensity in
the formation of neuron connections is achieved, and consequently different
connectivity densities.

5.3.3 Target platforms

All three IO use cases have been evaluated on two platforms. More pre-
cisely a hardware-based implementation was developed to be ported to a
MaxelerVectis Data-Flow Engine (DFE) board as well as a software-based
implementation for the Intel Xeon Phi 5110P system [146] (part of the Blue
Wonder iDataPlex cluster hosted at STFC, UK [147]). The specifications’
overview for both evaluation platforms is presented in Table 6.1.

The DFE used is a Maxeler HPC node based on reconfigurable hardware
that was used in [98]. The DFE board used in our experiments is a 3rd-
generation Vectis-DFE board, that includes a Xilinx Virtex-6 FPGA chip.

The Xeon Phi is a Many Integrated Core (MIC) architecture co-processor,
which features 61 cores, each capable of supporting up to 4 instruction
streams. The current generation of Phi cards, named Knights Corner, use
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Table 5.3: Specifications of Evaluation Platforms .

Spec Maxeler Vectis Xeon Phi
On-Board DRAM 24 GB 8GB
RAM bandwidth 38.4 GB/s 320 GB/s
Memory streams/channels 15 16
On-chip memory 6.5 MB (FPGA BRAMs) 30 MB (L2 cache)
Number of chip cores Not Applicable 61
Chip frequency depends on design 1.053 GHz
Instructions set fully configurable 64 bit
Power consumption 140 W 225 W

an Intel Xeon host processor which can offload work to the Phi, much
like a GPU, using well-known programming models such as OpenMP and
OpenCL. However, in contrast to GPU approach, the Phi can also be
thought as a stand-alone processor in that it has its own Operating Sys-
tem. This allows for an application to run natively on the platform, which
is what our IO implementation opts for.

5.3.3.1 IO implementations

The IO application on the Intel Xeon Phi co-processor, depicted in Fig-
ure 5.11, uses a shared-memory programming model by utilizing the OpenMP
library. The model first accepts a user-defined map detailing connections
and size of the desired neuron network to be simulated. This map is pro-
cessed once and a network is dynamically generated, forming connections
between the dendrites (Gap Junctions) as dictated by the map. Each neu-
ron’s GJ allocates arrays of floats. These arrays need to always store up-
to-date information for a subset of the entire network, specifically the most
recent dendritic membrane voltage potentials of the neurons on the other
side of the GJ connections. Thus, for each simulation step, the algorithm of
the model is summarized as refreshing the information of these arrays and,
then, performing the necessary computations for each of the three neuron
compartments (dendrite, soma and axon). In each algorithmic step, the
neurons are divided into subsets as evenly as possible. Each subset is then
handled by an OpenMP thread. Since the Xeon Phi 5110P can support
up to 61 × 4 = 244 instruction streams, the application can use up to 244
OpenMP threads, splitting the network in just as many subsets. There-
fore, for network sizes below 244 neurons, the maximum number of threads
used (and thus the degree of parallelism) is limited by the number of simu-
lated neurons. This is because a single neuron cannot be split into multiple
threads. It has also been observed that dividing the network into very
small subsets does not yield better performance, since each thread ends up
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Figure 5.11: Xeon-Phi architecture of the IO kernel.

Table 5.4: Logic utilization for the Virtex 6 FPGA chip on the Vectis.

RGJ SGJ NGJ
257409 / 297600 (86.49%) 268458 / 297600 (90.20%) 167147 / 297600 (56.16%)

having low workload, disproportional to its overheads. Therefore, it is not
always efficient to maximize the number of OpenMP threads, particularly
for small networks.

The DFE implementation is similar to the one in [98] with small up-
grade in order to accommodate the connectivity topology configurations
as described in previous sections. The connectivity matrix weights are
sent to the DFE at every simulation step, for the use cases that include
programmable connectivity. Using a memory-based connectivity matrix
allows us to avoid the time-consuming process of resynthezing a new DFE
for updating the connectivity density of an experiment. The program flow
is tracked again using hardware counters which monitor the neurons exe-
cuted, the number of simulation steps completed, as well as the GJ loop
iterations (where applicable). The data flows through the DFE pipelines
at each kernel execution tick, consuming an input set and producing the
output and a new neuron state. Simulation steps are not independent from
each other and thus are not parallelizable. That is because every neuron
requires the previous state of all other neurons to compute its GJ (in the
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RGJ or the SGJ case) before a new step begins. As a consequence, the
DFE pipeline is flushed before a new simulation step. This dependency
is removed when 0% connectivity density is imposed on a simulation. In
experiments with random connectivity, a constant number of ticks is spent
by the DFE for computing each GJ connection whether it actually exists
or not. This is because the kernel is designed with a fixed pipeline for com-
puting GJ so as to be reusable for experiments with different connectivity
parameters. In doing so, re-synthesizing the DFE kernel is avoided saving
setup time for each experiment. Conversely, this DFE implementation can-
not get a performance benefit from lower connectivity densities. However,
using the same DFE for experiments of different connectivities offers pre-
dictable, guaranteed performance.

The resource utilization of the FPGA device of the DFE is reported in
Table 5.4. A single computation kernel (DFE) fits on the FPGA device for
each use case. SGJ has reduced computations allowing a higher degree of
unrolling the GJ computation loop yielding added performance benefits.

5.3.4 Performance evaluation

In this section, we evaluate the performance of the use cases on the Xeon-
Phi and the Vectis-DFE nodes. All use cases were executed using a simple
experiment, borrowed from corresponding biological experiments, designed
to produce a typical response from the IO model: a complex spike at the
neuron output stage (axon). The experiments simulate 6 seconds of brain
time. The complex spike is produced by evoking a small 6.0 mA pulse as
input to all IO cells at the same point after program onset for about 500
simulation steps (or 25 ms, in brain time).

A standard procedure for experimenting with SNN models typically
begins with an extensive, initial parameter-space exploration using small-
or medium-sized networks. Having fine-tuned all model parameters, real
experiments can then commence by simulating either small- to medium-
sized networks (10s to 100s of cells) for exploring real-time, closed-loop
control such as Brain-Computer Interfaces [148] (TYPE 1), or large-scale
networks (>1000s of cells) for mounting behavioral experiments [17]
(TYPE 2). In this section we present performance results only for the
evaluation for the TYPE 1 experiments. The reason for that is that the
measurements, after the publication of the results, were found to be partly
contaminated for the large scale measurements. This was validated by
the repetition of the measurements when the error was detected and also
validated from later work presented in detail on the next chapter. Thus
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only an analysis of the TYPE 1 experiments will be mentioned on this
section.

5.3.4.1 Measurement methodology

Timing measurements on the Vectis DFE were taken measuring the kernel
time within the host code using timestamps before and after the kernel call.
The CPU host code is blocking, thus, only the DFE kernel is active dur-
ing the measurement. The time includes the kernel execution (processing
and DRAM data-exchange delay) and the activation delay of the FPGA
device. This activation takes about 1 ms, which is negligible compared to
the overall execution time that takes several seconds to several minutes in
our experiments. The execution time of a single-simulation-step is derived
from the total execution time divided by the number of simulation steps.
The DRAM communication delay can be estimated by the amount of data
exchanged between the FPGA device and the on-board DRAM per simu-
lation step, considering the DFE DRAM bandwidth.

All measurements concerning the Xeon Phi have been carried out with
Intel’s profiling and analysis tool Vtune Amplifier XE 2015. Information for
the DRAM accesses and average bandwidth used by the application, was
obtained by performing bandwidth-mode analysis. This analysis further
provides insights related to the program execution time and CPU utiliza-
tion. The profiler was installed on the Intel Xeon host (since the Phi card
has a minimal OS) and launched with directives for collecting information
from the accelerator platform (-target-system=mic-native flag).

5.3.4.2 Execution time vs. network size vs connectivity density

Next, we evaluate the performance of the two platforms for different net-
work sizes and connectivity densities. All execution results are presented
per simulation time step.

The performance results of the three use cases on the Maxeler Vectis-
DFE platform are depicted in Figure 5.12, for small-to-medium network
sizes. Connectivity density does not affect the execution time of the DFE
implementations. That is because the design statically supports all-to-all
connections (100% connectivity density) in a fixed dataflow pipeline. As
discussed earlier, this avoids re-synthesis of the design whenever connectiv-
ity parameters change, reducing the time needed to set-up an experiment.

As illustrated in Figure 5.12, for small/medium network sizes, the DFE’s
fine-grain parallelism yields good performance scaling to the network size,
even for the demanding case of IO neurons with realistic GJs (RGJ). Exe-
cution time ranges from 6 us to a little over 500 us for 1,056 neurons.
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Figure 5.12: Execution time per time step for small networks for Vectis
DFE. Colored areas correspond to the range of possible execution-time val-
ues due to different connectivity densities (0%-100%). (Note: Graph areas
are unstacked.)
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Figure 5.13: Execution time per time step for small networks for XEON
PHI. Colored areas correspond to the range of possible execution-time values
due to different connectivity densities (0%-100%). (Note: Graph areas are
unstacked.)
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Figure 5.14: L1 cache hit rates ratio for each use case for 100% connec-
tivity networks of the Xeon Phi implementation.
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nectivity networks of the Xeon Phi implementation.
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Table 5.5: Real-time achievable network for each use case on each plat-
form.

Vectis-DFE Implementation Real-time Network Size
RGJ 300
SGJ 550
NGJ 7,200
Xeon-Phi Implementation Real-time Network Size
RGJ (100% connectivity) 24
SGJ (100% connectivity) 54
NGJ 54

Although the maximum size of a simulated network is important for
TYPE-2 experiments, achieving (brain) real-time speed is critical for TYPE-
1 experiments. Table 5.5 presents the real-time capabilities of each use
case. For the RGJ use case, the Vectis DFE can simulate 300 neurons at
real-time speed, while for the SGJ case the real-time network is 550 neu-
rons. As expected, the NGJ case exhibits a linear increase in execution
time; this results in a capacity to execute 7,200 neurons in real-time on the
DFE.

Application behavior is significantly different on the Xeon-Phi imple-
mentation. Here, the design can actually benefit from lower connectivity
densities but, at the same time, cannot provide a performance guarantee
for every problem size in each use case. Different problem sizes and con-
nectivity distributions can produce quite varied connectivity densities that
affect performance.

In general, the Xeon-Phi performs well in simulating small-to-medium
scale networks. Still, it is about 50% ( medium-scale networks) to almost
an order of magnitude (in small-scale networks) worse than the DFE im-
plementation in the RGJ use case. The gap is even greater for SGJ and
NGJ as illustrated in Figure 5.13.

To give a better insight on Xeon Phi’s performance we discuss in more
detail some of its performance metrics. Figure 5.14 illustrates the hit ratio
of the Xeon Phi’s L1 caches when simulating networks of various sizes and
connectivity patterns. Large networks without GJs require small amounts
of data and exhibit good data locality, leading to high hit ratios. On the
other hand, simple and regular GJs have large memory footprints, leading
to lower L1 hit rates. SGJ has a lower L1 hit ratio than RGJ as its GJs are
less complex and exhibit less data reuse during processing, compared to the
realistic GJs. Once the core fetches the GJ’s data to its L1 cache, processing
an a realistic GJ will yield more L1 hits than in the simpler GJ. Moreover,
Figure 5.15 presents the ratio of CPU cycles spent in computations per
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Figure 5.16: DRAM data-transfer overheads for small network on the
Vectis. It is clear that the platform has enough provisions and is not
DRAM-bound for any of the explored use cases. Colored areas correspond
to the range of possible timing-overhead values due to different connectivity
densities (0%-100%). (Note: Graph areas are unstacked.)

CPU cycles spent in accessing L1 cache and leads to similar observations.
NGJ and RGJ achieve more computations per L1 access compared to SGJ
which appears to wait overall longer for the memory. This implies that the
XEON PHI platform should provide much greater performance the larger
the network size would become.

Aiming for real-time performance, Xeon Phi can simulate 24 neurons
in RGJ experiments. The real-time achievable network for the SGJ and
NGJ is 54 neurons. All cases are substantially lower than Maxeler DFE
as shown in Table 6.2. This is explained by the fact that the Xeon Phi
resources cannot be used efficiently for such small networks sizes.

5.3.4.3 DRAM data-transfer overhead

Besides analyzing the overall execution time, it is interesting to also mea-
sure the fraction of overall time spent in processing versus the time spent
in waiting for the DRAM data to arrive. Typically, in this class of appli-
cations, where complex biophysically accurate models are simulated, pro-
cessing dominates the overall execution time. So, the data-transfer timing
overheads are expected to be small compared to the computation times.

In the Vectis-DFE implementations, fast on-FPGA BRAM blocks are
used to store the neuron states. BRAMs increase the overall input/out-
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Figure 5.17: DRAM data-transfer overheads for small network on the
XEON PHI. It is clear that the platform has enough provisions and is not
DRAM-bound for any of the explored use cases. Colored areas correspond
to the range of possible timing-overhead values due to different connectivity
densities (0%-100%). (Note:Graph areas are unstacked.)

put bandwidth of the DFE and require in practice a single cycle to ac-
cess. Neuron states are the most frequently used data both for the neuron-
compartment processing as well as for the GJs processing. As a result, the
Vectis-DFE implementation has negligible data-transfer overheads. The
fraction of time spent waiting for off-chip data in small-to-medium net-
works, depicted in Figure 5.16, is consistently under 0.02% in the most
memory-demanding RGJ case. Even for NGJ, where computations scale
linearly to problem size, the time spent waiting for DRAM access is slightly
over 0.02%, showing that the provided DRAM bandwidth is sufficient for
feeding the DFE engine.

The Xeon-Phi offers an order of magnitude higher memory bandwidth
than the DFE, achieving 320 GB/s versus 38.4 GB/s. As can be observed
in Figure 5.17, for the most data-intensive RGJ, the DRAM overhead in
execution time does not scale well above 500 neurons. Still, the overall
performance penalty is low due to the high memory bandwidth of the Xeon
Phi. When simpler or no GJs are employed (SGJ, NGJ), the DRAM data-
transfer overhead is negligible and remains so for all tested problem sizes.
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Table 5.6: Comparison between tested platforms using the IO RGJ as
benchmark (full GJ with all-to-all communication). Speed-up compared to
single thread C implementations used in [3].

Platform MaxNeurons RT Network Size Speed-up Effort
GPU Millions 0 ×3−×22 Medium
mCluster 1,000,000* 0 < ×1 Low
Xeon PHI 52,535 24 ×1.2−×80 Medium
DFE 7864 300 ×90−×100 High

*No real upper limit exists for mCluster - depends on the availability of
participant IoT devices; human-sized Inferior Olive selected here for com-
parison purposes.

5.4 The problem of complex workload diversity

Just looking into cell model, HH models comprise challenging systems of
differential equations that are essentially embarrassingly parallel com-
putational problems that can be solved with a typical divide-and-conquer
strategy. In such cases, each neuron model effectively becomes a free-
running oscillator, the execution of which can be parallelized independently
of its neighbours. The more powerful the processing nodes employed, the
higher the speedups achieved.

However, complementing cell models to include Gap-Junction (or any
type of complex-connection) modeling leads to extended-HH models which
not only feature increased computational complexity (due to the GJ cal-
culations) but, additionally, cease to exhibit an embarrassingly parallel na-
ture. The reason, of course, is that – with a rising connectivity density
among neurons in a network – dependencies among differential equations
also rise, leading to computational problems that are increasingly difficult
to parallelize across simulation time steps. In effect, in such cases coupled
oscillators are formed that need to be co-simulated in strict lockstep
among them. This requirement, in turn, enforces the use of cycle-accurate,
transient simulators where simulation steps are hardly compressible and all
neuron states need to be completely updated at each simulation step. Thus
such applications provide significant challenge for any HPC platform.

In the part of volunteer computing, FPGA-based implementations can
execute a single simStep at least an order of magnitude faster compared to
the mCluster system. However they can process up to some tens of thou-
sands of neurons due to their limited resources. In contrast, an mCluster-
powered system is only limited by the available IoT devices in terms of pro-
cessing resources. Additionally maintenance costs are reduced immensely
as the system uses IoT user resources already in the wild. GPGPUs also
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show good scalability, very high maximum network capacities and tractable
programming effort.

The Maxeler Vectis-DFE implementation shows impressive performance
for small-to-medium scale networks and also achieves higher real-time net-
works. This makes the DFE a suitable platform for speeding up experi-
mentation on small-to-medium size neuron networks, that are often used
for parameter-space exploration of neuron models. The DFE is also suit-
able for experimentation with real-time setups (TYPE 1) as it can achieve
networks of meaningful sizes at real-time speeds. Finally, it can also provide
predictable performance for any kind of network size or input and connec-
tivity, a crucial factor when planning lengthy experiments and a feature
that software-based solutions cannot easily provide. The Vectis DFE does
have limitations, though, in performance when the computational demands
increase above the parallelization capabilities that the DFE can provide.
By the implications of the L1 cache analysis and because of the high mem-
ory bandwidth, it can be expected that the XEON Phi has the potential
to provide comparable performance under specific workload circumstances
(larger networks and less than 100% connectivity density).

Besides, despite the concessions Maxeler makes through use of its Maxeler-
Java programming language, the Xeon Phi remains a much more straight-
forward platform to program on, as it is a software-based solution. Further-
more, it can exploit different connectivity densities in terms of performance
efficiency, but this aspect also results in its inability to provide predictable
performance. Additionally, the resources on the Xeon Phi can support a
larger maximum network population than the Vectis DFE. However, when
it comes to real time model execution, the Xeon Phi falls short of the
50− µsec timing constraint for achieving real-time simulations, regardless
of the network size used.

A general comparison between platforms can be seen on Table 5.6. Even
with just using a narrow benchmark within the IO possible uses (that of
RGJ), we can already see that each technology seems to excel on differ-
ent areas, all relevant to the computational research but also presenting
high variability in the effort required by the engineer to implement. This
heavily implies that a single platform cannot optimally serve all relevant
neuroscientific needs. And this with only a single complex instance of the
IO application. The application instance itself can vary, changing workload
characteristics significantly, thus also how platforms compare. Taking into
account the variability just within one application and the vast diversity
within the computational neuroscientific field in general, there is a clear
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message that the field as a whole can only be sufficiently served by a het-
erogeneous system.

5.5 Summary

In this chapter, we present a thorough performance analysis for various
state-of-the-art HPC alternatives to FPGA-based solutions and make brief
comparisons with each one. We target a number of accelerator technologies
that have demonstrated great potential, especially given their integration
and clustering capabilities: Volunteer computing, GPGPUs and the Intel
Xeon Phi. GPGPUs are shown to be promising for HPC simulation of
complex biologically accurate neural networks. Further exploration of the
platform’s capabilities on executing the IO is required. Volunteer comput-
ing although providing extreme scale at low cost cannot compete in terms of
raw performance. The Xeon Phi, on the other hand, appears more suitable
for large-scale simulations, with many neurons and dense interconnectivity
between them. We substantiate, in all cases, that the target neuron simula-
tor scales gracefully in terms of DRAM utilization as well. Results heavily
imply that a true solution for HPC acceleration of neuroscientific models
can only be served by a heterogeneous platform.
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As established by the findings in the previous chapter, a better approach
for neuroscientists to exploit HPC technology is to provide them with an
acceleration platform that has the ability to adjust to the aforementioned
variety of workload requirements. A heterogeneous system that integrates
multiple HPC technologies, instead of just one, would be able to provide
this.

As described in Section 4.7, the typical FGPA workflow can lead to a
lot of extra delays in the research progress. This is the case also for other
HPC technologies, such as high multi-threading and GPGPUs, even if less
pronounced since they are less exotic platforms than FPGAs. Support
for heterogeneity will add additional delays using the typical approach.
For all integrated technologies the ability to select a different accelerator,
depending on availability, cost and performance desired, must be provided.

Thus a different workflow framework is required to ensure the efficient
service of the research effort. In this different framework, the engineering
should not be mediating between the neuroscience model development and
the production of scientific results. Instead, the user/neuroscientist is using
basic and generic modeling IP blocks to develop his model. These blocks
would be ported into the accelerator technology by the engineer beforehand
and only actively maintained during the computational research process.
If the library blocks provided are generalized enough, the neuroscientist
is able to immediately employ the HPC technology as the neuron model
is developed, without active porting effort by the engineer. The active
engineering would be limited into improving and extending the block library
for extension of support and can be done in parallel to the neuroscientific
experiments (Figure 6.1).

In addition to this, a framework for a heterogeneous system needs to
be using a popular (to the neuroscientist) user interface. It, thus, requires
a front-end which should provide two crucial features:

• An easy and commonly used interface known by neuroscientists so
that they can employ the platform without the constant support of
an engineer.

• A front-end that can reuse the vast amount of models already avail-
able to the community.

In this chapter, we propose a framework for a heterogeneous accel-
eration platform for computationally challenging neuroscientific simu-
lations called BrainFrame. By using this system, we demonstrate the
effect of model characteristics on performance and thus make a concrete



6.0 115

Manual porting 
On accelerator

Neural Model in
VHDL/CUDA etc

Acceleration  
Engineer

Semi-Automatic  
high level Tools

Modular library
of modeling IP blocks

AND/OR

Active Engineering
Work

Neuroscientific 
Question 

Lab Data +Hypothesis

Neuroscientist

Model Development

Neural Model in  
NEURON/Nest/PyNN

Neuroscientist

Automatic
Conversion

Download to Accelerator

Neuroscientist

Managed By the  
Engineer 

In-Silico  
Experiments

Eye blink 
Conditioning setups

Large Scale Simulations

Neuroscientist

Figure 6.1: Workflow framework proposed to support the scientific process
through a heterogeneous HPC platform.
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case for the significance of employing heterogeneity in HPC systems used
in the field of computational neuroscience. To this end, we use the IO as
an extended Hodgkin-Huxley use case. As established before, it is a rep-
resentative workload of such neuron representations, and thus it can work
as a Proof-of-Concept benchmark for HH-based IP block libraries that the
full platform would employ.

Depending on the desired model characteristics, we again assume two
general types of simulations that are relevant in neuroscientific experiments
(as in the previous chapter). The first one has to do with highly detailed
(biophysically accurate and even accurate to the molecular level) mod-
els of smaller-sized networks that require real-time or close to real-time
performance (TYPE-I experiments). The second type involves the simula-
tion of large- or very large-scale networks in which the level of detail can
often be relaxed. These experiments attempt to simulate network sizes
and connection densities closely resembling their biological counterparts
(TYPE-II experiments). Finally we also propose a front-end for the plat-
form based on the PyNN language [27]. PyNN has been widely adopted
by the computational-neuroscience community and has direct integration
with many other well-known neuron modeling frameworks, covering both
aforementioned features that such a front-end would require.

6.1 Methods

6.1.1 Application use cases detailed profiling

For our analysis, we employ the three use cases drawn from Section 5.3.1,
which are representative of the memory and computational requirements
of the IO workload. They can also be considered as plausible instances
of multi-compartmental modeling using HH models with various cases of
modeled inter-neuron connectivity.

For many complex experiments, it is not the number of connections but,
rather, the connectivity density (C) that is indicative of neuron intercon-
nectivity. The application allows for the connectivity of the IO network
to be programmable by the user before the simulation is deployed. Net-
work connectivity (when present) is defined by an N × N connectivity
matrix (where N : Network size) of FP weights signifying the weight of
each connection. Weights are used in the GJ computations to calculate the
connection impact on each neuron.

In Figure 6.2, we see the amount of FP operations per use case for vari-
ous interconnectivity densities, based on the aforementioned profiling of the
IO application. From the same profiling run we can derive the compute (in
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Table 6.1: Specifications of the accelerator fabrics used.

Spec DFE (Maia) Phi CPU (5110P) GPU (Titan X)
On-Board DRAM 48 Gb 8 Gb 12 Gb
RAM bandwidth 76.8 Gb/s 320 Gb/s 336.5 Gb/s
On-chip memory 6 Mb 30 Mb 3 Mb
Number of chip cores – 61 3072 CUDA Cores
Chip frequency Kernel-defined 1.053 GHz 1 GHz
Instructions set n/a 64 bit 32 bit
(TDP) 140 W 225 W 250 W
IC process 65nm 22nm 28nm

FLOPS) to memory (in single-FP memory accesses) ratio for the applica-
tion, that reveals whether each use case is computation- or memory-bound
(Figure 6.3).

The compute-to-memory-access ratio (from Figure 6.3) of the RGJ sug-
gests also that this use case is computation-bound for all connectivity cases:
With increasing problem sizes, the effects of the I/O increase but still the
application retains its compute-bound nature. For the SGJ case the compu-
tations per simulation step are now 859∗N +4∗N2 ∗C. The accumulation
is parameterized using the weight that is assigned to each connection be-
tween two neurons, thus the connectivity information needs to be accessed
the same way as is in the RGJ case. The actual FP operations are reduced
by about one order of magnitude compared to the previous use case (see
Figure 6.2). Yet, the connectivity aspect still disrupts the pure dataflow
nature of the model. A positive compute-to-memory ratio is seen here as
well. For the NGj case is the case where the application becomes purely
dataflow and can achieve the greatest parallelism possible. The processing
requirements scale almost linearly with the network size and, compared to
the other use cases, fewer computations are needed, as shown in Figure 6.2
(computations per simulation step : 859 ∗N). As we can see in Figure 6.3,
although the NGJ use case shows that computation is still the most impor-
tant aspect of the application, both computation and memory access scale
linearly and at a similar pace.

6.1.2 HPC fabrics and Implementation

Our heterogeneous platform incorporates three accelerator fabrics; a Max-
eler Maia Data-Flow Engine (DFE) board [149], an Intel Xeon Phi 5110P
CPU [146] and a Maxwell-based Titan X GPU by NVidia [150] (Table 6.1).
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Figure 6.2: Floating-point operations required per simulation step of the
IO model for each use case and for different connectivity density percentages
(%).

Figure 6.3: Compute-to-Memory-Access Ratio per simulation step of the
IO model for each use case and for connectivity density percentages (%).
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All there boards are PCIe-based which is how they communicate with
the host system. The use of PCIe interfaces ensures that composition of
BrainFrame-enabled machines can been easily tailored on a per-case basis
depending on the availability of funds and hardware resources of a research
laboratory. Different types and mixes of PCIe-based accelerators can be
selected.

The Maia DFE is a Maxeler HPC technology based on reconfigurable
hardware. The Maia DFE boards also incorporate a high-bandwidth, mul-
tichannel, highly parallel, customizable interface to the onboard DRAM
memory resources (up to 96 GBs) making it ideal for scientific applica-
tions. The DFE board used in our experimental setup is a 4th-generation
Maia-DFE board implemented using an Altera Stratix V 5SGSD8 chip.

The Xeon Phi is the same model as used in Section 5.3, the 5110p
Knight’s Corner board. The Titan X GPU includes 3,072 CUDA micro-
cores, which are used to parallelize computation execution, and 12 GB
of on-board RAM. GPU implementations also benefit from the generally
good adoption of the NVidia CUDA-library open environment that allows
porting of applications with similar ease to the Phi OpenMP and OpenCL
frameworks. GPUs also come at a relatively lower cost than the other two
accelerator types. However, as opposed to the Xeon Phi, a GPU cannot
act as its own host increasing communication delays between host and
accelerator during execution.

Lastly, it must be noted that BrainFrame is to be used in scientific re-
search that is very dynamic and fast-paced. The goal is not to over-optimize
the different accelerator implementations, but to propose and maintain a
balance between the programming effort and optimization needed, result-
ing in shorter development times for cutting-edge research tools.

6.1.2.1 IO on the Maia DFE

The DFE implementation of the IO application can be seen in Figure 6.4
and is a more advanced version of the work described in Section 4.4.
New features include the addition of programmable connectivity and pro-
grammable neuron state by the user between experiment runs without the
need to re-synthesize the design. The design implements three pipelines
on the DFE hardware to accelerate the application, one for each part of
a neuron (Dendrite, Soma, Axon), executing the respective computations.
The state parameters for each neuron are stored on separate BRAM blocks
for fast reading/updating of the network state, as they are the data that
are most used throughout the experiment execution. Since every new neu-
ron state is dependent only on the network state of the previous simulation
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Figure 6.4: DFE implementation of the IO application.

step, a single copy of each neuron state is required at any point during
execution. The input stream to the DFE kernel originates in the on-board
DRAM and represents the evoked (external) inputs, used in the dendritic
computations comprising the network input. The initialization data are
also streamed in from the on-board memory only once at the start of exe-
cution. The size of the connectivity matrix makes it impossible to store on
the on-chip memory. It is, thus, placed on the on-board RAM and streamed
in batches dictated by the computations. The kernel output is streamed
back to the on-board memory and – at the same time – is updated in the
(on-chip) BRAM blocks of the DFE.

Simulation steps are not themselves directly parallelizable (as in the
previous work), as every neuron must have the previous state of all other
neurons available for its GJ computations (only in the RGJ or SGJ cases)
before a new step begins. The DFE pipeline is, thus, flushed before a new
simulation step begins execution. This dependency is lifted when in the
NGJ case. Additionally, in use cases where programmable connectivity is
included, the ticks for the evaluation and execution of a GJ connection
are always spent regardless of whether a connection actually exists or not.
Thus, this implementation cannot benefit from a smaller connectivity den-
sity in terms of performance.
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Figure 6.5: Xeon-Phi implementation of the IO application.

6.1.2.2 IO on the Xeon Phi

The IO application on the Intel Xeon Phi co-processor, depicted in Fig-
ure 6.5, is based on a typical shared-memory implementation. The ap-
plication uses the OpenMP library to spawn threads, which can work in
parallel. As the Xeon Phi 5110P uses one core to handle OS-related tasks
and each core features multithreading technology that can service up to
4 instruction streams simultaneously, the IO application on the Xeon Phi
uses up to 60 × 4 = 240 OpenMP threads. Each thread is programmed
to handle a part of the neuronal network (sub-network), which is parti-
tioned as uniformly as possible to prevent workload imbalances. In each
simulation step, every OpenMP thread computes its sub-network’s state.
Each OpenMP thread accesses memory space shared by all threads so as
to collect data from other neurons, with the purpose of re-evaluating the
state of its sub-network’s GJs. In this task, shared-memory accessing can
cause stalls in thread operations due to issues such as memory contention.
It should be noted that the described implementation assumes that the en-
tire network is large enough to be partitioned in 240 parts. When dealing
with smaller networks, the implementation utilizes less than the maximum
amount of the platform’s assets, since it is designed to require to assign one
neuron on each OpenMP thread.
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6.1.2.3 IO on the Titan X GPU

In Figure 6.6, we can see the IO implementation on the GPU. The execution
flow includes two stages, a pre-compute and a compute stage.

In the pre-compute stage, the host initializes the neuron states and
the external input currents for the entire simulation duration. It allocates
global memory on the device to store the current-step neuron states, next-
step neuron states and the external input currents. At the end of this stage,
the host copies the required data for simulation onto the GPU. Similarly
to the other two accelerator implementations, the current-step dendritic
voltages of all cells are accessed frequently as they are used to determine
the GJ influence. To reduce memory latency, they are bound to the GPU
texture memory. The texture memory is a cached memory on the GPU
used to reduce memory latencies when the application has specific memory-
access patterns. Writes to texture memory, during the compute stage, are
conducted only after all computations of a simulation step have finished. It
must be also noted that after the pre-compute stage, no data is transferred
from the host to the GPU; the GPU contains all necessary information for
the simulation.



6.1 Methods 123

PyNN 

pynn.nest pynn.brian pynn.neuron 

Brian 

NEURON 

hoc SLI 

NEST 

PyNEST nrnpy 

pynn.brainframe 

PyHet 

PHI DFE GPU 

... Simulator
specific

PyNN
module

Python
Interpreter

Native
Interpreter

Simulation
kernel

Direct communication Existing Proposed 

# Simulate on a DFE backend 
if (ngj=TRUE) : 
execute(DFE-backend, *params); 
print output;

# Simulate on a GPU backend 
elif (sgj=TRUE) :  
execute(GPU-backend, *params); 
print output;

… 

# Simulate on a PHI backend 
elif (rjg<=0.25 and 672<net_size<3840) :  
execute(PHI-backend.sh, *params); 
print output; 

Selecting a simulation kernel  

Figure 6.7: PyNN architecture and the proposed BrainFrame framework.

During the compute stage, the neuron calculations are performed and
the new states are persistently stored throughout the simulation duration.
To compute the new states for a single simulation step, the host launches a
CUDA kernel on the GPU device. Before simulation, the kernel is config-
ured for a particular use case (RGJ, SGJ or NGJ) and inter-neuron connec-
tivity scheme (if applicable). The kernel is executed by a two-dimensional
grid of CUDA threads on the device. Threads are executed in parallel by
the CUDA micro-cores of the GPU. Every IO cell of the model is mapped to
a corresponding thread that calculates the states of the neuron. On kernel
completion, the host receives the calculated result of the simulation step
from the device. The host uses two operation streams to issue the kernel
execution and data-transfer operations to the GPU. A kernel in one stream
is launched only when the kernel in the other stream has completed. Thus,
when one stream is computing the currently executing simulation step, the
other stream is performing the necessary data transfers to the host from
the GPU. Since the texture memory is updated only after the kernel com-
pletes execution, data coherency is maintained. Thus, computation of the
current-step neuron states and data transfer of the previously computed
states overlap, effectively hiding Host-to-GPU transfer delays.

6.1.3 BrainFrame & the PyNN front-end

PyNN is a Python package that facilitates the interchangeability and the
study of different simulation environments within the computational neu-
roscience community [27]. It allows for simulator-independent specification
of neuronal-network models and already supports many popular simulators
like NEURON, NEST , Brian, and so on.
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The PyNN API supports modeling at multiple levels of abstraction,
both at the neuron level and the network level. It provides a library of stan-
dard neuron, synapse, synaptic-plasticity models and a set of commonly-
used connectivity algorithms while also supporting custom user-defined
connectivity in a simulator-independent fashion.

We integrated the three accelerator fabrics as back-ends on the Brain-
Frame system using PyNN as a front-end. The PyNN integration provides
the neuroscientific community with easy access on the accelerators without
constant mediation from the acceleration engineer while also providing an
interface for the already established models to be used with the new het-
erogeneous acceleration back-end. These characteristics of PyNN can have
decisive impact on the adoption of BrainFrame by the community.

As a proof of concept for the front-end of the BrainFrame platform,
we have added the IO model in the library of standard PyNN models.
Following the PyNN paradigm, the user initially selects the simulator –
in our case our BrainFrame simulator – and then proceeds to select the
neuron model, in our case the Inferior-Olive model. A population of neurons
using the chosen model is then generated, determining the inter-neuron
connectivity type and, finally, a projection of the specified neuronal network
is created.

The main difference between the proposed PyNN-backend substrate
and the typical simulator back-ends within the PyNN environment is an
additional selection step. In this step, a decision about which of the three
alternative acceleration fabrics will be used for a specific experiment is
made, based on the available hardware and the characteristics of the sim-
ulated neural network.

A conceptional view of the architecture of the PyNN BrainFrame mod-
ule is shown in Figure 6.7. For the simulator kernels to communicate with
the PyNN frontend, an intermediate BrainFrame-specific PyNN module
(pynn.brainframe) is required that implements and extends common meth-
ods and objects like the neuron models, synapse models, projection methods
and objects. In the case of the proposed BrainFrame module, we imple-
mented objects and methods: i) for the initialization of the simulator, ii)
for the description of the neuronal network in PyNN, and iii) for controlling
the simulation execution. In some cases, an additional interpreter module
is needed to translate these Python objects and parameters to each simula-
tor’s native parameters and language. For our system, we developed PyHet
– the BrainFrame-specific Python interpreter – which serves the aforemen-
tioned role and also implements the accelerator selection.
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The final BrainFrame System will be implementing more generic kernel
libraries that will be used by the PyNN front-end to simulate user defined
models. That way, the accelerator implementation will be completely trans-
parent to the user and predictions can then be made based on the analysis
of the individual kernels that can guide the selection algorithm.

6.2 Results

In this section, we present a thorough performance analysis of our hetero-
geneous BrainFrame platform. The goal is to evaluate the platform and
give a clear view on how each accelerator performs when running various
instances of the IO use cases, validating the usefulness of a heterogeneous
HPC simulation framework for computational neuroscience. The perfor-
mance analysis also acts as a guide for proposing an accelerator-selection
algorithm.

To validate the correct functionality of the separate accelerator imple-
mentations, we use a simple experiment that recreates a typical response
that is found in the inferior-olive network (axon response). In this experi-
ment, each cell produces a so-called complex spike, seen in Figure 4.1c. 6
seconds of brain time are simulated, which translates to 120,000 simulation
steps. The complex spike is produced by applying a small current pulse as
input to all IO cells at the same instance after program onset, for about
500 simulation steps (or 25 ms, in brain time).

As mentioned in the introduction, we identify two distinct tracks that
can be followed in conducting neuroscientific experiments, both covered in
this evaluation. We perform one batch of measurements ranging from 96 to
960 neurons representing small-scale, real-time TYPE-I experiments, and
a second batch ranging from 960 to 7,680 neurons representing larger-scale
TYPE-II experiments. We consider, by consulting our neuroscience ex-
perts, the minimum meaningful network size for experiments to be around
100 neurons, thus our measurements for TYPE-I experiments begin at 96
neurons. The evaluation is focused on the performance of single-node ac-
celerators, thus a network-size cap is set by the smallest maximum network
supported by each of the three accelerator fabrics: in this case, the DFE
fabric limits network sizes to 7,680 cells.

6.2.1 Performance evaluation

All performance measurements concerning the Xeon Phi have been carried
out through the VTune Amplifier XE 2015 profiling and analysis tool by
Intel. Timing measurements on the Maia DFE were taken by measuring the
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DFE-kernel time inlined within the host code using timestamps before and
after the kernel call. Since the host code (in the CPU) is blocking, only the
DFE kernel is active during measurements. The time includes the kernel
execution (processing and DRAM data-exchange delay) and the activation
delay of the FPGA device. This activation takes about 1 ms, which is
negligible compared to the overall execution time that takes several seconds
to several minutes in our test experiment. GPU kernel-time measurements
were taken using the CUDA Event API.

6.2.1.1 TYPE-I experiments

Starting with the analysis for TYPE-I experimentation, in Figure 6.8 we
plot the execution time of a single simulation time-step (50 µsec) for the
most demanding use case, that of the RGJ with 100% connectivity density.
Even though still not the most common case, a brain-simulation platform
must support such high interconnectivity densities for certain TYPE-I ex-
periments. The DFE exhibits the best performance for all tested network
sizes. The Xeon Phi is a close second due to the local-memory delays
and the less efficient use of its parallel threads: these network sizes are
not large enough to provide sufficient parallelism for the Phi threads to
be fully utilized. The GPU, on the other hand, has difficulties to cope
with the computational intensity of the GJs, which involve mostly division
and exponent FP calculations. Since each CUDA thread executes a single
neuron, it cannot exploit any potential parallelism in the GJ calculation.
This, alongside the fact that the CUDA threads are underutilized at such
network sizes, impacts performance drastically.

The inefficiency of the Titan X GPU in performing the realistic GJ
computations is clearly revealed in the SGJ case, next (see Figure 6.9).
In this use case, which the most demanding GJ calculations are dropped,
the GPU presents excellent scalability as the problem size increases, com-
pared to the RGJ case. The Xeon Phi, on the other hand, still suffers
from core-to-local-memory synchronization delays even though the actual
calculations are much simpler now. The DFE needs to spend the same
amount of operation ticks as in the RGJ case to evaluate the connection
influence, even though it does enjoy gains in performance because of the
simpler calculations involved (achieving higher operation frequencies, larger
GJ computation parallelism and shorter pipelines). As a result, both latter
accelerators show similar scaling properties to the RGJ case. In contrast,
the GPU scores performance benefits in the SGJ case compared to the ro-
bust DFE for network sizes above 480 neurons.
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Figure 6.8: RGJ execution time (TYPE I, 100% connectivity).

Figure 6.9: SGJ execution time (TYPE I, 100% connectivity).
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Figure 6.10: RGJ execution time (TYPE I, <100% connectivity).

Figure 6.11: SGJ execution time (TYPE I, <100% connectivity).
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Figure 6.12: NGJ execution time (TYPE I, no connectivity).

Next, it is interesting to evaluate the three accelerators for connectivities
of lower than 100%. Although not relevant for the DFE which maintains
the same implementation for any connectivity density, smaller densities
can influence the Xeon Phi and the GPU performance considerably. In
Figure 6.10, we plot the execution time of a single simulation time-step for
25%, 50% and 75% connectivity densities, under the RGJ case. The GPU
delivers significant gains but the inefficient GJ execution still causes it to
perform worse than DFE, even though the latter operates as in a 100%-
density simulation. The Xeon Phi, on the other hand, manages to achieve
enough performance gains to become faster than the DFE for sufficiently
large problem sizes; that is, sizes ≥960 neurons for 75% density, ≥864
neurons for 50% density and ≥672 neurons for 25% density.

Under the SGJ use case (Figure 6.11), we see similar trends as for
the 100% SGJ use case: The GPU exhibits great scalability and is the
best option for network sizes higher than 480 neurons. Besides, the DFE
remains the most beneficial option for networks smaller than 480.

Under the NGJ case (no connectivity), for TYPE-I experiments, the
results point to the DFE as the uniformly best option. In the complete
absence of inter-neuron connectivity, the application becomes a purely
dataflow workload, fully compatible for acceleration on a DFE, which is
tailor-made for such cases, providing significant benefits over both the Xeon
Phi and the GPU (see Figure 6.12).

Lastly, recall that for TYPE-I experiments, real-time speeds are often
desired. Table 6.2 presents the real-time achievable networks for each use
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Table 6.2: RT-achievable network size (#cells) for each use case.

Use case DFE Xeon Phi GPU
RGJ (100%) 310 - -
RGJ (75%) 310 - -
RGJ (50%) 310 - -
RGJ (25%) 310 - -
SGJ (100%) 400 - -
SGJ (75%) 400 - -
SGJ (50%) 400 - 96
SGJ (25%) 400 - 96
NGJ 7,680 96 500

case. The results show that, for real-time experimentation, the DFE accel-
erator is the best option across the board. In contrast, and as mentioned in
our previous analysis, the GPU and Xeon-Phi parallel threads tend to be
underutilized at such small network sizes, even though most of the mem-
ory delays of using them are present. Thus the DFE – using fine-grain
super-pipelined kernels – can achieve meaningful network sizes at real-time
speeds under all use-case instances, according to the objective set in the
introduction (≥ 100 cells). For low (≤ 50%) or zero densities, the GPU
and Xeon Phi come close to the real-time objective.

6.2.1.2 TYPE-II experiments

For TYPE-II experiments, the trends under the RGJ case with 100% con-
nectivity change significantly (see Figure 6.13). Here, the massive explosion
of the GJ computations begins to stress the parallelization capabilities of
both the Xeon Phi and the DFE. The DFE’s efficient parallelization of the
GJs relies mostly on its ability to unroll the GJ loop on the FPGA hard-
ware, allowing for more iterations to finish per operation tick. However,
the achievable unrolling factor is limited by the available chip area. For
network sizes above 1,000 neurons, the DFE compiler is forced to reuse a
lot of resources in time (as the unrolling factor is reduced with increasing
network sizes). In effect, the dataflow paradigm gradually degenerates to
a sequential execution, making the application less scalable on the DFE.
The Xeon Phi follows a similar trend, as the communication overhead be-
tween cores (which are interconnected through a moderately efficient ring
topology [32]) increases, leading to similarly diminished scalability. Oppo-
site to these accelerators, GPU scalability is largely improved. The GPU
is underutilized until all CUDA cores are used (3,072) simultaneously, so
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Figure 6.13: RGJ execution time (TYPE II, 100% connectivity).

Figure 6.14: SGJ execution time (TYPE II, 100% connectivity).
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Figure 6.15: RGJ execution time (TYPE II, <100% connectivity).

Figure 6.16: SGJ execution time (TYPE II, <100% connectivity).
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Figure 6.17: NGJ execution time (TYPE II, no connectivity).

for experiments over 3,000 neurons scalability is gradually improving. As
a result, the GPU becomes the better performing solution (surpassing the
DFE) for network sizes of 4,800 neurons and above.

For lower connectivity densities under the RGJ case, we observe similar
trends, although the Xeon-Phi scalability is slightly better because of the
lower interconnectivity (see Figure 6.15). Thus, the Xeon Phi retains the
advantages it has for lower than 100% densities, compared to the DFE.
Still, the effect of the inter-core communications is present, allowing for the
GPU to overtake the Xeon Phi for network sizes above 4,800 neurons (for
densities of 50% and 75%) and above 3,840 neurons (for 25% density).

Under the SGJ case, the DFE and Xeon Phi follow similar trends, al-
though they are less pronounced (see Figures 6.14 and 6.16). As in the
RGJ case, the GPU maintains its lead over the other two accelerator types
for all tested network sizes and connectivity densities. Finally, in the NGJ
case, the situation is the same as with TYPE-I experiments: The purely
dataflow nature of the application allows the DFE to once more score the
best performance across the board (Figure 6.17).

6.2.2 Accelerator-selection algorithm

The performance analysis discussed above can now be used to formu-
late a simple accelerator-selection algorithm for BrainFrame, automatically
choosing the best-suited accelerator fabric based on the problem parame-
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Figure 6.18: BrainFrame accelerator-selection map for TYPE-II exper-
iments. Selection is heavily (dependent on the experiment, involving all
three accelerator fabrics. For TYPE-I experiments, the DFE is always the
optimal choice (not shown).

ters: mainly, connectivity detail (biophysically realistic: RGJ, simple: SGJ
and not present: NGJ), density, and network size. Figure 6.18 shows the se-
lection for our use-case instances. The RGJ case selection, which presents
the most complex case in terms of accelerator choice, shifts between all
three options depending on the connectivity density. For the SGJ case,
the GPU is always the accelerator of choice, while for the NGJ case the
DFE yields optimal results under all experiment parameters. Lastly, if the
experiment is flagged as a real-time experiment, the algorithm exclusively
chooses the DFE to accelerate the application, as it is the only clearly vi-
able accelerator for real-time experiments.

As a simple example of how this selection can speed up experiments,
we can assume a scenario where several batches of RGJ experiments need
to be executed for various network sizes. Let us assume that each batch
includes 5 experiments, each with gradually decreasing connectivity density
(100%-75%-50%-25%-0%) and that each experiment in a batch simulates
40 seconds of brain time. The time saving in this example by using the
BrainFrame system compared to homogeneous systems that integrate only
a single accelerator type can be seen on Table 6.3.

The BrainFrame system can achieve significant benefits compared to the
single-fabric systems that can range up to 86% execution-time reduction.
On average, assuming the total runtime of all batches, the BrainFrame
system can achieve 40% reduction compared to a DFE-only system, a 10.7%
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Table 6.3: Time savings (in minutes) with BrainFrame for the tested ex-
perimental RGJ batch scenario compared to three homogeneous-accelerator
systems. The % savings are shown in parenthesis.

BrainFrame vs.
Network DFE Titan X Phi

Size -only -only -only

384 0.0 (0.0%) 24.2 (86.2%) 8.6 (68.7%)
960 3.2 (13.8%) 45.8 (69.5%) 3.0 (12.8%)

5,760 1.9 (43.4%) 54.5 (27.0%) 10.7 (6.8%)
7,680 591.7 (40.0%) 1.9 (0.2%) 246.6 (21.7%)

All batches 707.7 (40.0%) 126.4 (10.7%) 268.9 (20.2%)

Table 6.4: Energy savings with BrainFrame for the assumed experimental
scenario compared to three homogeneous-accelerator systems. We assume
nominal (TDP) power figures (see Table 6.1).

BrainFrame vs.
Network DFE Titan X Phi

Size -only -only -only

384 0.0% 91.4% 82.5%
960 38% 86.4% 64.9%

5,760 51.3% 60.9% 55.1%
7,680 23% 20.4% 43.8%

All batches 27.3% 32.6% 45.9%
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reduction to a GPU-only system and a 20.2% reduction compared to a Phi-
only system.

If we consider the nominal scenario of TDP power consumption we
can also present an estimation of the energy benefits of using BrainFrame
compared to the single node accelerators for our example(Table 6.4). The
energy saving for specific batches on the example are between 20.4% to even
about 91.4%. For the all experimental batches the energy saving is between
27% to 45.9%. Reduction in energy consumption can greatly reduce oper-
ation and maintenance cost especially within a datacenter environment.

Although these figures will vary based on the particular accelerator
instances used for the experiments, they give a rough estimate of the time
savings that can be obtained by carefully selecting the accelerators for the
various experiments. This selection can be easily extended/updated as new
features and more generalized model libraries are added for acceleration
(making the selection predictive for general cases) or as each acceleration
technology is updated in the future.

6.3 Multi-node potential of BrainFrame back-ends

Even the most sophisticated models in computational neuroscience tend
to include at most a few brain areas at a time due to both computational
constraints and biological complexity. Nevertheless, there is wide consensus
that most high-level functions of the brain require the integration of a large
number of areas, which is very time sensitive. During functional behavior,
the concurrent activity of multiple brain areas is widely and asynchronously
exchanged. Coherent integration of time-sensitive streams is a fundamen-
tal problem in neuroscience. Complex and coordinated behaviors such as
multi-limbed sensorimotor control depend imminently on this integration
of multiple activity streams across multiple brain areas. This means that
the understanding of biological brain function demands an understanding
of time sensitive integration of multiple processing streams. Motor, cogni-
tive and autonomic systems are brought together in tandem, and are highly
contextualized. Even more, embedded and embodied models will eventu-
ally need to be computed in the body-environment loop.

As the field progresses in its task of modeling the brain, large-scale mod-
els with multiple areas to be integrated become feasible and even tenable.
We might safely acknowledge that large-scale brain modeling attempts are
scientific steps in the long road towards understanding brain function.

However, for the production of dynamical models of the functioning
brain, there remain substantially unaddressed computational challenges.
Centrally, the computational challenges of coordinating multiple brain areas
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will be dependent on our ability of simulate the activity of multiple brain
areas simultaneously, not excluding the centers at the core of the brain. A
glimpse at modeling databases [151] will show that very few of the midbrain
and hindbrain centers in the brain that have been integrated in large-scale
models of brain dynamics. These centers often exhibit architectonic and
physiological features that render them veritable bottlenecks in the future
of highly plausible large scale brain simulation.

The constant issue with running such simulations is the computational
demands that stem from their massive scale [152]. Traditional simulators
using single node acceleration, although quite mature and powerful, very
often come short in terms of performance, making experiments (often pro-
hibitively) time-consuming unless massive (in both size and cost) superco-
muters are utilized. Even using a single HPC accelerator is not enough to
support the scale required for massive networks, if highly accurate models
are used.

These limitations mean that the ideal HPC platform for large-scale
brain simulations requires not only technology heterogeneity and program-
ming constructs familiar to the neuroscientist that are portable and acces-
sible, but also multi-HPC device support. Thus, it is highly relevant that
we explore the potential of BrainFrame back-ends for multi-device support.

6.3.1 Mutli-DFE implementation and evaluation

The main challenges of the multi-DFE implementation is the synchroniza-
tion and communication between the DFE-cards. The simulated network
is split equally between the DFEs. The calculations of the network subsets
are largely independent from each other, except for the dendrite voltages
of the neurons that are inter-connected through gap junctions and are par-
titioned on different cards.

These need to be exchanged as they are produced between the DFEs,
to be ready for use on the next simulation step. Since the FPGA hardware
is statically allocated to avoid synthesis between different experiments and
all-to-all interconnectivity needs to be supported, the system and data ex-
change is designed assuming all-to-all interconnectivity even if fewer than
all gap junction connections are present in a given experiment. The transfer
is implemented using the MaxRing, infrastructure on the DFE board that
provides a direct connection between DFEs, using the spare PCI-E lanes,
bypassing the host that would issue extra delays if data would be exchange
through it. When 2 DFEs are used, the operation ticks required for the
data transfer are equal to the ticks required to finish the simulation step
computation. Thus, data exchange is overlapped with the actual execution



138 Chapter 6 – The BrainFrame Platform

D = Dendrite
S = Soma
A = Axon

GJ = Gap Junction

DRAM

Host

To 

DRAM

C = Control Flow Counters

Fully Pipelined Datapaths

DFE Board

DFE Board

DFE Board

DFE Board

DFE Board

DFE Board

DFE Board

DFE Board
Max Ring

Max  

input
x Ring output

Figure 6.19: Architecture of 8-DFE design.
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Figure 6.20: Sim-step execution time for RGJ case vs network size (single
vs. 2-DFE run).

of the simulation step computations, keeping the overhead in performance
small, especially for larger networks. Since only a small amount of extra
BRAMs need to be used as buffers for the data values coming from the
other DFE, the 2-DFE system still has enough on-chip RAM to be able to
support 7680 neurons per card as in the single DFE version, increasing the
maximum supported network to 15360 neurons.

For an 8-DFE system, things are be more challenging. Data between
DFEs are transfered as a carousel through the DFE ring (Figure 6.19). As
the ticks required for the data exchange between 8 DFEs are more than the
actual computations done in parallel within each DFE, the 8-DFE system
requires an extra data transfer phase after the computation to complete
the data exchange before the next simulation step can begin.

The transfer from the immediate neighbor DFEs can be overlapped with
computation but the rest of the data are exchanged at the same time as
the DFE pipelines are being flushed. Depending on the problem size either
the flushing or the data transfer phase might require more ticks. The extra
operation ticks are added at the end of each simulation according to which
of the two operations takes longer. Since now each DFE needs to have
data buffers for the data coming from 7 other DFEs, the on-chip memory
is stressed significantly more. As a result preliminary synthesis results in
each DFE only supporting a maximum network of 3840 neurons, making
the maximum supported network for the 8-DFE system at 30720 neurons.

We evaluate the multi-DFE device using a larger scale network and the
RGJ and NGJ IO use cases as the worse and best case scenarios, respec-
tively, in terms of computational complexity. In Figure 6.20, we can see
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Figure 6.21: Sim-step execution time for NGJ vs network size (single vs.
2-DFE run).

the performance comparison between single and 2-node executions for the
Maia (MAX4) DFE, all based on the RGJ case. The 2-DFE system shows
increased efficiency for longer networks. The speedup of the 2-DFE sys-
tem compared to the single node is between 1.45× to 1.68×. This is to
be expected when higher problem sizes (i.e. network sizes) are demanded,
whereby doubling the effective FPGA fabric provides significant perfor-
mance enhancements. Comparing the same network sizes for the NGJ case
(Figure 6.21), we can see an almost perfect scaling as we move to longer
networks. As the NGJ has no connectivity modeled, there is no reason
for communication between DFEs (over the MaxRing). Thus, performance
benefits are due to the lack of inter-DFE communication delays, a shorter
pipeline depth and no need for pipeline flushing.

The 8-DFE using the MaxRing (required for RGJ experiment execu-
tion) was developed but not validated due to the lack of (at the time)
proper simulation and validation tools in the maxeler software infrastruc-
ture. The static nature of the FPGA hardware, though, allows us to make
quite safe estimations on the synthesized design’s performance on the RGJ
case. In Figure 6.22 we can see that speedup between the 8-DFE estimated
performance and 2-DFE configuration is maximally around 3.3x. Yet, once
more, the larger DFE instance offers better scaling properties to the prob-
lem. The NGJ case again is devoid of such delays and the DFEs work
practically independently from each other with perfect partitioning of the
network between DFEs (thus these run could be fully validated and run on
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Figure 6.22: Sim-step execution time for RGJ case vs network size (2-
DFE vs. 8-DFE run).

Figure 6.23: Sim-step execution time for the NGJ case vs network size
(2-DFE vs. 8-DFE run).
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the actual hardware), thus resulting in a speedup of about 3.8× compared
to the 2-DFE design (Figure 6.23).

6.3.2 Mutli-node PHI implementation and evaluation

The exploration on the multi-PHI implementation was made in a more ad-
vanced Knight’s Landing (KNL) models of Xeon PHIs. The KNL proces-
sors utilized in this implementation feature 72 cores, each able to dispatch
up to 4 instruction streams simultaneously [153]. Thus, when employing
n KNL processors, there is a degree of thread-level parallelism equalling
n× 72× 4 = n× 288. In addition, it should be noted that each thread uti-
lizes, when applicable, the AVX-512 instruction set; each core has two 512-
bit-wide vector processing units (VPUs) which allow for vectorized instruc-
tions to operate on multiple data simultaneously. This Single-Instruction-
Multiple-Data (SIMD) level of parallelism, combined with massive thread
counts on each platform, enables strong computational performance when
the target application is parallelized and vectorized properly for the KNL.

In the case of our implementation of the simulator ( 6.24), the thread-
level computational capabilities of the ensemble of KNL processors are di-
vided in groups and assigned to different MPI ranks [154]. This is neces-
sary for the multi-KNL implementation; different processors do not share
memory and thus, there is a need for communication between cores that
co-operate on computing neuronal network states. Based on this fact, when
employing n of processors, the minimum total number of MPI ranks the
application needs to spawn is also n, one per processor or DRAM island;
however this case has not proved optimal performance-wise in our studies.

Each MPI rank is responsible for the communication needs of a group of
KNL threads; when spawning a total number of k MPI ranks and employing
n KNL processors, each of the MPI ranks “holds” n× 288/k KNL threads.
We have chosen to spawn k = n × 4 MPI ranks, meaning each of the n
KNL processors spawns 4 MPI ranks and each MPI rank handles the com-
munication processes of 72 threads, which operate on the shared memory
of a single KNL processor using the OpenMP library [155]. This middle-of-
the-road approach to the ratio of MPI ranks to OpenMP threads coincides
with previous decisions on the 1st generation Xeon Phi KNC [156] [157].

On an algorithmic level, OpenMP threads operate on different parts of
the neuronal network. Each neuron in the network is assigned to a single
thread in order to be processed. Each of the n × 288 threads handles an
equal number of neurons, in order for the computational workload to remain
balanced. Thus, if the simulated network consists of a neurons and is being
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Figure 6.24: Multi-KNL implementation.

processed by n KNL processors, each thread handles the computational
needs of approximately a/(n× 288) neurons.

In each simulation step, Gap Junctions need the dendritic membrane
voltage levels of the participating neurons in the connection in order to
be computed. In the worst-case scenario mentioned above, each MPI rank
needs to broadcast the levels of dendritic voltage of each neuron they han-
dle - a total of a/(n × 4) floating-point values. This is achieved by using
MPI’s broadcast function (MPI Bcast). The MPI rank packs the neces-
sary values in a buffer after its assigned OpenMP threads have calculated
the up-to-date voltage levels. In the case of less than 100% connectivity
density, the buffer omits values that are not necessary to any of the other
n× 4− 1 MPI ranks.

After the MPI rank completes its MPI Bcast function, it receives the
rest of the n× 4− 1 MPI ranks’ broadcasts. It then processes the contents
of each received dendritic voltage buffer and dispatches their values to each
of its assigned 72 threads. In the worst-case scenario, each of the 72 threads
needs access to the full content of the received n × 4 − 1 buffers; in this
case, each rank essentially gets updated on the entirety of the rest of the
network in every simulation step. The buffers are accessed by the OpenMP
threads and the calculation of their Gap Junctions can be completed. The
OpenMP threads of each MPI rank can then process the rest of neurons’
data, such as their somatic and axonal ion channels, in order to complete all
necessary computations for the given simulation step. The process begins
anew in the next simulation step with a MPI Bcast function from the
MPI rank.
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Figure 6.25: Sim-step execution time for RGJ case in PHI KNLs (single
vs. 2-KNL run).

We repeat the above experiments using the Knights Lightning (KNL)
version of Intel Xeon-Phi platform. It must be noted that the PHI KNL
can support simulations of several millions of neurons. Additionally, the
network connectivity density can have an effect on the performance, as
opposed to the DFE where everything is statically allocated. Thus, in
order for this KNL evaluation to be comparable to the DFE measurements
we assume all-to-all connectivity between neurons and only measure for the
same network sizes as the DFE measurements, even though the KNLs can
support up to 2 million neurons.

In Figure 6.25, we can see the execution time for the RGJ case when
using single and 2-node KNL configurations. The 2-node speedup reaches
up to 1.4×. Although it is expected to improve for higher problems sizes,
the constant and non-deterministic nature of the intercore communication
on each KNL leads it to have poorer scalability than the DFE (e.g. compare
to Figure 6.20).

In the NGJ case, the KNL – although showing good scalability is greatly
outperformed by the DFEs (Figure 6.26; compare to Figure 6.21). The
DFEs are specifically designed for such problems as the NGJ case, while
in the PHI case – even though communication for application data is not
present – delays for inter-core coordination and memory transfers are still
being suffered. Similar dynamics can be observed when comparing the 2-
KNL with the 8-KNL system. PHI scalability is greatly improved with a
maximum speedup of 3.13× for the largest comparable problem size (Fig-
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Figure 6.26: Sim-step execution time for NGJ case in KNL system vs
network size (single vs. 2-KNL run).

Figure 6.27: Sim-step execution time for RGJ case vs network size (2-
KNL vs. 8-KNL run).
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Figure 6.28: Sim-step execution time for NGJ in KNL multi-node systems
(2-KNL vs. 8-KNL run).

ure 6.27), while for the NGJ case the situation is greatly in favor of the
DFE (Figure 6.28).

To show the KNL support for larger problem sizes than the DFE, we
conduct experiments for populations of millions of neurons, as well. An im-
portant distinction in how a neuronal network is implemented in hardware
and software can be observed when evaluating how a non-fully-connected
network operates in either case. As mentioned above, it has a clear effect
on KNL performance: Figure 6.29 and Figure 6.30 depict scalability plots
for the case of PHI KNL processors handling networks of varying sizes and
a set number of synapses per neuron.

The difference between the two figures lies in how the synapses are dis-
tributed throughout the network. In Figure 6.29, synapses follow a Gaus-
sian distribution pattern in which neurons are most likely to form bonds
with other neurons that are physically proximal to one another. In Fig-
ure 6.30, synapses do not follow this distribution and are created uniformly
throughout the network, ignoring the parameter of neuron proximity in the
network. The KNL processors handle the case of Gaussian distributions
in a much more efficient manner than the case of uniformly distributed
synapses. This can be explained by considering that the synapses present
the communication bottleneck between the KNL cores, as well as between
the different KNL dies in multi-KNL configurations. When synapses con-
nect proximal neurons, data locality is increased and the communication
bottleneck is a smaller obstacle to overcome. For uniform distributions,
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however, the bottleneck becomes a much more important factor and hin-
ders good simulator scalability and overall performance.

As a result, Figure 6.30 shows a severe increase in execution times when
compared to Figure 6.29 by almost an order of magnitude. Furthermore,
the case of the uniform distribution shows poor gains from employing 4
or 8 KNL processors over utilizing 1 or 2, particularly when considering
networks of large size and 1,000 synapses per neuron (bright yellow line
in the figures). These differences would not be observed in the case of
hardware implementation, since synapse placement is already assumed to
be at 100% density for any network, thus eliminating any considerations
caused by connected-neuron proximity.

6.3.3 Mutli-node GPU implementation and evaluation

The multi-GPU exploration was conducted on the Cartesius cluster im-
plemented by SURFsara [158]. The GPU accelerator island consists of 66
Bullx B515 GP-GPU accelerated nodes. Each one of these nodes consists
of 2 × 8-core 2.5 GHz Intel Xeon E5-2450 v2 (Ivy Bridge) CPUs/node, 2
× NVIDIA Tesla K40m GPUs/node, and 96 GB of memory/node. The
Tesla K40m is a server-grade PCIe accelerator board consisting of a single
GK110B GPU with NVIDIA Kepler architecture, which fully supports Re-
mote Direct Memory Access (RDMA). From the node topology, it became
clear that the GPUs are not connected to the same PCI root complex. Each
node contains two CPUs which have their own root complex. Each CPU
has a GPU connected to it, separating the memory address space. Intra-
node communication between nodes using the improved RDMA technology
on Cartesius is, thus, not possible. Luckily, this does not affect our core
experiments which are focused on RDMA inter-node communication. Also,
from reported benchmarks on Cartesius, it is observed that, even for larger
messages, OpenMPI has the lowest latency and could acquire the highest
bandwidth. The implementation uses the GPUDirect infrastructure.

GPUDirect is a software technology providing high-bandwidth and low-
latency communications directly among multiple (disaggregated) GPUs in
a cluster. The main two technologies under this umbrella are Peer-to-Peer
(P2P) for intra-node and Remote DMA (RDMA) for inter-node commu-
nication. P2P transfer technology allows for fast intra-node transfers but
does nothing for inter-node memory transfers. It allows for buffers to be
copied directly between the memories of GPUs. It employs Unified Vir-
tual Addressing (UVA), which enables the host memory and memory of
all GPUs to be combined into one large virtual address space [16]. A
prerequisite for P2P is that the source and destination device need to be
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Figure 6.29: Gaussian distribution in formed synapses throughout the
neuronal network, for different neuron counts and synapses per neuron.
The evaluation shows scalability for 1, 2, 4 and 8 Xeon-Phi KNL config-
urations. High scalability is shown for the heaviest network workload of 2
million neurons/1,000 synapses per neuron.

Figure 6.30: Uniform distribution in formed synapses throughout the neu-
ronal network, for different neuron counts and synapses per neuron. The
evaluation shows scalability for 1, 2, 4 and 8 Xeon-Phi KNL configurations.
Scalability is observably lower, particularly for 8-KNL configurations.
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attached to the same PCIe root complex, the application needs to be 64 bit,
and the operating system must enable the Tesla Compute Cluster option.
RDMA allows memory transfers between GPUs in a cluster over PCIe or
Infiniband. The GPU is enabled to send data directly to a remote system
without any intervention from the CPU. This technology is available for
the Tesla accelerator cards, starting from the Kepler architecture onward.

The multi-GPU design was based on the single GPU design of Sec-
tion 6.1.2.3. The execution requires 4 distinct phases:

• Connectivity-network Generation: The process of generating the net-
work topology for the simulation. For the purposes of this design, the
design was tested with Gaussian and Uniform network topologies.

• Connectivity-network Dispersal: The target cell for which neighbor
cells are selected always resides on a local GPU. Neighbor cells may
reside on the local GPU or on remote GPUs. Once the connectivity
network with the neighbor cells connected through GJs has been set
up, the remote connections need to be dispersed among the GPU-
world in such a way that the computed dendritic values in each time
step are sent to the correct GPUs.

• Cell Computation: When all the cell connections have been dispersed,
we can enter the actual simulation, which is a transient process. Now,
the axon, soma, and dendrite voltages of each neuron are computed.

• Dendrite Communication: In every simulation step, the dendrite volt-
ages of the neighboring cells on remote GPUs are required by the local
GPU to perform the neuron computations. Thus, after each cell-
computation step, the newly calculated dendrite voltages are com-
municated across the GPU-world.

Execution time is used as the performance metric for our evaluation
(Figure 6.31). For both uniform- and Gaussian-connected networks, per-
formance is calculated by comparing results (i) for 1M cells when scaling
GPU-world size from 1 to 32 GPUs and per neuron connections from 10 to
1k (weak-scaling experiments) and (ii) for a high network connectivity of
1k when scaling network sizes from 65k to 4M cells and for GPU-world sizes
from 1 to 32 GPUs (strong-scaling experiments). The results mentioned for
4M cells have been extrapolated based on the ratio of the number of neigh-
bors to execution time and have been added for qualitative comparison.
Both network connectivity types are compared to highlight the different
impacts on performance.
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Figure 6.31: Obtained total execution times when scaling GPU-world size
for 1M neurons for densities of 10 and 1k synapses/neuron (s/n). For
(a) uniform and (b) Gaussian connectivity networks. (c) Obtained total
execution times when scaling neuron network size with a per neuron con-
nectivity of 1k synapses/neuron (s/n) for 1 and 32 GPU(s) for uniform
and (d) Gaussian connectivity networks. The numbers in the graphs are
the speedups of the results in relation to the single GPU-world execution. *
4M cell measurements are extrapolated.



6.4 flexHH: BrainFrame library for HH-based neural simulations 151

From the evaluation of the multi-GPU implementation it is observed
that, for larger densities, a uniform network displays a lower overall speedup
when compared to its Gaussian counterpart. The dendrite-communication
phase becomes the performance bottleneck of the simulation process as
traffic among GPU nodes increases in volume. However, this communica-
tion overhead does not dominate the overall execution while scaling network
sizes is tractable. The IO-model workload has proven to execute on as many
GPUs as available and no erratic behavior (as in the case of the multi-KNL
design) has been noticed. The multi-KNL design shows erratic behavior
for large uniformly distributed, and even more for Gaussian-distributed
networks, due to the performance penalties incurred for keeping the many
CPU caches of the KNL architecture coherent.

6.4 flexHH: BrainFrame library for HH-based neu-
ral simulations

As mentioned in Section 6.1 for the BrainFrame framework to be useful in
practice, neuroscientists must be able to develop their own models within
BrainFrame using generic libraries. The challenge lies in offering high-
performance and scalable libraries so as to support the construction and
simulation of large-scale brain models while at the same time offering high
degrees of modeling flexibility and parameterization. Achieving such flexi-
bility is very challenging especially on FPGA-based platforms, such as the
DFE used in BrainFrame.

Thus, we develop flexHH [159] as the first prototype of such libraries
(implementing HH neuron model libraries), validating against a reference
design, and evaluate it. The library consists of five HH-model variants.
Each of the five implementations supports a different number and type of
features which can be user-specified at simulation startup; i.e. not at design
time, at marginal performance cost compared to hard-coded designs. We
begin with the DFE back-end as the most challenging platform for such
libraries compared to software-based solutions. The contributions of this
work are as follows:

• A scalable hardware library of accelerated, parameterizable and NeuroML-
compliant [160] HH-model implementations which offer high perfor-
mance gains. NeuroML is a XML based description language that
aims to provide a common data format for defining neuron models
and is compatible with a number of other simulation packages like
PyNN and NEURON.
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Table 6.5: Overview of supported model features per flexHH kernel.

Custom
ion gates

Gap
junctions

Multiple cell
compartments

HH ✗ ✗ ✗

HH+gap ✗ ✓ ✗

HH+custom ✓ ✗ ✗

HH+custom+multi ✓ ✗ ✓

HH fully featured ✓ ✓ ✓

• A set of crucial model features: custom ion gates, gap-junctions con-
nectivity and multi-compartmental neurons.

6.4.1 The DFE implementation

This first version of flexHH targets a single DFE node. Besides the standard
HH-model, three crucial extensions are added: user-defined ion gates, gap-
junction interconnectivity, and support for multiple compartments. Each
feature introduces a hardware-resource overhead that is subsequently trans-
lated to a performance overhead on the DFE technology. As a result,
flexHH provides five different instances (or kernels), each incorporating
more or less a superset of features compared to its predecessor (Table 6.5).
The library thus provides the user with the choice of using simpler model
instances (if all features are not required) with a benefit in performance
or maximum network capacity. The simplest flexHH kernel (HH ) supports
the basic HH-model. The HH fully featured (HH+custom+multi+gap) ker-
nel supports all extended HH features needed to simulate the complete
IO-model use case.

In case multiple cell compartments are not supported, a single com-
partment coincides with a whole cell, and the terms are interchangeable.
The ODE systems implemented are represented by state variables compris-
ing membrane potentials of the compartments (V [i]) and gate-activation
variables (Y [i])1, where i is the index of the variable. The index can be a
combination of multiple integers; e.g. to represent gate h of compartment
k of cell j, the index (j, k, h) can be used. Those state variables – which
are single-precision floating-point variables – are updated as described in
Algorithm 1.

1An activation variable defines the proportion of ion gates in the total population
which are open.
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Algorithm 1 HH-model evaluation
1: for 0 ≤ i < Nsteps do
2: for 0 ≤ j < Ncells do
3: for 0 ≤ k < Ncomps[j] do
4: for 0 ≤ h < Ngates[j][k] do
5: Y(i][j][k][h] = updateY(gateConsts, Y, dt)
6: end for
7: V[i][j][k] = updateV(gateConsts, compConsts, cellConsts, V, dt)
8: end for
9: end for
10: end for

For each simulation, the solver is invoked for updating the neural net-
work for a predefined number of steps Nsteps and with a time step dt.
For each gate (in Ngates) of each compartment (in Ncomps) of each cell (in
Ncells) – across simulation steps –, an updateY function is called which
iteratively updates the values of the gate-activation variables Y [i]. For
each compartment, a second function updateV updates the compartment’s
membrane-potential value V [i].

Because of the resource limitations of the FPGA hardware, there is a
maximum number of cells or compartments (Ncomps,max) and a maximum
number of gates per compartment (Ngates,max) that a kernel can support.
Thus, the resources are statically allocated to those maximum values and
any model instantiation with less or equal requirements can be used without
the need to re-synthesize the kernel. Static allocation has the added benefit
of providing performance guarantees, a crucial property for modern HPC
deployments.

All equations in updateV and updateY are described by parameters
which are kept constant during a single experiment. As flexHH has been
designed to support heterogeneous neural networks, the constants can vary
per level of neuron modeling hierarchy. Depending on the kernel instance,
the functionality of the equations differs according to the supported fea-
tures.

The computing model of the DFE consists of a host CPU which estab-
lishes in-/out- data streams to the DFE board, as shown in Figure 6.32
(top view). The DFE comprises on-chip, fast BRAM memory and on-
board, slower DRAM memory. To adhere to the dataflow paradigm, the
updateV and updateY parameters are streamed to the DFE kernel at ap-
propriate times. However, the amount of data needed to be transferred is
too large to fit into the FPGA BRAMs and, therefore, those parameters
are on the on-board DRAM. In contrast, the state variables are updated
frequently and, therefore, are stored in the BRAMs to reduce transfer la-
tencies. Additionally, as the state variables describe the behavior of the
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Figure 6.32: Schematic overview of implementation on the DFE.

model, all the state variables are sent to the on-board DRAM as output.
Input/Output data transfers between board and host only occur before and
after a simulation run.

A schematic overview of the HH kernel, as deployed on the DFE, can
be seen in Figure 6.32 (bottom view).

The temporal derivative of the voltage Vi of an HH compartment i
is calculated through Equation (6.1) where the currents Imc,i and/or Igap,i
are the currents received from the inter-compartment connections and from
the gap junctions, respectively. These parameters may be omitted if the
executed instance does not support the respective features. Ichannels,i is the
current received from the leakage current plus the sum of all currents of all
ion channels. The final current Iapp,i is the applied current to the respective
cell or compartment, representing outside input to the network/cell. It
takes the form a single pulse of applied current per compartment. C is the
membrane capacitance.

dVi

dt
=

Ichannels,i,+Iapp,i + Imc,i + Igap,i
C

(6.1)
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Table 6.6: Specifications of the h/w used for performance measurements

Specification Maia DFE Intel Core i7-4870H

On-board DRAM (GB) 48 16
RAM bandwidth (GB/s) 76.8 25.6
On-chip memory 6 MB (FPGA BRAMs) 256 KB (L2 Cache)
Chip frequency (GHz) Implementation specific 2.5
Chip Architecture Stratix V (5SGSD8) Crystal Well
IC process 65nm 22nm

6.4.2 Experimental setup and evaluation

The performance measurements for the accelerated kernels are done on
a Maia DFE. The Maia-DFE specifications are shown in Table 6.6. The
accelerated kernels are compared against C implementations executing on
an 2.5-GHz Intel Core i7-4870HQ CPU (of a similar process generation to
the Maia DFE).

The main parameters affecting resource usage areNComps,max, Ngates,max,
and uf (unroll factor). As the maximum values NComps,max, Ngates,max,
and uf are interdependent, there is a performance trade-off between max-
imally achievable network size and performance of the kernel based on the
values of these design parameters. Besides conferring with experts, we also
polled 10% of the 660 realistic single-neuron models in ModelDB [151]. We
found that 10 channels per compartment cover 89% of all cases, therein we
have chosen to restrict the maximum number of gates (Ngates,max) to 10
per compartment, as a reasonable ceiling for modeling custom ion gates.
Fixing this at compile time bounds the DFE resource requirements while
still retaining potential for a wide variety of experiments. We have explored
(but do not include here for brevity) and derived the most viable pairs of
these parameters for each one of the five flexHH kernels, also taking into
account the memory I/O-bandwidth restrictions of the DFE. The objective
was to increase performance while still providing support for experiments
with network sizes of at least 20K compartments. The kernel configurations
that resulted from this exploration are summarized in Table 6.7. These con-
figurations are used for the evaluation.

The evaluation measurements have been done using simple neuron-
model experiments of several thousands of simulation steps. The HH
and HH+gap kernels were tested using the standard HH-model [36]. The
HH+custom-kernel test simulates soma compartments from the IO-model.
Finally, both the HH fully featured and HH+custom+multi kernels are
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Table 6.7: Optimized flexHH-kernel configurations, used for evaluation
and the speedup against the CPU.

model uf Ncomps,max Ngates,max Speedup
vs. CPU

HH 4 53,248 10 ×35.49
HH+gap 24 24,576 10 ×36.36
HH+custom 3 53,248 10 ×15.88
HH+custom+multi 4 28,672 10 ×14.33
HH fully featured 16 24,576 10 ×23.98

Figure 6.33: Execution Time per step for the HH+custom+multi.
N=Number of compartments.

tested using IO cells, with each cell consisting of three compartments as
in the original model description. Kernel times include both compute and
on-board DRAM communication latency.

To derive performance speedups compared to the single-threaded ver-
sion of the kernels, we simulate runs of 23,040 compartments. Using the
same problem size for each kernel gives a good basis for comparing the over-
heads of the different flexHH features. For the HH+custom+multi+gap
kernel, that is tested by simulating IO neurons, 23,040 compartments ac-
count for 7,680 cells, as a single IO cell consists of 3 compartments. This
gives us a basis for comparing the performance of our generic library with
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Figure 6.34: Execution Time per step for the HH+custom+multi+gap.
N=Number of compartments.

the previously reported hard-coded DFE-version of the IO in the Brain-
Frame proof-of-concept which maximally supports 7,680 cells.

In Table 6.7, we can also see the speedup results of our five DFE
instances compared to the single-threaded C versions. All flexHH ker-
nels are deployed to take advantage of as much FPGA area as possible.
The observed speedup is between 14× and 36×. It must be noted that
the C version already provides significant performance benefits compared
to the established NEURON simulation environment, resulting in a cu-
mulative DFE speedup of 1,065× for the simple HH kernel compared to
NEURON. An interesting observation is that the most complex kernel in
the flexHH library actually has higher speedups compared to the simpler
HH+custom+multi kernel (that also simulates an IO cell). This can be
attributed to the existence of gap junctions. As seen in [161], including gap
junctions to the model can dominate computational requirements. Em-
ploying loop unrolling on the gap-junction loop in hardware yields greater
benefits compared to the CPU version, making the DFE version more effi-
cient for this problem case. The same trend can be observed between the
HH and HH+gap kernels. The presence of the gap junctions severely limits
the maximum compartment count.

When comparing the simulation-step execution time of our most com-
plex kernel with the hard-coded IO kernel seen in the BrainFrame proof-
of-concept evaluation, a speedup of 1.36× is observed, a result making
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Figure 6.35: Execution Time per step vs network size for the
HH+custom+multi+gap.

the flexHH competitive also against the Xeon-Phi and GPU platforms of
BrainFrame. The flexHH speedup is partly caused by a higher operational
frequency (180 MHz vs 150 MHz) and partly because of the structure of the
flexHH kernel that is more compact and suffers less from pipeline-flushing
overheads.

In terms of performance scalability, the simulation-step execution time
scales linearly in relation to the number of gates for all cases. In terms of
the compartment number, on the other hand, instantiating gap junctions
changes things significantly: even though execution time scales linearly
with compartment count when gap junctions are not present, the relation
becomes quadratic when they are included; see Figure 6.33 and Figure 6.34.
Additionally, for the HH+custom+multi+gap kernel, the amount of com-
partments per cell have a direct effect on performance scalability. As gap
junctions dominate execution in higher problems sizes, the more compart-
ments per cell an experiment has, the less gap-junction connections will be
present for the same amount of total compartments. This allows for the
execution time to scale more gracefully the more compartments that are
included within a cell (Figure 6.34).

6.4.3 flexHH on Intel Xeon CPUs (on Amazon Cloud)

Performance experiments for the simplest flexHH-library model (HH) have
also been conducted on Xeon implementations, run on Amazon AWS infras-
tructure. Specifically, the following instances have been tested: c5.xlarge,
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c5.2xlarge, c5.4xlarge, c5.9xlarge, and c5.18xlarge – with 4, 8, 16, 36 and
72 CPU cores, respectively. The CPUs used for the simulations were Intel
Xeon Platinum 8124M at 3.0 GHz 18 cores, each. We tested the worst-case
scenario when it comes to computational requirements with 16 compart-
ments per neuron, 8 gates per neuron and 100% connectivity density. Ex-
periments were simulating 100 msec of brain time. In Figure 6.35, looking
at Sim-step execution time vs network size, we can see the performance scal-
ability for each thread case. The implementation presents great scalability
for every case up to 8000 neurons. After that point, the lower-thread-count
instances seem to bottleneck, as there are not enough parallel threads to
cope with the increased computations. Yet, for larger problem sizes the
cases above 16 threads still show excellent scalability.

6.5 Summary

In this chapter, we have proposed BrainFrame, an heterogeneous accelera-
tion platform to serve computational-neuroscience studies in conducting the
variety of real experimentation often required for the study of brain func-
tionality. We have focused our analysis on biophysically-accurate neuron
models, as such models are considered essential for the deeper understand-
ing of the system properties of biological brain networks. In order for the
BrainFrame system to cope with the demand for high ease of programming
use as well as the computational requirements of the field, we have pre-
sented a proof-of-concept HPC platform that integrates three accelerator
technologies already proven in brain simulations. The performance analy-
sis of the system employing use cases that take into account connectivity
density and modeling complexity, has revealed that all three fabrics are es-
sential within such a powerful simulation platform so as to optimally serve
all possible experimentation cases. The platform, thus, achieves efficient
large-network experiments as well as real-time performance for meaningful
network sizes (≥ 100 cells).

BrainFrame is complemented, finally, with a PyNN front-end so as to
tackle the much sought usability objective. The PyNN front-end makes
the heterogeneous platform immediately accessible to a multitude of prior
modeling works, which is an essential strategy for the wide adoption of
complex HPC platforms in the neuroscientific community. This can be
accomplished provided that more development is conducted into support-
ing the basic blocks of typical HH modeling, as the proof-concept-system
only supports the IO model. Furthermore, building on the elegant PyNN
infrastructure, a simple accelerator-selection algorithm has also been de-
veloped for automatically identifying the most suitable HPC fabric (Xeon
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Phi, GPU, DFE) per neuroscientific experiment and has been integrated
in BrainFrame. Last but not least, all accelerators use PCIe slots to con-
nect to the host system, which greatly amplifies the platform flexibility
and permits adjusting the platform hardware depending on the funds and
hardware resources available to a research lab wishing to use BrainFrame.
BrainFrame code repositories can be found in [162,163].

Additionally to the proof-of-concept, the multi-device potential of the
BrainFrame back-ends was explored giving a clear indication on the scala-
bility of the acceleration technology used in BrainFrame. Lastly, the proto-
type IP libraries for HH-based modeling and their performance evaluation
for DFE and multi-threading HPC substrates ware presented.
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Conclusions
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Biophysically accurate models of biological systems, such as the ones using
the HH formalism that has been the main focus of this thesis, are comprised
mostly of a set of computationally challenging deferential equations often
implementing an oscillatory behavior. If neurons are simulated as inde-
pendent computational nodes (NGJ case), then dependencies between the
equations do not arise, allowing divide-and-conquer, data-flow and event-
driven acceleration strategies to be used very efficiently. The moment inter-
connectivity between oscillating neurons is also modelled (like GJs, input
integrators, STDP synapses etc), the cells become coupled oscillators. The
embarrassingly parallel and dataflow nature of the application is then bro-
ken. All neuron states need to be completely updated at each simulation
step to retain correct functionality. This requirement, in turn, enforces the
use of cycle-accurate, transient simulators and forbids event-driven imple-
mentations. As a result, a single HPC fabric cannot be a universal solution
to the problem since it is unable to cover all the aforementioned require-
ments efficiently, as our analysis also reveals.

The above difficulties strongly hint on why most of the computational-
neuroscience community has so far avoided employing HH models and
multi-compartmental models with complex connections on large problem
sizes using conventional computing machines. The eventual use of biophys-
ically plausible neurons and connections on a larger scale is anticipated
to contribute substantially in explaining biological behavior. Additionally,
most related works seem to suffer from a limited re-usability value due to
their (often inexistent) user interface. They ignore the challenge of the
neuroscientific community adopting the proposed platform and very few
propose solutions to that end. Beuler et al. [97] developed a graphical
interface alongside their FPGA-based simulator. Although it does pro-
vide ease of use in experiments, it is still confined to only one platform
and only one application with limited flexibility to be the basis of a more
widely adopted system. Weinstein et al. [130] [164] took the approach of
developing their own language to interface to their acceleration library, the
DYNAMO compiler. Despite the limitation of using only FPGAs as the
back-end platform, the DYNAMO compiler is a technically complete so-
lution. Unfortunately, it failed to achieve wide adoption by the scientific
community as it requires learning a new language and, additionally, the
non-trivial process of porting all existing neuron models to the new coding
paradigm.

PyNN has also been used in the past to tackle the issue of user inter-
face. The most promising solution, both in terms of usability and com-
putational ability, was proposed by Cheung et al. [123] with NeuroFlow.
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In this work, the researchers integrated PyNN to their DFE-based hard-
ware library. Neuroflow also provides a very complete library of IPs in the
back-end, covering a great portion of possible applications. Yet, the sys-
tem is still integrating a single acceleration platform. What is more, the
performance and efficiency analysis is only presented for a single use case
of a generally simpler model (Izhikevich) and with connectivity modeling
of medium complexity (STDP) and relatively lower density (about 10%).
The behavior and performance of the system for the rest of the supported
features is not self-evident and is expected to be significantly different to
the Izhikevich case, especially for accurate modeling such as the HH and
with high connectivity densities, as shown by our performance analysis on
the DFE platform. Furthermore, many of the performance benefits are
accomplished using event-driven simulations (neurons are evaluated only
when their inputs are triggered), that cannot always be employed, as dis-
cussed earlier.

To the best of our knowledge, no prior work has considered an heteroge-
neous acceleration system for coping with the variability of the applications
in the field. Additionally, the PyNN front-end provides a familiar interface
to the neuroscientific community, thus future integration of BrainFrame to
the main PyNN code would make it a complete solution for a node-level
heterogeneous system. The BrainFrame paradigm is primary designed to
support multi-node setups. Such setups can be facilitated in the now up-
and-coming heterogeneous datacenters, provided crucial aspects such as
low-latency interconnects are tackled. Such a development would lead to a
dramatic increase in the size of network populations supported at tractable
simulation times, while also providing a way for small-medium-sized labs
to use BrainFrame as a service, thus, enabling them to exploit the benefits
of such an HPC platform without suffering the cost of creating and main-
taining a local setup.

7.1 Scientific contributions

The main contributions of this thesis can be summarized as follows:

• The production of a literature review of FPGA-based acceleration
efforts for SNNs and a comprehensive analysis of prior art on the field.
The literature review reveals the potential that FPGA designs have
on the field and their viability for real-time experimentation. Finally,
the literature review shows that there is a severe lack of accessibility
and re-usability in the vast majority of prior work beyond one-off,
experiment-specific application (chapter 3).



166 Chapter 7 – Conclusions

• The acceleration of a novel, Hodgkin-Huxley based, state-of-the-art
model of the inferior olive, an important subsystem of the olivo-
cerebellar brain system using various FPGA-based HPC technolo-
gies. The designs explored employed traditional FPGA and data-
flow engines providing considerable speed-up compared to the tradi-
tional programming environments used in the neuroscietific field. The
FPGA-focused research also lead to the development of an embedded-
HPC, spin-off design: ZedBrain (chapter 4).

• The evaluation of the FPGA-based acceleration effort and a com-
prehensive comparison with other HPC technologies implementing
the same application. Specifically exploring volunteer computing,
GPGPU and multithreading technology, their comparison highlighted
the need for heterogeneity (chapter 5).

• The proposal and development of the BrainFrame HPC platform, sup-
porting the inferior olive and standard Hodgkin-Huxley models. The
platform proof-of-concept makes a clear case for the benefits of a het-
erogeneous system because of the high diversity of experimental use
cases; benefits that involve both performance and energy efficiency
(chapter 6).

• An exploration of the potential of BrainFrame back-ends (DFE and
Xeon PHI) for multi-device/multi-node support that is essential if
computational experiments are to tackle workload sizes that come
close to the size of real biological networks (chapter 6).

• The implementation and performance evaluation of the first version
of HH-based generic IPs for BrainFrame for both DFE and OpenMP
multi- and many-core) environments (chapter 6).

7.2 Future work

The thesis purpose was to explore the challenges of accelerating neuron
simulations. Although an important challenge in itself, the issue of HPC
adoption in the field has been proven to be far more complex than just the
acceleration part. Equally important is the development tool-flow and the
familiarity/accessibility of the technology by the end user. BrainFrame, in
its current state, makes a first step towards this goal, but for this effort to be
truly fruitful, considerable additional research and technical development
is required.

Cloud-based deployment of the system : BrainFrame is designed
with both on-premise and cloud deployment in mind. Accessibility is a
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major aspect for wide adoption. Thus, deployment as a cloud-HPC live
service is essential. Additional engineering work is required for this to be
accomplished. Robust containerization of the whole framework is required
in order for the previous goals of accessibility and portability to be fulfilled.
A complete cloud-HPC live service requires a collection of a vast amount
of specialized knowledge. These, including the support of the acceleration
back-ends, security and credential management, web-service architecture,
middleware support to connect front- and back- ends, resource orchestra-
tion, UX design, neuron model validation and standardization both in the
front- and back-end.

Extension of flexHH : Currently, the flexHH library supports DFE
and OpenMP-based back ends. Its extension to more platforms like GPUs
and its upgrade to support multi-device and multi-node setups would be
an important step for optimal support of HH simulations.

Extension of model support : Only one type of neuron model and
one synapse model are currently supported by BrainFrame. The support
of a more extended collection of models is an essential long term goal for
a platform like BrainFrame. Potential next natural steps would be the
support of Izhikevich and AdEx neuron models and STDP and general
modular Hebbian synapses, resulting in covering (alongside flexHH) a vast
subset of the computational neuroscience field. Ideally, a mature system
should utilize a neurosimulator able to generate code automatically for
the different back-ends, making HPC development fully transparent to the
model development.

Smart orchestration and selection : One of the major advantages
of BrainFrame is the use of automatic selection of acceleration so that the
user can exploit heterogeneity without having the specialized knowledge to
identify which is the optimal platform for thier use case. Currently selection
of resource allocation is based on a simple linear regression algorithm. But
the great diversity of the neuron model field and the constant advancement
of HPC technology can change the optimality of each use case dynamically.
An automatic way of selecting acceleration and resource allocation using
artificial intelligence and machine learning can serve the goal of accurate
performance efficiency estimation (which is the main criteria for back-end
selection).

Advanced visualization and data analysis automation : Improved
usability for a simulation platform can be served with advanced automation
for analysis and visualization of results. The ability for users to generate
typical methods of visualization of neuron simulation results and the ability
to customize types of data to be visualized can accelerate the research pro-
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cess considerably. Additionally, automated processes for typical activities
during experimentation, like Design Space Exploration automation, would
increase the value for the scientist/user greatly. Such automation should
be accompanied with professional UX design on the front-end as well.
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[92] Y. Zhang, J. Nuñez-Yañez, J. McGeehan, E. Regan, and S. Kelly,
“A BIOPHYSICALLY ACCURATE FLOATING POINT SOMATIC
NEUROPROCESSOR ,” in International Conference on Field
Programmable Logic and Applications. FPL 2009., Aug. 2009,
pp. 26–31.

[93] J. C. Moctezuma, J. P. McGeehan, and J. L. Nunez-Yanez,
“Biologically compatible neural networks with reconfigurable
hardware,” Microprocessors and Microsystems, vol. 39, no. 8,
pp. 693 – 703, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S014193311500143X

[94] A. Podobas and S. Matsuoka, “Designing and accelerating spiking
neural networks using opencl for fpgas,” in 2017 International
Conference on Field Programmable Technology (ICFPT),
Dec 2017, pp. 255–258.

[95] S. Yaghini Bonabi, H. Asgharian, S. Safari, and M. Nili
Ahmadabadi, “FPGA implementation of a biological neural

http://www.sciencedirect.com/science/article/pii/S092523121500466X
http://www.sciencedirect.com/science/article/pii/S092523121500466X
https://www.frontiersin.org/article/10.3389/fnins.2018.00698
https://www.frontiersin.org/article/10.3389/fnins.2018.00698
http://www.sciencedirect.com/science/article/pii/S014193311500143X
http://www.sciencedirect.com/science/article/pii/S014193311500143X


180 Bibliography

network based on the Hodgkin-Huxley neuron model,” Frontiers
in Neuroscience, vol. 8, p. 379, 2014. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2014.00379

[96] P. Pourhaj and D.-Y. Teng, “FPGA based pipelined architecture for
action potential simulation in biological neural systems ,” in 23rd
Canadian Conference on Electrical and Computer Engineer-
ing (CCECE), May 2010, pp. 1–4.

[97] M. Beuler, A. Tchaptchet, W. Bonath, S. Postnova, and H. A. Braun,
“Real-Time Simulations of Synchronization in a Conductance-Based
Neuronal Network with a Digital FPGA Hardware-Core,” in Ar-
tificial Neural Networks and Machine Learning – ICANN
2012, September 2012.

[98] G. Smaragdos, C. Davies, C. Strydis, I. Sourdis, C. Ciobanu,
O. Mencer, and C. I. De Zeeuw, “Real-time olivary neuron simula-
tions on dataflow computing machines,” in Supercomputing, J. M.
Kunkel, T. Ludwig, and H. W. Meuer, Eds. Cham: Springer Inter-
national Publishing, 2014, pp. 487–497.

[99] G. J. Christiaanse, A. Zjajo, C. Galuzzi, and R. van Leuken, “A real-
time hybrid neuron network for highly parallel cognitive systems,”
in 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Aug
2016, pp. 792–795.

[100] T. S. Mak, G. Rachmuthx, K. P. Lam, and C.-S. Poon, “Field Pro-
grammable Gate Array Implementation of Neuronal Ion Channel Dy-
namics,” in 2nd International IEEE EMBS Conference on
Neural Engineering , Mar. 2005, pp. 144–148.
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fonso Chacón-Rodŕıguez, Georgios Smaragdos, Christos Strydis,
Andrés Arroyo-Romero, Javier Espinoza-González, Carlos Salazar-
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Summary

Among the various methods in neuroscience for understanding brain func-
tion, in-silico simulations have been gaining popularity. Advances in neu-
roscience and engineering led to the creation of mathematical models of
networks that do not simply mimic biological behaviour in an abstract
fashion but emulate it in significant detail, even to the level of its biophys-
ical properties. Such an example is the Spiking Neural Network (SNN)
that can model a variety of additional behavioural features, like encoding
data and adapting according to a spike train‘s amplitude, frequency and
general precise pattern of arrival of spiking events on a neuron. As a result,
SNNs have higher explanatory power than their predecessors, thus brain
simulations based on SNNs become an attractive topic to explore. In-silico
simulations of SNNs can have beneficial results not only for neuroscience
research but breakthroughs can also potentially benefit medical, computing
and A.I. research. However, SNNs come with computationally demanding
workloads that traditional computing might struggle to handle. Thus, the
use of High Performance Computing (HPC) platforms in this application
domain becomes desirable. This dissertation explores the topic of HPC-
based in-silico brain simulations.

Initially, the effort focuses on custom hardware accelerators, due to
their potential in providing real-time performance alongside support for
large-scale non-real-time experiments and specifically Field Programmable
Gate Arrays (FPGAs). The nature of FPGA-based accelerators provides
specific benefits against other similar paradigms like digital Application
Specific Integrated Circuit (ASIC) designs. Firstly, we explore the general
characteristics of typical SNNs model types to identify their computational
requirements in relation to their explanatory strength. We also identify
major design characteristics in model development that can directly affect
its performance and behaviour when ported to an HPC platform. Subse-
quently, a detailed literature review is made on FPGA-based SNN imple-
mentations.
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The HPC porting effort begins with the implementation of an extended-
Hodgkin-Huxley model of the Inferior-olivary nucleus featuring advanced
connectivity. The model is quite demanding and complex enough to act
as a realistic benchmark for HPC implementations, while also being sci-
entifically relevant in its own right. FPGA development shows promising
performance results not only when doing custom designs but also using
High-level synthesis (HLS) toolflows that significantly reduce development
time. FPGAs have proven suitable for small-scale embedded-HPC uses as
well. The various efforts, though, reveal a very specific weakness of FPGA
development that has less to do with the silicon itself and more with its
programming environment. The FPGA tools are very inaccessible to non-
experts, thus any acceleration effort would require the engineer (and the
FPGA development time) to be in the critical path of the research process.

An important question to be answered is how the FPGA platform would
compare to other popular software-based HPC solutions such as GPU- and
CPU-based platforms. A detailed comparison of the best FPGA imple-
mentation with GPU and manycore-CPU ports of the same benchmark is
conducted. The comparison and evaluation shows that, when it comes to
real-time performance, FPGAs have a clear advantage. But for non-real-
time, large scale simulations, there is no single platform that can optimally
support the complete range of experiments that could be conducted with
the inferior olive model. The comparison makes a clear case for Brain-
Frame, a platform that supports heterogeneous HPC substrates.

This dissertation, thus, concludes with the proposal of the BrainFrame
system. The proof-of-concept design supports standard and extended Ho-
dgkin-Huxley models, such as the original inferior-olive model. The system
integrates a GPU-, CPU- and FPGA-based HPC back-end while also using
a standard neuroscientific language front-end (PyNN) that can score best-
in-class performance, alleviate some of the development hurdles and make
it far more user-friendly for the typical model developer. Additionally,
the multi-node potential of the platform is being explored. BrainFrame
provides both a powerful heterogeneous platform for acceleration and also
a front-end familiar to the neuroscientist.



198 Samenvatting

Samenvatting

Van alle verschillende neurowetenschappelijke methodes om hersenfunc-
ties te begrijpen, zijn in-silico simulaties steeds populairder aan het wor-
den. Vooruitgang in de neurowetenschappen en engineering heeft geleid tot
wiskundige modellen van netwerken die niet simpelweg een abstractie van
biologisch gedrag opleveren, maar het gedrag daadwerkelijk in detail kun-
nen nabootsen, tot op het niveau van de biofysische eigenschappen. Een
voorbeeld hiervan is een Spiking Neural Network (SNN), die een aantal
additionele eigenschappen kan modelleren, zoals het encoderen van data of
adaptatie op geleide van de amplitude, frequentie en het precieze patroon
van het aankomstmoment van spike-events op een neuron. Als gevolg hi-
ervan hebben SNN’s een hogere verklarende kracht dan hun voorgangers,
waardoor hersensimulaties gebaseerd op SNN’s een aantrekkelijk onderwerp
worden om te verkennen. In-silico simulaties van SNN’s kunnen niet alleen
gunstige resultaten opleveren voor onderzoek in de neurowetenschappen,
maar ook leiden tot mogelijke doorbraken in de medische, computer- en
AI-onderzoeksgebieden. SNN’s zijn echter computationeel zware operaties,
die traditionele computers moeilijk kunnen verwerken. Daarom wordt het
gebruik van High Performance Computing (HPC)-platforms in dit toepass-
ingsgebied steeds aantrekkelijker. Dit proefschrift verkent het onderwerp
van op HPC gebaseerde in-silico hersensimulaties.

Allereerst richt dit proefschrift zich op custom hardwareversnellers, die
zowel real-time prestaties kunnen bieden alsook grootschalige niet-real-
time experimenten – in het bijzonder Field Programmable Gate Arrays
(FPGA’s) – kunnen ondersteunen. FPGA-gebaseerde versnellers bieden
specifieke voordelen ten opzichte van andere vergelijkbare paradigma’s zoals
Application Specific Integrated Circuit (ASIC)-ontwerpen. Eerst verkennen
we de algemene kenmerken van typische SNN-modeltypen om hun compu-
tationele vereisten te identificeren relatief tot hun verklarende kracht. We
identificeren ook belangrijke ontwerpeigenschappen in modelontwikkeling
die direct van invloed kunnen zijn op prestaties en gedrag bij de overgang
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naar een HPC-platform. Vervolgens wordt een gedetailleerd literatuuron-
derzoek uitgevoerd naar op FPGA gebaseerde SNN-implementaties.

Het HPC-porting proces begint met de implementatie van een uitge-
breid Hodgkin-Huxley-model van de inferior olive nucleus met complexe
connectiviteit. Het model is veeleisend en complex genoeg om te fun-
geren als een realistische benchmark voor HPC-implementaties, en tegelijk-
ertijd wetenschappelijk relevant. FPGA-ontwikkeling toont veelbelovende
prestatieresultaten, niet alleen bij het maken van op maat gemaakte ontwer-
pen, maar ook bij het gebruik van High-level Synthesis (HLS)-toolflows
die de ontwikkeltijd aanzienlijk verminderen. FPGA’s zijn ook bewezen
geschikt voor kleinschalig embedded-HPC-gebruik. De verschillende in-
spanningen onthullen echter een zeer specifieke zwakte van FPGA- on-
twikkeling die minder te maken heeft met het silicon zelf, en meer met
de programmeeromgeving. De FPGA-tools zijn zeer ontoegankelijk voor
niet-experts, waarbij elk inspanning om verder te kunnen versnellen mede-
afhankelijk is van een ingenieur en de FPGA-ontwikkeltijd.

Een belangrijke vraag die moet worden beantwoord, is hoe het FPGA-
platform zich verhoudt tot andere populaire op software gebaseerde HPC-
oplossingen, zoals GPU- en CPU-gebaseerde platforms. Er wordt een gede-
tailleerde vergelijking gemaakt van de beste FPGA-implementatie met GPU-
en manycore-CPU-poorten van dezelfde benchmark. De vergelijking en
evaluatie laten zien dat, als het gaat om real-time prestaties, FPGA’s
duidelijk een voordeel hebben. Maar voor niet-real-time, grootschalige
simulaties is er geen enkel platform dat optimaal de complete reeks exper-
imenten kan ondersteunen die met het model van de inferior olive kunnen
worden uitgevoerd. De vergelijking pleit duidelijk voor BrainFrame, een
platform dat heterogene HPC-substraten ondersteunt.

Dit proefschrift eindigt met het voorstel van het BrainFrame-systeem.
Het proof-of-concept ontwerp ondersteunt standaard en uitgebreide Hodgkin-
Huxley-modellen, zoals het originele inferior olive-model. Het systeem in-
tegreert een GPU-, CPU- en FPGA-gebaseerde HPC-back-end en een stan-
daard neurowetenschappelijke taal front-end (PyNN), die best-in-class per-
fomance kan scoren, ontwikkelingsuitdagingen kan verlichten en het veel ge-
bruiksvriendelijker kan maken voor de typische modelontwikkelaar. Boven-
dien wordt het multi-node potentieel van het platform onderzocht. Brain-
Frame biedt zowel een krachtig heterogeen platform voor versnelling als een
front-end die vertrouwd is bij de neurowetenschapper.


	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Motivation for in-silico brain simulations
	The era of accelerated brain simulations
	Thesis scope
	Thesis contributions
	Thesis organization

	Background
	The workloads of computational neuroscience
	Abstract view of neuronal models
	Neuron model types
	Network connectivity modeling

	The inferior olive

	Accelerated SNNs on Reconfigurable Hardware
	Explanatory power and computational complexity of neuron models
	Numerical analysis
	Numerical methods
	Behaviour of numerical methods on SNNs
	Model fitting

	Complexity analysis
	Summary of design considerations and trade-offs
	FPGA spiking neural network implementation categorization
	SNN applications for brain simulations
	SNNs for specific AI applications
	Model choice, network size and real-time performance
	Architectural choice and their effect on FPGA designs

	Tool-flows
	Summary

	The Inferior Olive on FPGA-based Hardware
	Application description
	The IO-cell model
	The IO-network model
	C-code profiling

	HLS FPGA-based inferior olive implementation
	Overview of the hardware design
	Time-multiplexing execution
	HLS C-Code optimizations

	Evaluation of the Vivado HLS implementation
	Experimental methodology
	Experimental results
	Error estimation
	Comparison to related work

	DFE-based inferior olive implementation 
	The IO-kernel DFE architecture
	Additional design optimizations

	Evaluation of the DFE implementation
	Satellite efforts on FPGA implementations
	Embedded-HPC inferior olive - ZedBrain
	Custom (non-HLS-based) acceleration of the inferior olive

	The Problem of traditional FPGA workflow
	Summary

	Comparison with other HPC solutions
	The inferior olive on volunteer computing
	The mCluster framework and programming model
	mCluster implementation
	Evaluation of the IO on the mCluster

	The inferior olive on GPGPUs
	The GPU implementation
	GPU evaluation

	The inferior olive on a many-core Processor
	InfOli use cases
	Quantifying neuron interconnectivity
	Target platforms
	Performance evaluation

	The problem of complex workload diversity
	Summary

	The BrainFrame Platform
	Methods
	Application use cases detailed profiling
	HPC fabrics and Implementation
	BrainFrame & the PyNN front-end

	Results
	Performance evaluation
	Accelerator-selection algorithm

	Multi-node potential of BrainFrame back-ends
	Mutli-DFE implementation and evaluation
	Mutli-node PHI implementation and evaluation
	Mutli-node GPU implementation and evaluation

	flexHH: BrainFrame library for HH-based neural simulations
	The DFE implementation
	Experimental setup and evaluation
	flexHH on Intel Xeon CPUs (on Amazon Cloud)

	Summary

	Conclusions
	Scientific contributions
	Future work

	Bibliography
	Acknowledgments
	Curriculum Vitae
	List of Publications
	Summary
	Samenvatting

