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Abstract

Although clinical applications represent the next challenge in
single-cell genomics and digital pathology, we still lack computa-
tional methods to analyze single-cell or pathomics data to find
sample-level trajectories or clusters associated with diseases. This
remains challenging as single-cell/pathomics data are multi-scale,
i.e., a sample is represented by clusters of cells/structures, and
samples cannot be easily compared with each other. Here we
propose PatIent Level analysis with Optimal Transport (PILOT).
PILOT uses optimal transport to compute the Wasserstein distance
between two individual single-cell samples. This allows us to per-
form unsupervised analysis at the sample level and uncover tra-
jectories or cellular clusters associated with disease progression.
We evaluate PILOT and competing approaches in single-cell
genomics or pathomics studies involving various human diseases
with up to 600 samples/patients and millions of cells or tissue
structures. Our results demonstrate that PILOT detects disease-
associated samples from large and complex single-cell or patho-
mics data. Moreover, PILOT provides a statistical approach to find
changes in cell populations, gene expression, and tissue structures
related to the trajectories or clusters supporting interpretation of
predictions.
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Introduction

Single-cell genomics and digital pathology methods are revolutionary
technologies, which in principle, allow researchers to computationally
dissect molecular, cellular, and structural changes in human tissues (Cao
et al, 2020; Consortium et al, 2022). However, the clinical application of
single-cell sequencing, i.e., finding cells and their markers for patient
stratification and personalized treatments (Sklavenitis-Pistofidis et al,
2022), is still in its infancy. Recent clinical genomics efforts include the
use of single-cell transcriptomics to dissect the progression of acute
human myocardial infarction (Kuppe et al, 2020), to characterize
COVID-19 patients’ disease severity (Stephenson et al, 2021), the
development of pancreatic ductal adenocarcinomas (Peng et al, 2019) or
to study Alzheimer disease (Cain et al, 2023), just to cite a few.
Computational analysis of these datasets mainly leverages standard
methods for standard single-cell sequencing analysis, i.e., finding genes
with differential expression in control vs. disease for each cell cluster.
These approaches require a-priori patient classifications, i.e., control vs.
disease. Therefore, they cannot be used to find novel subgroups of
patients. Alternatively, trajectory analysis can be performed to uncover
disease progression allowing the characterization of early disease events
(Chen et al, 2020). Particularly challenging is the multi-scale nature of
single-cell experiments, i.e., each sample is represented by thousands of
single cells, which are clustered in distinct cell types or cell states.
Currently, there are few analytical methods to compare multiple single-
cell experiments from the same tissue from multiple distinct individuals.

Pathomics, i.e., the use of machine learning methods to extract
morphological structures in histology slides (Bülow et al, 2022; Hölscher
et al, 2023), is a technique orthogonal to single-cell data, which also
generated multi-scale data. Pathomics data of a slide is represented by
thousands of anatomical structures, which are described by morpho-
metric features, e.g., their individual shape and size. These can be
clustered to find structures at distinct morphological states, i.e., distinct
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degrees of dysmorphism. There are limited computational methods to
compare two or more histological slides based on morphometric
properties of their structures.

Until now, only a few methods allow the analysis of single-cell
genomics datasets at a sample level. PhEMD (Chen et al, 2020) is based
on earth moving distance (EMD) to measure the distance between
specimens (single-cell samples), where the distance between specimens
was based on clustering representations from a diffusion-based space.
This method was successfully used to explore the response of cell lines to
drug effects. Nevertheless, it is based on the diffusion map and
pseudotime estimates on the cell level. This explicitly assumes the
presence of a cellular continuum (cell differentiation/activation) between
all cells in the scRNA-seq experiments. Therefore, it is not suitable for
the analysis of single-cell experiments measured in whole organ samples
with heterogeneous cell populations. Moreover, PhEMD lacks methods
for interpretation of the results, i.e., detection of molecular and cellular
features explaining predictions. Recently, Flores and colleagues proposed
a multi-omics factor analysis that analyses single-cell data at pseudo-
bulk level (Flores et al, 2023). This work focus on finding factors and
molecular features explaining previously known sample phenotypes.
Ravindra and colleagues (Ravindra et al, 2020) propose the use of graph
attention networks for the classification of scRNA-seq samples and
apply this to predict the disease states of multiple Sclerosis (Lublin et al,
1996). More recently, SCANCell (Zhang et al, 2022), which uses
PhEMD to generate non-linear embeddings followed by the use of
association networks across cell clusters, was proposed and applied for
the analysis of systemic lupus erythematodes. Multi-scale PHATE
(Kuchroo et al, 2022) is based on non-linear embeddings and multi-
resolution representation to cluster cells at distinct resolutions. More-
over, it uses the proportion of cells per sample (across distinct
resolutions) and PHATE non-linear embeddings (Moon et al, 2019) to
find a sample-level embedding. Of note, this method uses supervised
filters to find groups of cells related to COVID-19 mortality before
sample-level analysis. The latter methods (Kuchroo et al, 2022; Ravindra
et al, 2020; Zhang et al, 2022) require labels of patients for their analysis
and cannot be used in the unsupervised analysis (clustering or trajectory
inference) of patient-level single-cell experiments.

In this study, we introduce PILOT (Patient level distance with
Optimal Transport), which explores optimal transport for sample-
based analysis of multi-scale single cell or pathomics data. First, we
introduce PILOT’s framework and its main methodological
features. Next, we perform a benchmarking study to compare
PILOT and competing approaches on their performance in 12
public single-cell and pathomics data sets. This indicated favorable
results of PILOT in both clustering and trajectory prediction
problems. Finally, we showcase PILOT’s features by interpreting
trajectory predictions on a single cell data set of samples with
myocardial infarction and a pathomics data set on samples with
kidney disease; and clustering analysis of a single cell data with
pancreatic adenocarcinoma patients.

Results

Patient level distance with Optimal Transport (PILOT)

Upon diseases, tissues undergo cellular and tissue remodeling
changes. For example, in myocardial infarction cardiomyocytes
acquire injury cell states, immune cells migrate to injured tissue and

fibrosis or scarring takes place to compensate tissue loss due to
necrosis (Zhang et al, 2022). We hypothesize therefore that changes
in cellular composition are hallmarks of disease progression. We
propose PILOT—Patient level distance with Optimal Transport
(OT)—to perform sample level unsupervised analysis of multi-scale
single cell or pathomics data. PILOT is based on three major
modules: (1) a module using optimal transport (Peyré and Cuturi,
2019) to find similarities between samples; (2) an unsupervised
analysis part to find sample level trajectories or clusters; and (3) an
interpretation module to delineate cellular, molecular or structural
features associated with the predicted clusters or trajectories
(Fig. 1). In the first module, PILOT models each sample/patient
as a distribution of cells into clusters. Here, a cluster represents a
group of cells, which can be annotated to a particular cell type or a
cell state. This distribution is encoded as a matrix P ¼ fplkgNxK
where plk indicates the probability to find a cell in cluster k at
patient l. It then uses optimal transport to find a transport plan (T)
by moving masses of cluster distributions between a pair of sample l
and q. PILOT explores the assumption that some cellular changes,
i.e., the change of healthy cardiomyocytes to injured cardiomyocyte
state are short-term events in disease progression, while tissue
remodeling (e.g., replacement of lost cardiomyocytes by fibroblasts
due to scarring process) is indicative of a long term event in disease
progression (Fig. EV1). Therefore, it defines a cost matrix (C) so
that transporting masses between similar cell clusters (healthy vs.
injured cardiomyocytes) have a lower cost than transporting masses
between distinct cell clusters (cardiomyocytes vs. fibroblasts). C is
estimated by the similarity between the centroids of clusters.
Finally, the Wasserstein distance is estimated as the total cost
associated with the optimal transport plan (T; Eqs. (1) and (2) in
Fig. 1). By repeating this for all pairs of samples, we obtain a
distance matrix W defined over all samples. Next, in the
unsupervised analysis module, PILOT uses W to: (1) infer
sample-level disease progression trajectories by the use of diffusion
maps (Coifman et al, 2006) followed by a path inference algorithm
(Albergante et al, 2020) or (2) find clusters of samples with a graph-
based algorithm (Traag et al, 2019). In the interpretation module,
PILOT uses statistical methods to find features associated with
estimated trajectories or clustering. For trajectories, PILOT uses
robust non-linear regression models (Huber, 1965) to find
associations of cell clusters, genes, or morphological features
associated with the estimated disease progression. The model fit
(using a F-statistic test) indicates the significance of the detected
associations. In the case of genes and morphological features, the
test can be conditioned on a cluster/cell type. We use a Wald test
that tests if the model fit of a gene in a cell cluster differs from the
model when considering all other cell clusters (Van den Berge et al,
2020). That is, the gene expression of the cluster is associated with
time and differs from the expression of other clusters. For the
clustering problem, we use a non-parametric Welch’s t-test to
evaluate if a cell cluster proportions changes between two clusters
of samples. For cell clusters with significant changes, PILOT allows
the finding of cell cluster-specific expression changes for samples in
two clusters by using a limma-based differential expression test
(Ritchie et al, 2015). Thus PILOT represents the unique approach
to perform sample level detection of unknown patient trajectories
and clusters, while providing statistical models for interpretation of
cellular, molecular, and morphometric features associated with
disease progression or clusters.
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Evaluation of patient-level clustering and
trajectory analysis

We compare the results of PILOT and PhEMD (Chen et al, 2020)
and baseline methods in the recovery of known patient groups of
eight single-cell RNA data sets (PBMCs from systemic lupus
erythematodes (Perez et al, 2022), pancreatic ductal adenocarci-
noma [PADC] (Peng et al, 2019), acute myocardial infarction
(Kuppe et al, 2020), PBMC of patients with COVID-19 infection
(Stephenson et al, 2021), kidney injury (Lake et al, 2023), lung
cancer (Sikkema et al, 2023), follicular lymphoma (Han et al, 2022)
and diabetes (Hrovatin et al, 2022)) and four pathomics data sets
with morphological features of glomeruli and tubules from two
distinct disease cohorts (kidney IgA nephropathy of the VALIGA
study [IgAN] (Coppo et al, 2014) and kidney biopsies of the
Aachen cohort [AC] (Hölscher et al, 2023)). For trajectory analysis,
we also evaluate the use of cell proportions followed by a PHATE
embedding (proportions+PHATE), as this approach is equivalent
to the analysis reported in Multiscale-PHATE (Kuchroo et al,
2022)1. For most of these data, we use disease status (control and
case) as labels for the clustering task. For the Kidney IgAN
pathomics data, patients/donors were labeled by their estimated
glomerular filtration rate (eGFR; normal, reduced, and low); for the
COVID-19 samples were labeled as control, mild and severe cases;
for the scRNA-seq kidney injury data samples were grouped as
normal, chronic kidney disease and acute kidney failure. The lung
and pancreas cell atlas have controls and distinct disease types (4
for lung and 3 for pancreas). These are the largest publicly available
single cell and pathomics data with up to millions of cells and
structures and measured in hundreds of patient samples (Table 1).
We also evaluate two baseline methods: pseudo-bulk libraries per
sample by using state-of-art RNA-seq pipelines (Witten, 2011) or
clustering directly the cell proportion matrices.

For scRNA-seq data, we used the data as provided in the original
manuscript as input for PILOT. For pathomics data, structure
segmentation was performed with FLASH followed by graph-based
clustering as described before (Hölscher et al, 2023). We evaluate these
methods in distinct scenarios. In the clustering evaluation problem, we
evaluate the methods regarding their performance in clustering the
data using a graph-based clustering (Traag et al, 2019). The number of
clusters was the same as the number of true classes in the data. The
accuracy of the methods is evaluated with the well-known external
clustering index, the adjusted Rand index (ARI) (Rand, 1971). Next,
we use the Silhouette index (Rousseeuw, 1987) to evaluate how well
separated samples with the same labels are, according to the distance
estimated by each method (distance evaluation). This evaluation does
not require a clustering of samples. Finally, we evaluated all methods
regarding prediction of disease trajectories, i.e., the relation of
sampling ordering with the class labels. For this purpose, we use the
Area Under the Recall Precision Curve statistic (AUCPR; Trajectory
Evaluation). For each of these three scenarios, we use the
Friedman–Nemenyi test to contrast the performance of the methods
in distinct data sets. This non-parametric test uses the rank of each
algorithm per data set to find the algorithms outperforming competing
approaches (Demšar, 2006).

Regarding the clustering problem. PILOT obtained the highest
average ARI score and its ranking was significantly superior
than all competing methods (Fig. 2A, p-value <0.05;
Friedman–Nemenyi test, and Appendix Table S1). Concerning
the distance evaluation, PILOT had the highest ranking among all
evaluated methods (Fig. 2B) and outperformed PhEMD (p-value
<0.05; Friedman–Nemenyi test). Finally, regarding the trajectory
analysis, we observe that PILOT has the highest mean rank
when considering AUCPR values and outperforms PhEMD,
Pseudo-Buk and proportions-PHATE (Fig. 2C, p-value <0.05;
Friedman–Nemenyi test). While there is no statistical difference
between the performance of PILOT and the proportions, PILOT
had a higher AUCPR in eight of the 12 evaluated methods and was
only seconded by the proportion in one single data set (Appendix

Figure 1. PILOT schematic.

PILOT receives clustered and integrated scRNA-seq or pathomics data as input. In the optimal transport module, PILOT estimates patient-specific cluster distribution P
and a cost function C between clusters. These are used as input for an optimal transport algorithm (Peyré and Cuturi, 2019), which estimates the transport plan T for a pair
of cluster distributions (Eq. (1)). This optimal transport plan can be used to estimate the distance between all pairs of samples (Eq. (2)) providing a sample-specific
distance matrix W. This is used as input for the unsupervised module, which detects sample specific trajectory and clustering. Finally, the interpretation module provides
statistical models to characterize cellular, molecular, or morphological features associated with sample trajectories or clusters.

1We could not replicate the analysis in Multiscale-PHATE due to the
lack of code.
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Table S1). In addition, for data sets with more than 2 classes
(COVID-19 PBMC, Lung, Diabetes, Kidney/scRNA, and Kidney
IgAN), we created an ordered variable, whose value increases with
disease severity (control = 1, mild = 2, severe = 3). Note that for
lung, we have classified all carcinomas (SCLC, LA, NSCLC) as
severe and chronic obstructive pulmonary disease (COPD) as mild.
For diabetes, we classified type I and II diabetes as severe and
endocrine pancreas disorder as mild. This is motivated by the lack
of guidelines to discriminate the severity of types of diabetes or
lung carcinomas. We then measure the Spearman Correlation
between the estimated disease progression scores and the ordered
values (control = 1, mild = 2, severe = 3). This shows similar results
as with the AUCPR evaluation, where PILOT is ranked first and
having similar results with proportions (Fig. 2D, p-value < 0.05;
Friedman–Nemenyi test and Appendix Table S2). To further verify
the value of disease progression score, we compare the Spearman
Correlation when shuffling scores for control, mild, and severe
cases. The use of the ordering “Control < Mild < Severe” yields the
highest SC values in all evaluated data sets (Fig. EV2A).

Due to the large size of data sets, computing time is also a
relevant aspect. In the Lupus PBMC data with millions of cells,
PILOT required 58.12 s versus 9.03 s of the simple pseudo-bulk and
16.50 min of PhEMD2. These indicate that PILOT and some
competing methods can be efficiently run in large data with
millions of cells or tissue structures.

We observe that diffusion maps estimated with PILOT
recovered trajectory-like structures in all analyzed data sets (Fig.
2E,F; Appendix Figs. S2 and S3). Also, disease progression score is
related with the severity of diseases in the data sets (Fig. 2E,F;
Appendix Fig. S4). For example, in the lung cell atlas normal
samples were at the beginning of the trajectory. These
were followed by samples associated with chronic lung disease
(COPD), while acute carcinoma samples (SCLC, LA, NSCLC)
accumulated in the end of the trajectory. For Kidney IgAN
(Tubule), we observe the trajectory order samples regarding
normal, low, or reduced glomerular filtration rate. These results

are also reflected in cumulative distributions of control, mild
and severe labels overestimated disease progression (Fig. EV2B)
and support that PILOT can sort controls, moderate, and severe
disease cases.

A point that has been poorly addressed so far is the impact of
technical artifacts in single-cell disease atlases. To address this, PILOT
explores statistical tests to associate estimated clustering or trajectories
with biological or technical features describing samples. In the context
of clustering, we observe that the status variable (class labels) is
significantly associated with the clusters in all datasets (see Appendix
Table S3). This supports the predictive performance of PILOT.
Interestingly, we also observed that for the COVID-19 PBMC scRNA-
seq data, a variable describing the city of origin of the sample had a
stronger association with the clustering than the status variable.
Similarly, the study of the origin of the samples in the Lung Single-Cell
Atlas was also associated with PILOT’s clusters. These results indicate
the potential presence of technical artifacts in these datasets and
demonstrate how PILOT’s sample-level analysis can support the
quality check of disease single-cell atlases.

PILOT requires no definition of parameters. However, it
assumes that single-cell experiments have been previously pre-
processed and clustered. Currently, PILOT adopts the same
clustering and integration strategy as in the manuscript describing
the data, as cells are labeled and this helps the interpretation of
results. To investigate if clustering can impact PILOT, we change
the resolution parameter of the Leiden Clustering algorithm for
selected data sets. We observe that this parameter is not critical for
the performance of PILOT in clustering samples (Appendix
Fig. S5A,B). We also evaluated the impact of distinct integration
methods (harmony (Korsunsky et al, 2019), bknn (Polanski et al,
2020), and scanorama (Hie et al, 2019)). Results indicate there is
limitted impact of these methods in PILOT’s predictive perfor-
mance (Appendix Fig. S5C–E). Finally, we investigated the effect on
the similarity/distance measure used to estimate the cost function
(C) for optimal transport. We observe that the Cosine similarity is
ranked first and is the only metric outperforming other approaches
in most scenarios ((Euclidean, Manhattan, and Chebyshev;
Appendix Fig. S5E–G). This supports the use of the Cosine
similarity by PILOT.

Table 1. Characteristics of data sets used for benchmarking.

Data Type
#Cells/
Structures #Samples #Cell_types #Classes

Lupus PBMC (Perez et al, 2022) scRNA-seq 1,263,676 261 11 2

COVID-19 PBMC (Ren et al, 2021) scRNA-seq 993,171 151 10 3

Lung (Sikkema et al, 2023) scRNA-seq 941,504 165 33 5

Diabetes (Hrovatin et al, 2022) scRNA-seq 264,235 52 13 4

Follicular lymphoma (Han et al, 2022) scRNA-seq 137,147 23 18 2

Myocardial Infraction (Kuppe et al, 2020) scRNA-seq 115,517 20 11/33 2

Kidney (Lake et al, 2023) scRNA-seq 76,020 36 57 3

Pancreas (PDAC) (Hrovatin et al, 2022) scRNA-seq 57,530 35 10 2

Kidney IgAN (Tubule) (Hölscher et al, 2023) Pathomics 64,493 634 15 3

Kidney AC (Tubule) (Hölscher et al, 2023) Pathomics 56,998 57 7 2

Kidney IgAN (Glomeruli) (Hölscher et al, 2023) Pathomics 24,227 634 14 3

Kidney AC (Glomeruli) (Hölscher et al, 2023) Pathomics 4731 57 28 2

2This computing time of PhEMD also includes clustering of single cells,
as this is a required step in PhEMD framework
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PILOT trajectories detect events associated to cardiac remodelling in
myocardial infarction
Next, we analyze the inferred trajectory from normal heart tissue
towards ischemic zone (IZ) tissue in acute myocardial infarction.
The trajectory reflected the known annotation of samples with the

exception of one case in the decision boundary between controls/IZ
samples (Fig. 3A). We use non-linear regression methods to find
cellular and molecular changes associated with the disease
progression score. Major cellular changes, as indicated by the
highest adjusted R2 values, include a quadratic increase of SPP1

Figure 2. Benchmarking of Patient Level Clusters and Trajectories.

(A) Box plot with ARI values (y-axis) for distinct evaluated methods (x-axis) (left) and ranking distributions (x-axis) based on the Friedman–Nemenyi test for distinct
methods (right) (n = 12). Methods with average ranking in the gray area are top performers. (B–D) E quivalent to (A) for Silhouette, AUCPR, and Spearman rank
correlation statistics. In box plots (A–D), Boxes represent interquartile range (IQR) between the 25th and 75th percentiles (Q1 and Q3) and the line inside the box
represents the median value. The center point denotes the mean, while the whiskers extend to the minimum and maximum values. (E) Diffusion maps (top) and fraction of
patient labels vs. pseudotime (bottom) on lung cell atlas data set (n = 165) for distinct algorithms. For this data, labels COPD, SCLC, LA, and NSCLC correspond to Chronic
Obstructive Pulmonary Disease, Squamous Cell Lung Carcinoma, Lung Adenocarcinoma, and Non Small Cell Lung Carcinoma groups, respectively. (F) Diffusion maps
(top) and fraction of patient labels vs. pseudotime (bottom) for Kidney IgAN (Tubule, (n = 634)). Source data are available online for this figure.
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positive macrophages and myofibroblasts, a quadratic decrease of
healthy cardiomyocytes followed by a later and smoother decrease
of stressed cardiomyocytes during disease progression (Figs. 3B and
EV3). These patterns are in accordance with the cellular changes
expected from early myocardial infarction, which include damage
of myogenic tissue (less cardiomyocytes) followed by inflammation
(increase in immune cells) and fibrosis (increase in fibroblast cells)
(Zhang et al, 2022). This example also confirms the power of
PILOT predicting trajectories to find continuous changes related to
tissue remodeling.

One open point from our benchmarking analysis was the fact that
clustering resolution did not affect the performance of PILOT in
sample clustering. To investigate if this impacts the trajectory analysis
and the interpretation of results, we execute PILOT with a broader
clustering (11 annotated clusters), which is obtained by joining the
more granular 33 clusters that were used before. We observe that while
global changes are equivalent (decrease of cardiomyocytes and increase
of fibroblasts and myeloid cells), this analysis loses a lot of important
nuances (Fig. EV3B). For example, it does not reflect the fact that
damaged cardiomyocyte populations have a slower decay than healthy
cardiomyocytes or that the increase in Fibro Scara5+ progenitor cells
precedes the increase in the differentiated myofibroblast cells. These
results support the advantage of using coarse clustering and annotated
cell clusters in the interpretation of trajectories.

Next, we perform an explorative analysis on the genes selected
by PILOT using the Wald test. Gene ontology enrichment analysis
(Appendix Fig. S6) indicates that PILOT identifies genes related to
extracellular matrix remodeling to be induced by myofibroblasts
(Appendix Fig. S7) and genes associated with muscle and muscle
function in healthy cardiomyocytes (Appendix Fig. S8). Myofibro-
blast genes include COL1A2, which has an overall quadratic
increase in gene expression upon disease progression (Fig. 3C).
Decorin (DCN) and exostosin-1 (EXT1) are examples of genes with
decreased expression upon late stages of disease progression.
Decorin is a fibroblast-specific gene with antifibrotic properties due
to TGFB signaling inhibition (Baghy et al, 2011; Isaka et al, 1996).
Exostosin-1 has been associated with early formation of collagen
fibers (Hill et al, 2022). We observe several genes related to muscle
function and organization (MYBPC3, FHOD3, MYOM1) to have
expression changes in healthy cardiomyocytes. MYBPC3, which is a
gene with a slight but consistent increase in expression over the
trajectory, has been shown to support cardiomyocyte proliferation
(Jiang et al, 2015) and is related to hypertrophic cardiomyopathy
(Hershberger et al, 2010). MYOM1 and FHOD3 are gene important
in the regulation actin filaments and sarcomeres structures (Lamber
et al, 2022; Taniguchi et al, 2009). FHOD3 has a decrease in
expression similarly at the middle of the trajectory indicating a
potential role which would have been missed if not analyzed within

Figure 3. Sample-level analysis of myocardial infarction.

(A) Diffusion map and disease progression trajectory in myocardial infarction (n = 20). (B) Fraction (y-axis) of top four cells (highest R2) vs. disease progression (x-axis).
(C) Expression (y-axis) of selected genes with significant changes in disease progression (x-axis) for healthy cardiomyocytes and myofibroblast cells. Each circle in the plot
represents an individual cell, and the color intensity corresponds to the magnitude of gene expression for the respective gene. The gray line shows the model estimation in
other cell clusters. For (B, C), we use the Wald test to evaluate the difference in the fitted model in the target cells vs. the model fitted for background cells. Source data are
available online for this figure.
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temporal context. Altogether, these results support how PILOT can
detect molecular and cellular changes at distinct stages of
myocardial infarction.

PILOT trajectories in pathomics data
We performed a trajectory analysis of the pathomics data of kidney
IgAN biopsies. As distinct morphological features are used to
describe tubules and glomeruli, it is not possible to cluster these
structures together, so these data are independently analyzed as in
(Hölscher et al, 2023). We combine the two disease progression
scores with their sum, which yields similar or higher AUCPR scores
than the trajectories considering one structure at a time (Figs. 4A
and EV4). This trajectory is associated with a linear decrease in
eGFR (Fig. 4B), which is the current surrogate used in clinical
practice to estimate kidney function. Regarding morphometric
features, PILOT detects a significant linear decrease of glomerular
tuft sizes and tubule sizes; and a linear increase in distance between
glomeruli and tubules as significant characteristics of disease
progression (Fig. 4C; Appendix Figs. S9 and S10). These are
indicative of interstitial fibrosis, tubular atrophy, and glomerulo-
sclerosis, which are all hallmarks of kidney function decline.
Finally, we made use of a prognostic variable from the kidney IgAN
biopsies, which indicates if patients progressed to kidney failure.
PILOT progression score is more associated with kidney failure (p-
value of 2.4e−11; likelihood ratio test) than a multivariate model
combining all morphometric variables (p-value of 7e−05; like-
lihood ratio test) or the use of individual morphometric variables
(Appendix Table S4). Indeed, samples with higher disease
progression scores (top 75 quartiles) have a higher chance of
kidney failure than other samples (Fig. 4D). Altogether, these
results reinforce the power of PILOT in discriminating disease
outcomes from pathomics data.

PILOT detects subgroups of pancreatic adenocarcinoma patients
As a case study for using PILOT to find sub-clusters of samples
(Appendix Fig. S1), we performed graph-based clustering (Traag
et al, 2019) of the pancreatic ductal adenocarcinoma (PDAC) at
distinct resolutions. We employed the Silhouette Score (Rousseeuw,
1987) to determine the optimal number of clusters for varying the

resolutions. The optimal resolution (0.3) had three clusters: the first
includes 11 control samples, and the remaining two are associated
with PDAC samples, comprising 14 samples classified as Tumor 1
and 10 samples as Tumor 2 (Fig. 5A). At the cell proportion level,
these two PDAC clusters differed by their amount of ductal cell 2,
(higher in Tumor 2 samples), stellate cells and ductal cell 1 (higher
in Tumor 1 samples; p-value < 0.05; Fig. 5B,C). Ductal cell 2, which
is more prevalent in both Tumor 1 and 2 samples than in controls,
was reported in the original study (Peng et al, 2019) to be associated
malignant cells, due to the higher occurrence of PADC-associated
copy number variations. Differential expression and GO analysis
contrasting ductal cell 2 expression for Tumor 2 vs. Tumor
1 samples indicate the up-regulation of the hypoxia related “HIF-
1 signalling pathway” (Fig. 5D,E). Regarding stellate cells, genes
upregulated in Tumor 2 samples have characteristic of fibrosis as
Collagen and matrix-associated genes, while downregulated genes
are associated with pancreas functions (Fig. 5F,G). These indicate
that despite the decrease of stelate cell populations, they acquire a
fibrotic signature. Fibrosis is known to further potentiates hypoxia,
which can trigger metastasis of PDACs (Shah et al, 2020). This
exploratory analysis is an example of how PILOT can be used to
characterize potentially clinically relevant findings in patient single-
cell data sets.

Discussion

The technological improvements in single-cell genomics and digital
pathology are providing us with clinically rich and large-sized data
describing cellular and morphological changes in diseases. We
present here PILOT—a computational pipeline for the detection
and feature characterization of disease trajectories from single-cell
genomics or pathomics data. By using a comprehensive benchmark
with twelve data sets, we show that PILOT is superior to the
competing approaches in both clustering and disease trajectory
prediction. Of note, all previous work (Chen et al, 2020; Flores et al,
2023; Kuchroo et al, 2022; Zhang et al, 2022) based their analysis of
the exploratory analysis of individual data sets, and did not
performed any benchmarking. Another important aspect is the

Figure 4. Sample level analysis of kidney IgAN.

(A) Diffusion map and disease progression trajectory in kidney IgAN (n= 634). Pie chart indicates the number of samples in terms of their status. (B) eGFR values (y-axis)
vs disease progression (x-axis). Each circle in the plot represents an individual structure, and the color intensity corresponds to the magnitude of morphological feature for
the respective structure (n= 634). (C) Morphometric values (y-axis) of kidney structures vs disease progression (x-axis). P-value of (B, C) were estimated with the
F-statistic test. (D) Kaplan–Meier plot with the time to kidney failure from patients within the upper quartile (high progression score) vs. other samples (low progression
score) (n= 634). Source data are available online for this figure.
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interpretation of predictions. PILOT uses a robust non-linear
regression model or statistical tests, which can predict cellular
populations, marker genes or morphological features associated
with the disease progression or clusters. These different aspects
make PILOT a unique framework for sample-level analysis of
multi-scale single cell or pathomics data.

We revisited the analysis of the largest single-cell genomics data
on myocardial infarction (Kuppe et al, 2020), where PILOT could
successfully predict a trajectory from controls toward ischemic
samples. This allowed us to find non-linear changes in cell
composition during cardiac remodeling, i.e., quadratic decrease of
healthy cardiomyocytes and quadratic increase of myofibroblast
and macrophages cells. Similarly, PILOT dissected gene expression
programs associated with these changes, such as non-linear
increase in expression of extracellular matrix-related genes in
myofibroblasts and increase of genes associated with cardiomyo-
pathy in healthy cardiomyocytes. We also evaluated the power of
PILOT in inferring a disease trajectory of pathomics data from

patients with kidney IgAN. We show that disease progression as
estimated by PILOT is related to eGFR and provides a better
predictor for future kidney failure than the use of the morpho-
metric features alone or together. This highlights the power of
PILOT in finding non-linear manifolds to model disease progres-
sion. In the case study consisting of clustering different samples,
PILOT characterized a population of patients with pancreatic
adenocarcinoma cells, who display hypoxia and fibrotic expression
signatures.

An important aspect of PILOT (and competing methods) is the
assumption that tissue samples were collected using an uniform
approach, i.e., similar tissue areas and the same technology. The
analysis of data from distinct technologies (single nucleus vs. single
cell) or distinct single cell isolation methods (droplet based vs. well
based) is still an open challenge for future research. While PILOT
does not explicitly correct for such potential technical artefacts, it
provides statistical tests to evaluate if technical factors might
influence the predictions. A systematic analysis in clustering

Figure 5. Clustering analysis of pancreas ductal adenocarcinoma (PDAC, n= 35).

(A) Heatmap with Leiden clustering results, which supports the existence of two subclasses of PDAC patients. (B) Boxplot with cell cluster proportion (y-axis) distribution
per sample cluster (n= 35). Boxes represent the interquartile range (IQR) between the 25th and 75th percentiles (Q1 and Q3), including the median (the lines inside). The
whiskers extend to the minimum and maximum values. (C) T-statistic (x-axis) of cell clusters with significant changes in Tumor 1 vs. Tumor 2 samples. (D) Differential
expression and (E) Gene Ontology Enrichment analysis contrasting Tumor 2 vs. Tumor 1 samples in ductal cell cluster 2. (F, G) Same as (D, E) for stellate cell. P-values
shown in (D) and (F) were estimated with empirical Bayes moderated t-test from limma. Gene enrichment analysis for (E) and (G) (n= 10) is performed with g:profiler
(Fisher’s Exact test). Source data are available online for this figure.
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predictions indicates the presence of technical artifacts in a lung
(Salcher et al, 2022; Sikkema et al, 2023) and COVID-19 (Ren et al,
2021) single-cell atlases. While this was discussed in the lung cell
atlas study (Sikkema et al, 2023), it is unclear how this affects
comparison of disease groups of either data set. However,
dimension reduction methods and clustering of the samples are
classical approaches to perform quality checks in bulk transcrip-
tomics. PILOT’s sample-level analysis represents an alternative of
such analysis for multi-scale data, such as single-cell disease atlases.

It is also important to stress that some of the competing
approaches, such as SCANCell (Zhang et al, 2022), MOFAcellulaR
(Flores et al, 2023), or the work by Cain et al (Cain et al, 2023), also
present alternative approaches to interpretation of cellular changes
from sample cohorts. Particularly interesting are methods to infer
cellular communities associated with sample groups (Cain et al,
2023; Zhang et al, 2022). Molecular studies of diseases are
increasingly based on multi-modal measurements; gene expres-
sion, protein abundances, chromatin accessibility, and histology
images at either single cell and/or spatial level (Marx, 2022).
Future work of multi-scale level analysis will require methods
considering the multi-modal and spatial nature of these data into
account.

Methods

PILOT

We formalize the main steps of PILOT3. In analyzing single-cell
experiments, assume there are L single-cell matrices
X ¼ fX1; :::;Xl; :::;XLg, where Xl 2 fRgNl ´D, where Nl represents
the number of cells in sample l and D is the number of features
(genes), which is common between all experiments. In practice,
PILOT receives as input a single matrix XI 2 fRgN ´D after
integration of the matrices in X , where N represents the total
number of cells. To keep the sample information, we define a vector
indicating the sample identity of cell i, i.e., s = {s1, . . . , sN}, where
si ∈ {1, . . . , L} indicates which sample (patient) the cells belongs to.
A usual representation/sumarization of single cell experiments is to
group cells with a clustering algorithm. This can be represented by
a vector y = y1, . . . , yN, where yi ∈ {1, . . . , K} indicates the group of
cell i.

Our main problem is to estimate the distance between scRNA-
seq data measured over two distinct samples (patients), where a
scRNA-seq is represented as a set of clustered cells. Here we explore
the concepts of the optimal transport-based Wasserstein method
(Bonneel et al, 2011) to compare two samples by representing
samples as distributions of cells. First, we defined plk as the
probability of having a cluster k for patient l:

plk ¼ Pð y ¼ kjs ¼ lÞ: (1)

This can be used to define a probability distribution vector
pl = (pl1, . . . , plK).

From these, we use optimal transport to find the optimal
transport plan T ¼ ftijgKxK between two distributions pl and

pq describing samples l and q by considering that there is a cost cij
associated with moving some mass between cluster i to cluster j:

min
T

XK
i¼1

XK
j¼1

tijcij; (2)

such that tij � 0;
PK

i tij ¼ plj and
PK

j tij ¼ piq andPK
i¼1

PK
j¼1 tij ¼ 1.

For a given optimal transport plan T, the Wasserstein distance
(W) is calculated as:

Wð pl; pqÞ ¼
XK
i¼1

XK
j¼1

tijcij: (3)

The optimal transport matrix T can be estimated using a minimum
flow cost algorithm. PILOT is based on the emd2 function from POT
library (Flamary et al, 2021), which implements the best solver
described in (Bonneel et al, 2011). By estimating the Wasserstein
distance between all pairs of samples, we obtain a distance matrix W
between all samples.

This framework, which is also denoted Earth Moving Distance
(Rubner et al, 2000), is also used in PhEMD. PILOT, however,
addresses important issues which are crucial in the noisy and large
nature of single cell and pathomics data. These are namely: (1) how
to obtain robust estimates of probability distributions due to
potential cell content bias and low cell coverage of individual
samples; (2) how to estimate the cost matrix C on the large matrices
XT; and (3) by offering statistical models to select features
associated with disease progression. These three points are
described below.

Robust estimation of sample probability distributions

The coverage of cells per cluster can vary across distinct samples.
This effect is potentially higher in diseased samples, due to their
lower cell viability. Let zl = (zl1, . . . zli, . . . , zlK) be a vector, where zlk
is the number of cells in a cluster k and sample l. We define the
following hierarchical model:

zl � MultiðNl;ΘÞ
Θ � DirðαÞ (4)

where Nl is the number of cells in the sample l,Θ is a random variable
representing distributions p and α is the hyper-parameter of a
Dirichlet distribution. The posterior distribution can be re-written as

pðΘjzi; αÞ � Dirðzi þ αÞ (5)

We can use this to obtain maximum a posteriori estimates of Θ, i.e.,

p̂lk ¼
nklþαk

nl þ
PK

i¼1αi
: (6)

Here, we use the following parametrization of the prior αk = Nk/
N ∗ c, where c is set as 0.1 as default. This prior adds “pseudo cell
counts”, which are weighted by the cell distribution of all samples.

3For simplicity, we focus here on single-cell data, but the same formalism
applies to pathomics data
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This prior mitigates the fact rare cells might not be observed in
samples with low cell coverage.

Estimation of cost matrix

The optimal transport also considers the cost cij of transporting a
distribution mass from a cluster i to a cluster j. For this, we
generate a median representation for each cluster (in the PCA
space) and estimate the cosine distance between the median value
of clusters i and j as the cost to transport masses. The cosine
distance between the median of cluster i (Mi) and cluster j (Mj) is
defined as:

cij ¼ 1� Mi �Mj

Mik k2 Mj

�� ��
2

(7)

Of note, PhEMD uses centroids and Euclidean distances in non-
linear embedding to estimate the cost matrices. The non-linear
embedding assumes a cellular continuum between all cells in the
data, which is not present in whole tissue single cell or pathomics
data. Moreover, median values reduce the effects of outliers.

Clustering and disease trajectory estimation

The matrix W (Eq. 3) provides the distance between all samples.
Clustering analysis can be performed by providing W as input to a
Leiden clustering algorithm (Traag et al, 2019). PILOT also
performs trajectory analysis by the use of diffusion maps (Coifman
et al, 2005) followed by a trajectory estimation with EIPLGraph
(Albergante et al, 2020). For this, we apply the Gaussian kernel to
W (Liu and Vinck, 2022) to construct the affinity matrix as Ws, i.e.,

Wsðwi;wjÞ ¼ exp �ðk wi � wj kÞ2
ερðwiÞρðwjÞ

 !
; (8)

where ε and ρ are the scale parameter and the bandwidth function
(Berry and Harlim, 2016), respectively.

Next, we compute the transition matrix:

M ¼ D�1Ws; (9)

where D is a diagonal matrix with dii ¼
P

jW
s
ij. Finally, we perform

the spectral decomposition of matrix M as:

M ¼ D�1=2VΛVTD1=2; (10)

where Λ and V are the eigenvalue and eigenvectors matrices.
Ultimately we use eigenvectors with the highest values for obtaining
diffusion maps. These are provided as input for EIPLGraph
(Albergante et al, 2020), which infers a backbone of the trajectory. It
also allows us to rank samples with a disease progression score
t = t1, . . . , tL, where tl is the ranking of the sample l. In our experiments,
we only considered two highest eigenvectors. EIPLGraph also requires
a root sample, which was visually selected to reflect parts of the
trajectory with control samples.

Identification of molecular and structural features
associated with disease progression or sample groups

PILOT uses step-wise regression models to identify features (cellular
abundances, gene expression or structural properties), whose values
are consistently changing across disease trajectories. For this, it fits
regression models with linear, quadratic, and linear-quadratic terms
for each feature and uses statistical tests to determine the goodness of
fit. We then report the most significant model for each feature.

Let xij represent the expression of a feature (gene) j in a cell i,
and pi the pseudotime variable (associated with the pseudotime of
its sample, pi ¼ tsi ). In short, we fit the three regression models to
the jth feature:

x̂�j ¼ μ̂j þ β̂1jp;

x̂�j ¼ μ̂j þ β̂1jp
2;

x̂�j ¼ μ̂j þ β̂1jpþ β̂2jp
2:

(11)

where μ̂ is the models’ intercept, and β̂ are the models’ coefficients.
The models are ranked based on the coefficient of determination
(R2), and we only consider the model with the highest R-squared and
at a significance level (p-values < 0.05). The same approach can be
performed for distinct features, such as the proportion of cell clusters
in the sample or morphological features.

In the case of gene expression, one is mostly interested in
finding cell type (cluster) specific genes. Therefore, we only
consider cells i belonging to cluster k. Due to the sparsity of
single-cell data, i.e., dropout events, we observed a single side tailed
distributions of residuals. Therefore, to improve the robustness of
our regression models, we use the Huber least square criterion
(Eq. (12)) (Huber, 1992).

HðeiÞ ¼
1
2 e

2
i jeij<¼δ

δðjeij � 1
2 δÞ jeij> δ

(
(12)

where ei ¼ x�j � x̂�j. The Huber regression lessens the effects of the
outliers by using a term δ (default of 1.35). This defines residual
values associated with outliers. For large δ, the regression is equal to
ridge regression.

Of note, the previous formulation requires a re-definition of the
R-squared to consider the Huber regression penalization, that is:

R2
mod ¼ 1� SSres

SStot

SSres ¼
X

jj x�j�x̂�jj j<¼δ

ðx�j � x̂�jÞ2 þ
X

jj x�j�x̂�jj j>δ
δðjx�j � x̂�jj � 1

2
δÞ

SStot ¼
X
j

ðx�j � x�jÞ2
(13)

Another relevant question is if the pattern of the feature (gene
expression or morphometrics) in a given cluster over pseudotime is
distinct from other clusters. To do this, we compare the expression
patterns along the pseudotime between one cluster vs cells/
structures from all other clusters (non-cluster). We utilized Wald
statistics, using the linear combination of coefficients, to test
whether there are differences between pair points of fitted curves
(cluster vs. non-cluster). Subsequently, for each gene, we test 2 × 3
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null hypotheses (between two models, each having at most three
coefficients; see Eq. (11)) on the n pseudotime points:

H0 : CT β̂ ¼ 0

H1 : CT β̂≠ 0
(14)

where C is the (2 × 3) × n contrast matrix of interest and β̂ are
coefficients of two models. The distribution of the test statistic under
the null hypothesis is:

W ¼ β̂
T
C CTV̂ β̂C
� ��1

CT β̂ (15)

where V̂ β̂ is an estimator of the variance-covariance matrix of
estimated coefficients. For large enough n,W is distributed as χ2 with
r degrees of freedom d.f. for n = 100 (Harrell, 2001). To estimate the
Wald score, we need to perform a eigendecomposition of the
variance-covariance matrix (V̂ β̂). We consider all eigenvectors with
eigenvalues larger than 1e−8. Statistical significance is estimated with
the χ2 and the degree of freedom in the rank.

When clustering different samples, PILOT adopts distinct
statistical tests. When calculating cell proportion changes, it uses
the Welch t-test to compare changes in proportion between all
pairs of groups. Regarding gene expression markers, PILOT uses
limma’s empirical Bayes approach (Ritchie et al, 2015) to contrast
the expression of cells for a given cell type/clusters for two distinct
groups of samples. In all cases, we use the Benjamini/Hochberg
procedure to correct for multiple testing. Gene enrichment analysis
is performed with g:profiler https://biit.cs.ut.ee/gprofiler/gost and
includes correction for multiple testing based on the SCS algorithm
(Reimand et al, 2007).

PILOT framework also provides statistical tests to evaluate the
potential presence of batch artefacts in the data. In short, for
clustering analysis, we use the Chi-Squared statistics to compare
results with discrete variables, while for numerical variables this is
based on ANOVA. For trajectory analysis, we compare discrete
variables with disease progression scores with the ANOVA test and
numerical variables with disease progression score with the
Spearman correlation. We provide tutorials based on the kidney
single-cell RNA-seq data on how this can be used to detect
potential data artefacts.

Data sets

We use public single-cell and pathomics data sets to benchmark the
proposed methods (see Table 1).

Single-cell data sets
Peng and colleagues (Peng et al, 2019) performed a single-cell study
on pancreatic ductal adenocarcinoma (PDAC). They characterized
11 healthy and 24 PDAC samples with a total of 57,530 scRNA-seq,
which were clustered and annotated in 10 major pancreas cell
clusters. As only raw data was provided (obtained from GSA:
CRA001160 https://ngdc.cncb.ac.cn/gsa/browse/CRA001160), we
reanalyzed the data using Seurat and re-annotated cell clusters
using the same marker genes (Appendix Fig. S11).

Systemic lupus erythematosus is a common type of lupus that, in
the immune system, pounds its tissues, yielding overall rash and
tissue injury in the acted organs (Perez et al, 2022). This single-cell

study characterized peripheral blood mononuclear cells (PBMCs)
gene expression of 261 donors consisting of 1,263,676 cells. Of
these donors, 99 were healthy controls, and 162 were disease
patients. We use the normalized and clustered (11 groups) data sets
provided in Gene Expression Omibus (GEO; GSE174188;
GSE174188_CLUES1_adjusted.h5ad.gz).

We use single-cell and single-nucleus assays from kidney
samples from the Kidney Precision Medicine Project (Lake et al,
2023). For this study, we used the single-cell RNA-seq experiments,
including 76,020 cells, annotated in 57 major cell clusters. This data
has 36 donors, including 18 control, 5 acute kidney failure, and 13
chronic kidney samples). For this data, we consider those acute
kidney failure and chronic kidney samples infected with diabetes.
Pre-processed data was obtained from GEO (GSE169285).

The lung cancer single-cell atlas is another large data set with
941,504 cells from 165 donors (Sikkema et al, 2023). The samples
are formed by 51 normal lung, 18 chronic obstructive pulmonary
diseases, 76 lung adenocarcinomas, 13 non-small cell lung
carcinomas, and 12 squamous cell lung carcinoma. The cells are
clustered in 33 clusters/cell types. The atlas is based on distinct
studies measured under distinct platforms. We only consider here
samples from lung tissue and measured with the 10X genomics
platform. Data was obtained from Zenodo (ID 7227571).

We have recently proposed a large study to characterize myocardial
infarction (Kuppe et al, 2020). We recovered 115,517 high-quality cells,
which were clustered in 33 cellular clusters. We focus here on samples
associated with healthy heart tissues (healthy controls and remote
zones; n = 13) and ischemic zone (IZ; n = 7). We exclude one sample
due to low quality (less than 1000 genes (on average) per cell). A final
data set is provided in Zenodo (ID 7435911).

The single-cell pancreas diabetes data (Hrovatin et al, 2022) covers
264,235 mouse pancreatic islet cells (with 13 cell clusters) from
52 samples. This includes 12 endocrine pancreas disorders, 6 type-1
diabetes mellitus, 12 type-2 diabetes mellitus, and 22 normal samples.
We excluded four samples (Embryos E12-E15) due to being outliers by
trajectories of methods. The data set was obtained in GEO
(GSE211799). Follicular lymphoma data (Han et al, 2022) collected
by Han and colleagues containing 137,147 single cells have been
processed to illustrate the various tumor and immune cell populations
of Follicular lymphoma. Cells have been clustered into 18 cell clusters
from 23 donors (3 normal and 20 lymphoma samples). The raw data is
accessible from EGA (EGAS00001006052).

Finally, we obtained a study with PBMC cells from patients
infected with Covid-19 (Ren et al, 2021). We only considered
patients with PMBCs (frozen or fresh cells). This totals to
151 samples classified as either severe infection (n = 70), mild
infection (n = 61), and control (n = 20). For these samples, we have
993,171 cells, which were grouped into 10 major cell clusters. The
data was obtained from GEO (GSE158055).

Pathomics data sets
The VALIGA study is a European cohort with kidney biopsies and
accompanying clinical data of patients with IgA nephropathy (Coppo
et al, 2014). We used a pathomics pipeline developed by us (Hölscher
et al, 2023) to detect and measure 3 morphometric features of 65,483
tubules and 14 features associated with 24,227 glomeruli structures,
which could be detected in 634 biopsies. Patients were classified
regarding their glomerular filtration rate (GFR): normal (GFR > 60; n
= 400), reduced (30 < GFR ≤ 60; n = 177) or low (GFR ≤ 30; n = 57).
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Lower GFR indicates lower kidney function. A second pathomics data
set is the Aachen Cohort data, which includes 57 samples with
healthy controls and distinct diseases/co-morbidity associated with
lower kidney function (Hölscher et al, 2023). We analyzed the
histology slides as before (Hölscher et al, 2023), which provided 4731
glomeruli and 46,999 tubules, each quantified with 3/14 morpho-
metric features. Patients were classified as either being healthy
controls (n = 17) or diseased (n = 40).

We employed a uniform pre-processing pipeline utilizing Seurat
(Hao et al, 2021) for the normalization and clustering of structures.
First, we normalized the data with the function NormalizeData of
Seurat, and next ran the ScaleData function. Next, we performed
dimension reduction (RunPCA) and kept the 10 and 2 main
components for glomeruli and tubules, respectively. Next, clusters
were found with the Leiden algorithm by using the FindNeighbors
and FindClusters functions, respectively. The same pipeline was
performed on the kidney IgAN (VALIGA) and Aachen cohort data.
As morphometric features are not comparable between glomeruli
and tubules, these data are analyzed independently, which results in
four distinct data sets. At the patient level, PILOT also allowed the
combination of the Wasserstein distance for glomeruli and tubuli,
which provided a unique trajectory for each cohort.

Human pathology data collection and analysis in this study was
performed in accordance with the Declaration of Helsinki and was
approved by the local ethics committee of the RWTH Aachen
University (EK-No. 315/19). All analyses were performed retro-
spectively in an anonymous fashion and the need for informed
consent was waived by the local ethics and privacy committee for
all datasets.

Competing methods

Pseudo-bulk
We investigate pseudo-bulk here as a baseline method for sample-
level analysis. For single-cell data, we sum the gene expression
count for all cells in a sample. Then the Poisson distance (Witten,
2011) between summed counts is employed to compute the sample
contrasts. For pathomics data, we calculate the average morpho-
logical features per sample and then scale values between 0 and 1.
Afterwards, the principal components(PCA) for samples are
computed. We detected knees in the variance plots and kept the
PCs with the highest variances. We calculated the cosine distance,
which was used as input for diffusion maps and Leiden clustering.

Proportions
Here, we take the original single cell and pathomics data and
calculate the proportion of cell types (clusters) per sample. Next, we
calculate the dissimilarity among samples based on their fraction of
clusters by cosine distance. Finally, we apply the diffusion map to
the distance matrix and get the order of samples.

PhEMD
PhEMD required the use of Monocle 2 (Trapnell et al, 2014) to
perform normalization, dimension reduction, and clustering of
cells. The inputs of PhEMD for all data sets are the first 50 principal
components of PCA and original pathomic measurements. Among
other parameters, PhEMD/Monocle2 requires the definition of a
distribution function for expression values. We use as default
Negative Binomial distributions to model single-cell data sets as

advised in the tutorials. For PBMC COVID-19, Diabetic, and Lupus
data, we used Gaussianff, due to the fact no cluster was found with
the default model. For pathomics data, we used truncated normal
distributions due to their best performance. We then used the
distance matrices provided by PhEMD as input for a diffusion map
analysis as implemented in PILOT.

Evaluation of methods
We evaluate these methods in distinct scenarios: clustering,
distance, and trajectory estimation. In the clustering evaluation
problem, we evaluate the methods regarding their performance in
clustering the data using graph-based clustering (Traag et al, 2019).
The number of clusters were the same as the number of true classes
in the data. The accuracy of the methods are evaluated with the
well-known external clustering index, the adjusted Rand index
(ARI) (Rand, 1971). This index has a value from −1 to 1, where
values of 1 indicate a perfect match between the clustering and the
labels, while values of 0 or lower indicate solutions found by
chance. Next, we use the Silhouette index (Rousseeuw, 1987) to
evaluate how well samples with the same labels are separated
according to the distance estimated by each method (distance
evaluation). This evaluation does not require a clustering analysis.
The Silhouette index has values between 0 and 1, while 1 indicates a
clear distance separation between the provided class labels. Finally,
we evaluated all methods in relation to their prediction of disease
trajectories, i.e., the relation of sampling ordering with the class
labels. We use the Area Under the Precision-Recall Curve statistic
(AUCPR; Trajectory Evaluation) for this. We only consider the two
class problem (disease vs. non-disease). For each of these three
scenarios, we use the Friedman–Nemenyi test to contrast the
performance of the methods in distinct data sets. It allows us to
compare the performance of several algorithms when they are
evaluated on the same data sets. Here, the null hypothesis is that all
algorithms have the same performance. The test is non-parametric
and is based on the rank of the algorithm at each data set. Low
rankings indicates best methods. This is important, as ARI values
(or any other evaluation statistic) are data set specific, e.g., some
clustering problems are more difficult than others. By evaluating
the rank, the test indicates which methods perform relatively better
than others. More precisely, the Friedman test is used to verify
whether there is a significant difference in any of the ranks of any of
the compared algorithms. It is then followed by the pair-wise
Nemenyi test, which indicates the significance in difference
between all pairs of algorithms. The last steps includes the
correction for multiple testing (Demšar, 2006).

Data availability

The datasets and computer code produced in this study are
available in the following databases: Pre-processed R and H5ad
objects used as input in benchmarking and case studies are
deposited in zenodo, part 1 and zenodo, part 2. PILOT code,
including documentation, tutorials, and scripts for replicating
experiments, are found in https://github.com/CostaLab/PILOT and
https://pilot.readthedocs.io.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-023-00003-8.
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Figure EV1. Example of cost matrix used for optimal transport in the myocardial infarction scRNA-seq data.

The cost matrix obtained at the analysis of the myocardial infarction based on 33 cell clusters. The cost (or distance) between cardiomyocyte cell types is lower to each
other (healthy-CM, intermediary-CM, damaged-CM) than when compared with fibroblast cells.

Expanded View Figures
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Figure EV2. Benchmarking analysis of trajectories and disease progression stage.

(A) Spearman Correlation (y-axis) between disease progression scores and ordered classes for distinct data sets (x-axis) by using PILOT. We systematically shuffled the
order of control, mild and severe samples to investigate if the order is capture by the algorithms. We observe highest Spearman correlation values for the order “control <
mild < severe” in all data sets. (B) Cumulative probability of control, mild and severe cases (y-axis) over PILOT estimated pseudotime (x-axis) for all multi-class data sets.
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Figure EV3. Cell composition changes in the myocardial infarction scRNA-seq data.

Cell cluster frequency (y-axis) vs. PILOT disease progression (x-axis) for Myocardial Infarction scRNA-seq data for high granularity clusters (k = 33) (A) and low
granularity clusters (k = 11) (B). Cells with a significant association with pseudotime are marked in bold. p-value of (A, B) were estimated with the F-statistic test.
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Figure EV4. Trajectory prediction scores for Kidney pathomics data sets.

AUCPR plots for Glomeruli, Tubule and both (combined) for Kidney AC, Kidney IgAN pathomics data.
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