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A B S T R A C T   

Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and 
potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown 
health benefits in adults, their effects on children are less well studied. This study aims to explore the association 
between children’s adherence to the most common PVG dietary patterns and their exposure to metals, assessed 
through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the 
INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely 
general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a 
validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, 
Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, 
including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic 
arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated 
primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary 
patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile 
g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed 
a 22.7% lower urinary Co (95% confidence interval (CI): − 38.7; − 1.98) and a 12.6% lower Se (95%CI: − 22.9; 
− 1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs +
MMA concentrations (95%CI: − 74.3; − 8.61). Second quintile of adherence to an uPVG was associated with a 
13.6% lower Se levels (95%CI: − 22.9; − 2.95) while the third quintile to this pattern was associated with 17.5% 
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lower Mo concentrations (95%CI: − 29.5; − 2.95). The fourth quintile of adherence to gPVG was associated with a 
68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in 
childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are 
warranted to explore any potential health implications.   

1. Introduction 

Essential trace elements play a crucial role in our bodies as they are 
necessary for vital functions. However, it is important to bear in mind 
that humans cannot synthesize them, and imbalances, whether through 
deficiency or excess, may lead to severe health consequences (Bhatta-
charya et al., 2016). Food is not only one of the major sources of 
exposure to these elements, but it is also a complex matrix that includes 
a mix of vitamins, biocompounds, and even non-essential heavy metals 
such as arsenic, lead (Pb) and cadmium (Cd) (Miller et al., 2023). Here, 
both essential and non-essential elements are referred to as essential and 
heavy metals thereafter. 

Essential and heavy metals can interact with each other through 
agonistic and antagonistic effects (Aguilera, 2019). For instance, fish is 
recognized as a major source of mercury (Hg), an important toxic 
element (Rice et al., 2014), but also contains beneficial selenium (Se). 
Studies have shown that these two elements can interact to form Se–Hg 
complexes, facilitating Hg detoxification by promoting its excretion 
(Raymond and Ralston, 2020). Therefore, we encounter a dual scenario: 
while adequate levels of essential metals are crucial for development 
and disease prevention (Jomova et al., 2022), chronic exposure to toxic 
metals such as arsenic, especially inorganic arsenic (iAs), even at mod-
erate/low levels, may raise health concerns, particularly during 
vulnerable growth and development stages, such as childhood (Sign-
es-Pastor et al., 2019; Tchounwou et al., 2019; Buekers et al., 2023; 
Vahter, 2008; Parvez et al., 2019; Martinez and Lam, 2021). Certain 
emerging dietary recommendations have been criticized for not 
acknowledging this dual role that the diet plays (Ventre et al., 2022). 

Although studies exist on metal exposure through the consumption 
of certain specific foods (Hassan et al., 2017; Signes-Pastor et al., 2020; 
Taylor et al., 2016), limited knowledge exists regarding the role of the 
overall diet (Kordas et al., 2016; Burganowski et al., 2019; Li et al., 
2019; Notario-Barandiaran et al., 2023a; 2023b). Thus, there is a 
growing interest in dietary patterns as a comprehensive and more 
realistic approach to assessing the combined health effects of food 
consumption (Cespedes and Hu, 2015). In the past decade, plant-based 
dietary patterns have gained popularity, driven by ethical and envi-
ronmental considerations (Gibbs and Cappuccio, 2022). In the United 
States of America (US), the number of people following a vegan diet has 
increased by 6-fold from 2014 to 2018 (Clem and Barthel, 2021). In 
Spain, despite limited and low-quality data availability (AECOSAN, 
2011), there has been a considerable increase in interest in this type of 
dietary patterns (Acevedo Cantero et al., 2023). This could lead to an 
increasing exposure of children to plant-based dietary patterns. 

Pro-vegetarian (PVG) dietary patterns offer a novel approach to 
evaluating health effects by prioritizing plant-based options while still 
including animal-based foods (Martínez-González et al., 2014; Satija 
et al., 2016). Studies conducted in adults have shown benefits for car-
diometabolic markers and reduced risk of cancer (Gómez-Donoso et al., 
2019; Oncina-Cánovas et al., 2022a; Oncina-Cánovas et al., 2022b; 
Romanos-Nanclares et al., 2020). Greater adherence to PVG patterns is 
associated with lower mortality risk and improved intake of essential 
metals and vitamins (Asfura-Carrasco et al., 2022; Martínez-González 
et al., 2014). Previous studies examining vegetarian diet patterns have 
investigated their association with isolated metals, including Pb (Taylor 
et al., 2019) and Cd (Taylor et al., 2020). However, the influence of PVG 
patterns in children remains uncertain due to scarce research in this 
vulnerable age group. 

In this study, we hypothesize that higher adherence to general 

(gPVG) and healthful (hPVG) patterns is associated with lower toxic 
metal exposure, higher essential metal levels, and a better iAs methyl-
ation capacity. Conversely, greater adherence to the unhealthful PVG 
pattern (uPVG) is expected to be associated with higher toxic metal 
exposure, lower essential element concentrations, and lower iAs 
methylation capacity, indicative of reduced detoxification capability. 
We explore the association between childhood level of adherence to the 
most common PVG diets and exposure to heavy (iAs, Pb, and Cd) and 
essential (cobalt (Co), copper (Cu), zinc (Zn), Se, molybdenum (Mo)) 
metals using urine metal concentrations. 

2. Material and methods 

2.1. Study population, INMA study 

Our study focuses on 4-5-year-old children from the INfancia y Medio 
Ambiente cohort study (INMA project), where their diet is regarded as 
the primary source of metal exposure (Lozano et al., 2022). This is a 
multicenter prospective birth cohort study that aims to evaluate the 
effect of different exposures, including diet, on pregnant women and 
their children (Guxens et al., 2011). For our purposes, we included the 
available data from four sub-cohorts: Asturias, Gipuzkoa, Sabadell, and 
Valencia. Of these, we have information for 2,041 participants in the 4–5 
years visit. Of these, 819 had information for total urine essential and 
heavy metals concentrations and 1,191 had information for arsenic 
speciation (arsenobetaine (AsB), dimethylarsinic acid (DMA), mono-
methylarsonic acid (MMA) and iAs). Within this subgroup, 765 partic-
ipants had data available for both variables. Among these, 42 lacked 
dietary information for the 17 required food groups (12 for the gPVG + 5 
in the hPVG and uPVG versions) essential to create the PVG dietary 
patterns of interest. Therefore, the final sample size for this study 
comprised 723 participants with complete data for urine essential and 
heavy metals concentrations, as well as dietary intake (Fig. S1). Before 
inclusion, all parents provided informed consent, and the protocol 
received approval from the ethical committees of each participating 
center (Hospital Universitario Central de Asturias, Asturias; Hospital de 
Zumarraga, Gipuzkoa; Hospital Parc Taulí, Sabadell; and Hospital la Fe, 
Valencia). 

2.2. Pro-vegetarian dietary patterns 

We selected three common PVG dietary patterns to comprehensively 
examine metal exposure in plant-based foods, distinguishing between 
healthier and less healthy choices. To create these distinct PVG dietary 
patterns, we used food intake information derived from a previously 
validated Food Frequency Questionnaire (FFQ) (Vioque et al., 2016). 
This FFQ was adapted from a validated questionnaire designed for 
pregnant women (Vioque et al., 2013) and adjusted to include food 
items and portion sizes suitable for 4-5-years-old children. During the 
4-5-years interview, trained personnel asked to the parents about the 
child’s usual dietary intake in the last year. Responses were recorded on 
a scale with nine possible frequencies ranging from “never or less than 1 
time per month” to “6 or more times per day”. The 17 food groups 
included in the three PVG dietary patterns, along with the scoring 
criteria for each, are detailed in Table S1. 

To create the PVG dietary patterns, we followed established pro-
cedures, ensuring consistency with prior methodologies. For the gPVG 
pattern, we adopted the method outlined by Martínez-González (Mar-
tínez-González et al., 2014). For the hPVG and uPVG derivations, we 
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referred to Satija’s method (Satija et al., 2016). First, we adjusted the 
consumption of each food group in grams for energy intake, using the 
residual method (Willett et al., 1997). Then, the energy-adjusted con-
sumption was categorized into quintiles, assigning values from 1 to 5 
based on the consumption quintile (Gómez-Donoso et al., 2019; Kim 
et al., 2019, 2020, 2021; Chen et al., 2022; Shan et al., 2023). Within the 
gPVG, seven plant-based food groups received positive scores: vegeta-
bles, fruits, legumes, grains (both whole and refined), potatoes (both 
boiled and fried), nuts, and olive oil. Conversely, five animal-based food 
groups were scored in reverse, with 5 indicating lower consumption: 
meat and meat products, animal fats, eggs, fish and other seafood, and 
dairy products. For the hPVG and uPVG patterns, the grains group was 
further divided into whole grains and refined grains, and the potatoes 
group into boiled and fried. Additionally, three food groups (fruit juices, 
sugar-sweetened beverages, and sweets and desserts) were added. These 
derivations were constructed using the information available in the 
scientific literature on the different plant food groups (Malik et al., 2010; 
Muraki et al., 2015; Ren et al., 2021). If these were associated with 
positive outcomes (in diabetes and cardiovascular disease), they were 
considered as healthful (and therefore scored positive on the hPVG and 
reverse on the uPVG), while if they were associated with negative out-
comes, they were considered unhealthful (scoring positive on the uPVG 
and reverse on the hPVG). The total score for each participant was 
computed by summing the points across the 12 food groups for the gPVG 
pattern, and 17 food groups for the hPVG and uPVG versions. In this 
way, the total scores could remain between 12 points (minimum 
adherence) to 60 points (maximum adherence) in the case of the gPVG 
pattern, and between 17 points (minimum adherence) to 85 points 
(maximum adherence) in the case of hPVG and uPVG patterns. Origi-
nally, the hPVG and uPVG patterns included tea and coffee consump-
tion, but we excluded them as relevant food groups in our 4-5-year-old 
population. 

2.3. Laboratory analysis and arsenic methylation indices 

In the present study, urinary concentrations of essential and heavy 
metals serve as biomarkers of metals exposure. These biomarkers are 
commonly used to assess simultaneous exposures in the scientific liter-
ature (Hahn et al., 2021; Pollock et al., 2021; Sanders et al., 2019; Vogel 
et al., 2021). One advantage of urine essential and heavy metals is its 
non-invasive nature, facilitating data collection and enabling identifi-
cation of multiple metabolites (Barbosa et al., 2005; Reid et al., 2020). 
However, they also have limitations, particularly in relation to nutri-
tional status (Combs, 2015; Cockell, 2015). The determination of uri-
nary metal concentrations was carried out as follows. During the 
4-5-year follow-up visit, spot urine samples were obtained and stored 
at − 20 ◦C in 100 ml polyethylene containers. A single aliquot of urine 
was taken from each child who participated. The measurement of Co, 
Cu, Zn, Se, Mo, Pb and Cd in urinary samples was carried out using a 
Thermo ICAP Q inductively coupled plasma mass spectrometry 
(ICP-MS) in direct solution acquisition mode using a Cetac ASX-520 
Auto Sampler. The limit of detection (LOD) was determined by taking 
the average of the blank concentrations and adding three times the 
standard deviation of the blank concentrations, which was then multi-
plied by the dilution factor. LOD values for each element was 0.10 μg/L 
for Co, 1.46 μg/L for Cu, 4.71 μg/L for Zn, 1.24 μg/L for Se, 14.36 μg/L 
for Mo, 0.19 μg/L for Pb and 0.12 μg/L for Cd. We used the LOD̅̅

2
√ value 

when concentrations were below the LOD. The essential and heavy 
metals analyzed and the % imputation of the LOD for each one can be 
found in Table S2. To ensure quality control, blank and replicate samples 
of freeze-dried Clinchek urine samples were included in each analytical 
batch. The mean concentration (range) of the reference values in the 
freeze-dried Clinchek urine samples in μg/L are as follows: Co 2.05 
(1.64–2.46), Cu 58.2 (46.6–69.9), Zn 195 (156–234), Se 29.0 
(21.8–36.3), Mo 20.2 (16.2–24.3), Pb 26.4 (21.1–31.6), and Cd 2.56 

(2.05–3.06). The mean recovery based on 18 Clinchek urine samples 
was 88.9% (Co), 84.2% (Cu), 84.2% (Zn), 75.0% (Se), 114.0% (Mo), 
78.5% (Pb), and 88.2% (Cd). 

For urinary arsenic speciation analysis, we used the Thermo Scien-
tific IC5000 ion chromatography system, coupled with a Thermo AS7, 2 
× 250 mm column, a Thermo AG7, 2 × 50 mm guard column, and 
interfaced with a Thermo ICAP Q ICP-MS utilizing Helium gas in colli-
sion cell mode. This system was employed to determine the following 
chemical forms: AsB, DMA, MMA, and iAs (arsenite + arsenate). To 
ensure quality control, we included blank and replicate samples of the 
National Institute of Standards and Technology (NIST) human urine 
standard reference material 2669 – level I or ClinChek® Control level I 
in each analytical batch. The average recovery, based on 28 SRM 2669 
and 33 ClinChek® Control level I samples, was 96.8% including AsB, 
DMA, MMA, and iAs. The LOD was determined using DMA and the mean 
value across batches was 0.008 μg/L. 

We calculated the iAs methylation indices, which serve as a proxy for 
assessing iAs detoxification capacity, using a previously described 
methodology (Signes-Pastor et al., 2021; Wei et al., 2017). The Primary 
Methylation Index (PMI) was obtained by dividing the urinary MMA 
concentrations by the iAs concentrations (MMA

iAs ). The Secondary 
Methylation Index (SMI) was obtained by dividing the urinary DMA 
concentrations by the MMA concentrations (DMA

MMA). A higher PMI and a 
lower SMI were interpreted as a reduced iAs metabolism capacity. 

2.4. Covariates 

Other information about sociodemographic characteristics and life-
styles was also collected in the 4–5-year interviews using questionnaires. 
To identify other variables of interest for include in the multivariable 
models, we did a Directed Acyclic Graph (DAG) based in our prior 
knowledge in the scientific literature (Fig. S2) (Textor et al., 2016). 
Finally, we included the following variables as the minimum sufficient 
set to establish associations between our PVG dietary patterns and the 
metal exposures: child’s sex (male or female), child’s Body Mass Index 
(BMI) (kg/m2), child’s television hours (hours/day) (Boynton-Jarrett 
et al., 2003; Ghobadi et al., 2018; Lutz et al., 2023), sub-cohort (Astu-
rias, Gipuzkoa, Sabadell or Valencia) and child’s energy intake 
(kcals/day). In the case of BMI, was obtained using the weight (kg) and 
the heigh (m) that were measured by trained personal using standard 
protocols (Viet and Verschuren, 2008). Energy intake was estimated 
using the information from the FFQ. 

2.5. Statistical analysis 

We described our population characteristics using median and lower- 
higher quartiles (Q1 - Q3) when the variable was continuous and n 
(percentage) when was categorical. The urine metal concentrations 
were standardized using urine specific gravity (SG) for the descriptive 
analyses. To do so, we multiplied each metal, including arsenic species 
concentration (E0), by E0x SGmedian − 1

SG0 − 1 (Kuiper et al., 2022). Prior to the 
main statistical analysis, we logarithmically transformed urine metal 
concentrations to address right skewness and then computed Pearson’s 
correlation between essential and heavy metal pairs. 

First, we explored the association between the PVG dietary patterns 
and metal exposure using multiple linear regression models, with the 
PVG dietary patterns as independent variables represented by quintile 
scores as described previously (Martínez-González et al., 2014; Onci-
na-Cánovas et al., 2022a; Oncina-Cánovas et al., 2022b). The adherence 
categories were defined using quintiles numbers (Q1 to Q5). Quintiles 
indicate increasing levels of adherence, ranging from the lowest in Q1 to 
the highest in Q5. This order allows us to assess exposure to essential and 
heavy metals on a gradient. Although there are no established cut-off 
points for these patterns, in order to interpret our findings in the 
context of our population, we specifically categorized each level (each 
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quintile) of adherence as very low, low, moderate, high, and very high, 
respectively. Urine metal concentrations were the dependent variable in 
the statistical models, adjusted for child sex (male or female), sub-cohort 
(Asturias, Gipuzkoa, Sabadell, or Valencia), child BMI (kg/m2), child 
television hours (hours/day), energy intake (kcals/day), and SG. The 
percentage change (PC) from the results of the linear regression analysis 
was determined by employing the following formula: 100× [exp(β) − 1]
(Notario-Barandiaran et al., 2023b). The sum of urinary iAs and MMA 
concentrations, excluding AsB and DMA, was used as a proxy for iAs 
exposure in the main analysis. To ensure precise risk assessment, we 
adopt this approach, as urinary DMA levels, particularly in fish con-
sumers, may be influenced by exposure to less toxic arsenic forms like 
specific arsenolipids or arsenosugars (Aylward et al., 2014). However, 
sensitivity analysis was also conducted, including the sum of urinary iAs 
+ MMA + DMA concentrations. The iAs methylation indices, especially 
the SMI (DMA and MMA ratio), may also be affected by urinary DMA 
from sources other than iAs metabolism, which needs to be considered in 
the interpretation of the results. Statistical analyses were sex-stratified 
to investigate sex differences in food consumption patterns (Arganini 
et al., 2012; Enalia, 2016; Keller et al., 2019) and iAs methylation ca-
pacity (Lindberg et al., 2007; Llop et al., 2013; Signes-Pastor et al., 
2019). We also calculated trend tests using models that included the 
categorical variable (the PVG patterns in quintiles) as a continuous 
variable adjusting for all possible confounders described above. 

Furthermore, we identified key essential and heavy metals in the 
mixture according to the level of adherence to the PVG dietary patterns 
evaluated using the quantile g-computation approach using the R 
package “qgcomp.” The quantile g-computation method estimates the 
joint effect of the metal mixture on the PVG dietary patterns when 
increasing all metals by a single quantile, allowing for the individual 
contributions of each component to the overall estimate, regardless of 
their effect direction (Keil et al., 2020). We used the “qgcomp.noboot” 
function for exposure weight effects estimation. Similar to linear re-
gressions, gcomp weights were expressed as percentages. 

All statistical analyses and graphics were performed using R version 
4.1.2 (R Core Team, 2020). A significance threshold of α = 0.05 was 
applied. 

3. Results 

Sociodemographic characteristics and lifestyles among mothers and 
their children in our population are describe in Table 1. In the case of the 
mothers, 40.7% had university studies and most of them (43.8%) 
belonged to the lowest category of social class (IV–V). On the other side, 
51.9% of the children were males and 48.1% females, with a median (Q1 
- Q3) age of 4.4 (4.4–4.5) years. The children also had a median (Q1 - 
Q3) BMI of 15.9 (15.2–16.9) kg/m2, with a total energy intake of 1,551 
(1,336–1,779) kcal/day and 1.3 (0.8–1.7) television hours/day. Anal-
ysis of sociodemographic characteristics among included and excluded 
study participants (Table S2) reveals similarities in educational level and 
social class of mothers. Children in both groups also exhibit similar age 
and BMI. However, Sabadell stands out in sub-cohort participant 
numbers. 

The median (Q1 - Q3) urinary concentrations standardized for urine 
dilution of each metal for our population (Table S3) were Co: 0.8 
(0.5–1.4); Cu: 8.1 (2.8–12.7); Zn: 382.5 (243.5–597.4); Se: 23.1 
(16.9–34.4); Mo: 94.9 (61.5–142.9); Pb: 0.3 (0.2–0.8); and Cd: 0.1 
(0.1–0.2) μg/L. Regarding arsenic speciation, the median (Q1 - Q3) for 
each of the measured forms (AsB, DMA, MMA, iAs, iAs + MMA, and iAs 
+ MMA + DMA) in our population (Table S3) was 10.6 (3.0–41.4); 3.4 
(0.6–6.6); 0.4 (0.0–0.8); 1.2 (0.4–2.2); 1.7 (0.9–2.9) and 5.3 (2.7–9.3) 
μg/L, respectively. 

Noticeable correlations were observed among essential and heavy 
metals in the Pearson’s correlation matrix, particularly between Cd and 
Mo (ρ = 0.55, p-value <0.001), Pb and Cu (ρ = 0.54, p-value <0.001), 
and Se and Zn (ρ = 0.69, p-value <0.001) (Fig. S3). 

With regard to PVG dietary patterns adherence in our population, the 
median (Q1 - Q3) child’s score for each PVG dietary pattern was, 36 
(33–39) for the gPVG, 51 (47–55) for the hPVG and 51 (46–56) for the 
uPVG (Table 1). When we divided the adherence in quintiles, the 
number of participants and the range scores obtained for each quintile in 
each pattern, was: in the case of the gPVG, quintile 1: <33 (n = 173), 
quintile 2: 33–35 (n = 157), quintile 3: 36–37 (n = 116), quintile 4: 
38–40 (n = 150) and quintile 5: >40 (n = 127); in the case of hPVG, 
quintile 1: <47 (n = 168), quintile 2: 47–49 (n = 129), quintile 3: 50–53 
(n = 172), quintile 4: 54–56 (n = 121) and quintile 5: >56 (n = 133); 
and, in the case of uPVG, quintile 1: <46 (n = 167), quintile 2: 46–49 (n 
= 130), quintile 3: 50–53 (n = 154), quintile 4: 54–57 (n = 151) and 
quintile 5: >57 (n = 121). Regarding the consumption of different food 
groups in the PVG dietary patterns, the mean (standard deviation - SD) 
for each food group in our population in g/day can be seen in Table S4. 
Regarding sex differences, boys consume more cereals [108.3 (42.1) vs 
100.4 (36.2) g/day; p-value <0.05], especially refined cereals [101.7 
(42.0) vs 95.9 (36.0) g/day; p-value <0.05], and sugar-sweetened bev-
erages [18.2 (51.3) vs 12.0 (29.7) g/day; p-value <0.05] (Table S4). 
Table S5, Table S6, and Table S7 present the daily consumption in grams 
of each food group across the adherence quintiles of each PVG dietary 
pattern. Urine metal concentrations for the different PVG dietary pat-
terns (in quintiles) are shown in Table S8, along with their corre-
sponding medians and interquartile ranges (IQR). 

The results for multivariable adjusted linear regressions between the 
adherence to the different PVG dietary patterns and the urinary con-
centrations of the different essential and heavy metals plus the iAs 
methylation indices are shown in Table 2, Table 3, and Table 4. The 
results are shown as PC with 95% confidence intervals (95% CI) and the 
lowest quintile of adherence was the reference in each pattern. For the 
gPVG dietary pattern, after adjusting by child sex, sub-cohort, child BMI, 

Table 1 
Sociodemographic characteristics and lifestyle among mothers and their 4- 
5-years children of the INMA cohort study.  

Variables Total sample (n = 723) 

Mother 
Educational level, n (%) 

Primary 133 (18.7) 
Secondary 288 (40.6) 
University 289 (40.7) 

Social classa, n (%) 
I + II (highest) 178 (26.7) 
III 197 (29.5) 
IV + V (lowest) 292 (43.8) 

Children 
Age (years) 4.4 (4.4–4.5)b 

Sex, n (%) 
Male 375 (51.9) 
Female 348 (48.1) 

Cohort, n (%) 
Asturias 61 (8.4) 
Gipuzkoa 202 (27.9) 
Sabadell 365 (50.5) 
Valencia 95 (13.1) 

Television (hours/day) 1.3 (0.8–1.7) 
Energy intake (kcal/day) 1551.1 (1336.4–1779.8) 
BMI, (kg/m2) 15.9 (15.2–16.9) 
gPVGc 36 (33–39) 
hPVGc 51 (47–55) 
uPVGc 51 (46–56) 

BMI, body mass index; gPVG, general pro–vegetarian dietary pattern; 
hPVG, healthful pro–vegetarian dietary pattern; uPVG, unhealthful 
pro–vegetarian dietary pattern. 

a Social Class = I-II (managers, professionals), III (technicians and asso-
ciate professionals, clerical support workers, skilled agricultural, forestry 
and fishery workers), IV-V (craft and related trades workers, plant and 
machine operators and assemblers). 

b Median (Q1-Q3) (all such values). 
c Points of adherence to each pattern. 
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child television hours, child total energy intake and SG, the highest 
quintile of adherence was associated with 22.7% and 12.6% lower uri-
nary levels of Co (95% CI: − 38.7 to − 1.98; p-trend: 0.039) and Se (95% 
CI: − 22.9 to − 1.00; p-trend: 0.009), respectively (Table 2). The fourth 
quintile of adherence to a gPVG was also associated with a 68.5% higher 

PMI (95% CI: 16.2 to 145.9; p-trend: 0.178) and a 53.7% lower SMI 
(95% CI: − 75.6 to − 12.2; p-trend: 0.172). The second quintile of 
adherence was associated with 57.8% lower levels of iAs + MMA urine 
concentrations (95% CI: − 76.3 to − 24.4; p-trend: 0.335). For the hPVG 
dietary pattern we only observed an association after adjusting, between 

Table 2 
Association between general PVG dietary pattern (in quintiles of adherence) and urine essential and heavy metals1 (n = 723).   

Q1 (<33) Q2 (33–35) Q3 (36–37) Q4 (38–40) Q5 (>40)  

Individual metals PC (95% CI) PC (95% CI) PC (95% CI) PC (95% CI) p-trend2 

Co Ref. − 10.2 (− 28.1; 11.6) 1.63 (− 19.7; 28.4) − 6.91 (− 25.2; 16.2) ¡22.7 (-38.7; -1.98) 0.039 
Cu Ref. 0.84 (− 31.6; 49.2) − 27.3 (− 52.3; 10.5) 11.6 (− 24.4; 64.9) − 11.1 (− 41.7; 34.9) 0.728 
Zn Ref. − 12.9 (− 25.2; 2.02) 2.53 (− 13.1; 20.9) − 6.43 (− 19.7; 9.42) − 13.9 (− 27.4; 2.02) 0.088 
Se Ref. − 6.72 (− 16.5; 4.08) − 5.23 (− 16.5; 7.25) − 8.18 (− 18.1; 3.04) ¡12.6 (-22.9; -1.00) 0.009 
Mo Ref. − 5.21 (− 19.7; 11.6) − 3.11 (− 18.9; 15.0) − 3.05 (− 17.3; 13.9) − 10.2 (− 24.4; 7.25) 0.339 
Pb Ref. − 7.12 (− 25.9; 17.4) − 20.5 (− 38.1; 2.02) 1.10 (− 19.7; 27.1) 3.52 (− 19.7; 32.3) 0.949 
Cd Ref. 2.07 (− 14.8; 22.1) − 13.2 (− 28.8; 6.18) − 2.08 (− 18.1; 17.3) − 7.06 (− 23.7; 13.9) 0.512 
AsB Ref. 20.6 (− 34.9; 122.5) − 23.3 (− 60.5; 49.2) − 8.51 (− 50.3; 69.9) − 4.11 (− 50.8; 87.8) 0.961 
iAs + MMA Ref. ¡57.8 (-76.3; -24.4) − 9.90 (− 51.8; 68.2) − 43.0 (− 68.0; 1.00) − 27.5 (− 61.3; 36.3) 0.335 
PMI3 Ref. 84.4 (25.8; 169.1) 70.5 (13.9; 155.9) 68.5 (16.2; 145.9) 15.9 (− 22.9; 73.3) 0.178 
SMI3 Ref. − 4.51 (− 49.8; 80.4) − 30.8 (− 65.3; 37.7) ¡53.7 (-75.6; -12.2) − 20.4 (− 60.1; 58.4) 0.172 

PC, percentage change; Co, cobalt; Cu, copper; Zn, zinc; Se, selenium; Mo, molybdenum; Pb, lead; Cd, cadmium; AsB, arsenobetaine; iAs (arsenite + arsenate); MMA, 
monomethylarsonic acid; PMI, primary methylation index; SMI, secondary methylation index; CI, confidence interval. 1Multiple linear regression models adjusted by 
child sex (male or female), sub-cohort (Asturias, Gipuzkoa, Sabadell or Valencia), child body mass index (kg/m2), child television hours (hours/day), energy intake 
(kcals/day) and urine specific gravity2p-value from trend test. 3Models for primary and secondary methylation indices are also adjusted by the sum of arsenic con-
centrations (AsB + DMA + MMA + iAs). Bold values are p-value < 0.05. 

Table 3 
Association between healthful PVG dietary pattern (in quintiles of adherence) and urine essential and heavy metals1 (n = 723).   

Q1 (<47) Q2 (47–49) Q3 (50–53) Q4 (54–56) Q5 (>56)  

Individual metals PC (95% CI) PC (95% CI) PC (95% CI) PC (95% CI) p-trend2 

Co Ref. − 9.08 (− 28.1; 15.0) 4.37 (− 15.6; 29.7) − 11.3 (− 30.2; 12.7) − 3.31 (− 23.7; 22.1) 0.238 
Cu Ref. − 4.12 (− 37.5; 46.2) − 2.06 (− 32.9; 43.3) − 11.4 (− 42.3; 34.9) 22.5 (− 18.9; 84.0) 0.794 
Zn Ref. − 4.75 (− 19.7; 12.7) − 8.66 (− 21.4; 6.18) − 7.89 (− 22.1; 9.42) − 3.72 (− 18.1; 13.9) 0.403 
Se Ref. − 10.1 (− 20.5; 2.02) − 8.31 (− 18.1; 2.02) − 5.54 (− 16.5; 7.25) − 9.94 (− 19.7; 1.00) 0.040 
Mo Ref. − 1.51 (− 17.3; 17.4) 6.69 (− 8.61; 24.6) − 0.44 (− 16.5; 18.5) 3.72 (− 13.1; 23.4) 0.643 
Pb Ref. − 7.22 (− 28.1; 19.7) − 0.45 (− 20.5; 24.6) 3.19 (− 19.7; 32.3) 8.30 (− 14.8; 37.7) 0.718 
Cd Ref. − 3.05 (− 20.5; 18.5) 3.15 (− 13.9; 23.4) 1.49 (− 17.3; 24.6) 5.95 (− 13.1; 28.4) 0.805 
AsB Ref. − 38.3 (− 68.3; 20.9) − 18.4 (− 55.1; 47.7) 7.07 (− 45.1; 109.6) 49.0 (− 22.1; 185.8) 0.361 
iAs + MMA Ref. ¡51.7 (-74.3; -8.61) − 41.3 (− 66.7; 3.05) − 22.7 (− 58.9; 46.2) − 12.4 (− 52.8; 61.6) 0.547 
PMI3 Ref. − 5.29 (− 37.5; 43.3) 34.7 (− 6.76; 95.4) 17.5 (− 22.1; 78.6) 12.6 (− 24.4; 68.2) 0.500 
SMI3 Ref. 11.4 (− 44.6; 124.7) − 9.55 (− 51.3; 68.2) − 21.8 (− 61.3; 56.8) − 27.8 (− 63.2; 41.9) 0.550 

PC, percentage change; Co, cobalt; Cu, copper; Zn, zinc; Se, selenium; Mo, molybdenum; Pb, lead; Cd, cadmium; AsB, arsenobetaine; iAs (arsenite + arsenate); MMA, 
monomethylarsonic acid; PMI, primary methylation index; SMI, secondary methylation index; CI, confidence interval. 1Multiple linear regression models adjusted by 
child sex (male or female), sub-cohort (Asturias, Gipuzkoa, Sabadell or Valencia), child body mass index (kg/m2), child television hours (hours/day), energy intake 
(kcals/day) and urine specific gravity. 2p-value from trend test. 3Models for primary and secondary methylation indices are also adjusted by the sum of arsenic 
concentrations (AsB + DMA + MMA + iAs). Bold values are p-value < 0.05. 

Table 4 
Association between unhealthful PVG dietary pattern (in quintiles of adherence) and urine essential and heavy metals1 (n = 723).   

Q1 (<46) Q2 (46–49) Q3 (50–53) Q4 (54–57) Q5 (>57)  

Individual metals PC (95% CI) PC (95% CI) PC (95% CI) PC (95% CI) p-trend2 

Co Ref. 6.94 (− 14.8; 34.9) 18.5 (− 4.87; 47.7) 10.1 (− 12.2; 39.1) 4.34 (− 19.7; 34.9) 0.378 
Cu Ref. 5.17 (− 30.2; 58.4) 36.5 (− 7.69; 101.4) 36.9 (− 8.61; 105.4) 14.7 (− 28.1; 82.2) 0.304 
Zn Ref. − 4.66 (− 18.9; 12.7) 0.28 (− 13.9; 17.3) 8.81 (− 7.69; 28.4) − 2.81 (− 18.9; 17.3) 0.582 
Se Ref. ¡13.6 (-22.9; -2.95) − 6.75 (− 16.5; 4.08) − 0.70 (− 11.3; 11.6) − 1.61 (− 13.9; 12.7) 0.664 
Mo Ref. − 7.82 (− 22.1; 9.42) ¡17.5 (-29.5; -2.95) − 5.35 (− 19.7; 12.7) − 12.2 (− 27.4; 6.18) 0.323 
Pb Ref. − 19.9 (− 36.9; 2.02) − 9.86 (− 28.8; 13.9) − 14.5 (− 32.9; 8.33) 5.40 (− 19.7; 39.1) 0.849 
Cd Ref. 0.30 (− 17.3; 22.1) − 0.51 (− 17.3; 19.7) 4.52 (− 13.9; 27.1) − 4.77 (− 23.7; 18.5) 0.985 
AsB Ref. − 11.4 (− 53.2; 68.2) − 20.2 (− 56.8; 47.7) 13.6 (− 40.5; 115.9) − 50.7 (− 76.3; 2.02) 0.114 
iAs + MMA Ref. 39.9 (− 23.7; 158.6) 22.1 (− 32.3; 120.3) 12.7 (− 38.7; 107.5) 27.5 (− 36.2; 156.0) 0.740 
PMI3 Ref. − 10.6 (− 39.9; 32.3) 2.79 (− 29.5; 50.7) − 11.0 (− 40.5; 32.3) − 29.8 (− 55.5; 10.5) 0.314 
SMI3 Ref. ¡52.3 (-75.6; -6.76) − 22.9 (− 59.3; 46.2) 13.9 (− 41.7; 122.5) 3.76 (− 51.3; 122.5) 0.539 

PC, percentage change; Co, cobalt; Cu, copper; Zn, zinc; Se, selenium; Mo, molybdenum; Pb, lead; Cd, cadmium; AsB, arsenobetaine; iAs (arsenite + arsenate); MMA, 
monomethylarsonic acid; PMI, primary methylation index; SMI, secondary methylation index; CI, confidence interval. 1Multiple linear regression models adjusted by 
child sex (male or female), sub-cohort (Asturias, Gipuzkoa, Sabadell or Valencia), child body mass index (kg/m2), child television hours (hours/day), energy intake 
(kcals/day) and urine specific gravity. 2p-value from trend test. 3Models for primary and secondary methylation indices are also adjusted by the sum of arsenic 
concentrations (AsB + DMA + MMA + iAs). Bold values are p-value < 0.05. 
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the second quintile of adherence and 51.7% lower levels of iAs + MMA 
(95% CI: − 74.3 to − 8.61; p-trend: 0.547) (Table 3). Conversely, for the 
uPVG dietary pattern we observed that the third quintile of adherence 
was associated with 17.5% lower levels of Mo (95% CI: − 29.5 to − 2.95; 
p-trend: 0.323) and the second quintile of adherence was associated with 
13.6% lower levels of Se (95% CI: − 22.9 to − 2.95; p-trend: 0.664) and a 
52.3% lower SMI (95% CI: − 75.6 to − 6.76; p-trend: 0.539) (Table 4). 

Consistent results were obtained for the metal mixture analysis using 
the quantile g-computation method compared to those from the multiple 
linear regression analyses (Fig. 1). The highest positive weights for the 
different PVG dietary patterns, were assigned to Pb and iAs + MMA 
(39.2% and 23.2%, respectively) in the case of gPVG, to Mo and AsB 
(38.2% and 28.4%, respectively) in the case of hPVG, and to Cu and Co 
(40.3% and 27.3%, respectively) in the case of uPVG. The primary 
negative weights were assigned to Se and Cd (56.3% and 24.4%, 
respectively) for the gPVG, to Se and Cd (64.9% and 22.3%, respec-
tively) for the hPVG, and to Mo and AsB (31.5% and 27.9%, respec-
tively) for the uPVG. The sensitivity analysis results on the association 
between PVG dietary patterns (categorized into quintiles of adherence) 
and urinary iAs + MMA + DMA are shown in Table S9. We observed a 
lower exposure in both the second and the fourth quintiles of adherence 
to a gPVG, with PCs of − 50.9% (95% CI: − 71.6 to − 14.8) and − 47.5% 
(95 %CI: − 69.6 to − 9.52), respectively. 

In the sex-stratified analysis of differences in iAs methylation indices, 
we observed distinct patterns among boys and girls. In boys, the third 
quintile of adherence to a gPVG was associated with a higher PMI (PC =
92.7%, 95% CI: 8.33 to 242.1), while the second quintile of adherence to 
a uPVG was related to a lower SMI (PC = − 67.8%, 95%CI: − 87.4 to 
− 18.1) (Table S10). Among girls, we found that the second quintile of 
adherence to a gPVG was related with a higher PMI (PC = 125.3%, 95% 
CI: 31.0 to 289.6), and the fourth quintile of adherence to a gPVG was 
also associated with a higher PMI (PC = 72.9%, 95% CI: 1.01 to 194.5) 
(Table S11). 

4. Discussion 

In our primary research, we investigated the adherence to PVG 
patterns in 4-5-year-old children and its association with exposure to 
essential and heavy metals. Our results showed that very high adherence 
to gPVG dietary pattern is associated to lower exposure to essential 
metals Co and Se. Moreover, high adherence to gPVG pattern is asso-
ciated with a higher PMI and a lower SMI. Lower levels of adherence to 
hPVG and uPVG patterns also seems to influence exposure to some 
essential and heavy metals. 

Although high adherence to the gPVG pattern was not associated 
with most of the essential and heavy metals, it was associated with lower 
urinary Co and Se. Co is an essential component of vitamin B12, pri-
marily found in animal-based foods such as meat, eggs, and dairy 
products, but excessive exposure can be toxic (Leyssens et al., 2017). 
Vitamin B12 is crucial for DNA formation and repair, as well as the 
function of the nervous system (Azzini et al., 2021). While we did not 
directly measure this vitamin in our study, Co exposure could affect B12 
status (González-Montaña et al., 2020). Therefore, vegetarians are 
advised to take B12 supplements to meet their requirements (Melina 
et al., 2016). Similarly, Se, obtained mainly from fish and seafood, is 
essential for immune modulation, but it is limited in vegetarian diets 
(Bakaloudi et al., 2020; Kieliszek et al., 2021). Therefore, our results 
align with existing literature as this plant-based pattern resemble 
vegetarian diets, potentially leading to lower intake of Co and Se. Some 
nutrition organizations caution that vegetarian diets in children may 
result in nutritional deficiencies (Agnoli et al., 2017; Lemale et al., 
2019). However, the hPVG pattern did not show an association with 
lower Co and Se exposure. Therefore, it’s essential to consider dietary 
quality when choosing a PVG pattern for children. Adding small 
amounts of fish and selected nut-based products to the regular diet, with 
precautions to prevent choking, may enhance the intake of essential 

metals, particularly Co and Se. 
Vitamin B12 and Se play crucial roles in childhood iAs detoxification 

process. Higher plasma B12 levels are related to improved iAs methyl-
ation (Lin et al., 2019), while higher plasma Se concentrations are 
associated with better iAs methylation and developmental outcomes in 
preschool children (Su et al., 2019). The impact of Se on iAs methylation 
is more pronounced in children than adults (Löveborn et al., 2016), 
potentially supporting iAs excretion through chelation (Zwolak, 2019). 

Fig. 1. Quantile g-computation between metal concentrations and PVG dietary 
patterns (gPVG, hPVG, uPVG) in children of 4–5 years of age. 
gPVG negative weights: Se = 56.3%; Cd = 24.4%; Co = 12.2%; Zn = 7.1%. 
gPVG positive weights: Pb = 39.2%; iAs + MMA = 23.2%; AsB = 16.2%; Cu =
13.8%; Mo = 7.6% (p-value: 0.147). hPVG negative weights: Se = 64.9%; Cd =
22.3%; Zn = 7.7%; Co = 5.1%. hPVG positive weights: Mo = 38.2%; AsB =
28.4%; iAs + MMA = 18.3%; Pb = 14.7%; Cu = 0.4% (p-value: 0.662). uPVG 
negative weights: Mo = 31.5%; AsB = 27.9%; Pb = 22.7%; iAs + MMA =
16.9%; Cd = 0.8%. uPVG positive weights: Cu = 40.3%; Co = 27.3%; Se =
16.5%; Zn = 15.9%. (p-value: 0.509). 
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Se and iAs compete in biological functions, displaying an antagonistic 
relationship (Zeng et al., 2005). Vitamin B12’s antioxidant effects and 
influence on methylation pathways may also affect iAs methylation 
through homocysteine regulation (Howe et al., 2017). The association 
between high adherence to the gPVG pattern, a higher PMI, and a lower 
SMI may be explained by these factors. A lower SMI is concerning due to 
its association with bladder cancer in adults with cumulative arsenic 
exposure (Chen et al., 2003), while higher PMI is associated with higher 
breast cancer risk in women (López-Carrillo et al., 2014). However, 
studies investigating iAs methylation capacity using these indices in 
children are still limited (Bocca et al., 2020; Torres-Sánchez et al., 
2016). 

In this study, we examined differences in iAs methylation capacity 
based on children’s sex. Both girls (low and high adherence) and boys 
(moderate adherence) adhering to the gPVG pattern showed a higher 
PMI in our study. However, only boys with low adherence to the uPVG 
pattern was associated with a lower SMI. It has been suggested that boys 
may be more susceptible to harmful effects from iAs exposure (Rahman 
et al., 2006). One explanation is that girls may have greater iAs 
methylation efficiency (Lindberg et al., 2008). Hormones and other 
biological factors may also influence methylation pathways, even in 
childhood, when hormone production is not at its peak (Lindberg et al., 
2007). Additionally, differences in exposure levels may play a role. In 
our study, boys exhibited higher consumption of refined grains, partic-
ularly white rice, which is widely recognized as a substantial source of 
iAs exposure during childhood (Karagas et al., 2016). This finding could 
account for the observed sex differences in iAs methylation indices in 
our population. 

Unlike the gPVG, the hPVG and uPVG were not consistently associ-
ated with exposure to essential and heavy metals. On one hand, the 
hPVG pattern was associated with a lower urinary level of iAs + MMA, 
but only in the low adherence category and without an apparent trend. 
This lack of associations with the hPVG pattern may be attributed to 
several reasons. Being a pattern that includes healthier foods (and, 
therefore, is richer in essential metals) than the gPVG, it may not be 
linked to lower Co and Se exposure. Our study sample was limited, 
which may reduce the possibility of finding positive associations. 
Finally, we cannot dismiss the possibility that this dietary pattern is not 
associated with exposure to essential and/or heavy metals in our pop-
ulation. On the other hand, moderate adherence to the uPVG pattern 
was associated with lower levels of Mo, aligning with our hypothesis. 
Mo, essential for human enzymes (Novotny and Peterson, 2018), is 
primarily present in legumes, which are inversely weighted in this 
pattern. Dairy products and animal viscera, also recognized as good 
sources of Mo (Sardesai, 1993), are inversely scored in all PVG patterns. 
The uPVG pattern emphasizes plant-based ultra-processed foods like 
fries, sugary drinks, and sweets (Karnopp et al., 2016; Leal et al., 2015). 
Literature shows that such diets in adulthood associate with poor car-
diometabolic profiles (Huang et al., 2023; Oncina-Cánovas et al., 
2022a), increased diabetes risk (Satija et al., 2016), and cancers, 
including stomach cancer (Oncina-Cánovas et al., 2022b). Hence, it is 
vital to study associations related to these dietary patterns across age 
groups. Low adherence to the uPVG pattern was associated with lower 
Se levels and a lower SMI, supporting previous findings. Plant-based diet 
followers often have lower Se concentrations (Bakaloudi et al., 2020), 
potentially affecting iAs detoxification. However, these results should be 
interpreted with caution, as these associations with the uPVG pattern 
were only at isolated levels of adherence and lacked a clear trend. 

The correlation matrix of urine metal concentrations shows relevant 
associations among the essential and heavy metals, suggesting shared 
exposure sources. The strong correlation between Se and Zn, both 
essential metals primarily obtained from animal foods, may account for 
lower urinary Se concentrations in individuals with high adherence to a 
gPVG. 

In terms of strengths and limitations, the cross-sectional design of 
this study constrains the establishment of causality and leaves it 

susceptible to reverse causation. We conducted numerous comparisons, 
and apart from Se and Co, a clear trend was not observed in the 
remaining associations (e.g., the associations for arsenic were observed 
in isolated quintiles). Therefore, we cannot dismiss the possibility that 
these associations may be spurious. Self-reported dietary intake through 
a FFQ introduces the possibility of recall bias, relying on parental 
reporting and referring to the previous year. In addition, the use of a FFQ 
introduces an inherent limitation, as it may lead to both exposure and 
effect misclassification. The FFQ did not consider exposure-relevant 
factors, such as the intake of specific foods (e.g., fortified foods) and 
the origin of the food. These factors could contribute to the levels of 
essential and heavy metals in the food content, thereby influencing the 
ultimate exposure (Signes-Pastor et al., 2008, 2016). Despite this, the 
FFQ was validated in a subsample of our population (Vioque et al., 
2016) and is considered a reliable method for epidemiological studies 
(Willett, 2013). We used three PVG dietary patterns, including a general 
pattern and two derived ones, for more precise conclusions about the 
impact of plant-based foods on metal exposure. Urine samples, 
commonly used to assess metal exposure, may introduce estimation bias 
due to variations in excretion levels. For example, urinary arsenic levels 
reflect exposure only in the 2–3 days leading up to collection (Meharg 
et al., 2014), while elements such as Se or Cd may indicate chronic 
exposure (Phiri et al., 2019; Vacchi-Suzzi et al., 2016). Furthermore, 
using urine samples to assess essential metals exposure may not be 
adequate as a biomarker for nutritional status (Combs, 2015; Cockell, 
2015). Therefore, our findings should be interpreted with caution. We 
performed arsenic speciation, crucial to account for variations in 
toxicity, as inorganic forms are the most toxic (El-Ghiaty and El-Kadi, 
2022). Despite Pb having the highest number of urinary concentra-
tions below the LOD, we included it in our analyses due to its signifi-
cance as a contaminant (Kumar et al., 2020; Gundacker et al., 2021). 
Despite the limited sample size, we identified noteworthy associations 
after adjusting for potential confounders in the main and sensitivity 
analyses such as the sex stratified (Lindberg et al., 2007; Torres-Sánchez 
et al., 2016) and after including urinary DMA in the iAs exposure 
assessment analyses (Aylward et al., 2014). Finally, we also identified 
some notable trends in associations, particularly for Co and Se, thereby 
adding robustness to our findings. 

5. Conclusions 

In conclusion, this study addresses a novel question regarding the 
association between children’s adherence to the most common PVG 
dietary patterns and their exposure to metals, using a comprehensive 
approach that incorporates both dietary assessment and urinary metal 
concentration analysis. The two derived patterns, the hPVG and uPVG, 
do not appear to be consistently associated with exposure to essential or 
heavy metals, as well as with the ability to iAs methylation. However, 
adherence to a gPVG dietary pattern during childhood may result in a 
modest reduction in exposure to certain essential metals, such as Co and 
Se. Furthermore, this pattern may also affect children’s metabolism of 
toxic compounds like iAs, especially in boys. Thus, our study highlights 
the complexity of investigating the relationship between simultaneous 
exposures such as diet and metals, warranting further longitudinal 
studies to explore any potential health implications. 
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