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Abstract

This work illustrates the use of normative models in a longitudinal neuroimaging

study of children aged 6–17 years and demonstrates how such models can be used

to make meaningful comparisons in longitudinal studies, even when individuals are

scanned with different scanners across successive study waves. More specifically, we

first estimated a large-scale reference normative model using Hierarchical Bayesian

Regression from N = 42,993 individuals across the lifespan and from dozens of sites.

We then transfer these models to a longitudinal developmental cohort (N = 6285)

with three measurement waves acquired on two different scanners that were unseen

during estimation of the reference models. We show that the use of normative

models provides individual deviation scores that are independent of scanner effects

and efficiently accommodate inter-site variations. Moreover, we provide empirical

evidence to guide the optimization of sample size for the transfer of prior knowledge

about the distribution of regional cortical thicknesses. We show that a transfer set

containing as few as 25 samples per site can lead to good performance metrics on

the test set. Finally, we demonstrate the clinical utility of this approach by showing
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that deviation scores obtained from the transferred normative models are able to

detect and chart morphological heterogeneity in individuals born preterm.
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brain age, cortical thickness, MRI, neurodevelopment, normative modelling

Practitioner Points

• We show successful transfer learning from large-scale normative models to a new cohort.

• As few as 25 scans per site are needed to adapt prior knowledge from normative models to

new sites.

• Resulting deviation scores from the normative model are free of site-effects and are able to

uncover morphological heterogeneity in individuals born preterm.

1 | INTRODUCTION

Identifying structural or functional biomarkers of psychiatric and neu-

rological illnesses across the lifespan has received increasing attention

in recent years. Many of these disorders present symptoms that begin

during childhood and adolescence (Bayer et al., 2021; Rogers & de

Brito, 2016; Solmi et al., 2022; Whittle et al., 2020). There is, how-

ever, large interindividual heterogeneity in symptoms and underlying

biology (DeLisi, 2008; Fuhrmann et al., 2022; Mills et al., 2021;

Tamnes et al., 2017), making it challenging to pinpoint the precise

underlying neurobiological substrates. Longitudinal datasets provide

particularly valuable insights on the temporal evolution of brain devel-

opment and offer considerable potential to understand the emergence

of psychopathology and to parse this heterogeneity across individuals.

To detect and understand this heterogeneity and atypicality, there

is a need to better characterize typical neurodevelopment (Insel, 2014;

Volpe, 2009). In recent years, the availability of large datasets has

greatly assisted efforts to understand interindividual variability in brain

development (Bethlehem et al., 2022; Rutherford, Fraza, et al., 2022).

For example, large scale studies using cortical volume, cortical thickness

(CT) and surface area have identified a general decrease in these met-

rics with age, after adolescence (Bethlehem et al., 2022; Frangou

et al., 2022; Rutherford, Fraza, et al., 2022; Tamnes et al., 2017;

Thambisetty et al., 2010). CT has been shown to more accurately

reflect underlying pathophysiological mechanisms than gray matter vol-

ume analysis (Clarkson et al., 2011; Hutton et al., 2009; Pereira

et al., 2012; Zhao et al., 2022). However, these large data resources

have expanded in scale via large, long-running longitudinal cohort stud-

ies. While the benefits of these large and unique cohorts are obvious,

such studies also impose particular difficulties. For example, data must

often be aggregated across multiple study centers, which necessitates

dealing with site effects and, across developmental time scale, subjects

are often scanned with different scanner hardware and/or software at

successive timepoints. As a result, there is often little or no overlap in

terms of age of participants and site effects in successive acquisition

waves. Such nontrivial differences across sites, scanners, and time-

points have been difficult to account for statistically in analyses. There-

fore, in addition to longitudinal data, novel methodological tools that

map interindividual differences are needed to generate new insights.

Normative modeling approaches have recently emerged as a tool

to better understand longitudinal developments with neuroimaging

data (Marquand et al., 2019; Marquand, Rezek, et al., 2016). These

approaches produce statistical inference at the individual level, with-

out relying on strong assumptions about clustering of individuals or

population structure (Antoniades et al., 2021; Cole, 2012; Marquand

et al., 2019). Instead, symptoms in individual patients can be related

to extreme deviation from the normative range (Fraza et al., 2021;

Marquand, Wolfers, et al., 2016; Zabihi et al., 2019). This has shown

the potential to detect morphological differences in patient popula-

tions which were not evident using standard techniques (Remiszewski

et al., 2022). Additionally, a Hierarchical Bayesian Regression (HBR)

approach to normative modeling has been shown to efficiently

accommodate inter-site variation and to provide good computational

scaling, which is important when using large studies, longitudinal stud-

ies, or combining smaller studies, that are acquired across multiple

sites (Bayer et al., 2021; Kia et al., 2022; Rutherford, Fraza,

et al., 2022). It also supports federated (i.e., decentralized) multisite

normative modeling to transfer previously trained models onto

unseen sites, while benefiting from the training on the large reference

datasets (Kia et al., 2022; Rutherford, Kia, et al., 2022). This is espe-

cially interesting given that, in longitudinal studies running over sev-

eral years, changes of scanner hardware, software and/or scan

protocols are the norm rather than the exception, which generates a

need to correct for the resulting scanner effects.

In this work, we provide a case study in using the transfer of prior

knowledge about CT distributions from normative models derived

from a large reference (e.g. lifespan) cohort to better estimate parame-

ters on a smaller target (e.g. clinical) cohort. For this, we use longitudi-

nal CT data from the Generation R study (Jaddoe et al., 2006;

Kooijman et al., 2016; White et al., 2018), which contains data from

children aged 6–17 years scanned in two different scanners, unseen

by the reference models. The narrow age-range makes this study a

good candidate for transfer learning in that it is beneficial to transfer

information learned from a large lifespan cohort to obtain precise esti-

mates of the slope or trajectory of developmental effects across a nar-

rower age range. This method provides important advantages: one, it

allows meaningful comparison of individuals scanned on different

scanners, while taking advantage of previous knowledge, built from
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large publicly available datasets to set informed hyperpriors: expected

mean and variance of the distribution of samples for each region of

interests. This, in turn, provides three benefits to the study, on provid-

ing more accurate predictions from the models thanks to the use of

the mentioned informed priors; second this enables to reduce the

ratio of training samples necessary to learn developmental trajectories

for to the unseen sites, thereby enabling more participants to be allo-

cated to the test set, and thus improving statistical power (Pan &

Yang, 2010). Third, we will show that it provides a means to draw

meaningful inferences within individuals across timepoints, even when

follow-up scans are derived from a different scanner. This work also

aims to offer some guidance on the methodology, for example, pro-

viding empirical estimates of the number of samples required for the

transfer of knowledge from previous learnings and choices in transfer

configurations, for example, factors included as batch effects. Finally,

we provide a demonstration of the clinical utility of this approach by

using it to understand interindividual differences in brain morphology

resulting from preterm birth.

2 | METHODS

2.1 | Normative modeling

We estimated normative models using HBR to predict CT from age,

sex and scanner site, for each region of interest (ROI) using the freely

available PCNtoolkit python package, version 0.22 (Rutherford, Kia,

et al., 2022).

2.1.1 | Reference models

We assembled a large reference cohort containing n = 42,993 (95%)

healthy individuals to train the normative models before validating

this model on n = 2682 controls and patients (5%, stratified by sites)

from a collection of mostly publicly available MRI datasets across

77 sites and 45,675 participants (see Tables 1 and 2 for details). The

reference model is available on the PCNportal (https://pcnportal.dccn.

nl/). CT measures were obtained from FreeSurfer processing (versions

5.3 or 6.0), as referred in the publications associated with the datasets

(Dale et al., 1999; Fischl et al., 1999, 2002; Fischl & Dale, 2000). The

Destrieux atlas was used to parcellate the brain into ROIs (Destrieux

et al., 2010). One normative model was estimated per ROI. Linear

HBR models were estimated using fixed effects of age and batch

(i.e., random) effects for site and sex. In practice, this allows each site

and sex to have different slopes, intercepts and variances. We

included only data from the first visit when multiple visits were avail-

able (i.e., UKBB and ABCD). Only participants with complete data on

ROIs were included.

Estimated reference models performed well according to accu-

racy metrics (explained variance: mean = 0.44, SD = 0.13, standard-

ized mean squared error (SMSE): mean = 0.55, SD = 0.13, and mean

standardized log loss (MSLL): mean = �0.37, SD = 0.14). Outputs

include hyperparameters defining the mean and variance of the site-

specific mean effects and variance, estimated during the training over

the collection of datasets. This can be used as informed priors when

adapting the normative models to unseen target sites. These hyper-

parameters are adapted to the unseen site using a holdout subset of

the target dataset, that is, the adaptation set. This allows to reduce

the number of samples used for adaptation while retaining a low vari-

ance of the estimations.

2.1.2 | Target cohort

As target cohort, 8523 T1-weighted MRI scans from the population-

based longitudinal Generation R study (Jaddoe et al., 2006; Kooijman

et al., 2016) were used. In short, the Generation R study is a prospec-

tive cohort study from fetal life until adulthood that is designed to

find early markers for typical and atypical development, growth, and

TABLE 1 Overview and
demographics of participants in the
reference cohort.

Datasets N Number of scanners Age range Gender ratio F/M

ABCD 9605 29 9–11 48.8/51.2

CAMCAN 582 1 8–88 52.2/47.8

CMI 633 2 5–22 40.9/59.1

FCON 928 18 8–79 58.5/41.5

HCP 1049 1 22–37 54.0/46.0

HCPAD 1262 5 8–100 54.4/45.6

HCPEP 56 4 17–36 35.8/64.2

IXI 529 1 20–86 56.1/43.9

NKI 438 1 7–85 64.8/35.2

OASIS 1542 5 43–97 61.2/38.8

OPN 580 6 8–58 55.5/44.5

PNC 1344 1 8–23 53.3/46.7

UKBB 24,445 3 44–82 52.9/47.1

Total 42,993 77 5–100 52.5/47.5

GAISER ET AL. 3 of 11
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health. Almost 10,000 pregnant women living in Rotterdam, The

Netherlands, were enrolled in the study between 2002 and 2006.

Data from the children and caregivers was collected at several time

points and written informed consent and/or assent was obtained from

all participants. All study procedures were approved by the Medical

Ethics Committee of the Erasmus Medical Center. The imaging proto-

col and quality assessment is extensively described by White et al.

(2018). MRI scans were acquired in three waves using two different

scanners, making the cohort an ideal validation set to investigate the

transfer of hyperparameters from a reference dataset to an unseen

target set. In longitudinal studies running over several years, changes

of scanner hardware, software and/or scan protocols are often inevi-

table, which generates a need to correct for the resulting scanner

effects. In the first wave, 1033 participants (484 females, age range:

[6–10]) were imaged with a 3 T MR750 Discovery MRI scanner, while

in the second (n = 3920, 1977 female, age range: [9–12]) and third

wave (n = 3570, 1866 female, age range: [13–17]) a 3 T MR750w

Discovery scanner (General Electric, Milwaukee, WI, USA) was used.

After exclusion of scans with incidental findings (n = 58), braces

(n = 1067), and low-quality visual inspection ratings of FreeSurfer

reconstructions (n = 2067), a total of 6285 scans were included in the

target dataset. Since several exclusion factors can be present in a sin-

gle scan, Supplementary Figure 1 illustrates the extend of overlap.

Figure 1 shows a histogram of age and scanner distributions in the tar-

get dataset.

2.2 | Transfer of hyperparameters from reference
models to target cohort

By making use of the Generation R study cohort, we set out to show

the advantage of transferring the hyperparameters to an unseen site

by (1) determining the optimal number of samples needed for adapta-

tion to the target cohort, (2) validating the recalibration of data to the

target cohort and successful removal of site-effects by comparing raw

and scanner corrected values, and (3) illustrating the utility of site-

corrected deviations scores to uncover changes in morphology

between groups and individuals. In the following, these three aims are

described in more detail.

2.2.1 | Optimal sample size for parameter
adaptation

In order to determine the optimal number of samples in the adapta-

tion set, we leveraged the large amount of data available in the Gener-

ation R cohort. As described above, to prevent bias, held-out data

should be used for adapting the parameters of the normative model

to the target cohort (see Kia et al., 2020, 2022 for details). The num-

ber of scans in the adaptation set was varied ranging from 5 to

TABLE 2 Overview and
demographics of participants in the
validation set.

Datasets N (N patients) Number of scanners Age range Gender ratio F/M

ABCD 499 (0) 28 9–11 44.5/55.5

CAMCAN 32 (0) 1 18–82 34.4/65.6

CMI 38 (0) 2 6–22 31.6/68.4

FCON 67 (23) 14 15–78 44.8/55.2

HCP 64 (0) 1 22–36 60.9/39.1

HCPAD 53 (0) 5 8–83 49.0/51.0

HCPEP 123 (122) 4 17–35 39.0/61.0

IXI 24 (0) 1 20–68 62.5/37.5

NKI 20 (0) 1 11–84 60.0/40.0

OASIS 349 (274) 5 46–96 50.1/49.9

OPN 27 (0) 6 8–35 51.8/48.2

PNC 76 (0) 1 9–21 47.4/52.6

UKBB 1310 (0) 3 45–80 54.3/45.7

Total 2682 (419) 72 6–96 50.4/49.6

F IGURE 1 Histogram of the scanning waves and age distributions
in the Generation R target dataset.

4 of 11 GAISER ET AL.
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300 scans and model metrics (explained variance, SMSE, MSLL) of the

subsequent models were calculated for each sample size. The result-

ing information is particularly useful for small imaging cohorts, since

cohorts with smaller sample sizes can employ the current approach to

boost power by making use of the hyperpriors inferred from large

data. Yet, this is only viable if the samples needed to recalibrate the

models can be kept to an optimal minimum. As a reference for model

performance using the transfer approach, we estimated normative

models using only the Generation R cohort. Models using only Gener-

ation R data were generated with a 50/50 split in training set

(n = 3143) and test set (n = 3142) while ensuring equal age and sex

distributions. Parameters were identical to the ones used in the refer-

ence model.

2.2.2 | Validation of adaptation

Additionally, two aspects of the Generation R study design make the

cohort an ideal target set to validate the successful recalibration of

the normative models to an unseen site. First, scans of participants

that have repeated measurements over all three scanning time points

are present. Uncorrected CT values of a participant with scans across

all three measurement waves (and therefore across both scanners)

show heterogeneity over time points that is partly due to biological

changes over time and partly due to confounding site-effects. After

successful recalibration of the normative model, we expect resulting

z-scores, which are in principle free of site-effects, of the same partici-

pant to be in a similar range while raw values will differ. Second, there

is an overlapping age range (8.6–10.7 years of age), in which scans

from both scanners were obtained (Figure 1). Z-scores of participants

from wave 1 (scanner 1), that fall in the overlapping age range of

waves 1 and 2 should be distributed similarly after recalibration as

z-scores in the same age range of wave 2 (scanner 2), while raw,

uncorrected values differ due to scanner effects. Therefore, scans of

participants with measurements at all three scanning time points

(n = 1317) and scans from the first imaging wave that fall in the over-

lapping age range (n = 211) were withheld from the adaptation set

that was used to recalibrate the reference normative model to the

new unseen site. As outlined above, these scans hold valuable infor-

mation that will be used to determine the successful calibration of the

models by comparing raw CT before adaptation and corrected esti-

mates after adaptation.

2.2.3 | Clinical application of normative estimates

Finally, we used the resulting site-effect free estimates to illustrate their

potential to uncover morphological deviations in clinical cohorts by

contrasting estimates in CT per ROI between participants in the Gener-

ation R cohort born preterm (gestational age < 37 weeks, n = 339) and

children born at term (n = 5646). Pre-term birth interrupts a vulnerable

period for brain development, as processes such as synaptogenesis,

axonal growth, and neuronal migration, take place during the third

semester (Volpe, 2009). Therefore, deviation scores from the normative

models can for instance be used to explore the variability in CT within

children born preterm, but also to find ROIs that differ between chil-

dren born preterm and at term. Notably, these deviation scores are free

of site-effects and therefore especially suited for longitudinal MRI

designs, as it is the case with the Generation R study.

3 | RESULTS

3.1 | Transfer results

3.1.1 | Optimal number of samples for parameter
adaptation

We first determined the optimal number of subjects needed in the

adaptation set. Figure 2 shows evaluation metrics for each ROI as

the sample size of the adaptation set increases. Performance of the

model reaches a plateau around 100 subjects. We thus adapted the

initial reference models to the unseen sites of the Generation R study

on n = 300 (4.8%) (n = 100 for scanner 1 in wave 1; n = 200 for

scanner 2 in waves 2 and 3) and tested the models on the remaining

participants (n = 5985; n = 813 for scanner 1 in wave 1, n = 5172 for

scanner 2 in waves 2 and 3). For each adaptation set, subjects from

wave 1 and 3 were sampled randomly, whereas subjects from wave

2 were sampled pseudorandomly to ensure a uniform cover of the full

range of the narrow and highly peaked age distribution in this wave

(Figure 1). Sampling was done using the datasample function (without

replacement) in MATLAB (Mathworks, USA). While model perfor-

mance reached a performance ceiling at approximately 100 scans per

scanner/wave in the adaptation sample, only slight concessions in

model performance are present as adaptation sample size decreases

to only 25 scans. In Table 3 performance metrics are reported for

transfer learning with 25 and 100 scans per adaptation sample, as well

as for normative models trained on half of the Generation R cohort

without the use of hyperparameters from the reference models (refer-

ence for baseline performance for models covering a narrower age

range compared to the reference lifespan model).

As can be seen in Figure 2, model performance seems to differ in

cerebral regions, with better evaluation metrics in occipital and frontal

compared to the remaining ROIs. We therefore tested the influence

of average ROI area (as reported by Destrieux et al., 2010) on model

performance. We find that ROI area and evaluation metrics were cor-

related (rExplained Variance = .21, pExplained Variance = .012; rSMSE = �.21,

pSMSE = .011; rMSLL = �.18, pMSLL = .025), with larger ROIs outper-

forming smaller ROIs (Supplementary Figure 2).

3.1.2 | Adaptation settings

We furthermore tested different adaptation settings. Scans in waves

2 and 3 of the target cohort were acquired on the same scanner, how-

ever at different time points. Therefore, we compared two different

adaptation settings: First, treating waves 2 and 3 as the same site, and

second, treating waves 2 and 3 as different sites. When treated as

GAISER ET AL. 5 of 11
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same sites, we found a slight bias for lower deviation scores (z-scores)

when running the adaptation with only scans from wave 2, and higher

deviation scores when running the adaptation with only scans from

wave 3, in particular for frontal ROIs. The effect of the different adap-

tation settings on all ROIs is shown in Supplementary Figure 3 and is

explicitly illustrated in an example ROI in Figure 3. Panel (a) shows

that the model is more successful in reparametrizing the raw data to

centiles when each time point of measurement is handled as a sepa-

rate site-effect. Possible sources for such effects might stem from

changes in scanner software, changes in image quality with age

(i.e., motion artifacts), or sample variability. In our target cohort, scan-

ner software was upgraded after the first 370 scans of wave 2 but

was otherwise identical in waves 2 and 3. However, age-related

improvements in images quality are frequently reported in the litera-

ture and quality assurance, measured as topological defects in the sur-

face reconstruction for FreeSurfer processed MRI data (https://

github.com/Deep-MI/qatools-python), does show improvements in

image quality with age across the three waves (Meanwave 1 = 229.06,

SDwave 1 = 98.56; Meanwave 2 = 213.89, SDwave 2 = 67.15; Meanwave

3 = 166.97, SDwave 3 = 48.63).

3.1.3 | Adaptation validation

After choosing for an adaptation setting treating the three measure-

ment waves as different batch effects, we validated the success of the

adaptation of the reference model to the target cohort by examining

the differences between raw CT values and corrected deviations

(z-scores) after transfer of the subjects which were withheld from the

adaptation sets (see 2.2.2 Validation of adaptation). Scans of partici-

pants with repeated measurements at all imaging waves (a random

sample of 10 participants is depicted by colored lines) show a decline

over time in raw CT (Figure 4a). As expected, thinning of the cortex can

be observed with age, however, the raw CT values are confounded by

noise stemming from site-effects of the different measurement waves.

In the resulting z-scores of the withheld subjects, these site-effects are

removed as demonstrated by stable deviations from the normative

model within a participant (Figure 4b). The same holds true for the

withheld subjects from measurement wave 1 that fall in the overlapping

age range (8.6–10.7 years of age) of waves 1 (scanner 1) and 2 (scanner

2) (Figure 4c-e). While raw CT values in the overlapping age range vary

vastly between the two measurement waves (t(2874) = 13.4, p < .001),

with a tendency of higher values in measurement wave 1 compared to

wave 2 (Figure 4c), this difference is slightly reduced when correcting

for sex (Figure 4d) (t(2874) = 11.4, p < .001) and practically absent

in the sex- and additionally site-effect corrected z-scores (Figure 4e)

(t(2874) = 1.0, p = .324). Therefore, we can meaningfully compare indi-

viduals on the basis of z-scores, bearing in mind that the z-scores are

defined with respect to a lifespan based normative model.

3.2 | Relating site-effect corrected z-scores to
gestational age

To illustrate the usefulness of the resulting models, we compared

extreme deviations, acquired at the level of individuals, between

F IGURE 2 Comparison of model performance as the number of subjects in adaptation set increases. Colored lines show evaluation metrics
per region of interest (ROI), color coded according to cerebral area. The black line illustrates the mean across all ROIs. Model performance reaches
a plateau at approximately 100 scans per wave in the adaptation sample (vertical dotted line).

TABLE 3 Performance metrics of models that used 25 and 100 scans for adaptation to the target cohort. Additionally, performance metrics
of models trained on half of the target cohort without the use of transfer learning are reported. These serve as a comparison for optimal
performance, since performance metrics are generally lower in cohorts with a narrower age range, and therefore less variance to explain,
compared to life-span models. While models trained on only Generation R data perform slightly better, they come at the cost of sacrificing a large
percentage of data points to train cohort specific models.

Explained variance mean (SD) SMSE mean (SD) MSLL mean (SD)

Transfer learning with 25 scans 0.10 (0.10) 0.91 (0.10) �0.05 (0.08)

Transfer learning with 100 scans 0.12 (0.10) 0.88 (0.10) �0.08 (0.08)

Normative Models trained on

Generation R data only

0.17 (0.12) 0.83 (0.12) �0.12 (0.10)

6 of 11 GAISER ET AL.

 10970193, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26565 by E
rasm

us U
niversity R

otterdam
 U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [22/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/Deep-MI/qatools-python
https://github.com/Deep-MI/qatools-python


children born preterm and children born at term in the target cohort.

Percentages of individuals with an extreme z-score (larger/smaller

than 2) per ROI are shown in Figure 5. In the children born at term,

we find approximately 2.5% of children with extreme negative and

extreme positive z-scores respectively across ROIs. Exceptions are

primarily smaller ROIs (sulcus intermedius primus [left and right],

posterior ramus of the lateral sulcus [left], anterior transverse collat-

eral sulcus [right], orbital sulcus [right]) where areas with thicker corti-

ces than expected can be observed. Importantly, extreme deviations

are much more prevalent with children born preterm with the most

pronounced extreme positive deviations (thicker cortex than

expected) found in the left pericallosal sulcus and lateral aspect of the

F IGURE 4 Validation of transferring the reference normative model to the target cohort using two groups of subjects that were withheld
from the adaptation set: (1) subjects with repeated measurements at all three imaging waves (random sample of ten participants depicted by
colored lines, panels a and b); (2) subjects from imaging waves 1 and 2 that fall in the overlapping age range of both scanners [8.6–10.7] (depicted
by darker shaded red and blue dots and lines, panels a–e). Panels (a) and (c) show raw cortical thickness values. Panels (b), (d), and (e) show sex-
effect (panel d) or sex- and site-effect corrected z-scores of the same participants (panels b and e). For consistency, the same region of interest
(ROI) (inferior frontal sulcus) as in the previous figures is illustrated.

F IGURE 3 Effects of different recalibration configurations on the target cohort illustrated in an example ROI (inferior frontal sulcus). Panel
(a) shows z-score distributions when measurement waves 2 and 3 of the Generation R target cohort are treated as the same (same scanner) or
different sites in a frontal example ROI. Median and interquartile range are represented by green dots and black bars, respectively. For each

measurement wave, we would expect the median z-score to be around 0. However, this is not the case if measurement waves 2 and 3 are treated
as the same site. The difference from 0 is indicated by red bars. By examining the cortical thickness (CT) trajectories in panel (b) and (c), we see
that this might be due to a misestimation of mean and variance in females when both waves are treated as the same site.
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superior temporal gyrus, as well as in the anterior part of cingulate

gyrus and sulcus of both hemispheres. The most striking extreme neg-

ative deviations (thinner cortex than expected) can be seen on the left

hemisphere in the superior and inferior temporal sulcus, lingual sulcus,

superior part of the precentral sulcus, supramarginal gyrus, and on the

right hemisphere in the superior and inferior part of the precentral sul-

cus, superior frontal sulcus, angular gyrus, precentral gyrus, and the

precuneus.

These regions are consistent with previous findings on CT differ-

ences in adolescents born preterm. Pronounced cortical thinning has

been found persistently in areas surrounding the central sulcus and

temporal lobes (Martinussen et al., 2005; Nagy et al., 2011;

Zubiaurre-Elorza et al., 2012) as well as thicker cortices in frontal

regions surrounding the anterior cingulate cortex (Bjuland

et al., 2013). The current approach has been shown to capture struc-

tural deviations better than case–control studies as they are more

sensitive to individual heterogeneity (Remiszewski et al., 2022). It also

offers improved insights in longitudinal cohorts, as these deviation

scores are not cofounded by site-effects.

4 | DISCUSSION

In this study, we used information from normative models that were

initially trained on a large number of samples, scanned over 77 sites,

as prior knowledge for the parameters of the CT distributions when

adapting these models to the two scanners of the longitudinal Gener-

ation R study.

We report three main findings: first, transfer learning is successful

and allows for meaningful comparisons between individuals from dif-

ferent scanners, and sexes, as previously reported (Kia et al., 2022).

Second, we quantified the number of samples in the transfer set

needed to obtain good performance metrics on the test set and show

that relatively few samples are sufficient for good performance

(approximately n = 25). This provides the added benefit of improving

the statistical power of statistical analyses on the resulting larger test

set. While we used 100 samples per measurement wave in the adap-

tation site, slightly smaller adaptation samples decreased the evalua-

tion metrics only marginally. Third, we show that the deviations from

these normative models are meaningful in that they are altered in a

highly individualized manner in individuals born preterm.

Our results support the finding that normative models capture

the general trend of decreasing CT with age, as reported in previous

studies (Bethlehem et al., 2022; Frangou et al., 2022; Rutherford,

Fraza, et al., 2022; Tamnes et al., 2017; Thambisetty et al., 2010).

Interestingly, we found that the model performed better when each

measurement wave of the transfer cohort was treated as a separate

site-effect, even though two of three waves were acquired on the

same scanner. This could be due to sample variability, a misestimation

of parameters in the female cohort, or it might be linked to the fact

that scan quality tends to improve with age. For future studies, it may

be useful to treat distinct measurement intervals as separate batch-

effects, resulting in a factorial design of sex � scanners � waves, even

if the scanner setup has not changed, to produce more precise

models. Our recommendations might differ for longer timescales, such

as nonlinear or non-Gaussian lifespan trajectories, which usually

requires more data (de Boer et al., 2022). They might also differ in

more fine-grained parcellations, as we found ROI area to correlate

positively with model performance. However, the methods we intro-

duce can be used to determine the optimal number of subjects for

such cases.

The successful validation of the use of transfer learning with nor-

mative models opens the door for further investigations exploring the

relationship between deviation scores and various phenotypes.

Individual-level deviations, as obtained through normative models,

have been shown to provide stronger effects than typical case–

control studies using uncorrected raw measurements (Rutherford,

Fraza, et al., 2022) and are therefore particularly suitable for exploring

and investigating individual differences within and across datasets.

For longitudinal cohorts, an approach to quantitatively assess the sig-

nificance of within-subject changes over time (as, e.g., illustrated by

participants with repeated measurements in Figure 4b) was recently

F IGURE 5 Differences in site-effect
corrected z-scores between children born
preterm (low gestational age [GA]) and
children born term (typical GA). On the
left side, extreme negative deviations
(cortex thinner than expected) are
illustrated. On the right, extreme positive
deviations (cortex thicker than expected)
are shown.
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introduced (Rehak Buckova et al., 2023). The used federated learning

framework makes it possible to use the models presented in this work

as informed priors (models are available online via PCNportal [https://

pcnportal.dccn.nl/]) to investigate CT in smaller and/or clinical cohorts

in such a way.

With the current study, we also illustrate how normative models

can be used to study clinical phenotypes, by investigating the relation

between extreme deviations scores and the gestational age at birth,

that is between children born at-term and preterm. While children

born at-term show an expected distribution of approximately 2.5% of

z-scores higher than 2 or lower than �2 respectively, children born

preterm are more likely to have extreme deviations in specific ROIs,

which are consistent with previous literature showing pronounced dif-

ferences in particular in frontal and temporal cortices. While we show

a comparison between groups, the current approach does not require

clustering of individuals into groups but instead can be used to make

inferences about heterogeneity within clinical groups as well as about

deviations on an individual level.

4.1 | Limitations and future directions

We demonstrate that evaluation metrics level off after 100 scans in

the adaptation set, with as few as 25 scans leading to effective trans-

fer of knowledge. Although this marks a considerable improvement in

terms of scanning costs compared to developing models for each new

research objective, it might prevent small cohorts from utilizing the

current approach, given that neuroimaging studies typically include a

median sample size of 25 participants (Marek et al., 2022). It is impor-

tant to note, however, that out-of-sample testing is a critical step in

assessing the generalizability of the model. Future work could investi-

gate the possibility of utilizing the deviation scores from all available

data point. This could be achieved by generating numerous randomly

sampled adaptation sets, running the adaption to the target cohort for

each set, and subsequently analyzing their convergence. Furthermore,

our work estimates normative models on a single ROI, thereby

neglecting any spatial interdependencies between brain regions.

5 | CONCLUSION

Using longitudinal CT data from the Generation R study of children

aged 6–17 years, we present an application of transfer learning of

large-scale normative models which produce good performance met-

rics even with an adaptation set containing as few as 25 scans. The

resulting deviation scores allow for meaningful comparisons across

scanner site and sex. Using these obtained deviation scores, we were

able to show localized differences in CT between children born pre-

term and children born at-term.
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