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A B S T R A C T

Designated driver services use company vehicles to deliver drivers to customers. The drivers then drive the
customers from their origins to their destinations in the customers’ own cars; at the destinations, the drivers
are picked up by a company vehicle. We typically see teams of drivers assigned to company vehicles serving
customers. However, when the drivers may be dropped off by one vehicle and picked up by another, a
challenging pick-up and delivery problem arises. In this paper, we study the structural properties of the
designated driver problem focusing on the synchronization between company vehicles and drivers. We present
a two-index formulations to generate optimal, least-cost routes using a general-purpose solver. We benchmark
the two-index formulations against a 3-index formulation and a path enumeration strategy. Based on a set
of experiments, we find that the two-index formulation performs well, both in terms of quality and solution
time, especially on the formulations with more flexibility in the pairing of drivers to company vehicles. Our
computational experiments show that up to 75% cost savings are possible from using a flexible operating
strategy as compared to a strategy in which drivers and company vehicles stay together throughout a shift.
1. Introduction

Drinking and driving is a problem in nearly every country. Ac-
cording to the National Highway Transportation Safety Administration
in the United States of America, 13,384 people were killed in alcohol
impaired driving crashes in 2021 (Stewart, 2023). One of the primary
contributors to this problem is the desire of those who have been
drinking to have their car at home the next morning. To combat this
issue many charitable organizations and businesses have built a system
whereby the person who has been drinking can call for a chauffeur who
drives them home in their own car.

For example, Operation Red Nose in Quebec, Canada uses volun-
teers to drive inebriated persons home in their own cars; for this service
the drivers accept donations that are subsequently donated to charities.
Ride-share services such as Didi has been offering designated driver
services since 2015 (Horwitz, 2015). Several start-ups in the U.S. and
Australia offer designated driver services (Time Editors, 2014; Fowler,
2015) while in South Korea (Sang-Hun, 2007) these services are long-
standing and quite common. In the Netherlands, companies such as
Beter Bob, Rent-a-Bob, and Super Bob fill this role. (Bob in the Benelux
region is a slang term for designated driver.) These services typically
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use company cars dedicated to moving single drivers between customer
locations. In addition to designated driver services, such companies also
run day-time operations targeting business people and people who are
unable to drive their own car after medical procedures.

The main advantage of using a designated driver service as com-
pared to using a regular taxi, ride-hailing, or public transit service is
that it allows people to immediately take their car back home with
them. A designated driver service eliminates the inconvenience, costs
and emissions of an additional back and forth trip to pick up their car
later. Moreover, in some urban areas, it may not be possible to leave
the car behind due to strict overnight parking regulations.

The service of moving cars with a team of drivers is not unique
to the designated driver business. For example, one-way car rental
services such as Car2Go regularly need to re-balance the vehicles
in their network when they accumulate at popular destinations and
deplete at popular origins (Nourinejad et al., 2015). In a similar vein,
car dealerships that sell cars online can use a team of drivers to deliver
the cars to their customers. Luxury car brands such as Lexus offer a
service to pickup customers’ cars at their homes and drive them to the
garage for maintenance or repairs.
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Whether driving a customer’s car for maintenance or a customer in
their car to prevent drunk driving, the general operations in a desig-
nated driver service are as follows: (i) a vehicle delivers a designated
driver (‘‘driver’’ for short) to the customer’s origin, (ii) the driver drives
the customer to their destination in the customer’s car, (iii) a vehicle
picks up the driver at the customer’s destination. This gives rise to
the optimization problem of determining how to serve all customer
requests with a given fleet of drivers and vehicles. We refer to this
problem as the Designated Driver Problem (DDP).

Companies running designated driver operations, have a choice of
ow the drivers and company vehicles interact — they may either be
oupled in fixed pairs or teams or decoupled whereby vehicle routes
ay flexibly pick up or drop off any driver. These two operations lead

o three variants of the DDP which we term fixed pairs, fixed teams,
nd flexible teams. Regardless of the variant, the DDP falls within
he realm of Vehicle Routing Problems with Pickup and Delivery, or
ore specifically Pickup and Delivery Problems with Time Windows

PDPTW). Despite the myriad of PDPTW formulations (Aziez et al.,
020; Furtado et al., 2017; Parragh et al., 2008; Berbeglia et al., 2007),
hese do not account for the specific complexities of the DDP across all
ariants.

The contributions of this paper are as follows. First, we formal-
ze the designated driver problem. Second, we propose a two-index
ormulation that is capable of modeling all DDP variants. Third, we
ompare the performance of the two-index formulation to a three-index
enchmark and a path enumeration strategy while providing insights
n the interplay of DDP variant and problem formulation. We also
emonstrate the relative merits of the different operating strategies for
esignated driver services.

The remainder of the paper is organized as follows. The next sec-
ion provides an overview of the relevant literature. Section 3 gives

formal problem description with notation, highlights the structure
f the various operating strategies, provides proofs of NP hardness,
nd finally presents the two-index formulation for the DDP. Section 4
resents both the three-index and path enumeration formulations used
or comparison to the two-index formulation. Section 5 describes our
omputational experiments and results. The paper concludes with a
iscussion and suggestions for future work in Section 6.

. Related literature

Pickup and Delivery problems generally aim to find vehicle routes
hat serve a set of requests characterized by both pick up and delivery
ocations while optimizing a set objective or objectives. The Pick-up
nd Delivery Problem with Time Windows (PDPTW) further includes
ime windows dictating when service should begin at a request origin
nd by when the service should be completed at the request destination.
he routes must respect the precedence among the paired locations and
he time windows at each location. For comprehensive overviews of the
iterature on pickup and delivery problems, see Parragh et al. (2008)
nd Berbeglia et al. (2007).

In contrast to the PDPTW, the DDP is a delivery and pickup problem.
ollowing the taxonomy of delivery and pickup problems of Wassan
nd Nagy (2014), the DDP can be classified as a Vehicle Routing Prob-
em with Mixed Deliveries and Pickups (VRPMDP) in which deliveries
nd pickups are allowed in any order on a route but at geographically
istinct locations. This problem typically arises in the realm of freight
ransportation and, more specifically, reverse logistics. However, in
ontrast to the VRPMDP, the goods in the DDP are drivers and are thus
ot labeled nor tracked as items for delivery or items for pickup. As
uch, the DDP represents an extension to the VRPMDP whereby the
oods picked up at one location may, without restriction, be used to
erve the demand at another location.

As the DDP involves the pickup and delivery of people, it also relates
o the Dial-a-Ride Problem (DARP), see for recent reviews Mourad et al.
2019), Ho et al. (2018) and Molenbruch et al. (2017). The DARP
2

is a Pickup and Delivery problem with the objective of limiting the
inconvenience for the passengers while minimizing operating costs. In
contrast to the DARP, the DDP vehicles do not directly transfer cus-
tomers between their origins and destinations but rather transport the
drivers (company employees) between the customer locations. As such,
we have a problem setting in which the exogenous customer requests
do not directly correspond to the driver transportation requests. In
particular, while the origin–destination pairs of the customer requests
are given, we must decide on the routing of the drivers. Depending
on the operational strategy of the company, the driver routes may be
similar to the company vehicle routes when there is a pairing between
drivers and company vehicles. However, when the drivers are not
paired to vehicles, the driver routes will be quite different than the
vehicle routes.

Allowing drivers to be picked up by a different vehicle than the
one involved in the drop-off gives rise to temporal dependencies be-
tween different routes. This interplay of routes links the DDP to the
stream of literature on vehicle routing problems with route synchro-
nization (Soares et al., 2023; Drexl, 2012). The synchronization of
different vehicles that jointly serve a customer request also arises in
pickup and delivery problems with transfers or transshipments that
allow for the possibility of transferring passengers or items between
different vehicles at pre-defined transfer locations see e.g., Danloup
et al. (2018), Maknoon and Laporte (2017), Rais et al. (2014), Masson
et al. (2014, 2012), Cortés et al. (2010). Across this genre of pick-
up and delivery problem, the preference appears to be for three-index
formulations. However, continuous and discrete time models through
four and three-index formulations were introduced to represent more
advanced actions, such as cycles in which vehicles or requests visit a
node multiple times, see Pierotti and van Essen (2021).

The synchronization of customer pickup and delivery tasks with
driver delivery and pickup movements within the DDP gives rise to
various temporal and spatial interdependencies not just in terms of
routing, but also in terms of accommodating time windows. Specif-
ically, there are dependencies between the customer time windows
for pickup (driver drop-off) and the driver time windows for pick-up
(customer drop-off). That is, a driver can only be picked up at the
customer’s destination after he/she has driven the customer to this des-
tination. As such, the earliest pickup time at the customer destination
depends on the time that the service starts at the customer’s origin and
this depends on the time that the driver is dropped-off at the customer’s
origin. Moreover, since we specify a maximum waiting time for the
driver at the destination, the problem also involves ‘dynamic’ time
windows on the driver pickup (Gschwind et al., 2012). The requirement
that the driver drop off occurs before the driver pickup also brings the
DDP into the realm of the Pick-up and Delivery Traveling Salesman
Problem with Precedence Relationships (Gouveia and Ruthmair, 2015).
A problem that Gouveia and Ruthmair (2015) documented well in both
a single and multi-commodity form using a two-index formulation.
While their formulation must respect time-based dependencies arising
from the precedence, they do not include time windows for the initial
stop at the job’s origin.

Existing studies show mixed results on the computational perfor-
mance of two-index and three-index formulations for pick-up and de-
livery problems. Furtado et al. (2017) show that the two-index for-
mulation computationally outperforms the three-index formulation for
the PDPTW. The paper by Aziez et al. (2020) compares a two-index
and three-index formulation, and asymmetric representation (AR), for
multi-depot pick-up and delivery problems with time windows. Their
computational study shows that the AR and three-index formulation
outperform the two-index formulation. As such, it is not clear which
formulation is best suited for our specific problem recognizing that the
best suited formulation may vary depending on the operational strategy
being used.

We contribute to this line of research by introducing a two-index

formulation capable of solving the fundamental driver and vehicle
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Table 1
Summary of problem structures.

DDP operations Description Two-index reference

Fixed pairs Drivers are assigned to company vehicles that
have a capacity of one.

Yang et al. (2004)

Fixed teams Drivers are assigned to company vehicles that
have a capacity of more than one.

Furtado et al. (2017)

Flexible pairs/teams Drivers may use any company vehicle; vehicle
capacity can be greater than or equal to one.
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route structures imposed by operations within the DDP. These three
scenarios are summarized in Table 1 along with the citation for the
two-index formulations that inspired our overarching formulation. In
this work, we show that our formulation for the flexible pairs/teams
operation also works, with minor modification, for both the fixed team
and fixed pairs settings. We then demonstrate the capability of our two-
index formulation to address all three settings in contrast to both a
three-index formulation and a path enumeration strategy.

3. The designated driver problem

In this section, we describe the DDP in terms of allowable route
structures relative to common operating strategies used in practice. We
then demonstrate that in each case, the problem is NP-Hard. We then
present the mathematical notation that will serve to model the DDP in
the remainder of the paper. Subsequently, we introduce the standard
three-index formulation, a path-based formulation, and our two-index
formulation.

3.1. Problem structure and complexity

In practice, to simplify planning the routes for company vehicles
and drivers, companies often use fixed pairs whereby each driver works
with one particular company vehicle. With this operational structure,
the problem can be modeled as a truckload pickup and delivery prob-
lem (Srour et al., 2018). Extending beyond this capacity constrained
case, we examine a capacity of up to three drivers per vehicle in both
a fixed and flexible mode of operations.

In the fixed mode of operations, drivers are assigned to a vehicle
upon their departure from the depot. The vehicle then drops off the
drivers at the request origins and the same vehicle retrieves the drivers
from the request destinations.

In the flexible mode of operations, there is no restriction on pairing
between drivers and company vehicles. While the total number of
company vehicles and drivers is set a priori, there is flexibility in the
specific assignment of drivers to company vehicles when departing
from the depot. In routing, the drivers can be dropped-off at a request
origin by one company vehicle and picked up by either the same or
another vehicle.

We now analyze the structure of the different problem variants
and their complexity. Focusing on allowable route structures within
the general framework of the Pickup and Delivery Problem, we can
define three operational settings — immediate, delayed, and decoupled
service. Specifically, in the ‘‘immediate service’’ mode, the origin loca-
tion for a demand must appear on the route immediately prior to the
destination location. In contrast, in a ‘‘delayed service’’ routing mode
the destination location may be served anywhere in the route after
the origin location is served as long as the time windows are obeyed.
Finally, in the ‘‘decoupled service’’ version of a pickup and delivery
problem, the precedence between the paired demand locations must
be respected, but the pick-up and delivery may be served by different
vehicles (e.g. on different routes). Each of these three PDPTW variants
manifests in the vehicle routing of the DDP depending on the opera-
tional strategy adopted. Fig. 1 illustrates, in the left column, potential
vehicle routes for the three modes of operation and, in the right column,
the driver routes overlaid on these vehicle routes. Depending on the
3

operational strategy of the company, the vehicles will be in one of three
routing paradigms — immediate, delayed, or decoupled.

All operational variants of the DDP are NP-hard. Based on above
characterizations, we see that the fixed-pair DDP and fixed-team DDP
are generalizations of respectively the Pickup and Delivery Problem
with Time Windows and multiple vehicles and the Pickup and Delivery
Problem with Precedence Constraints and multiple vehicles, both of
which are NP-hard problems (Tan and Huang, 2019).

The NP-hard Vehicle Routing Problem with Time Windows (VRPTW)
maps to the flexible team DDP as evidenced by the allowed vehicle
routes which partition all locations into subsets with Hamiltonian
circuits (including a circuit representing job rejections) (Savelsbergh,
1985). The relationship between the VRPTW and DDP is further elab-
orated through both operational and movement synchronization as
described in Soares et al. (2023).

Despite the formal designation of the DDP as NP-Hard, it, like
many PDPTW variants, rests on a tractability boundary. For example,
with stringent time-windows the DDP may be tractable, but with re-
laxed time-windows the problem becomes intractable (Tan and Huang,
2019). This makes sense as stringent time-windows serve to dictate an
order in which the requests must be served — an order that can be
derived through a simple sorting algorithm.

3.2. DDP notation

In this paper, we focus on a static problem setting in which all
requests are known before planning. The static model of the DDP is
relevant to settings in which customer requests are placed in advance,
e.g., customer requests are placed during the daytime for service later
that evening. Moreover, the static problem provides a natural starting
point to study dynamic settings within a rolling horizon framework.

We consider a designated driver service that needs to serve a set
 of customer requests using a team of 𝐵 drivers and a fleet of
homogeneous company vehicles  . Each company vehicle 𝑣 ∈  starts
and ends at the depot and can carry at most 𝑄 drivers. Note that
company vehicles always have a company driver who remains with the
vehicle to drive it and is not included in the capacity, 𝑄.

Let  represent all origins of the customer requests in  and 
epresent all destinations of the customer requests in . Each customer
equest 𝑟 ∈  requires a driver to transport them from a customer
rigin 𝑜𝑟 ∈  to a destination (driver pick-up location) 𝑝𝑟 ∈ . Each
equest 𝑟 ∈  has a time window [𝑒𝑟, 𝑙𝑟] with an earliest 𝑒𝑟 and latest
ime 𝑙𝑟 that service can begin at 𝑜𝑟. The time windows reflect the fact
hat customers typically allow some flexibility around their desired
ickup time.

We allow to drop off a driver before the start of the customer time
indow or pick up the driver beyond the end of service. The time

hat a driver waits to begin service is only considered the waiting time
hen the driver is alone; there is no restriction on waiting time when

he driver is within the company vehicle. To handle waiting time, we
pecify a maximum waiting time at the customer location for the driver.
n particular, a driver can wait at most 𝑊𝑜𝑟 between being dropped
ff and starting service at the customer’s origin. Similarly, a driver can
ait at most 𝑊𝑝𝑟 between arriving at a customer’s destination and being
icked up. In practice, the specific value of this maximum waiting time
ay depend on various factors such as weather conditions and whether
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Fig. 1. Three routing modes for DDP operations.

r

t
t
o

i
n
𝑖
𝑗
b
t
(

or not it is possible to wait inside. That is, the driver may be willing to
wait longer inside a nearby restaurant than outside on the street.

The objective is to find tours for a set of capacity constrained com-
pany vehicles and drivers that minimize the costs of serving customer
requests plus the penalty costs associated with rejecting a customer
request.

3.3. Two-index formulation

This formulation is based on the two-index formulation of Srour
et al. (2018) in which each driver remains paired with a company
vehicle throughout the operations and Furtado et al. (2017) in which
the pick-up and delivery functions occur on a single vehicle’s route but
may be separated by intervening pick-ups or deliveries. By blending
these two formulations, we establish a two-index formulation that can
accommodate the fixed pairs, fixed team, and, with the removal of a
set of constraints, flexible team DDP variants.
4

𝑗

In this formulation, we operate over a graph 𝐺 = ( , ), where
is the union of nodes representing the locations associated with the

equests  ∪, where  represents the customer pick-up locations and
represents the customer drop-off locations, along with || copies of

he depot representing the set of vehicles  mapped to their location at
he point the model is run (in this case, the depot). Thus, the cardinality
f  is 𝑉 + 2𝑅.

In this two-index formulation the binary decision variable, 𝑥𝑖𝑗 ,
ndicates whether arc (𝑖, 𝑗) is included in the route or not. If 𝑖 is a
ode in  and 𝑗 is a node in  ∪ , then arc (𝑖, 𝑗) represents vehicle
serving location 𝑗 first from the depot. Similarly, if 𝑖 is in  ∪ and
is in  , then arc (𝑖, 𝑗) represents location 𝑖 as the last on the route

efore returning to the depot. The associated 𝑐𝑖𝑗 represents the cost of
raveling to or from the depot. When both 𝑖 and 𝑗 are in  then arc
𝑖, 𝑗) corresponds to vehicle 𝑖 remaining idle at the depot. If both 𝑖 and

are nodes in  ∪, then (𝑖, 𝑗) represents location 𝑗 following location
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Table 2
Summary of notation used in the two-index formulation.
𝑥𝑖𝑗 Binary decision variable indicating if arc (𝑖, 𝑗) is included on the route or not.
𝑦𝑟 Binary decision variable indicating if request 𝑟 is served (1) or not (0).
𝑣𝑗 Integer decision variable specifying the vehicle route on which job 𝑗 ∈  ∪ is served.
𝑎𝑖 Arrival time at node 𝑖 ∈  ∪.
𝑑𝑖 Departure time from node 𝑖 ∈  ∪.
𝑠𝑟 The start time for service from 𝑜𝑟 of request 𝑟.
𝑞𝑖 The number of drivers in the company car when departing node 𝑖 ∈  .
𝑖 on a route where 𝑐𝑖𝑗 is the cost of traveling on arc (𝑖, 𝑗). If both 𝑖 and
are in  ∪ and 𝑖 = 𝑗, then 𝑐𝑖𝑗 represents the rejection cost of request

. In order to track these rejections, we introduce a decision variable 𝑦𝑟
which takes a value of 1 if job 𝑟 is served and 0 if it is rejected.

Decision variable 𝑣𝑗 specifies the route number that job 𝑗 ∈  is
on; in this way, we can ensure that the origin and destinations of each
job end up on the same route. Through this convention, we can keep
the drivers paired with the company vehicles within the fixed route
strategies.

In addition to the route-related variables, we also have time-related
variables to ensure that time windows are obeyed. Let 𝑎𝑖 ∈ R+ be the
rrival time at node 𝑖 and 𝑑𝑖 ∈ R+ the departure time of a company

vehicle from node 𝑖. Furthermore, to restrict the waiting times of the
rivers at the origin and the destination of each request, we need to
odel the time at which the drivers start their service. Let 𝑠𝑟 ∈ R+

be the start of service from the origin 𝑜𝑟 of request 𝑟. At this time, a
driver starts driving from 𝑜𝑟 to the request’s destination 𝑝𝑟; a distance
that requires 𝑡𝑟 time. Thus, the arrival time of the driver at the request’s
destination 𝑝𝑟 is given by 𝑠𝑟+𝑡𝑟. Finally, to obey the capacity constraints
of the company vehicles, we let 𝑞𝑖 represent the number of drivers in
the company vehicle when leaving node 𝑖.

For ease of reference, Table 2 provides a summary of the notation
used in the two-subscript formulation.

The objective (1) minimizes the sum of the cost of serving or
rejecting the requests.

min
∑

(𝑖,𝑗)∈
𝑐𝑖𝑗𝑥𝑖𝑗 (1)

Constraint sets (2)–(5) ensure that each node is included in exactly
one tour and that if the origin node is not visited, the destination node
is similarly not visited — representing a job rejection.
∑

𝑖∈
𝑥𝑖𝑗 = 1, 𝑗 ∈  (2)

∑

𝑗∈
𝑥𝑖𝑗 = 1, 𝑖 ∈  (3)

∑

𝑖∈∕𝑜𝑟

𝑥𝑖𝑜𝑟 = 𝑦𝑟 𝑟 ∈  (4)

𝑥𝑝𝑟𝑝𝑟 = (1 − 𝑦𝑟) 𝑟 ∈  (5)

Constraint sets (6)–(10) are unique to the fixed team setting as they
serve to make sure that the same drivers remain paired to the company
cars or rather that the drop-off of a particular driver occurs on the same
route as the pick-up of a particular driver. In the flexible strategy, we
remove constraints (6)–(10). Specifically, (6) and (7) force the value of
𝑣𝑗 to 𝑗 if j is the first node on a route; otherwise 𝑣𝑗 may take on any
value between 0 and 𝑉 , the number of vehicles. Constraint sets (8) and
(9) ensure that all jobs on the same route are assigned the same value
for 𝑣𝑗 . Finally, constraints (10) ensure that the customer pick-up for a
request occurs on the same route as the customer drop-off. The value
of 𝑀 can be set to the number of requests for constraints (7)–(10).

𝑣𝑗 ≥ 𝑗𝑥𝑖𝑗 𝑖 ∈  ; 𝑗 ∈  (6)

𝑣𝑗 ≤ 𝑗𝑥𝑖𝑗 +𝑀(1 − 𝑥𝑖𝑗 ) 𝑖 ∈  ; 𝑗 ∈  (7)
5

𝑣𝑗 ≥ 𝑣𝑖 −𝑀(1 − 𝑥𝑖𝑗 ) 𝑖, 𝑗 ∈  ∪ (8)
𝑣𝑗 ≤ 𝑣𝑖 +𝑀(1 − 𝑥𝑖𝑗 ) 𝑖, 𝑗 ∈  ∪ (9)

𝑣𝑅+𝑖 = 𝑣𝑖 𝑖 ∈  (10)

Constraints (11)–(12) guarantee that the time that the company ve-
hicle arrives at each location is time feasible. Constraint set (11) ensures
that the company vehicle arrives at a node before it departs from that
node. Constraint set (12) ensures that a company vehicle arrives at a
subsequent node only after it has departed from the previous node and
traveled the required amount of time. The minimum value for M in
Constraints (12) is the end of the service day.

𝑎𝑗 ≤ 𝑑𝑗 𝑗 ∈  (11)

𝑎𝑗 ≥ 𝑑𝑖 + 𝑡𝑖𝑗 −𝑀(1 − 𝑥𝑖𝑗 ), 𝑖, 𝑗 ∈  ∪ (12)

Constraints (13)–(15) restrict the start time of the service at the
origin of a request. Constraint set (13) ensures that service cannot start
before a driver has arrived and constraint set (14) makes sure that
a driver does not wait alone for longer than allowed before starting
service. Constraints (15) make sure that the driver starts service within
the service time window. The pick up times of the driver at destination
𝑝𝑟 are assigned according to constraints (16) and (17). Constraint set
(16) makes sure that the company car picks up the driver before his/her
maximum waiting time. Constraint set (17) ensures that the company
vehicle does not depart the customer drop-off (driver pickup) location
before the driver has arrived.

𝑠𝑟 ≥ 𝑎𝑜𝑟 , 𝑟 ∈  (13)

𝑠𝑟 ≤ 𝑑𝑜𝑟 +𝑊𝑜𝑟 , 𝑟 ∈  (14)

𝑒𝑟 ≤ 𝑠𝑟 ≤ 𝑙𝑟, 𝑟 ∈  (15)

𝑎𝑝𝑟 ≤ 𝑠𝑟 + 𝑡𝑟 +𝑊𝑝𝑟 , 𝑟 ∈  (16)

𝑠𝑟 + 𝑡𝑟 ≤ 𝑑𝑝𝑟 , 𝑟 ∈  (17)

We define the number of drivers in each company vehicle at the
departure of node 𝑖 by 𝑞𝑖. Constraints (18) and (19) enforce load
balance in terms of the number of drivers in the company vehicles. In
particular, it ensures that whenever the arc (𝑖, 𝑗) is traveled, the number
of drivers in the company car is decreased or increased by 1, depending
on whether node 𝑗 is a customer origin (driver drop-off) or a customer
destination (driver pickup), respectively. In this stage, we do not specify
which driver is dropped off but make sure that there is at least one
driver available in the company car when visiting an origin. In order
to keep track of the number of drivers in the company cars, we make
use of a data vector 𝐴, where 𝐴𝑖 is equal to −1 if node 𝑖 is a request
origin and 1 if 𝑖 is a request destination, 𝑖 is in the set  .

Constraint set (20) limits the number of drivers in a company vehi-
cle at any point in time to the maximum capacity 𝑄, while constraint
set (21) guarantees that the total number of drivers leaving the depot
does not exceed 𝐵. The load balance constraints along with the flow
constraints ensure that all drivers who leave the depot also return to
the depot.

𝑞𝑗 ≤ 𝑞𝑖 + 𝐴𝑗 +𝑄(1 − 𝑥𝑖𝑗 ), 𝑖 ∈  , 𝑗 ∈  , 𝑖 ≠ 𝑗 (18)

𝑞𝑗 ≥ 𝑞𝑖 + 𝐴𝑗 −𝑄(1 − 𝑥𝑖𝑗 ), 𝑖 ∈  , 𝑗 ∈  , 𝑖 ≠ 𝑗 (19)

max
{

0, 𝐴𝑖
}

≤ 𝑞𝑖 ≤ min
{

𝑄,𝑄 + 𝐴𝑖
}

, 𝑖 ∈  (20)
∑

𝑞𝑖 ≤ 𝐵 (21)

𝑖∈



Computers and Operations Research 164 (2024) 106547A. Arslan et al.

s
e
b
t
t
𝑟

v
a
o
v
t

4. Comparative formulations for the DDP

The two-index formulation is capable of modeling all operational
strategies of the DDP. Nevertheless, its success in solving the problem
across all strategies varies. To assess the comparative value of the
two-index formulation across all operational strategies, we introduce
two comparative formulations – a three-index formulation capable of
modeling all operational strategies and a path enumeration strategy
capable of modeling only the fixed operational strategies.

4.1. Three-index formulation

This formulation follows a traditional three subscript structure (see
eg. Ropke and Cordeau, 2009) on a graph 𝐺 = ( , ). However,
in contrast to the two-index formulation,  is the union of nodes
representing the locations associated with the requests  ∪  and a
ingle copy of the depot node 0, where all company vehicles start and
nd their tours. We use a three-subscript formulation in which the
inary decision variable, 𝑥𝑣𝑖𝑗 , indicates whether arc (𝑖, 𝑗) is included in
he route of vehicle 𝑣 or not. The associated 𝑐𝑖𝑗 represent the cost of
raveling on arc (𝑖, 𝑗). The binary variable 𝑦𝑟, indicates whether request
is served (1) or not (0) and 𝑐𝑟 represents the rejection costs.

In addition to the route-related variables, we have time-related
ariables to ensure that time windows are obeyed. Let 𝑎𝑣𝑖 ∈ R+ be the
rrival time of vehicle 𝑣 at node 𝑖 and 𝑑𝑣𝑖 ∈ R+ the departure time
f vehicle 𝑣 from node 𝑖. As in the two-index formulation, we employ
ariables 𝑠𝑟 to capture the time at which drivers start their service from
he origin of request 𝑟 yielding an arrival time at the destination, 𝑝𝑟, of
𝑠𝑟 + 𝑡𝑟. Finally, to obey the capacity constraint of vehicle 𝑣 we let 𝑞𝑣𝑖
represent the number of drivers in the company vehicle when leaving
node 𝑖.

In contrast to the traditional formulation of Ropke and Cordeau
(2009), we adapted the objective and constraints in the three-subscript
formulation to accommodate job rejections as well as waiting times
before the start of service and after the end of service. A full exposition
of the three-index model may be seen in Appendix A.

4.2. Path enumeration strategy

Given the precedence between driver drop-off and pick-up tasks,
the possible routes in the fixed team setting are somewhat restricted.
As such, a standard path enumeration strategy can serve as a viable
comparison to our two-index formulation. Note that a standard path
enumeration approach is computationally prohibitive for the flexible
pair version of the DDP due to the temporal and spatial dependencies
between the different routes. This means that it is not possible to
decompose the problem along a set of independent paths.

Let 𝛺 be the collection of all feasible paths. A path 𝜔 ∈ 𝛺 is defined
as the sequence of customer nodes such that 𝜔 = {0, 𝑛1, 𝑛2, 𝑛3,… , 0},
where 𝑛𝑖 ∈  and 0 represents the depot; in the path enumeration
strategy the set  is the union of nodes representing the locations
associated with the requests  ∪ . A path 𝜔 is feasible if it drops
drivers at the request origins prior to or within the specified time
windows (depending on allowable driver waiting time) and picks-up
drivers from the corresponding request destinations within the allowed
waiting time. The capacity on any path (dictated by the capacity of the
vehicle) should also not be violated.

Let 𝐴 = [𝑎𝑟𝜔| 𝑟 ∈ , 𝜔 ∈ 𝛺] be the resource matrix such that
each 𝑎𝑟𝜔 takes a value of one if path 𝜔 serves request 𝑟. Also, let
𝛤 ∶ 𝛺 ↦ Z+ be a function mapping from a path to an integer specifying
the minimum number of drivers required to serve the path. Let 𝑥𝜔 be a
binary decision variable taking the value of one if path 𝜔 is chosen and
𝑦𝑟 be a binary variable taking the value of one if request 𝑟 is served. The
cost parameters 𝑐𝜔 and 𝑐𝑟, 𝑟 ∈  denote the expense of following path 𝜔
with a company vehicle and the cost of rejecting request 𝑟, respectively.

𝑧𝑆𝑃 =min
∑

𝑐𝜔𝑥𝜔 +
∑

𝑐𝑟(1 − 𝑦𝑟) (22)
6

𝜔∈𝛺 𝑟∈
s.t.
∑

𝜔∈𝛺
𝑎𝑟𝜔𝑥𝜔 = 𝑦𝑟 ∀𝑟 ∈  (23)

∑

𝜔∈𝛺
𝑥𝜔 ≤ || (24)

∑

𝜔∈𝛺
𝛤 (𝜔)𝑥𝜔 ≤ 𝐵 (25)

The objective (22) minimizes the total cost of the designated driver
service. Constraints (23) restrict request 𝑟 to being served by at most
one path while also tracking unserved customers. Constraints (24) and
(25) ensure that the solution does not use more vehicles and drivers
than the provided fleet.

Observation 1. The path-based formulation given by Eqs. (22)–(25)
yields an optimal solution if 𝛺 consists of all non-dominated paths.

Definition 2. Let 𝜔 and 𝜔∗ be two paths serving the same subset
𝑆 of customer requests 𝑅; 𝑆 ⊂ 𝑅. The path 𝜔∗ dominates path 𝜔 if
𝑐𝜔∗ ≤ 𝑐𝜔 ∧ 𝛤 (𝜔∗) < 𝛤 (𝜔) or 𝑐𝜔∗ < 𝑐𝜔 ∧ 𝛤 (𝜔∗) ≤ 𝛤 (𝜔); i.e., path 𝜔∗ can
serve the same requests as 𝜔 with less cost or fewer drivers than path
𝜔.

Details on the construction of paths for inclusion in 𝛺 may be found
in Appendix B.

5. Computational study

In this section, we describe our computational study to test the
three-index and two-index formulations across the fixed and flexible
operating strategies. Section 5.1 presents the instances and parameter
settings; Section 5.2 compares the run times of the different formula-
tions; and Section 5.3 evaluates the operational impacts of the fixed
and flexible team strategies.

5.1. Test instances and testing environment

In our experiments, we use a random selection of the BUS instances
from Srour et al. (2018). We use four sets of 20 instances for a total of
80 instances based on operational data from a designated driver service
company. Each set of 20 instances has a different number of requests:
10, 20, 30, and 40 requests. Within these requests across these instance
sets, three, six, nine, and twelve requests, respectively, go from the
center of a 100 by 100 square region to the outer areas of the region;
two, four, six, and eight requests, respectively, go from the outer areas
to the center of the region; and five, ten, fifteen, and twenty requests,
respectively, go between randomly selected origins and destinations in
the region. In all instances, the depot, which is the starting and ending
point for the company vehicles and drivers, is located at the lower left
corner of the region (point [0,0] in a Cartesian grid).

We ran our experiments on a computer with a 2.4 Gigahertz Intel
processor and 8 GB installed RAM. The models were implemented in
C++ using GUROBI 9.5 (Gurobi Optimization, LLC, 2022) as our IP
solver setting a maximum run time of 1800 s (30 min) with default pa-
rameter settings. We use the fixed-team with the unit capacity solution
as a warm start for all formulations.

Unless stated otherwise, we use the following default parameters.
The opening of the time windows at the origin of the requests was as
specified in the instances with time windows of five minutes i.e., 𝑙𝑟−𝑒𝑟 =
5. We allow drivers to wait at a customer location for at most five
minutes, i.e., 𝑊𝑜𝑟 = 𝑊𝑝𝑟 = 5. All instances had nine company vehicles
and 15 drivers available. We run all of the formulations through the
instance sets with varying vehicle capacities of one, two, or three, i.e.,

𝑄 = 1, 2, 3.
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Table 3
Number of instances solved to optimality within 1800 s, the solve times (median(max)), and percentage optimality gaps (median(max)); fixed operations with five minute time
windows and five minutes of wait time allowed.

Cust Q # instances solved to optimality Solve times (s) Optimality gaps (%)

3-Index 2-Index Path enum. 3-Index 2-Index Path enum. 3-Index 2-Index Path enum.

10 1 20 20 20 4.2(9.7) 0.4(0.5) <0.1 0 0 0
10 2 20 20 20 27.1(95.3) 0.3(0.8) <0.1 0 0 0
10 3 20 20 20 32.3(74.1) 0.4(0.9) <0.1 0 0 0

20 1 20 20 20 144.7(758.4) 0.7(3.7) 0.8(1.4) 0 0 0
20 2 0 14 20 n/a 80.8(696.5) 1.4(3.2) 30.1(42.4) 5.7(31.5) 0
20 3 0 13 20 n/a 121.8(613.7) 2.0(5.3) 35.7(50.2) 6.1(28.3) 0

30 1 6 19 20 852.3(1575.1) 76.2(1298.9) 3.3(5.7) 5.1(17.2) 2.9(2.9) 0
30 2 0 1 20 n/a 1295.1(1295.1) 9.2(17.9) 53.7(69.9) 26(45.6) 0
30 3 0 1 20 n/a 974.3(974.3) 13.1(31.3) 65.1(74) 28.1(47.5) 0

40 1 0 5 20 n/a 97.8(316.3) 20.4(38.9) 7.6(14.4) 1.4(3.8) 0
40 2 0 0 20 n/a n/a 82.1(218.4) 84.5(87.1) 49.3(69.9) 0
40 3 0 0 20 n/a n/a 117.1(254.1) 84.7(86.4) 50.9(71.9) 0
Table 4
Number of instances solved to optimality within 1800 s, the solve times (median(max)), and percentage optimality gaps (median(max)); flexible
operations with five minute time windows and five minutes of wait time allowed.

Cust Q # instances solved to optimality Solve times Optimality gaps

3-Index 2-Index 3-Index 2-Index 3-Index 2-Index

10 1 20 20 23.4 (69.4) 0.1(0.1) 0 0
10 2 20 20 27.1(95.3) 0.1(0.2) 0 0
10 3 20 20 32.3(74.1) 0.1(0.2) 0 0

20 1 4 20 845(1480.5) 0.1(0.2) 6.4 (10.4) 0
20 2 0 20 n/a 0.6(1.0) 31.2 (37.8) 0
20 3 0 20 n/a 0.5(1.4) 29.9 (34.8) 0

30 1 0 20 n/a 0.2(0.2) 5.4 (45.9) 0
30 2 0 20 n/a 5.9(16.6) 45.1 (53.1) 0
30 3 0 20 n/a 3.8(10.7) 43.7 (53.2) 0

40 1 0 20 n/a 3.8(4.7) 11.0(18.9) 0
40 2 0 17 n/a 24.7(90.4) 54.1(59.0) 19.1(24.4)
40 3 0 12 n/a 40.2(1309.2) 54.3(59.2) 3.6(28.1)
o

i
i

5.2. Formulations’ computational performances

We begin our study of computational performance by examining the
success of all three formulations on the fixed operational strategy.

Table 3 reports the number of instances solved to optimality within
1800 s (30 min), the solution time required if it is less than 1800
seconds, and the median and max optimality gaps of the instances that
could not be solved to optimality within 1800 s.

Tables 3 and 4 show that the two-index formulation outperforms
the three-index formulation. Using the two-index formulation, we solve
significantly more instances to optimality within the maximum run
time. In particular, two-index formulation can solve 133 and 229
instances out of all 240 instances for the fixed and flexible team,
respectively. On the other hand, the three-index formulation only solves
86 instances within the fixed team setting and 66 instances within the
flexible team setting. However, Table 3 also reveals that neither the
two- nor three-index formulations are effective for the fixed operational
strategies for larger instances. In contrast, the path-based enumeration
strategy that selects the least costly set of tours from all non-dominated
vehicle tours reaches optimality in all instances and scales well to at
least 40 requests.

We now turn our attention to flexible operations where the only
comparison possible is that between the two-index to three-index for-
mulations. Table 4 presents the number of instances solved to opti-
mality, the solve times, and the percent gap for the two-index versus
three-index formulations applied to the flexible operational setting of
the DDP. We observe that the two-index formulation excels on the
flexible team cases. Nevertheless, not all instances with 40 requests are
solved in 1800 s.

To further explore the performance of the two-index formulation,
we also examine the impact of relaxing the time window constraints
7

l

and allowable driver waiting time constraints. Table 5 presents the
computational results for the flexible team setting for allowable waiting
times (𝑊𝑜𝑟 ,𝑊𝑑𝑟 ) and service time windows (𝑙𝑟−𝑒𝑟) of 5, 10 and 15 min
for the instances with 30 and 40 customer requests and the company
vehicle’s driver capacity (𝑄) is three. We observe that we can solve
all instances with 30 requests, even for the cases with 10 and 15 min
timing constraints. However, we see that the two-index formulation
cannot find the optimal solutions for all the instances with 40 customer
requests. The number of instances solved decreases with the length
of the timing constraints. Nevertheless, the two-index formulation still
produces near-optimal solutions in most cases. For example, the me-
dian optimality gap is between 1.7% and 3.6%. However, for a few
instances, the optimality gap remains high, around 30%. These cases
coincide with the solutions in which not all customer requests were
served, which impacts the lower bound.

5.3. Operational performance

This section presents the operational benefits of flexible teams
compared to fixed teams with varying vehicle capacities across the
three instance sets. We use our two-index formulation to derive the
savings for the flexible team setting and path-based formulation for the
fixed team setting. Fig. 2 provides the proportional total cost savings if
the flexible team strategy is chosen instead of the fixed team strategy
per instance. The cost savings are calculated by taking 𝑧𝑓𝑖𝑥𝑒𝑑−𝑧𝑓𝑙𝑒𝑥

𝑧𝑓𝑙𝑒𝑥
,

where 𝑧𝑓𝑖𝑥𝑒𝑑 and 𝑧𝑓𝑙𝑒𝑥 denote the total costs for the fixed and flexible
perating strategies, respectively.

The results in Fig. 2 show savings of up to 75% for the largest
nstances. We observe that the savings increase with the size of the
nstances, particularly when the capacity of the company vehicle is

arger. We also see significant benefits of flexibility in the cases with
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Table 5
Number of instances solved to optimality within 1800 s, the solve times (median(max)), and percentage optimality gaps (median(max)); flexible
operations with different time windows and allowable wait times.
Cust Q 𝑊𝑜𝑟 = 𝑊𝑑𝑟 𝑙𝑟 − 𝑒𝑟 # Solved to Opt Comp. time (s) Optimality gap (%)

Median Max Median Max

30 3 5 5 20 3.8 10.7 0 0
30 3 10 10 20 5.5 43.1 0 0
30 3 15 15 20 32.0 386.5 0 0

40 3 5 5 12 40.2 1309.2 3.6 28.1
40 3 10 10 8 91 549.3 1.7 31.7
40 3 15 15 7 236.2 997.2 2.1 33.8
Fig. 2. Cost saving of flexible team as compared to fixed team, 𝑊𝑜𝑟 = 𝑊𝑑𝑟 = 5, Number of instances = 20.
Table 6
Average cost per served order and rejected requests, 𝑊𝑜𝑟 = 𝑊𝑑𝑟 = 5, Number of
instances = 20.

Cust Q Cost per served request Rejected

Fixed Flexible Fixed Flexible

10 1 119.8 112.3 0 0
10 2 118.9 97.8 0 0
10 3 118.9 96.5 0 0

20 1 125.4 112.0 0.05 0.05
20 2 120.4 82.4 0.05 0
20 3 120.4 77.8 0.05 0

30 1 146.5 131.8 1.15 1.15
30 2 126.9 70.8 0.7 0
30 3 126.7 65.8 0.7 0

40 1 269.9 251.9 6.0 5.95
40 2 229.5 78.1 4.8 0.55
40 3 228.3 73.3 4.8 0.55

more than unit capacity, i.e., 𝑄 = 2 and 𝑄 = 3. One potential reason
is that the flexible strategy can exploit the additional wiggle room in
capacity. It is, for example, easier to let drivers move around between
vehicles.

Table 6 reports the cost per served request and the number of rejected
requests for different instance sizes and vehicle capacities. We see that
the costs per request decrease with the number of customers for the
flexible strategy as long as the fleet and driver capacity allows, but not
for the fixed strategy. This suggests that the flexible strategy is capable
of using the additional routing flexibility to reduce vehicle miles. We
see that a larger vehicle capacity reduces the cost per request for both
strategies.
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Table 7
Average number of deployed company vehicles and drivers, 𝑊𝑜𝑟 = 𝑊𝑑𝑟 = 5, Number of
instances = 20.

Cust Fixed Flexible

Q = 1 Q = 2 Q = 3 Q = 1 Q = 2 Q = 3

No. of vehicles
10 4.1 4.1 4.1 4.5 3.9 3.9
20 8.1 7.7 7.7 8.7 6.9 6.8
30 9.0 9.0 9.0 9.0 8.3 7.9
40 9.0 9.0 9.0 9.0 9.0 8.95

No. of drivers
10 4.1 4.2 4.2 4.1 4.8 5.6
20 8.1 8.7 8.7 8.0 9.5 10.8
30 9.0 10.8 10.8 9.0 12.1 14.3
40 9.0 12.5 12.6 9.0 14.4 14.9

Table 7 reports the number of company vehicles and drivers across
solutions. The maximum number of vehicles is nine and the maxi-
mum number of drivers is 15. As expected, we use more vehicles and
drivers when serving more requests. The solutions with larger vehicle
capacities use fewer vehicles and/or more drivers. In some instances,
it is possible to serve more customers by deploying more drivers. In
other instances, we serve the same number of customers with the same
number of drivers but fewer vehicles. Note that in the flexible Q = 1
case, we sometimes use more vehicles than drivers. The addition of an
‘empty’ vehicle adds slack capacity which allows for more flexibility in
connecting different pickups and deliveries.

One prominent feature of the flexible operating strategy is that a
driver can be dropped off by one company vehicle and picked up by
another vehicle. We call this phenomenon a swap. Fig. 3 reports the
average percentage of swaps across all instances. This is the number of
times a driver switches between vehicles divided by the total number
of requests served. We see that the number of swaps increases with
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Fig. 3. Percentage of requests served by two different vehicles.

the number of customers and with the company vehicle’s capacity. We
also see that it is these swaps, emanating from flexibility, that are likely
driving the large jump in cost savings seen between 𝑄 = 1 and 𝑄 = 2.

6. Concluding remarks and outlook

This paper formalizes the designated driver problem which arises in
services where drivers transfer customers from their origins to their des-
tinations using the customers’ cars. In formalizing this challenging pick
up and delivery problem, we are able to illustrate the importance of
model-selection in drawing conclusions about solvability. Specifically,
we compared a three-index formulation to a two-index formulation
within a general-purpose solver. When running these two formulations
on a set of benchmark problems, we find that the two-index formulation
consistently outperforms the three-index formulation. This result is
not surprising given the steep difference in the number of decision
variables and constraints between the two formulations. This highlights
the importance of developing and testing proper formulations before
developing new heuristic solutions.

While the three-index formulation may have the advantage of clar-
ity in terms of explicitly using one index for each part of the model
– the origin, the destination, and the assignment of the company
vehicle – the two-index formulation consistently solves more, larger
instances to optimality. Of particular note is that we apply both for-
mulations to the two key operating strategies available to providers
of designated driver services — fixed pairings between drivers and
the company vehicle and flexible movement of drivers among the
company vehicles. The two-index formulation is only able to solve 133
out of 240 instances to optimality with fixed routing; the three-index
formulation performs poorly overall but is surprisingly more successful
with fixed routing than flexible when compared to itself. This result
motivates the introduction of a third purpose-built formulation — path
enumeration. Using path enumeration we are able to solve all instances
considered to optimality. However, when flexible operations strategies
are preferred, standard path enumeration is no longer feasible due to
the interrelationships between routes. We consider exploring dedicated
path enumeration strategies for the flexible team case as a challenging
direction for future research.

There is substantial value in having a formulation that solves
quickly and reliably for the flexible routing strategy. Our results show
that flexibility can bring routing cost savings of 75% when the capacity
allowed in the company vehicles is greater than one. This points to
a natural extension of this work with regard to dynamic settings in
which customer requests continually arrive over time. In such settings,
9

Table 8
Summary of decision variable notation used in the three-index formulation.
𝑥𝑣𝑖𝑗 Binary decision variable indicating if vehicle 𝑣 traverses arc (𝑖, 𝑗) or not.
𝑦𝑟 Binary decision variable indicating if request 𝑟 is served (1) or not (0).
𝑎𝑣𝑖 Arrival time of vehicle 𝑣 at node 𝑖 ∈  ∪.
𝑑𝑣
𝑖 Departure time of vehicle 𝑣 from node 𝑖 ∈  ∪.

𝑠𝑟 The start time for service from 𝑜𝑟 of request 𝑟.
𝑞𝑣𝑖 The number of drivers in vehicle 𝑣 when departing node 𝑖 ∈  .

one would typically employ a rolling horizon approach that runs an
optimization model each time new information becomes available.
Here, models to solve the problem quickly become more critical.

Another extension to this work revolves around the trade-off be-
tween the number of drivers used and the cost of the routes. For
example, we see that in the largest case with the most capacity and
a flexible routing strategy, an average of 14.95 drivers are needed
to serve the jobs with an average cost per job of 73.3. This is in
contrast to only nine drivers for a flexible routing strategy with a
capacity of one and an average routing cost per job of 251.9. As our
objective pertains to the vehicle routes, we did not explicitly take the
number of drivers into account. In other settings, it may be necessary
to explicitly consider the driver working hours or served customer
requests. If, for example, the service provider operates such that the
drivers garner tips or remuneration per request served, then paying
careful attention to how the drivers are assigned to requests is critical.
This gives rise to interesting trade-offs between vehicle-related travel
costs and driver-related costs.
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Appendix A. Three-index formulation

For ease of reference, Table 8 presents the notation used in the
three-subscript formulation of the DDP.

A.1. The model

The objective (26) minimizes the sum of the cost of serving or
rejecting the requests.

min
∑

𝑣∈

∑

(𝑖,𝑗)∈
𝑐𝑖𝑗𝑥

𝑣
𝑖𝑗 +

∑

𝑟∈
𝑐𝑟(1 − 𝑦𝑟) (26)

Constraint sets (27)–(29) ensure that each node is visited at most
once and that the request origin needs to be visited if the request is
served. Constraints (30) make sure that the same vehicle visits both the
origin and the destination of a request. We do not need this constraint
in the flexible strategy.
∑

𝑣∈

∑

𝑖∈
𝑥𝑣𝑖𝑗 ≤ 1, 𝑗 ∈  (27)

∑ ∑

𝑥𝑣𝑖𝑗 ≤ 1, 𝑖 ∈  (28)

𝑣∈ 𝑗∈
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∑

𝑖∈

∑

𝑣∈
𝑥𝑣𝑖𝑜𝑟 = 𝑦𝑟 𝑟 ∈  (29)

∑

𝑖∈
𝑥𝑣𝑖𝑜𝑟 −

∑

𝑗∈
𝑥𝑣𝑗𝑝𝑟 = 0 𝑣 ∈  , 𝑟 ∈  (30)

Constraints (31)–(34) guarantee that the time that the company
vehicle arrives at each location is time feasible. Constraint set (31)
ensures that the company vehicle arrives to a node before it departs
from that node. Constraint set (32) ensures that the arrival to a request
origin occurs before the arrival to a destination in order to ensure that
a customer pick-up on a route occurs before that customer’s drop-off.
Constraint sets (33) and (34) ensure that a company vehicle arrives to
a subsequent node only after it has departed from the previous node
and traveled the required amount of time.

𝑎𝑣𝑗 ≤ 𝑑𝑣𝑗 𝑗 ∈  ∪, 𝑣 ∈  (31)

𝑎𝑣𝑝𝑟 ≥ 𝑎𝑣𝑜𝑟 , 𝑟 ∈  𝑣 ∈  (32)

𝑎𝑣𝑗 ≥ 𝑑𝑣𝑖 + 𝑡𝑖𝑗 −𝑀(1 − 𝑥𝑣𝑖𝑗 ), 𝑖, 𝑗 ∈  ∪, 𝑣 ∈  (33)

𝑎𝑣𝑗 ≤ 𝑑𝑣𝑖 + 𝑡𝑖𝑗 +𝑀(1 − 𝑥𝑣𝑖𝑗 ), 𝑖, 𝑗 ∈  ∪, 𝑣 ∈  (34)

To restrict the waiting times of the drivers at the origin and the
destination of each request, we need to model the time at which the
drivers start their service.

Constraints (35)–(37) restrict the start time of the service at the
origin of a request. Constraint set (35) ensures that service cannot start
before a driver has arrived and constraint set (36) makes sure that a
driver does not wait alone for longer than allowed before starting ser-
vice. Constraints (37) make sure that the driver starts service within the
service time window. The pickup times of the driver at the destination
𝑝𝑟 are assigned according to constraints (38) and (39). Constraint set
(38) makes sure that the company car picks up the driver before his/her
maximum waiting time. Constraint set (39) ensures that the company
vehicle does not depart the customer drop-off (driver pickup) location
before the driver has arrived. One can set 𝑀 to the length of service
duration.

𝑠𝑟 ≥ 𝑎𝑣𝑜𝑟 −𝑀(1 − 𝑥𝑣𝑖𝑜𝑟 ), 𝑟 ∈ , 𝑖 ∈  𝑣 ∈  (35)

𝑠𝑟 ≤ 𝑑𝑣𝑜𝑟 +𝑊𝑜𝑟 +𝑀(1 − 𝑥𝑣𝑖𝑜𝑟 ), 𝑟 ∈ , 𝑖 ∈  𝑣 ∈  (36)

𝑒𝑟 ≤ 𝑠𝑟 ≤ 𝑙𝑟, 𝑟 ∈  (37)

𝑎𝑣𝑝𝑟 ≤ 𝑠𝑟 + 𝑡𝑟 +𝑊𝑝𝑟 +𝑀(1 − 𝑥𝑣𝑝𝑟𝑗 ), 𝑟 ∈ , 𝑗 ∈  , 𝑣 ∈  (38)

𝑠𝑟 + 𝑡𝑟 ≤ 𝑑𝑣𝑝𝑟 +𝑀(1 − 𝑥𝑣𝑝𝑟𝑗 ), 𝑟 ∈ , 𝑗 ∈  , 𝑣 ∈  (39)

We define the number of drivers in company vehicle 𝑣 at the depar-
ture of node 𝑖 by 𝑞𝑣𝑖 . Constraints (40) and (41) enforce load balance in
terms of the number of drivers in the company vehicles. In particular,
these constraints ensure that whenever the arc (𝑖, 𝑗) is traveled, the
number of drivers in the company car is decreased or increased by 1,
depending on whether node 𝑗 is a customer origin (driver drop-off) or
a customer destination (driver pickup), respectively. We do not specify
which driver is dropped off but make sure that there is at least one
driver available in the company car when visiting an origin. In order
to keep track of the number of drivers in the company cars, we make
use of a data vector 𝐴, where 𝐴𝑖 is equal to −1 if node 𝑖 is a request
origin and 1 if 𝑖 is a request destination, 𝑖 is in the set  ∪.

Constraint set (42) limits the number of drivers in a company vehi-
cle at any point in time to the maximum capacity 𝑄, while constraint
set (43) guarantees that the total number of drivers leaving the depot
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does not exceed 𝐵. The load balance constraints, along with the flow
constraints, ensure that all drivers who leave the depot also return to
the depot.

𝑞𝑣𝑗 ≤ 𝑞𝑣𝑖 + 𝐴𝑗 +𝑄(1 − 𝑥𝑣𝑖𝑗 ), 𝑖 ∈  , 𝑗 ∈  ∪, 𝑣 ∈  , 𝑖 ≠ 𝑗 (40)

𝑞𝑣𝑗 ≥ 𝑞𝑣𝑖 + 𝐴𝑗 −𝑄(1 − 𝑥𝑣𝑖𝑗 ), 𝑖 ∈  , 𝑗 ∈  ∪, 𝑣 ∈  , 𝑖 ≠ 𝑗 (41)

𝑞𝑣𝑖 ≤ 𝑄, 𝑖 ∈  (42)

∑

𝑣∈
𝑞𝑣0 ≤ 𝐵 (43)

A.2. Comparison of two- and three-index formulations

To illustrate the difference between the two-index and three-index
formulations, Table 9 presents the number of decision variables and the
total number of constraints as a function of the number of requests,
𝑅, and the number of vehicles, 𝑉 for the fixed and the flexible team
setting.

Unsurprisingly, the two-index formulation requires fewer decision
variables by dropping the vehicle index. This means that the number
of decision variables for the three-index formulation is approximately
a factor 𝑉 larger. For the same reason, the two-index formulation has
fewer constraints than the three-index formulation.

Comparing the fixed team and the flexible team setting, we see that
we need the same (three-index) or fewer (two-index) decision variables
in the flexible team setting. The reduction of variables in the two-index
formulation is possible as we no longer need to track the sequence
of each vehicle’s visit via 𝑣𝑗 . In both formulations, we can reduce the
number of constraints as the flexible team setting is less restrictive.

Appendix B. Enumeration of paths

The path-based enumeration strategy requires determining all fea-
sible customer subsets with non-dominated paths to reach the optimal
solution. In this section, we describe a recursive algorithm to enumerate
the collection of paths that form the set 𝛺. The recursive algorithm
starts from subsets with only one request and then increases the subset
sizes gradually. Inspired by the study of Stiglic et al. (2015), we use the
following observations to enumerate the subsets.

Let 𝑖 be the subset of  with cardinality 𝑖 ∈ Z+.

Observation 2. A subset of  has a feasible path if the breadth-first
labeling algorithm produces at least one path.

Observation 3. If subset 𝑠 has at least one feasible path, then each
subset 𝑚 ⊂ 𝑠 has at least a feasible path.

Observation 3 implies that we do not need to enumerate a customer
subset with 𝑠 customers if one of its subsets does not have any feasible
path.

B.1. Breadth first labeling algorithm to find non-dominated paths for a
customer set

This section describes the algorithm to find non-dominated vehicle
paths to serve a given set of customers or certify that a single vehicle
cannot serve the customers in a fixed team setting.

We use a label-setting algorithm built on the partial path definition.
The algorithm extends each partial path by one node checking if the ad-
dition forms a feasible complete path or becomes infeasible. We define
a partial path 𝜏 and its label 𝐿(𝜏) = {𝑁𝑆𝑒𝑞 , 𝑡𝑎, 𝑡𝑑 , 𝑇 𝑠𝑒𝑟, 𝑁𝐼𝑚𝑚, 𝑁𝑁𝑒𝑐 , 𝑞},
where

1. 𝑁𝑆𝑒𝑞 = {𝑛[1],… , 𝑛[𝑙]}: sequence of nodes, in order, from the first

𝑛[1] to the last visited node 𝑛[𝑙].
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Table 9
Number of decision variables and constraints, 𝑅: number of requests, 𝑉 : number of vehicles.
Teams Metric Three-index formulation Two-index formulation

Fixed No. of Decision Variables 4𝑅2𝑉 + 10𝑅𝑉 + 2𝑉 + 2𝑅 4𝑅2 + 4𝑅𝑉 + 𝑉 2 + 10𝑅 + 𝑉
No. of Constraints 20𝑅2𝑉 + 9𝑅𝑉 + 9𝑅 + 𝑉 + 4 16𝑅2 + 4𝑅𝑉 + 15𝑅 + 5𝑉

Flexible No. of Decision Variables 4𝑅2𝑉 + 10𝑅𝑉 + 2𝑉 + 2𝑅 4𝑅2 + 4𝑅𝑉 + 𝑉 2 + 9𝑅 + 𝑉
No. of Constraints 20𝑅2𝑉 + 8𝑅𝑉 + 9𝑅 + 𝑉 + 4 14𝑅2 + 2𝑅𝑉 + 14𝑅 + 5𝑉
R

A

B

C

D

D

F

F

F

G

G

G

H

H

M

M

M

M

2. 𝑡𝑎, 𝑡𝑑 : time of arrival and departure, respectively, associated
with the vehicle arriving and departing the last node, 𝑛[𝑙].

3. 𝑇 𝑆𝑒𝑟 = {(𝑎𝑟[1] , 𝑠𝑟[1] ),…} ∶ vehicle arrival and service start time
for a request served in order [𝑖].

4. 𝑁𝐼𝑚𝑚 = {𝑛𝑖, 𝑛𝑗 ,…} ∶ the set of nodes that can be reached
immediately from node 𝑛[𝑙]

5. 𝑁𝑁𝑒𝑐 = {𝑛𝑖, 𝑛𝑗 , 𝑛𝑚, 𝑛𝑠 ⋯} ∶ all nodes that are necessary to form a
feasible path.

6. 𝑞: maximum number of drivers required to serve all nodes until
node 𝑛[𝑙]

We use a similar logic of label extension described in the study
by Feillet et al. (2004). That is, we start with a null partial path,
such as 𝐿(∅) = {𝑉 𝑆𝑒𝑞 = ∅, 0, 0, 𝑇 𝑆𝑒𝑟 = ∅, 𝑉 𝐼𝑚𝑚 = {𝑜𝑟1 , 𝑜𝑟2}, 𝑉

𝑁𝑒𝑐 =
𝑜𝑟1 , 𝑜𝑟2 , 𝑑𝑟1 , 𝑑𝑟2}, 0} for the customer set of {𝑟1, 𝑟2}. We explore all
xtension possibilities over the set 𝑉 𝐼𝑚𝑚 for all feasible partial path
ossibilities. If the extension is feasible, we form a new partial path,
ncluding the node where the path is extended and keep it for further
xtensions. If the extension is not feasible, the extended partial path
ill be pruned from the search.

For the label extension for the partial path 𝜏 with label 𝐿(𝜏) to
extend the node 𝑛, we carry out the following equations:

1. 𝑁𝑆𝑒𝑞∗ = 𝑁𝑆𝑒𝑞 ∪ {𝑛}, where new node is added to sequence,
2. 𝑡𝑎∗ = 𝑡𝑑 + 𝑡𝑛[𝑙]𝑣, where the arrival time to node 𝑛,

3. 𝑡𝑑∗ =

{

max{𝑡𝑎∗, 𝑒𝑛 −𝑊𝑜𝑟} if 𝑛 ∈ 
max{𝑡𝑎∗, 𝑠𝜌(𝑛) + 𝑡𝑜𝜌(𝑛) ,𝑛} if 𝑛 ∈ 

, where 𝜌(𝑛) ∶  ↦ 

is a function that returns the request index of node 𝑛,
4. 𝑇 𝑆𝑒𝑟∗ = 𝑇 𝑆𝑒𝑟 ∪ {(𝑡𝑎∗,max{𝑡𝑎∗, 𝑒𝑛 − 𝑊𝑜𝑟})}, if 𝑛 ∈  , where the

service start time for the customer origin node is recorded and
stacked in order of visit

5. 𝑁𝐼𝑚𝑚∗ =

{

𝑁𝐼𝑚𝑚 − {𝑛} ∪ {𝑑𝜌(𝑛)} if 𝑛 ∈ 
𝑁𝐼𝑚𝑚 − {𝑛} if 𝑛 ∈ 

,

6. 𝑁𝑁𝑒𝑐∗ = 𝑁𝑁𝑒𝑐 − {𝑛}, the visited node is discarded,
7. 𝑞 ∗, if partial path driver requirement increased by one.

Two feasibility checks are required for each label extension: (i) time
feasibility and (ii) driver number feasibility. The latter checks whether
the partial path reaches a new customer origin consecutively more
than 𝑄 times or not. The former check is unique to the DDP due to
the parallel time tracking of the company vehicle and drivers’ service
starting and ending times. We need to go through several cases to
determine the feasibility depending on whether the node 𝑛 is a pick-up
or drop-off node as follows.

∈  , Pick-up node. If the company vehicle arrival time to node 𝑛,
i.e., 𝑡𝑎, is greater than 𝑙𝑟; then the partial path is infeasible. This
condition means that the vehicle arrives at the customer’s origin
later than the request’s time window.

∈ , Drop-off node. If the company vehicle arrival time to 𝑛, i.e., 𝑡𝑎,
is in the following range:

• 𝑡𝑎 > 𝑠𝜌(𝑛) + 𝑡𝑜𝜌(𝑛)(𝑛)𝑛 +𝑊𝑑𝜌(𝑛) +𝑊𝑜𝜌(𝑛) then the partial path is
infeasible. This condition means that the company vehicle
arrives at the customer destination later than the allowed
time limits.

• 𝑠𝜌(𝑛)+𝑡𝑜𝜌(𝑛)𝑛+𝑊𝑑𝜌(𝑛)+𝑊𝑜𝜌(𝑛) ≥ 𝑡𝑎 ≥ 𝑠𝜌(𝑛)+𝑡𝑜𝜌(𝑛)𝑛+𝑊𝑑𝜌(𝑛) then, a
special routine needs to be called to check for infeasibility.
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Verbally, this condition specifies that the driver waits at
the destination more than the allowed 𝑊𝑑𝜌(𝑛) . However, it
may be possible to adjust the driver’s arrival time to node
𝑛 by delaying the service start time at the customer origin,
and the partial path could be feasible. In this routine, we
adapted the seminal idea from the study by Savelsbergh
(1985). That is, we search for the minimum shift of com-
pany vehicle departure from the origin node of request
𝜌(𝑛). This means that after at most the number of visited
nodes between node n and the origin of request 𝜌(𝑛); i.e.,
[𝑛]−[𝑜𝜌(𝑛)] steps, we can conclude whether the partial path
is infeasible or not.

The breadth-first labeling algorithm finalizes whether there is no
partial path to extend before reaching all nodes, or if the algorithm
generates at least a single complete path. If multiple complete paths are
generated, we can eliminate some according to the dominance rule pro-
vided by Definition 2. The remaining non-dominated paths are added
to set 𝛺 to solve the path-based formulation given in Eqs. (22)–(25).
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