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Abstract
Insight into the development of treatment resistance can support the optimi-
zation of anticancer treatments. This study aims to characterize the tumor dy-
namics and development of drug resistance in patients with non-small cell lung 
cancer treated with erlotinib, and investigate the relationship between baseline 
circulating tumor DNA (ctDNA) data and tumor dynamics. Data obtained for 
the analysis included (1) intensively sampled erlotinib concentrations from 29 
patients from two previous pharmacokinetic (PK) studies, and (2) tumor sizes, 
ctDNA measurements, and sparsely sampled erlotinib concentrations from 18 
patients from the START-TKI study. A two-compartment population PK model 
was first developed which well-described the PK data. The PK model was sub-
sequently applied to investigate the exposure-tumor dynamics relationship. To 
characterize the tumor dynamics, models accounting for intra-tumor hetero-
geneity and acquired resistance with or without primary resistance were inves-
tigated. Eventually, the model assumed acquired resistance only resulted in an 
adequate fit. Additionally, models with or without exposure-dependent treat-
ment effect were explored, and no significant exposure-response relationship 
for erlotinib was identified within the observed exposure range. Subsequently, 
the correlation of baseline ctDNA data on EGFR and TP53 variants with tumor 
dynamics’ parameters was explored. The analysis indicated that higher base-
line plasma EGFR mutation levels correlated with increased tumor growth 
rates, and the inclusion of ctDNA measurements improved model fit. This 
result suggests that quantitative ctDNA measurements at baseline have the 
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INTRODUCTION

The occurrence of anticancer treatment resistance due 
to intra-tumor heterogeneity and evolving adaptation of 
tumor cells to the treatment can limit the long-lasting ef-
ficacy of targeted anticancer treatment.1,2 In order to im-
prove the anticancer treatment outcome, it is important 
to have detailed insight into the tumor progression dur-
ing treatment because it enables designing of alternative 
treatment strategies.

In patients with non-small cell lung cancer (NSCLC), 
erlotinib, a tyrosine kinase inhibitor (TKI), is one of 
the effective treatment options especially for patients 
with EGFR exon 19 deletions or exon 21 mutations.3–5 
However, the occurrence of acquired drug resistance, 
which is most frequently due to the acquisition of the 
EGFR p.T790M mutation, and the possible presence of 
drug-resistant component pretreatment (primary re-
sistance) can limit its efficacy and result in relapse.3–6 

Thus, understanding the evolving progression of NSCLC 
during the treatment and identifying predictive bio-
markers would be beneficial to optimize the treatment 
of NSCLC.

Pharmacometric modeling allows quantitative charac-
terization and prediction of pharmacokinetic (PK) – phar-
macodynamic (PD) profiles of drugs and thus facilitates 
treatment design.7–9 With the help of a model-based ap-
proach, studies on evolving tumor progression can be con-
ducted based on available data on tumor sizes and genetic 
biomarkers, and optimal treatment designs can be evalu-
ated. Our previous study has proven such a concept based 
on data from patients with metastatic colorectal cancer as 
well as from patients with NSCLC.10 Further incorporat-
ing the exposure of therapeutic agents in the model can 
support the investigation and understanding of exposure-
tumor inhibition relationship and the evolutionary tumor 
dynamics in relation to drug exposure during anticancer 
treatment.

potential to be a predictor of anticancer treatment response. The developed 
model can potentially be applied to design optimal treatment regimens that 
better overcome resistance.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Insight into the evolutionary development of treatment resistance can sup-
port the optimization of anticancer treatments. This is also the case in patients 
with non-small cell lung cancer (NSCLC). A model-based approach can sup-
port such study based on data on pharmacokinetics, tumor sizes, and genetic 
biomarkers.
WHAT QUESTION DID THIS STUDY ADDRESS?
We aimed to quantitatively characterize the tumor dynamics and evolving resist-
ance development in patients with NSCLC treated with erlotinib, and investigate 
the relationship between baseline circulating tumor DNA (ctDNA) measure-
ments and tumor dynamics.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A model accounting for intra-tumor heterogeneity and acquired resistance 
well-characterized the tumor size dynamics in patients with NSCLC during 
erlotinib treatment. No exposure-tumor inhibition relationship was identified 
in the identified exposure range. Baseline ctDNA data on mutant EGFR levels 
correlate with tumor growth rate and the inclusion of ctDNA data improved 
model prediction.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Our findings suggest that baseline ctDNA measurements have the potential to be 
a predictor of anticancer treatment response, which encouraged to use ctDNA as 
an early biomarker. The developed model can further be applied to design opti-
mal treatment regimens to better overcome resistance.
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Circulating tumor DNA (ctDNA), which are DNA frag-
ments in the circulation (circulating free DNA [cfDNA]) 
that are of tumor origin, is a clinically available and 
emerging genetic biomarker.11 It has shown to be able to 
provide detailed insight into the molecular alterations and 
evolving progression of tumors under treatment.4,5,11 In 
patients with NSCLC, numerous studies have shown that 
a decrease of mutant gene levels in ctDNA correlates to 
the therapeutic response of TKIs.5 In another model-based 
study, the relative change of concentrations of driver mu-
tation in ctDNA from the estimated baseline was shown 
to be predictive of disease progression of patients with 
NSCLC.12 Further research on the correlation between 
ctDNA measurements and tumor size dynamics would be 
beneficial to understanding the evolutionary development 
of treatment resistance and the value of ctDNA.

In the current study, we aimed to develop a model to 
understand and characterize tumor dynamics and the 
development of drug resistance in patients with NSCLC 
treated with erlotinib. First, a population PK model of 
erlotinib was developed and thereafter applied to inves-
tigate the exposure-tumor inhibition relationship of er-
lotinib. Tumor dynamics’ models accounting for tumor 
heterogeneity, with or without a pre-existing resistance 
component, and drug exposure-dependent treatment ef-
fects, were evaluated. Subsequently, we aimed to explore 
the correlation of the extent of somatic driver mutation in 
ctDNA at baseline with the tumor dynamics in patients 
with NSCLC.

METHODS

Patients and data

Intensively sampled PK data

Data obtained for the analysis included intensively sam-
pled erlotinib concentration-time curves from 29 patients 
from two previous food interaction PK studies in patients 
with NSCLC who were treated with erlotinib for an ac-
tivating EGFR mutation.13,14 Erlotinib was administrated 
orally once daily with a dosage of 50–150 mg. PK samples 
were collected before drug intake and at 0.5, 1, 1.5, 2, 2.5, 
3, 3.5, 4, 6, 8, 12, and 24 h after drug administration at 
steady-state. The studies were performed at the Erasmus 
MC Cancer Institute in Rotterdam, The Netherlands, and 
the details of the studies' design can be found in previous 
publications.13,14 For the current study, only the data in 
the control arms that were sampled after receiving er-
lotinib with water and without concomitant esomepra-
zole were included, which aimed to be consistent with 
real-world patients. Details about the selected patient 

population are presented in Table 1 (intensively sampled 
PK data [N = 29]).

Patients' demographic information, including age, sex, 
weight, height, and additional laboratory test results, in-
cluding creatinine, estimated glomerular filtration rate, 
albumin, total bilirubin, aspartate aminotransferase, al-
anine aminotransferase, and alkaline phosphatase were 
collected for covariate analysis.

PK-PD data

In addition, longitudinal measured tumor sizes under 
standard clinical care conditions as well as sparsely sam-
pled intended trough erlotinib concentrations were also 
collected from 18 patients with NSCLC who participated 
in the START-TKI study (NCT05221372), which is a 
prospective, observational multicenter, real-world data 
study.6 Erlotinib was administrated orally once daily with 
a dosage of 75–150 mg. The tumor size measurements, that 
is, the sum of the longest diameters (SLDs; mm) of target 
lesions, were assessed by Response Evaluation Criteria 
in Solid Tumors (RECIST version 1.1).15 Additional data 
on dosing information, ctDNA data on variant allele fre-
quency (VAF) of mutant genes over time, and concentra-
tions of cfDNA over time from these patients were also 
collected. The detailed methods of cfDNA isolation and 
next-generation sequencing process have earlier been de-
scribed.6 Patients' demographic information and labora-
tory test results, as mentioned above, were also collected 
for potential covariate analysis. Details about this popula-
tion are presented in Table 1 (PK/PD data [N = 18]).

The studies from which the data were obtained were 
previously approved by the local ethics committee and 
were registered in the Dutch Trial Registry. Written in-
formed consent was obtained from all patients prior to 
these studies, including the use of data for further studies. 
For the current study, the data were shared anonymously 
and all procedures were performed in accordance with 
relevant guidelines and the Declaration of Helsinki, so no 
additional informed consent had to be obtained.

Population PK model

Based on the collected PK data, a population PK model 
was developed to characterize the erlotinib PK profiles 
of included patients. The intensively sampled PK data 
and the sparsely sampled PK data from patients involved 
in the START-TKI study were combined for the model 
development.

One- and two-compartment models with first-order 
absorption, with or without lag time, and first-order 
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elimination were explored as the structural model. A 
combined proportional and additive model was applied to 
characterize the residual error. Parameters were assumed 
to be log-normally distributed. A random variability on 
bioavailability (F) was also incorporated while the typical 
value of F was fixed to 1 to account for the interindividual 
variability (IIV) on F, which is shared by the apparent PK 
parameters (clearances and distribution volumes) making 
them correlated, and other sources of positive correlation 
between parameters.16,17 This approach has been applied 
to stabilize the model and reduce the unexplained IIV in 
the apparent PK parameters.18,19 The structural model was 
selected based on biological plausibility and the objective 
function value (OFV).

Patients' demographic information and laboratory 
test results were then investigated as covariates using 
the stepwise covariate modeling function of Perl-speaks 
NONMEM (version 4.9). The effect of all covariates on 
erlotinib clearance and that of weight, height, and albu-
min on the apparent distribution volume of the central 

compartment were investigated. The relationship between 
F and dose level was not explored because the majority 
of patients received the same dose level. Model selection 
was based on the reduction in OFV (a likelihood ratio test) 
assuming a χ2 distribution, a reduction in IIV, and phys-
iological plausibility. The p values were set as 0.05 and 
0.01 for the forward selection and backward elimination 
process, respectively. A more detailed description of the 
covariates analysis can be found in Appendix S1.

The final model was evaluated with goodness-of-fit 
(GOF) plots, visual predictive checks (VPC) based on 
1000 simulations, and bootstrap with 1000 resampled 
datasets. In addition, the percentage where the predicted 
area under the curve (AUC) falls within 80%–120% of the 
corresponding observed AUC (estimated with trapezoidal 
rules method) was calculated for the full concentration-
time curves to evaluate the model. The percentage where 
the predicted trough concentrations fall within 80%–120% 
of the corresponding observations was also estimated for 
the data from the START-TKI study.

Intensively sampled 
PK data PK/PD data

(N = 29) (N = 18)

Median Range Median Range

Age (years) 63 35–78 66 48–78

Sex (N)

Male 13 (44.8%) 5 (27.8%)

Female 16 (55.2%) 13 (72.2%)

Weight (kg) 74 50–102 69.5 46.1–109

Height (cm) 173 152–202 169 154–180

Serum creatinine (μmol/L) 82 47–138 66 59–192

eGFR (mL/(min.1.73 m2)) 71 46–100 84.5 23–103

AST (IU/L) 29 13–40 21.5 14–37

ALT (IU/L) 25 10–83 18 6–43

Albumin (g/L) 41 32–48 42.5 34–51

ALP (U/L) 85 53–157 87.5 3–798

Bilirubin (μmol/L) 8 3–58 6.5 3–14

Erlotinib starting dose (N)

150 mg 25 (86.2%) 18 (100%)

100 mg 3 (10.3%) 0

50 mg 1 (3.4%) 0

N of concentrations per 
patient

13 13–13 8 (N = 2 no 
data)

1–20

N of SLD per patient – – 7 2–18

N of ctDNA/cfDNA data per 
patient

– – 3 1–4

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; cfDNA, circulating free DNA; ctDNA, circulating tumor DNA; eGFR, estimated 
glomerular filtration rate; PD, pharmacodynamic; PK, pharmacokinetic; SLD, sum of longest diameters.

T A B L E  1   Baseline patients' 
characteristics and the collected data.
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Tumor dynamics model

The dynamics of tumor sizes during erlotinib treatment, 
which was represented by SLD (mm) of target lesions, was 
characterized accounting for tumor heterogeneity. Tumor 
tissue was assumed to consist of a sensitive clonal popu-
lation (TS) and a resistant clonal population (TR). Models 
considering (1) only acquired resistance and no primary 
resistance (i.e., baseline TR [TR_0] = 0), and (2) both primary 
and acquired resistance (i.e., TR_0 ≠ 0 and was estimated), 
with or without a drug exposure-dependent decay, were 
explored. Considering the amount of available data, the 
baseline tumor sizes were fixed to the observed values to 
ensure the stability of the model. The model structure is 
shown in Figure 1 and Equations 1–4, where kg represents 
the growth rates of TS and TR, km represents mutation rate, 
and kd represents tumor decay rate due to treatment. For 
the models exploring the exposure-dependent treatment 
effect, the tumor decay rate was assumed to depend on 
erlotinib exposure and a simple linear relationship was 
assumed (Equation  2). A nonlinear relationship with a 
maximum effect (Emax) model was also explored. The er-
lotinib exposure was defined as the erlotinib concentra-
tion, effectively as the trough concentration at the tumor 
size monitoring timepoint, which was the exposure metric 
of interest for erlotinib exposure-response analysis and is 
relatively easy to measure in clinical practice. The time-
varying erlotinib concentrations were simultaneously pre-
dicted with the individual PK parameters obtained from 
the PK model and incorporated into the tumor dynamics 
model. The IIV of parameters were evaluated and param-
eters were assumed to be log-normally distributed. The 
combined proportional and additive model was applied to 
characterize the residual error. The model fit was evalu-
ated by OFV and Akaike information criterion (AIC). The 
best fitted model was evaluated with GOF plots and VPC 
considering the censoring of data due to progression de-
fined by RECIST version 1.1.15

Genetic biomarkers and tumor dynamics

The correlation of baseline ctDNA measurements, in-
cluding EGFR mutation levels and the presence of TP53 
mutations, with tumor dynamics' parameters (kg, km, 
and kd) were explored graphically. Patients were sepa-
rated into groups based on (1) whether their baseline 
mutant EGFR VAF was less than or greater than or equal 
to the median value, or the measurements were una-
vailable, or (2)  whether patients had a TP53 mutation 
at baseline or not, or the results were unavailable. The 
correlation between baseline cfDNA concentrations and 
tumor dynamics’ parameters was also explored by sepa-
rating patients into groups based on the median value 
to investigate the informativeness of cfDNA compared 
to ctDNA.

Furthermore, the influence of baseline ctDNA mea-
surements and cfDNA concentrations on kg, km, and kd 
were evaluated as categorical covariates in the tumor dy-
namics model. The EGFR mutation levels and the cfDNA 
concentrations were categorized based on the correspond-
ing median values as described above. When a sample 
was missing, it was assigned to the third category and a 
sensitivity analysis was performed by evaluating models 
with and without the covariate for a dataset where the 
data from patients with missing covariates were removed. 
A significant correlation was defined as a decrease in OFV 
by more than 3.84 (p < 0.05, degree of freedom = 1, assum-
ing χ2 distribution).

Software and estimation methods

The population modeling analysis in this study was per-
formed with NONMEM (version 7.4.4, ICON Development 
Solutions). Parameters were estimated using the first 
order conditional estimation method with interaction. 
Data management and plot generation were performed 
with R statistics software (version 4.2.1; R Foundation for 
Statistical Computing).

RESULTS

Patients and data

The intensively sampled erlotinib concentration-time 
curves were obtained from 29 patients (N = 377, 13 

(1)
dTS
dt

= kg ⋅ TS − kd ⋅ TS − km ⋅ TS

(2)

kd =

{

kd, for the model without exposure−dependent decay

kd ⋅Exposure, for the model with exposure−dependent decay

(3)
dTR
dt

= km ⋅ TS + kg ⋅ TR

(4)TS = TS + TR

F I G U R E  1   Graphical structure of the tumor dynamics model.

kd

TSkg TRkg
km
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samples per patient). The SLD measurements (N = 155) 
as well as additionally sampled erlotinib concentrations 
(N = 146), ctDNA measurements (N = 50), and cfDNA 
concentrations (N = 50) were collected from 18 real-world 
patients with NSCLC from the START-TKI study. For 
these 18 patients, the median time period when the SLD 
measurements were available is 264 days since the start of 
the treatment (range from 20 to 1168 days). All included 
patients had an event of disease progression (n = 16) or 
death (n = 2), and the use of erlotinib was stopped after 
the physician was sure that progression occurred. The 
data were censored after the stop of treatment.

The obtained erlotinib concentration data over time 
are presented in Figure  S1. None of the collected data 
was below the lower limit of quantification. The median 
baseline tumor size (SLD) of the included patients was 
76.6 mm (range: 29–116 mm). Out of the 146 obtained 
concentrations, 125 were measured at greater than or 
equal to 20 h after the last drug intake (trough concen-
trations) with a median of 842 ng/mL and range of 318–
1834 ng/mL. Activating EGFR variants (including exon 
19 deletions [N = 11] and EGFR p.L858R [N = 6] and 
p.K852R [N = 1] mutations) were detected in the tumor 
biopsies of all 18 patients.6 The plasma cfDNA samples 
at the start of treatment were available from 12 out of 18 
patients. The median baseline cfDNA concentration was 
1.44 ng/μL (range from 0.77 to 3.65 ng/μL). The genetic 
variants that are of tumor origin (EGFR variants and 
TP53 mutations) in cfDNA samples were also detected 
(i.e., ctDNA measurements). The primary EGFR vari-
ants were detected from baseline samples of eight out of 
12 patients, which include exon 19 deletions (N = 6) and 
EGFR p.L858R (N = 1) and p.K852R (N = 1) mutations, 
and no primary EGFR variant was detected at baseline 
for the rest of the four patients. The median baseline 
EGFR VAF was 1.74% (range from 0% to 62.74%). The 
obtained VAF  of primary EGFR variants over time are 
shown in Figure  S2. Furthermore, a TP53 mutation 
was detected in four patients at baseline and the EGFR 
p.T790M mutation was detected in three patients during 
erlotinib treatment. The baseline characteristics and 
the data contributed by each patient are summarized in 
Table 1.

Population PK model

A two-compartment population PK model with first-order 
absorption with lag time and first-order elimination was 
developed and showed to best fit the obtained PK data. 
Compared to the one-compartment model, the OFV of 
the selected model decreased by 27.5 (p < 0.01, degree of 
freedom = 3), indicating an improvement in the model T
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fit. None of the tested covariates was identified to have 
significant effect on the PK parameters. The parameter 
estimates of the PK model are presented in Table 2. The 
relative standard errors (RSEs) were less than or equal to 
25% for all parameters except for apparent distribution 
clearance (Q/F; 40%), indicating acceptable estimation 
precision. High estimates for IIV on Q/F and absorption 
rate constant (Ka) were observed (coefficient of variation 
[CV%] > 100%), with shrinkages less than 30%. The pa-
rameter estimates were also in good agreement with the 
bootstrap results (Table 2).

The GOF plots of the final PK model demonstrated a 
good concordance between the model predictions and ob-
servations (Figure S3). The conditional weighted residual 
errors (CWRES) were randomly distributed around zero 
without obvious trends over population predictions, but 
with a slight trend over time between 6 and 8 h after the 
last drug intake. The VPC plot (Figure 2) shows that the 
observed data can be adequately predicted by the devel-
oped model. Additionally, 100% of the model predicted 
AUC and 82.4% of the model predicted Ctrough were within 
80%–120% of their corresponding observations.

Tumor dynamics model

The tumor dynamics modeling results showed that the 
model accounting for acquired resistance only could ade-
quately fit the data. The model that assumed the presence 

F I G U R E  2   VPC of the developed population PK model. 
The blue dashed lines represent 95th and 5th percentiles of the 
observations, the red dashed line represents the 50th percentile of 
the observations, the blue shaded areas represent 95% confidence 
interval of the 95th and 5th percentiles based on the simulations 
respectively, and the red shaded area represents 95% confidence 
interval of the 50th percentile based on the simulations. VPC, visual 
predictive check; PK, pharmacokinetic.
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of primary resistance did not show an improved fit to the 
available data (p > 0.05, OFV decreased by 0.731 and AIC 
increased by 1.269, degree of freedom = 1). The typical es-
timate of TR_0 in this model was 4.51 mm which accounted 
for a small proportion (5.9%) of the median baseline tumor 
size (Table  S1). Therefore, the pre-exiting resistance 
component was ultimately not included in the model. 
Furthermore, the OFV and AIC of the model incorporat-
ing an exposure-dependent decay increased by 1.441 com-
pared with the base model, indicating no improvement in 
the model fit. Therefore, the exposure-dependent drug ef-
fect was not included in the final model.

The parameter estimates of the final tumor dynamics 
model are shown in Table 3 (model code in Appendix S2). 
The RSEs of the parameter estimates were all less than 
30%, indicating acceptable estimation precision. High 
estimates for IIV of the estimated tumor dynamics pa-
rameters were observed (CV% >60%). The GOF plots 
demonstrated a sufficient fit of the developed model to the 
data (Figure  S4). The VPC considering the censoring of 
data due to progression showed that the model-predicted 
intervals adequately captured the distribution of observa-
tions (Figure 3).

Genetic biomarkers and tumor dynamics

The baseline results regarding ctDNA measurements and 
cfDNA concentrations were available from 12 out of 18 

patients and missing for six patients. No correlation was 
observed between baseline mutant EGFR VAF and cfDNA 
concentrations. According to the exploratory plots, pa-
tients with baseline mutant EGFR VAF greater than or 
equal to 1.74% had relatively high kg and km estimates, 
and slightly higher kd estimates than patients with mutant 
EGFR VAF less than or equal to 1.74% (Figure 4). In addi-
tion, for patients with a TP53 mutation at baseline, the kg 
and km estimates were relatively high compared to patients 
without TP53 mutations, and comparable kd estimates 
were observed (Figure 4). The association between base-
line cfDNA concentrations and tumor dynamics’ param-
eters is shown in Figure S5. Patients with baseline cfDNA 
concentration greater than or equal to 1.44 ng/μL showed 
to have higher kg and lower kd estimates than patients 
with baseline cfDNA concentration less than or equal to 
1.44 ng/μL, and comparable km estimates were observed.

When exploring the covariate effect of the baseline 
genetic biomarkers in the tumor dynamics model, the 
correlation between baseline mutant EGFR VAF and 
kg was identified to be most significant when assign-
ing the missing values as a separate category (OFV de-
creased by 11.6, p < 0.01, degree of freedom = 2). This 
correlation remained to be significant when removing 
the data of patients with missing covariate from the 
dataset (OFV decreased by 4.6, p < 0.05, degree of free-
dom = 1). The differences in km or kd among patients' 
groups with different baseline mutant EGFR VAF levels 
were shown to be not significant. Additionally, the cor-
relations between the presence of a TP53 mutation and 
tumor dynamics parameters were also not significant in 
the covariate analysis. The parameter estimates of the 
model with baseline mutant EGFR VAF as the covariate 
are shown in Table 3. The typical kg estimate in patients 
with baseline EGFR VAF greater than or equal to 1.74% 
was 0.00204 day−1, which is higher than the estimate for 
the whole population (0.000799 day−1). The typical kg es-
timate in patients with baseline EGFR VAF less than or 
equal to 1.74% was 33.4% of that in patients with base-
line EGFR VAF greater than or equal to 1.74%, whereas 
the difference between patients with baseline EGFR 
VAF less than or equal to 1.74% and with unknown mu-
tant EGFR level was not significant. The inclusion of 
mutant EGFR VAF in the model decreased the CV% of 
kg from 60.3% to 16.6%, whereas the corresponding RSE 
increased. The population predictions of the model also 
improved according to the GOF plots (Figure S6).

DISCUSSION

In this study, the tumor dynamics and the development 
of drug resistance in patients with NSCLC undergoing 

F I G U R E  3   VPC considering dropout of the developed tumor 
dynamics model. The blue dashed lines represent 95th and 5th 
percentiles of the observations, the red dashed line represents the 
50th percentile of the observations, the blue shaded areas represent 
95% confidence interval of the 95th and 5th percentiles based on 
the simulations respectively, and the red shaded area represents 
95% confidence interval of the 50th percentile based on the 
simulations. VPC, visual predictive check.
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erlotinib treatment was characterized with a mathematical 
model accounting for tumor heterogeneity. Incorporating 
the erlotinib exposure into the model was also explored. 
The potential correlation between baseline genetic bio-
markers and parameters that characterize tumor dynam-
ics was identified with exploratory plots and confirmed 
with the model.

To facilitate the investigation on the exposure-tumor 
inhibition relationship, a population PK model of erlotinib 
was first developed. The estimated clearance is compara-
ble to what has been reported previously (4.10 L/h vs. 3.64–
4.71 L/h).20–23 Due to a lack of data, previously reported 
covariates on erlotinib PK, including the smoking status, 
co-medications, and alpha-1-acid glycoprotein, could not 
be investigated in our analysis.20,23 The CV% of Ka and Q/F 
was estimated to exceed 100%. For Ka, this high IIV esti-
mate might be because it covers the variability in the lag 
time of absorption. Considering the amount of available 
data, these IIV estimates may not be precise. However, 
this does not affect the predictive ability of the PK model 
for the intended use in this study. The performance of the 
model was confirmed by the model evaluation results. 
However, a trend in CWRES over time between 6 and 8 h 
after the last drug intake was observed. This is considered 
to be due to the double peaks that were observed in the ob-
tained data: data from 18 out of 29 patients who provided 
intensively sampled PK data demonstrate increased drug 

concentrations at 6–8 h. The possible explanation could be 
the delayed disintegration of the tablets, food intake,24,25 or 
possible enterohepatic circulation, although the latter has 
not been reported in literature before. These observed dou-
ble peaks could not be captured by the current PK model, 
nor by a model considering dual first-order absorption 
with different lag times. Nevertheless, the model showed 
to be able to adequately predict the AUC of individual 
concentration-time curves as well as the trough concen-
trations which are of interest to be linked to the tumor 
dynamics. Therefore, the developed PK model was consid-
ered to be valid to support our study.

For the tumor size dynamics, a model accounting for 
intra-tumor heterogeneity and acquired resistance was 
shown to adequately fit the obtained data, and considering 
primary resistance was not favored based on the available 
data. This may indicate that for patients with NSCLC with 
an activating EGFR mutation, it is mainly the acquired 
resistance, which may be due to the acquisition of EGFR 
p.T790M mutation or other mechanisms, that limits the 
treatment response. Among previously reported model-
based studies on tumor size dynamics in patients with 
NSCLC undergoing erlotinib treatment, one study also con-
sidered tumor heterogeneity.26 Their results also showed 
that the models with and without primary resistance could 
describe the data equally well, even though erlotinib was 
used as a second-line treatment in their study.26 However, 

F I G U R E  4   Parameter estimates from the tumor dynamics model versus baseline plasma circulating tumor DNA (ctDNA) 
measurements on primary mutant EGFR variant allele frequency and TP53 mutation. VAF, variant allele frequency.

(a)

(d) (e) (f)

(b) (c)
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it is worth noting that the model presented in the current 
study is empirical and simplifies the complex process of 
the emergence of treatment resistance. Previously, several 
mechanistic models have been proposed to provide quan-
titative insight into this process.27,28 The relatively limited 
amount of data in the current analysis prohibits the imple-
mentation of more mechanistic models and therefore may 
limit the mechanistic interpretation. In fact, the presence 
of TP53 mutations may indicate the presence of primary re-
sistance.29,30 However, TP53 mutations were only detected 
in four out of 18 patients which may be unable to provide 
significant impact to our model. Nonetheless, this more 
empirical approach does take into account the existence 
and interaction among multiple clonal populations which 
are crucial for understanding resistance development.28 
We do consider this approach relevant for exploring op-
timal guided drug treatment in real-world clinical oncol-
ogy practice where extensive data are normally sparse. 
Furthermore, the current approach can serve as a basis for 
building more mechanistic-based models when more ex-
tensive data are available.28 The growth rates of treatment-
sensitive and resistant clonal populations were assumed to 
be the same in the model. This was because of the lack of 
identifiability of separate growth rates due to the limited 
amount of data.

The current study did not identify a clear exposure-
tumor inhibition relationship within the current concen-
tration range (the median predicted drug concentrations 
at the tumor size monitoring time points was 992 ng/mL 
[range of 284–1554 ng/mL]), neither when assuming 
a nonlinear relationship with the Emax model. A dose-
tumor inhibition relationship was also explored but no 
clear relationship was identified. This might be because 
the treatment effect has already been saturated. The dose 
level selected for erlotinib (i.e., 150 mg daily) is the max-
imum tolerated dose, under which the average Ctrough 
at steady-state is well above what is required for the re-
quired erlotinib activity and considered to be sufficient 
to provide a high anti-neoplastic effect.31 This lack of re-
lationship is in line with previous clinical studies where 
no significant correlation between erlotinib exposure 
and response has been identified.32–34 One study also 
showed that increased erlotinib exposure had less im-
pact on the antitumor effects in EGFR mutation-positive 
patients.35 As an exposure-response relationship was not 
identified, we could not investigate the influence of drug 
exposure on the evolving tumor progression in this case. 
However, this result suggests that there is a potential op-
tion to decrease the dose of erlotinib to target for a lower 
concentration range that still ensures sufficient efficacy 
but can be better tolerated, especially because a signif-
icant proportion of erlotinib-treated patients can have 
severe toxicity.6 The US Food and Drug Administration 

has recently proposed the Project Optimus which also 
encourages to improve dose selection and optimization 
for oncology drugs by accounting for both efficacy and 
tolerability rather than automatically selecting the max-
imum tolerated dose.36,37 A recent study has already 
suggested an optimized starting dose of 50–60 mg/day 
for erlotinib and a concentration range of 150–310 ng/
mL for personalized erlotinib treatment in patients with 
NSCLC considering both efficacy and tolerability.38

The correlation between baseline genetic biomarkers 
and parameters in tumor dynamics’ model was inves-
tigated in this study. The VAF's of mutant EGFR and 
the presence of TP53 mutations in ctDNA at baseline 
showed to have potential correlation with the estimated 
parameters in the tumor dynamics model (mainly kg 
and km), especially that higher baseline EGFR VAF was 
significantly correlated with increased growth rate con-
stant kg. This indicates that patients with higher EGFR 
VAF at baseline may have a worse response to the treat-
ment, which is in line with the clinical findings from 
a EGFR cohort in the START-TKI study (i.e., patients 
without detectable ctDNA at baseline had a lower rate 
of radiological progression).6 An explanation could be 
the association between ctDNA levels and tumor bur-
den.11,39 Our result is also in line with previous findings 
that baseline concomitant TP53 mutations may relate 
to worse clinical outcome in patients with NSCLC.6 
After incorporating baseline ctDNA measurements, the 
developed tumor dynamics model could better predict 
the tumor size dynamics in response to erlotinib treat-
ment in patients with NSCLC in the population level 
(Figure S7), and the IIV of kg was reduced from 60.3% 
to 16.6% (CV%). This finding also demonstrates the po-
tential to use baseline ctDNA as an early biomarker to 
support decision making for the treatment of patients 
with NSCLC.40 Nonetheless, it is worth noting that the 
inclusion of the covariate resulted in a relatively poor 
estimation of IIV on kg (RSE increased to 152%), which 
is likely due to the small number of subjects in each cat-
egory. Therefore, more data are desired for a more ro-
bust model and to validate the results.

This study also has some limitations. The results 
found in the current study are based on limited data 
from a limited number of patients, especially for genetic 
biomarkers. The unavailability of baseline cfDNA sam-
ples in six out of 18 patients could also impact the in-
terpretation of the results, as well as the determination 
of the threshold value of EGFR VAF which was associ-
ated with increased growth rates. However, this study 
is one of the first that investigated the relationships 
among PK, tumor dynamics, and ctDNA measurements. 
Furthermore, because the data on detectable mutation 
levels in ctDNA are limited, the development of a model 
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for describing longitudinal ctDNA data was not feasi-
ble and only the baseline ctDNA measurements were 
included in the analysis, which, however, explored the 
value of ctDNA as an early biomarker. Additionally, the 
mutant EGFR VAF was only investigated as a categori-
cal covariate, whereas the data range from 0% to 62.74% 
and correspond to multiple variants. Therefore, further 
analysis with more extensive data is warranted to val-
idate the current results and to explore the correlation 
between the longitudinal ctDNA measurements and 
tumor size dynamics with models.

In conclusion, our study demonstrated that the model 
accounting for intra-tumor heterogeneity and acquired re-
sistance can well-characterize the tumor size dynamics in 
patients with NSCLC during erlotinib treatment. No clear 
exposure-tumor inhibition relationship was identified 
within the current concentration range. A correlation be-
tween baseline ctDNA measurements and tumor growth 
rates was, however, identified which suggests that quan-
titative ctDNA measurements at baseline have the poten-
tial to be predictive of anticancer treatment response, and 
further study on more extensive longitudinal data is war-
ranted. The developed model can potentially be further 
applied to design optimal treatment regimens that better 
overcome resistance.
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