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Summary
Background The extended acquisition times required for MRI limit its availability in resource-constrained settings. 
Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been 
a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) 
optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and 
accuracy of oncological imaging biomarkers.

Methods In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg 
University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, 
and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to 
develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various 
acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 
EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between 
undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including 
structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream 
radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of 
tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone 
Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and 
robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data.

Findings In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 
0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92–0·93) for 10-times acceleration (R=10). The 
10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing 
volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median 
volume difference of 0·01 cm³ [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing 
tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of –0·79 cm³ [95% CI 
–0·87 to –0·72] equalling –1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric 
tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 
4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-
rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN 
generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-
coil compared with single-coil k-space data (p<0·0001).

Interpretation Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan 
times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived 
imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open 
source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective 
validation.

Funding Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist 
Endowed Professorship by the Else Kröner Fresenius Foundation. 

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction 
Medical imaging assumes crucial functions across the 
entire cancer care journey, encompassing tumour 

diagnosis, staging, treatment planning, monitoring of 
tumour response, and detection of relapse during follow-
up. Nevertheless, access to medical imaging is still 
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limited, with substantial shortages in equipment and 
workforces, particularly in low-income and middle-
income countries. A 2021 Lancet Oncology Commission1 
underscored the need to address disparities in medical 
imaging access and estimated that almost 2·5 million 
deaths caused by cancer could be prevented through 
increased access to medical imaging.1 These disparities 
are particularly evident for MRI, which is a key imaging 
method for various cancer types including brain, 
prostate, and rectal cancer.2,3 Specifically, accessibility to 
MRI is low and heterogeneous around the world, with 
approximately 70% of the world’s population having little 
to no access to MRI, primarily due to its expensive 
installation, operation, and maintenance costs, as well as 
the extended acquisition times required for MRI 
resulting in restricted throughput.4,5 Various strategies 
have been developed to shift these boundaries by 
reducing the acquisition times of MRI, particularly 
through undersampling of k-space data, which holds the 
raw MRI data before reconstruction into visually 
perceivable images.6 Although conventional MRI 
acceleration techniques, such as compressed sensing 
and multi-coil imaging (commonly called parallel 
imaging), allow acceleration of MRI acquisition by a 
factor of approximately 2–3,6–8 higher undersampling is 
generally avoided to prevent compromising image 
quality.9 In the past 5 years, techniques based on deep 
convolutional neural networks (dCNN) have garnered 
substantial interest in this field because they have the 
potential to outperform conventional MRI recon struction 
techniques, enabling reconstruction of highly 
undersampled (ie, highly accelerated) MRI while 

preserving image quality.10 Despite encouraging results 
in methodical proof-of-concept studies, evidence of the 
potential clinical effect and accuracy of imaging 
biomarkers derived from highly undersampled MRI in a 
large-scale setting is currently lacking.10,11

Here we report our use of MRI data from three phase 2 
or phase 3 clinical trials, with more than 2000 patients 
with glioblastoma from over 200 unique institutions 
overall, to develop, train, and test the potential of a dCNN 
optimisation method for reconstruction of highly 
undersampled MRI. Additionally, we used the public 
NYU Langone Health fastMRI brain dataset with 
558 patients from five institutions, covering a broad 
disease spectrum on neuroimaging, to further validate 
the generalisability and robustness of the developed 
dCNN. With this dCNN we aimed to substantially reduce 
scan times beyond those achieved with conventional 
MRI acceleration methods, and to assess its impact on 
image quality and the accuracy of MRI-derived imaging 
biomarkers.

Methods
Study design and data sources 
In this multicentre, retrospective, cohort study, we 
analysed MRI data from patients with glioblastoma 
acquired at the Heidelberg University Hospital (HD 
cohort) and from the multicentre phase 2 CORE trial 
(CORE cohort),12 the multicentre phase 3 CENTRIC trial 
(CENTRIC cohort),13 and the phase 2/3 European 
Organisation for Research and Treatment of Cancer 
(EORTC) 26101 trial (EORTC-26101 cohort).14,15 We 
selected all MRI scans that were acquired within the 

Research in context

Evidence before this study
In the past 5 years, artificial intelligence techniques based on 
deep convolutional neural networks (dCNN) have 
demonstrated superior performance compared with 
conventional reconstruction methods for undersampled MRI 
and become a subject of great interest. We searched PubMed on 
July 10, 2023, with no date restrictions on publications, using 
the search terms (“MRI” OR “magnetic resonance imaging”) 
AND (“oncology”) AND (“accelerated” OR “undersampling” OR 
“undersampled” OR “reconstruction”). No language restrictions 
were applied to this search. Our search did not identify any 
articles that evaluated the potential of dCNN-based 
reconstruction of undersampled MRI in a large multicentre 
setting or that evaluated its clinical effect on MRI-derived 
imaging biomarkers in oncology.

Added value of this study
Using our dCNN-based reconstruction of undersampled MRI, 
we found that substantial reduction of scan times beyond 
those achieved with conventional MRI acceleration methods 
is possible, with an acceleration by a factor of 10 

demonstrating excellent image quality and accuracy of 
derived imaging biomarkers for the assessment of oncological 
treatment response. Moreover, we show excellent 
generalisability and robustness of the developed dCNN on the 
public fastMRI benchmark dataset. We provide our 
developments as open source, which could serve as a 
blueprint for building similar dCNN-based reconstruction 
models of undersampled MRI beyond the field of neuro-
oncology and thereby guide future clinical translation of 
accelerating MRI.

Implications of all the available evidence
Our results demonstrate the potential of dCNN-based 
reconstruction of undersampled MRI data, offering faster MRI 
scan times without relevantly compromising image quality or 
accuracy of derived imaging biomarkers for the assessment of 
oncological treatment response. This advancement holds 
considerable promise for accelerating MRI, which will be 
particularly advantageous in resource-constrained settings, and 
ultimately might increase accessibility to MRI, pending further 
prospective validation.



Articles

402 www.thelancet.com/oncology   Vol 25   March 2024

Center for Neurodegenerative 
Diseases, Bonn, Germany 

(K Deike-Hofmann)

Correspondence to: 
Prof Philipp Vollmuth, Division 

for Computational 
Neuroimaging, Department of 

Neuroradiology, Heidelberg 
University Hospital, 

69120 Heidelberg, Germany 
p.vollmuth@dkfz-heidelberg.

de

CORE, CENTRIC, and EORTC-26101 studies. Available 
MRI scans were excluded (ie, classified as not assessable) 
if any of the following criteria were met: corrupt data 
following DICOM to NIfTI file conversion (primarily due 
to the non-standardised centre-specific anonymisation of 
DICOM files) or reading; errors upon loading the NIfTI 
files; incomplete availability of T1-w, cT1-w, FLAIR, and 
T2-w sequences (requiring either 3D acquisitions or 2D 
with axial orientation); or heavy motion artifacts, 
precluding adequate image co-registration. Additionally, 
we retro spectively analysed brain MRI from the fastMRI 
initiative database (fastMRI brain cohort).16 No exclusion 
criteria were applied to the fastMRI dataset. The study 
cohorts and the analysis workflow are shown in figure 1. 
A detailed description of all study cohorts and inclusion 
and exclusion criteria are in the appendix (pp 4–5, 11–12).

Retrospective evaluation was approved by the local 
ethics committee of the University of Heidelberg and 
informed consent was waived; evaluation of the 
CENTRIC, CORE, and EORTC-26101 cohorts was 
granted through an external research project with the 
EORTC. Evaluation of the fastMRI brain cohort was 
performed in accordance with the fastMRI Dataset 
Sharing Agreement. Specifically, the fastMRI investi-
gators provided data but did not participate in analysis or 
writing of this study. The primary goal of fastMRI is to 
test whether machine learning can aid in the 
reconstruction of medical images.

Procedures 
The analysis workflow complies with the CLAIM and 
STROBE guidelines.17,18 In this study, we used a physics-
based neural network—namely, Model Based Deep 
Learning Architecture for Inverse Problems.19 These 
architectures explicitly include the physical relationship 
between the observed data (ie, the undersampled k-space 
data) and the object that was measured (ie, the desired 
data, in this case the high-quality MRI sequences). This 
architecture combines classic iterative techniques of 
solving inverse problems with deep learning. The 
network consists of two modules, one enforces the 
physical relationship between undersampled k-space 
data and the required anatomical image and a second 
deep learning-based module that learns features of the 
anatomical image to aid in reconstruction. A detailed 
description of the mathematical framework and the 
architecture of the dCNN is in the appendix (pp 2–4, 24).

The same image processing steps were applied to all 
MRI sequences. First, individual MRI sequences within 
the HD, CENTRIC, CORE, and EORTC-26101 cohorts 
were retrospectively converted into simulated raw k-space 
data by using 2D or 3D fast Fourier transform. No 
information from coil sensitivity maps or coil images 
were available due to retrospective data acquisition, which 
required treating the retro spectively generated k-space 
data as a single-coil acquisition. For the fastMRI brain 
cohort, multi-coil raw k-space data were prospectively 

available and additional single-coil k-space data were 
retrospectively simulated, as described in the appendix 
(p 5). Subsequently, the k-space data were undersampled 
by a factor of R=2, 4, 6, 8, 10, and 15 (designated as R=2–15) 
using the radial golden angle undersampling mask.

Next, the dCNN models were trained with all MRI data 
from the HD, CENTRIC, and CORE cohorts to 
reconstruct original MRI from the undersampled 
k-space data with separate models trained for each 
undersampling rate (R=2–15) and for each sequence 
modality (T1-w, cT1-w, FLAIR, and T2-w), as described in 
the appendix (p 5). The trained dCNN models were 
tested (without retraining) for reconstructing original 
MRIs from the undersampled k-space data in the 
EORTC-26101 and fastMRI brain cohorts. Within both 
cohorts, the quality of the undersampled dCNN-
reconstructed MRI (for each undersampling rate of 
R=2–15) with the corresponding original MRI (R=0) was 
quantified with standard image quality metrics,16,20 

including structural similarity index measure (SSIM; 
calculated on magnitude values [non-negative]), high 
frequency error norm (HFEN), peak signal-to-noise ratio 
(PSNR), and root mean squared error (RMSE). For SSIM 

(for which the maximum value is 1 if the two images are 
identical) and PSNR, a higher value denotes better 
quality, whereas for RMSE and HFEN, a lower value 
denotes better quality of the undersampled dCNN-
reconstructed MRI.

The accuracy of undersampled dCNN-reconstructed 
MRI on downstream radiological assessment of 
imaging biomarkers in oncology was evaluated within 
the EORTC-26101 cohort. First, automated tumour 
segmentation was performed as described previously21 
using a trained 3D U-Net convolutional neural network 
model using T1-w, cT1-w, FLAIR, and T2-w sequences 
as input. This process was separately performed seven 
times using original MRI (R=0) or dCNN-reconstructed 
MRI from each undersampling rate (R=2–15) as 
input. Thereby volumetric segmentation masks with 
delineation of the contrast-enhancing tumour and the 
non-enhancing T2/FLAIR hyperintense abnormality, 
excluding the contrast-enhancing and necrotic portion 
of the tumour, resection cavity, and leukoaraiosis, were 
generated. Subsequently, volumetric tumour response 
assessment was performed,21 including calculation of 
the time to progression by analysing the longitudinal 
change in the contrast-enhancing tumour volumes 
and the T2/FLAIR signal abnormality (referred to as 
non-enhancing tumour or oedema) volumes for 
each patient.

Outcomes 
The present study had three main objectives. First, to 
evaluate the quality of the undersampled dCNN-
reconstructed MRI compared with the original MRI 
within the EORTC-26101 and fastMRI brain cohort using 
standard quantitative metrics. Second, to assess the 

For more on the fastMRI 
investigators see https://

fastmri.med.nyu.edu

See Online for appendix
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accuracy of undersampled dCNN-reconstructed MRI 
on downstream radiological assessment of imaging 
biomarkers in the EORTC-26101 cohort compared with 
the original MRI by quantifying the spatial and volumetric 
agreement, separately for contrast-enhancing tumour 
and non-enhancing tumour or oedema volumes, and by 
quantifying the accuracy of derived tumour response 

assessment measurements (time to progression), which 
is a central imaging biomarker in oncology. Third, to 
assess the generalisability and robustness of the 
developed dCNN within the fastMRI brain cohort, by 
applying it to prospectively available k-space data with 
comparison of the performance of the dCNN for both 
single-coil and multi-coil MRI acquisition scenarios.

Figure 1: Procedures for the development, training, validation, and independent testing of the dCNN optimisation method for MRI reconstruction and assessment of its clinical impact on 
MRI-derived imaging biomarkers in oncology
cT1=contrast-enhanced T1-weighted. dCNN=deep convolutional neural network. EORTC=European Organisation for Research and Treatment of Cancer. FLAIR=fluid attenuated inversion recovery. 
HD=Heidelberg University Hospital cohort. T1T1-weighted. T2=T2-weighted. TTP=time to progression. *302 examinations with corrupt MRI data, 741 examinations with missing MRI sequences, and 
77 examinations with heavy motion artifacts. †238 examinations with corrupt MRI data, 374 examinations with missing MRI sequences, and seven examinations with heavy motion artifacts.

Development, training, and validation procedures 

Testing procedures B 

Testing procedures A

1. Retrospectively convert MRI sequences into (single-coil) k-space data 
2. Undersample k-space data by a factor of R=2–15

HD:
• 1 institutions
• 775 patients
• 775 MRI 

examinations

CORE:
• 61 institutions
• 265 patients
• 1377 MRI 

examinations

CENTRIC:
• 150 institutions
• 545 patients
• 3973 MRI 

examinations

Training or validation dataset

HD:
• 1 institution
• 775 patients
• 775 MRI 

examinations

CORE:
• 58 institutions
• 260 patients
• 1083 MRI 

examinations

CENTRIC:
• 139 institutions
• 505 patients
• 3147 MRI 

examinations

Training or validation dataset

Application of exclusion criteria*

1. Retrospectively convert MRI sequences into (single-coil) 
k-space data

2. Undersample k-space data by a factor of R=2–15

Model development
Development, training, and validation of the dCNN models 
for reconstruction of MRI sequences from undersampled 
k-space data; separate models built for each sequence type 
(T1, cT1, FLAIR, and T2) and undersampling rate (R=2–15)

Model testing
1. Supply undersampled k-space data as input to the trained dCNN models
2. Perform dCNN reconstruction of the undersampled k-space data, with seperate dCNN models used for each sequence type 

and undersampling rate

MRI post-processing
For each MRI exam, separately for each undersampling rate of the dCNN-reconstructed MRI (R=2–15) and for the original 
MRI (R=0):
1. Deep-learning based skull stripping of each MRI sequence 
2. Image co-registration (T1, cT1, FLAIR, and T2)
3. Deep-learning based volumetric quantification of tumour burden 

MRI quality assessment
Calculation of quality metrics of the undersampled 
dCNN-reconstructed MRI sequences compared with 
original MRI sequences (skull stripped)

Assessment of MRI-derived biomarker accuracy
1. Calculation of spatial agreement and volumetric 

differences between tumour volumes derived from 
undersampled dCNN-reconstructed MRI compared 
with original MRI sequences

2. Automated volumetric tumour response assessment 
with calculation of time to progression for each patient

3. Assessment of agreement in the time to progression 
when calculated from undersampled dCNN-
reconstructed MRI compared with original MRI 
sequences 

Test dataset
EORTC-26101:
• 37 institutions
• 596 patients
• 2593 MRI examinations

Application of exclusion 
criteria†

Test dataset
EORTC-26101:
• 32 institutions
• 528 patients
• 1974 MRI examinations

Test dataset
fastMRI brain:
• 5 institutions
• 558 patients
• 558 MRI examinations

1. Use available fully sampled prospectively available multi-coil k-space data
2. Calculate coil sensitivity maps and target image (ground truth, R=0) using 

coil sensitivity maps and fully sampled multi-coil k-space data
3. Simulate single-coil k-space data by fast Fourier transform of coil combined 

image
4. Undersample single and multi-coil k-space data by a factor of R=2–15

Model testing
1. Supply undersampled k-space data (separately for single and multi-coil) 

as input to the trained dCNN models
2. Perform dCNN reconstruction of the undersampled k-space data with 

separate dCNN models used for each sequence type and undersampling 
rate

MRI quality assessment
1. Calculation of quality metrics of the undersampled dCNN-reconstructed 

MRI sequences compared with original MRI sequences
2. Comparison of quality metrics between single and multi-coil acquisition

MRI post-processing

Semiautomated skull stripping, seperately for each dCNN-reconstructed MRI 
sequence (R=2–15) and the original MRI sequence (R=0)  
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Statistical analysis 
The cohort size for each of the included datasets was 
determined by availability of samples and not derived 
from a power calculation. The quality of the dCNN-
reconstructed MRI in the EORTC-26101 and fastMRI 
brain cohorts was separately quantified for each 
undersampling rate (R=2–15) using SSIM, HFEN, PSNR, 
and RMSE metrics. In the EORTC-26101 cohort the 
agreement between tumour volumes derived from 
original MRIs compared with dCNN-reconstructed MRIs 
was evaluated (separately for each undersampling rate of 
R=2–15) with the DICE similarity coefficient for spatial 
agreement and Bland-Altman plots for volume 
agreement. A Wilcoxon signed-rank test for equivalence 
using a two one-sided tests (known as TOST) procedure 
was applied to evaluate equivalence in tumour volume 
measurements within the EORTC-26101 cohort when 
derived from original MRI compared with the dCNN-
reconstructed MRI. This analysis was conducted 
separately for each undersampling rate (R=2–15) after 
confirming the primary assumption of the test—namely, 
the symmetrical distribution of differences between 
paired measurements. An equivalence bound of 0·1 cm³ 
was set for contrast-enhancing tumour volumes and 
1 cm³ for non-enhancing tumour or oedema volumes.

Kaplan–Meier plots and log-rank tests were generated 
for the EORTC-26101 cohort to assess the association in 
time to progression on a group level when using original 
MRI versus dCNN-reconstructed MRI. Time to 
progression was calculated from the date of baseline 
MRI in the EORTC-26101 trial until the date of tumour 
progression on MRI; patients were only included if they 
had a baseline and at least one follow-up MRI and 
censoring was done at the date of the last MRI if no 
progression occurred during follow-up. Progression was 
defined, as described previously,21 as an increase in the 
contrast-enhancing tumour volume by 40% (which 
corresponds to an increase of the area of contrast 
enhancing tumour by 25% determined by bi-
perpendicular tumour diameters as defined by response 
assessment in neuro-oncology [RANO] criteria22) or as an 
increase in the non-enhancing tumour or oedema 
volumes by 100% compared with baseline or best 
response. Moreover, agreement in time to progression 
(considering both time-to-event and censoring status) 
was assessed on an individual level with calculation of 
Cohen’s kappa coefficient (with two levels), which takes 
into account the possibility of the agreement occurring 
by chance.

Within the fastMRI brain cohort, a Wilcoxon signed-
rank test (with calculation of effect sizes) was used to 
evaluate (separately for each undersampling rate of 
R=2–15) whether the quality metrics derived from multi-
coil MRI acquisition are different from those derived 
from single-coil MRI acquisition. Moreover, to objectively 
compare the performance between the EORTC-26101 
cohort (single-coil acquisition) and the fastMRI brain 

cohort (single-coil acquisition), the SSIM was used as a 
target metric because it is a bounded metric (–1 to 1) and 
less influenced by the different intensity scales of the 
generated MRI sequences stemming from prospective 
(fastMRI) versus retrospectively (EORTC-26101) gen-
erated k-space data than the other metrics (appendix p 6). 
Specifically, a Wilcoxon-Mann-Whitney test (with 
calculation of effect sizes) was used to evaluate (separately 
for each undersampling rate of R=2–15) whether the 
SSIM derived from single-coil acquisitions is different 
between the EORTC-26101 and the fastMRI brain cohort. 
Moreover, the performance of the dCNN for 
reconstruction of MRI from multi-coil acquisition in the 
fastMRI brain cohort was compared with the official 
leader-board of the best performing algorithms in the 
FastMRI 2020 challenge (with SSIM as the target metric; 
appendix p 7).10 Linear mixed-effects models were 
generated to assess the influence of different 
undersampling rates (R value) on the evaluated metrics. 
For this purpose, the R value was treated as a fixed effect, 
whereas the MRI examinations were treated as a random 
effect (to account for the repeated measurements 
obtained for separate R values within each examination). 
Linear regression models were generated to assess the 
influence of tumour volumes on the DICE coefficient for 
spatial agreement (separately for each R value). The 
reported 95% CIs for the median of the assessed metrics 
were calculated using non-parametric bootstrap 
resampling (percentile method) with n=1000 iterations.

A p value of less than 0·05 was considered significant. 
Statistical analyses were done with R version 4.3.1, 
Matlab version R2022b (MathWorks, Natick, MA, USA), 
and Python version 3.10 (Python Software Foundation, 
Beaverton, OR, USA).

Role of the funding source 
The funder had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report.

Results 
The compiled MRI from patients with glioblastoma being 
treated at Heidelberg University Hospital (775 patients 
with one examination each, recruited between July, 2009, 
and August, 2019) and within the multi-institutional 
longitudinal phase 2 CORE trial (260 patients with 
1083 examinations from 58 institutions, recruited 
between March, 2009, and February, 2013) and phase 3 
CENTRIC trial (505 patients with 3147 exam inations from 
139 institutions, recruited between September, 2008, and 
November, 2012) were allocated for training and validation 
of dCNN models reconstructing MRI from highly 
undersampled k-space data (figure 1; demographic, 
clinical, and MRI character istics of cohorts are in the 
appendix pp 11–12). Independent testing of the dCNN 
models on the multi-institutional longitudinal phase 2/3 
EORTC-26101 trial (528 patients with 1974 examinations 
from 32 institutions; recruited between October, 2011, 



Articles

www.thelancet.com/oncology   Vol 25   March 2024 405

and December, 2015; appendix pp 11–12) yielded a median 
SSIM score (ie, similarity between original MRI and 
undersampled dCNN reconstructed MRI) ranging from 
0·88 to 0·99 across the evaluated undersampling rates of 
R=2–15, with 0·92 (95% CI 0·92–0·93) for 10-times 
undersampling (R=10). Detailed results for each 
undersampling rate (and for additional quality metrics, 
such as PSNR, HFEN, and RMSE) are in the appendix 
(pp 16, 25). Linear mixed-effects models demonstrated 
that the quality of the dCNN-reconstructed MRI 
sequences decreased for higher undersampling rates 
(p<0·0001 each; appendix p 23). Specifically, the changes 
in the undersampling rate were responsible for explaining 
22–44% of the variation (marginal R²) in the quality 
metrics of the dCNN-reconstructed MRI. The dCNN 
required a median of 1·3 s (95% CI 1·2–1·4) to reconstruct 
a 2D MRI and 3·3 s (3·1–3·4) to reconstruct a 3D MRI 
from undersampled k-space data (appendix p 7). An 
illustrative case from the EORTC-26101 test set depicting 
the original MRI and the undersampled MRI without or 
with dCNN reconstruction across all evaluated 
undersampling rates (R=2–15) is shown in the 
appendix (pp 26).

Automated segmentation of tumour burden in the 
EORTC-26101 test set yielded a median contrast-
enhancing tumour volume of 5·74 cm³ (95% CI 
5·14 to 6·51) and a median non-enhancing tumour or 
oedema volume of 44·60 cm³ (42·30 to 46·54) when 
derived from original MRI sequences with R=0. When 
using the corresponding undersampled dCNN 
reconstructed MRI for assessing the tumour burden in 
the EORTC-26101 test set, the contrast-enhancing tumour 
volume showed a median difference (compared with R0) 
ranging from –0·15 cm³ to 0·01 cm³ (corresponding to a 
median underestimation or overestimation of –2·66% to 
0·21%) across the evaluated undersampling rates of R=2–
15 (figure 2; appendix p 17). Similarly, for the non-
enhancing tumour or oedema volumes the median 
difference (compared with R0) ranged from –0·79 cm³ to 
–0·01 cm³ (corresponding to a median underestimation 
of –1·77% to –0·01%) across the evaluated undersampling 
rates of R=2–15 (figure 2; appendix p 17). The 
corresponding Bland-Altman plots are in the appendix 
(pp 27–28). The median DICE coefficients (for spatial 
agreement between tumour volumes derived from 
original MRI vs undersampled dCNN-reconstructed MRI) 
ranged from 0·85 to 0·97 for contrast-enhancing tumour 
and from 0·91 to 0·98 for non-enhancing tumour or 
oedema (appendix p 29). Spatial agreement for both 
contrast-enhancing tumour and non-enhancing tumour 
or oedema volumes was higher for larger tumour volumes 
across all undersampling rates (p<0·0001 each; appendix 
pp 30–31). Details on false positives and false negatives 
regarding the detection of contrast-enhancing tumour 
and non-enhancing tumour or oedema volumes from 
undersampled dCNN reconstructed MRI is shown in the 
appendix (p 21).

Equivalence in contrast-enhancing tumour volume 
measurements derived from undersampled dCNN-
reconstructed MRI compared with original MRI within 
the EORTC-26101 test set was established for 
undersampling rates of R=2–10 (p≤0·036), but not for 
R=15 (p>0·99; appendix p 17). For non-enhancing 
tumour or oedema volume, equivalence of measure-
ments derived from undersampled dCNN-reconstructed 
MRI compared with original MRI was established for all 
evaluated undersampling rates of R=2–15 (p≤0·023; 
appendix p 17). Consequently, R=10, which was the 
highest undersampling rate whereby equivalence for 
both contrast-enhancing tumour and non-enhancing 
tumour or oedema volumes was established, was chosen 
as the value with the best trade-off for further downstream 

Figure 2: Absolute difference in tumour volumes derived from undersampled dCNN-reconstructed MRI 
sequences across different acceleration rates (R value) compared with those derived from the original MRI 
sequences
dCNN=deep convolutional neural network. p values were derived from a Wilcoxon signed-rank test for equivalence 
using a two one-sided tests (known as TOST) procedure. The dashed horizontal line corresponds to a zero 
difference in tumour volumes. For each boxplot, the upper and lower bounds of the boxes show IQR and the 
horizontal central line shows the median. The sides of boxplots are indented to indicate the 95% CI of the median. 
Whiskers represent 1·5 times the IQR. Dots are outliers. 

2 4 6 8 10 15

–5·0

–2·5

0

2·5

5·0

Di
ffe

re
nc

e 
in

 tu
m

ou
r v

ol
um

es
 co

m
pa

re
d 

w
ith

 R
0 

(c
m

³)

R value
2 4 6 8 10 15

–15

–7·5 –20

–10

–5

0

10

5

15

R value

p<0·0001

p<0·0001

p<0·0001 p<0·0001

p<0·0001

p<0·0001

p<0·0001

p=0·023

p<0·0001
p<0·0001

p=0·0036

p>0·99 

Contrast-enhancing tumour volume Non-enhancing tumour or oedema volume

Figure 3: Kaplan–Meier estimates for time to progression in the EORTC-26101 test set when performing 
automated volumetric tumour response assessment on undersampled dCNN-reconstructed MRI sequences 
(with 10-times acceleration; R=10) versus original MRI sequences (R=0)
dCNN=deep convolutional neural network. EORTC=European Organisation for Research and Treatment of Cancer. 

Original MRI sequences (R=0)
dCNN-reconstructed MRI 
sequences (R=10)

Number at risk
(number censored)

Original MRI sequences (R=0)

dCNN-reconstructed MRI 
sequences (R=10)

0 3 6 9 12 15 18

393
(0)
393
(0)

202
(62)
201
(64)

82
(102)

77
(107)

27
(122)

21
(127)

14
(123)

12
(128)

7
(126)

6
(131)

1
(129)

0
(134)

Time since baseline MRI (months)

0

25

50

75

100

Ti
m

e t
o 

pr
og

re
ss

io
n 

(%
) |||||||||||||| | |||||||||||||||||||| | | |||||||| || | ||||||| | | || | | | ||||||| |

| || | | |

|||||||||||||| | |||||||||||||||||||| | | |||||||| || | ||||||| | | || | | | ||||||| |
| || | | |

p=0·80



Articles

406 www.thelancet.com/oncology   Vol 25   March 2024

analysis. Specifically, the 10-times undersampled dCNN-
reconstructed MRI yielded excellent agreement with 
original MRI when assessing volumes of contrast-
enhancing tumour (median DICE for spatial agreement 
of 0·89 [95% CI 0·88 to 0·89]; median volume difference 
of 0·01 cm³ [95% CI 0·00 to 0·03] equalling 0·21%; 
p=0·0036 for equivalence) and non-enhancing tumour 
or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; 
median volume difference of –0·79 cm³ [95% CI 
–0·87 to –0·72] equalling –1·77%; p=0·023 for 
equivalence; figure 2; appendix p 17). When assessing 
contrast-enhancing tumour volumes on 10-times 
undersampled dCNN-reconstructed MRI, the rate of 
false negatives was 18 (0·91%) of 1974 (with a median 
volume on original MRI of 0·110 cm³ [range 0·003 to 
0·331]) and the rate of false positives was 26 (1·32%) of 
1974 (with a median volume on 10-times undersampled 
dCNN-reconstructed MRI of 0·068 cm³ [range 
0·005 to 2·344]). The rate of false negatives and false 
positives when assessing non-enhancing tumour or 
oedema volumes on 10-times undersampled dCNN-
reconstructed MRI was both 0 (0%) of 1974 (appendix p 21).

Volumetric tumour response assessment in a subset of 
the EORTC-26101 test set with available baseline and 
subsequent follow-up MRI (393 [74%] of 528 patients, 
with a median follow-up time of 8·9 months 
[IQR 6·1 to 12·7]) showed a median time to progression 
of 4·27 months (95% CI 4·14 to 4·57) when derived from 
original MRI and 4·27 months (4·14 to 4·57) when 
derived from 10-times undersampled dCNN-recon-
structed MRI (log-rank p=0·80; figure 3; table). 
Specifically, with R=10 the agreement in the time to 

progression (considering both time to event and 
censoring status) was found in 374 of 393 patients 
(95·2% [95% CI 92·6 to 96·9] with a Cohen´s kappa 
coefficient of 0·89 [95% CI 0·85 to 0·94] indicating 
almost perfect agreement;23 table). For patients with 
disagreement (19 [4·8%] of 393 patients), tumour 
progression was detected at a later timepoint with 
10-times undersampled dCNN-reconstructed MRI than 
with the original MRI in four (1%) of 393 patients 
(median difference in the time to progression of 
2·35 months [95% CI 1·35 to 4·37]) and at an earlier 
timepoint in nine (2·3%) of 393 patients (median 
difference in the time to progression of –4·57 months 
[95% CI –2·76 to –5·56]). Additionally, tumour pro-
gression not evident on original MRI was found in one 
(0·3%) of 393 patients with 10-times undersampled 
dCNN-reconstructed MRI. Furthermore, tumour pro-
gression evident on original MRI was not found in five 
(1·3%) of 393 patients with 10-times undersampled 
dCNN-reconstructed MRI. Results for the remaining 
undersampling rates are in the table and the 
appendix (p 32).

The whole fastMRI brain cohort test dataset 
(558 patients with 558 examinations; figure 1) was used 
without any exclusion criteria to validate how well the 
developed dCNN generalises (without retraining) to the 
prospectively available k-space data from the fastMRI 
brain cohort. This cohort included a variety of patients, 
with the most prevalent category on MRI being normal 
for age (ie, no pathology) in 253 (45%) of 558 patients, 
followed by presence of non-specific white matter lesions 
in 69 (12%), and mass lesions in 34 (6%; appendix p 22; 

R=2 R=4 R=6 R=8 R=10 R=15

Case-level agreement

Agreement, n 381 377 374 375 374 364

% (95% CI) 97·0% (94·7–98·2) 96·9% (94·7–98·2) 95·2% (92·6–96·9) 95·4% (92·9–97·1) 95·2% (92·6–96·9) 92·6% (89·6–94·8)

Kappa (95% CI) 0·93 (0·89–0·97) 0·93 (0·89–0·97) 0·89 (0·85–0·94) 0·90 (0·85–0·94) 0·89 (0·85–0·94) 0·84 (0·78–0·90)

Disagreement, n (%) 2 (3·1%) 12 (3·1%) 19 (4·8%) 18 (4·6%) 19 (4·8%) 29 (7·5%) 

No progression with dCNN-reconstituted MRI, but 
with original MRI

3 (0·8%) 3 (0·8%) 5 (1·3%) 2 (0·5%) 5 (1·3%) 5 (1·3%)

Progression with dCNN-reconstituted MRI, but not 
with original MRI

0 0 2 (0·5%) 1 (0·3%) 1 (0·3%) 3 (0·8%)

Later progression with dCNN-reconstituted MRI 
compared with original MRI

6 (1·5%) 3 (0·8%) 7 (1·8%) 7 (1·8%) 4 (1·0%) 6 (1·5%)

Earlier progression with dCNN-reconstituted MRI 
compared with original MRI

3 (0·8%) 6 (1·5%) 5 (1·3%) 8 (2·0%) 9 (2·3%) 15 (3·8%)

Cohort-level agreement 

TTP from original MRI (R=0), median (95% CI) 4·27 (4·14–4·57) 4·27 (4·14–4·57) 4·27 (4·14–4·57) 4·27 (4·14–4·57) 4·27 (4·14–4·57) 4·27 (4·14–4·57)

TTP from dCNN-reconstituted MRI, median (95% CI) 4·31 (4·14–5·52) 4·27 (4·14–4·57) 4·31 (4·14–5·52) 4·27 (4·14–4·80) 4·27 (4·14–4·57) 4·21 (4·14–4·50)

Log-rank, p value 0·84 0·96 0·84 0·92 0·80 0·80
 
Agreement for the time to progression (considering both time to progression and censoring status) is shown on an individual case basis (case-level agreement) and for the overall cohort (cohort-level 
agreement) using Kaplan–Meier estimates and log-rank testing (between time to progression curves obtained from undersampled dCNN-reconstructed MRI vs original MRI). dCNN=deep convolutional neural 
network. EORTC=European Organisation for Research and Treatment of Cancer.  

Table: Agreement in time to progression within the EORTC-26101 cohort (N=393) when obtained from undersampled dCNN-reconstructed MRI across different acceleration rates 
(R value) compared with that obtained from original MRI (R=0)
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MRI characteristics are shown in the appendix [pp 11–12]). 
The demographic details of the fastMRI brain cohort test 
dataset are not publically available. To objectively 
compare the image quality between the EORTC-26101 
and fastMRI brain cohort for single-coil acquisition, the 
SSIM was used as a target metric to shown generalisability 
of the dCNN. Specifically, the SSIM was significantly 
higher in the fastMRI brain cohort with single-coil 
acquisition (p<0·0001 each) than in the EORTC-26101 
single-coil acquisition test set, although effect sizes were 
small (ranging from 0·08 [95% CI 0·07 to 0·09] to 0·17 
[0·16 to 0·19]) across different undersampling rates 
(figure 4; appendix p 19). Moreover, within the fastMRI 
brain cohort, the generalisability of the developed dCNN 
to a multi-coil acquisition scenario was assessed. For this 
purpose, comparison of the quality from dCNN 
reconstructed MRI stemming from single-coil versus 
multi-coil k-space data showed significant improvements 
in the SSIM across different undersampling rates, when 
using multi-coil acquisition (p<0·0001 each; figure 4; 
appendix p 19). The largest effect size, 0·87 (95% CI 
0·87 to 0·87), was observed at the lowest undersampling 
rate (R=2), and the smallest effect size, 0·25 (0·18 to 0·33), 
was noted at the highest undersampling rate (R=15). 
Results for each undersampling rate (and for additional 
metrics including PSNR, HFEN, and RMSE) comparing 
single-coil versus multi-coil k-space data in the fastMRI 
brain cohort are in the appendix (pp 18, 33). The SSIM 
results from the leaderboard of the 2020 fastMRI 
challenge10 were used as a reference or benchmark to 
compare the quality of multi-coil reconstruction using 
dCNN (appendix p 20). Even though the developed dCNN 
was not trained on the multi-coil fastMRI dataset, the 
performance was on par with the top-performing 
algorithms of the FastMRI challenge and thereby support 
its generalisability to settings with prospectively available 
k-space data (appendix pp 7, 20). An illustrative case from 
the fastMRI cohort depicting the real, imaginary, and 
magnitude of the complex original MRI as well as the 
undersampled MRI without and with dCNN 
reconstruction across all evaluated undersampling rates 
(R=2–15) is in the appendix (pp 34–37). 

Discussion
By incorporating MRI data from three phase 2 or 3 
clinical trials in neuro-oncology alongside retrospective 
institutional data, with more than 2000 patients with 
glioblastoma from over 200 unique institutions overall, 
for training and independent testing of the dCNN, we 
show excellent test-time performance both in image 
quality metrics and accuracy of derived imaging 
biomarkers for the assessment of oncological treatment 
response when derived from 10-times undersampled 
dCNN-reconstructed MRI, when compared with original 
MRI. Moreover, we show the generalisability and 
robustness of the developed dCNN on the public fastMRI 
dataset, with 558 patients from five institutions, covering 

a broad disease spectrum on neuroimaging, achieving 
excellent performance in terms of image quality on 
prospectively available k-space data. From a practical 
perspective, the 10-times undersampling would translate 
into an acceleration in MRI scan time by a factor of 10 
when using single-coil acquisition and a factor of 3·3 to 
5·0 when using multi-coil (parallel) acquisition. These 
advances might not only contribute to increasing patient 
throughput and, consequently, accessibility to MRI, but 
also benefit diagnostic accuracy by reducing the 
probability of patient motion artifacts—a well known 
problem in MRI—through shorter acquisition times.

Our results exemplify that dCNN-based reconstruction 
techniques can enable us to push the limits of 
reconstruction performance and acceleration of MRI.24,25 
Conceptually, these dCNN-based approaches can be 
roughly divided into two categories: purely data-driven 
and model-driven. Purely data-driven approaches use 
standard neural network architectures as a so-called 
black box to learn the mapping between the input (ie, the 
acquired undersampled k-space data) and the desired 
output (ie, the reconstructed MRI sequence), thereby 
heavily relying on a huge amount of data to train the 
black box without use of any previous knowledge.25 In 
contrast, the model-driven dCNN approaches, which 
were also adopted in our study, explicitly include the 
physical relationship between the input (ie, the acquired 
undersampled k-space data) and the desired output (ie, 
the reconstructed MRI sequences) thereby providing two 
major advantages over data-driven approaches: (1) they 
are less prone to introduction of false or unexplainable 

Figure 4: Structural similarity index measure of dCNN-reconstructed MRI 
across different acceleration rates (R value) compared with original MRI in 
the EORTC-26101 (single-coil acquisition) and fastMRI brain (separately for 
single-coil and multi-coil acquisition) test datasets.
dCNN=deep convolutional neural network. EORTC=European Organisation for 
Research and Treatment of Cancer. For each boxplot, the upper and lower 
bounds of the boxes show the IQR of datapoints, with the horizontal central line 
showing the median. The sides of blocks are indented to indicate the 95% CI of 
the median. Whiskers represent 1·5 times the IQR. Dots are outliers.
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structures on images, known as hallucinations, when 
reconstructing MRI images from k-space data due to 
explicit constraint between the reconstructed image and 
the observed data even at test time, and (2) the inclusion 
of this physical constraint reduces the number of training 
parameter required for reconstruction which also 
reduces the number of training samples required for 
training.24,26 Major MRI scanner manufacturers have 
developed their own deep learning-based MRI 
acceleration algorithms,27,28 but they differ from the 
architecture discussed here. These manufacturer-specific 
algorithms mainly involve image denoising or super-
resolution networks, or both, reducing scan time by 
capturing only low frequency data followed by denoising, 
which leads to a low resolution scan followed by image 
super resolution. Additionally, vendor-neutral post-
processing algorithms for image super-resolution also 
follow this principle,29 but they operate on the final 
output rather than raw data. These super-resolution 
based methods require more training data to learn 
accurate reconstruction, and might be prone to generate 
results that are unrealistic because there is no explicit 
constraint on fidelity between super-resolved image and 
the acquired data.30 Unlike these approaches, the 
architecture in our study does exploit the low-dimensional 
manifold of MRI images, potentially allowing more 
accurate and realistic reconstructions and enabling 
higher acceleration rates. An in-depth discussion of 
different MRI reconstruction algorithms and comparison 
with our dCNN is in the appendix (p 8).

Our study has some limitations. First, we acknowledge 
the retrospective nature of our study, which necessitated 
conducting our experiments on simulated, retrospectively 
generated k-space data, except for the multi-coil fastMRI 
dataset. Specifically, the k-space data, which holds the 
MRI raw data before reconstruction into visually 
perceivable images (ie, the MRI sequences), is not 
routinely stored and therefore per se not available from 
retrospective data. However, by applying a fast Fourier 
transform algorithm, MRI can still be retrospectively 
converted to the k-space data. Although this approach 
allowed us to leverage available large-scale datasets for 
developing MRI reconstruction techniques, it came with 
some limitations. The MRI data in the present study were 
derived from more than 200 unique institutions and MRI 
hardware and acquisition parameters might be different 
between institutions. Specifically, some of the MRI data 
might have been acquired using multi-coil (parallel) 
imaging, whereby several receiver coils are used to 
capture the MRI signal, which means that each of the 
receiver coils only needs to partially sample the k-space. 
However, the retrospective experiment could only 
accurately imitate single-coil image acquisition because 
all the scan’s parameters (specifically coil sensitivity 
maps, which encompass each coil’s unique contribution 
to specific parts of the image to create the final image) 
were not readily available. This unavailability affects the 

effective acceleration rate, because the multi-coil (parallel) 
image acquisition would already have an acceleration 
factor typically in the range of approximately 2–3.6–8 
Consequently, the net acceleration of the developed 
dCNN with 10-times undersampling would be in the 
range of 3·3 to 5 for multi-coil (parallel) image acquisition. 
Moreover, modern MRI machines use denoising 
algorithms to improve the quality of final output MRI 
sequence, hence the k-space retrospectively estimated 
from final MRI sequences will also be affected with this 
operation. Despite these theoretical limitations when 
using retrospectively generated k-space data for 
experiments, we show that the dCNN shows excellent 
generalisability when applied (without retraining) to 
prospectively available raw k-space data from the fastMRI 
brain cohort. Specifically, the dCNN had excellent 
performance when reconstructing MRI both for single-
coil and multi-coil MRI acquisition, also in comparison 
with the best performing models of the fastMRI 
challenge.10 The generalisability is facilitated by the design 
of the dCNN model, specifically the data consistency 
block (conjugate gradient block), which explicitly enforces 
the constraint that the k-space of a reconstructed image 
should match the undersampled k-space data at sampling 
locations. Second, we acknowledge that future studies 
should focus not only on quantitative metrics, but also on 
the assessment of qualitative measurements as perceived 
by human readers (radiologists), which might be 
important to provide a more comprehensive evaluation. 
Third, we acknowledge that for prospective clinical 
adoption the dCNN model would need to be embedded 
into the software platform used for operating the MRI 
scanner to allow seamless reconstruction of MRI from 
the acquired undersampled k-space data. To facilitate this 
process, we have made our trained dCNN model available 
as open source, thereby encouraging other researchers 
and developers to build on our work and accelerate the 
translation from research into clinical application.

In conclusion, deep-learning-based reconstruction of 
undersampled MRI allows a substantial reduction of 
scan times surpassing the capabilities of conventional 
MRI acceleration methods. With acceleration by a factor 
of 10, this method demonstrates excellent image quality 
while preserving the accuracy of derived imaging 
biomarkers for the assessment of oncological treatment 
response. Our model is available online and holds 
considerable promise for accelerating MRI, which will be 
particularly advantageous in resource-constrained 
settings, and ultimately might increase accessibility 
to MRI.
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