
ARTICLE IN PRESS

www.redjournal.org
PHYSICS CONTRIBUTION
Validation of Fully Automated Robust
Multicriterial Treatment Planning for Head and
Neck Cancer IMPT
Merle Huiskes, MSc,* Wens Kong, MSc,y Michelle Oud, MSc,y Koen Crama, MSc,*,z Coen Rasch, MD, PhD,*,z

Sebastiaan Breedveld, PhD,y Ben Heijmen, PhD,y and Eleftheria Astreinidou, PhD*

*Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands; yDepartment of Radiotherapy,
Erasmus MC Cancer Institute, Rotterdam, The Netherlands; and zHollandPTC, Delft, The Netherlands
Received Jul 4, 2023; Accepted for publication Dec 23, 2023

Purpose: Our purpose was to compare robust intensity modulated proton therapy (IMPT) plans, automatically generated with
wish-list−based multicriterial optimization as implemented in Erasmus-iCycle, with manually created robust clinical IMPT
plans for patients with head and neck cancer.
Methods and Materials: Thirty-three patients with head and neck cancer were retrospectively included. All patients were
previously treated with a manually created IMPT plan with 7000 cGy dose prescription to the primary tumor (clinical target
volume [CTV]7000) and 5425 cGy dose prescription to the bilateral elective volumes (CTV5425). Plans had a 4-beam field
configuration and were generated with scenario-based robust optimization (21 scenarios, 3-mm setup error, and §3% density
uncertainty for the CTVs). Three clinical plans were used to configure the Erasmus-iCycle wish-list for automated generation
of robust IMPT plans for the other 30 included patients, in line with clinical planning requirements. Automatically and manu-
ally generated IMPT plans were compared for (robust) target coverage, organ-at-risk (OAR) doses, and normal tissue compli-
cation probabilities (NTCP). No manual fine-tuning of automatically generated plans was performed.
Results: For all automatically generated plans, voxel-wise minimum D98% values for the CTVs were within clinical constraints
and similar to manual plans. All investigated OAR parameters were favorable in the automatically generated plans (all P <
.001). Median reductions in mean dose to OARs went up to 667 cGy for the inferior pharyngeal constrictor muscle, and
median reductions in D0.03cm3 in serial OARs ranged up to 1795 cGy for the spinal cord surface. The observed lower mean
dose in parallel OARs resulted in statistically significant lower NTCP for xerostomia (grade ≥2: 34.4% vs 38.0%; grade ≥3:
9.0% vs 10.2%) and dysphagia (grade ≥2: 11.8% vs 15.0%; grade ≥3: 1.8% vs 2.8%).
Conclusions: Erasmus-iCycle was able to produce IMPT dose distributions fully automatically with similar (robust) target
coverage and improved OAR doses and NTCPs compared with clinical manual planning, with negligible hands-on planning
workload. � 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction
Radiation therapy (RT) has a key role in the curative treat-
ment of patients with head and neck cancer (HNC), aiming
to control tumors while minimizing radiation-induced dam-
age to the surrounding organs at risk (OARs). Intensity
modulated photon RT and volumetric arc therapy (VMAT)
are standard clinical practice in RT.1 Over the past several
years, intensity modulated proton therapy (IMPT) has
become more widely available as an alternative treatment
technique.2

Proton beams have a sharp distal dose fall-off (Bragg
peak), resulting in minimal to no exit dose and lower
entrance dose compared with photon beams, both contrib-
uting to reduced doses in surrounding healthy tissues while
preserving conformal target coverage.3 However, proton
therapy is sensitive to patient set-up uncertainties, tissue
density inhomogeneities, and anatomic changes. To prevent
unacceptable deviations of delivered doses from planned
doses, robust optimization can be applied,4 where multiple
scenarios with different density and setup settings are taken
into account during optimization.5

For patients with HNC with multiple targets with com-
plex shapes and different dose levels, situated in close prox-
imity of several OARs, finding optimal dose trade-offs
between the targets and all OARs with interactive manual
treatment planning is complex, requiring a high level of
planner intervention. This makes the manual treatment
planning process workload intensive and time consuming
and may delay the start of the treatment. In addition, the
resulting plan quality may highly depend on the experience
and time investment of the planner.6,7 Automated treatment
planning could be a possible solution for this, as it can dras-
tically reduce the hands-on planning time while potentially
also gaining in plan quality and consistency.

Over the past years, many in-house developed or com-
mercially available automated planning approaches have
been proposed, as described in the review by Hussein et al.8

With knowledge based or machine learning planning, a
library of previously treated patient and plan parameters are
used to predict a new plan,9,10 whereas in multicriteria opti-
mization (MCO), generated plans are Pareto optimal. In a
posteriori MCO, a set of Pareto optimal plans is automati-
cally generated for each patient, and the final, clinically
favorable plan is selected by a planner with so-called “Pareto
navigation.”11 In a priori MCO, a single plan is fully auto-
matically generated for each patient; this plan is Pareto opti-
mal and clinically favorable. Breedveld et al12 from Erasmus
MC in Rotterdam have developed Erasmus-iCycle for a pri-
ori MCO. With Erasmus-iCycle, each fully automated mul-
ticriterial plan generation is steered by a treatment-site
specific wish list, containing hard planning constraints and
prioritized planning objectives. During plan generation, the
objectives from the wish list are sequentially minimized in
the order of the given priorities, while avoiding violation of
the constraints. After each objective minimization, a
constraint is added to the problem, such that its value is
maintained in subsequent minimizations of lower priority
objectives.12,13

Validation studies for automated planning methods have
shown successes for different cancer types, including
HNC.10,14-16 Most studies have been performed for photon
beam therapy, and studies for proton therapy are scarce. Vali-
dations of Erasmus-iCycleautomated planning in photon
therapy have consistently demonstrated enhanced plan quality
compared with manual planning for various treatment sites,
including HNC.17-25 Since 2012, Erasmus-iCycle has been in
clinical use for intensity modulated photon RT and VMAT at
Erasmus MC. Erasmus-iCycle was extended with proton pen-
cil beam scanning, and further developments for IMPT opti-
mization were implemented.26−28, Automated IMPT plan
generation with Erasmus-iCycle has already been used in sev-
eral studies.28-30 In addition, Erasmus-iCycle was investigated
for preselection of patients for final selection for IMPT with
model-based photon-proton plan comparisons, as imple-
mented in the Netherlands.31 However, clinical validations of
Erasmus-iCycle in IMPT are still lacking.

The aim of this study was to dosimetrically compare
robust IMPT plans, fully automatically generated with Eras-
mus-iCycle, with clinically delivered robust IMPT plans that
were manually generated with our clinical treatment plan-
ning system (RayStation) for patients with HNC.
Methods and Materials
Patients

A total of 33 consecutive hypo- and oropharyngeal patients
with HNC, clinically treated at HollandPTC with primary
IMPT at a Varian ProBeam unit (Varian Medical Systems)
between March 2021 and August 2022, were retrospectively
included. Informed consent was obtained from all patients
for the retrospective use of their clinical data. Patients were
treated with curative intent and irradiated with 7000 cGy
(relative biologic effectiveness = 1.1) to the primary clinical
target volume (CTV7000) and 5425 cGy (relative biologic
effectiveness = 1.1) to the bilateral elective CTVs (CTV5425)
in 35 fractions. See Table 1 for patient and tumor character-
istics.
Clinical manual planning

The clinically delivered plans were previously manually gen-
erated in the clinical treatment planning system (RayStation
v10B; RaySearch Laboratories AB). A 4-field beam configu-
ration (template angles: 50°, 150°, 210°, 310°) including a 5-
cm range shifter per beam was used. The anterior fields
could be adjusted by the involved planner by 5° to 10° to
avoid irradiation through dental fillings. Spot avoidance vol-
umes were created to prevent spots passing through metal



Table 1 Patient and tumor characteristics

Test patients
(n = 30)

Tuning patients
(n = 3)

Age (y)

Median (range) 63 (43-77) 56 (51-67)

Sex (n)

Female 7 -

Male 23 3

Tumor location (n)

Hypopharynx 2 -

Oropharynx 28 3

CTV7000 (cm3)

Median (range) 85.4 (16.9-246.6) 76.0 (58.9-126.1)

T-stage (n)

T1 6 1

T2 16 2

T3 3 −

T4* 5 −

N-stage (n)

N0 4 −

N1 12 1

N2y 12 2

N3y 2 −

Abbreviation: CTV = clinical target volume.
* T4a, T4b, T4NOS.
y N2a, N2b, N2c, N2NOS.
z N3a, N3b.

Table 2 Clinical treatment planning goals

Target/OAR Dose volume goal Dmean

CTV7000 D98%≥95%*

D2%≤107%
y

CTV5425 D98%≥95%*

Parotids ≤2600 cGy

Submandibular glands ≤3500 cGy

Oral cavity ≤2800 cGy

PCMs ≤4000 cGy

Larynx ≤4000 cGy

Cochlea ≤4500 cGy

Brain stem

Core D0.03cm3 ≤5400 cGyy

Surface D0.03cm3 ≤6000 cGyy

Spinal cord

Core D0.03cm3 ≤5000 cGyy

Surface D0.03cm3 ≤6000 cGyy

Mandible D2% ≤7000 cGyy

Abbreviations: CTV = clinical target volume; Dmean = mean dose;
OAR = organ at risk; PCMs = pharyngeal constrictor muscles (delin-
eated separately the superior, medius, and superior part); vw-
max = voxel-wise maximum; vw-min = voxel-wise minimum.
* Also in the vw-min dose.
y Also in the vw-max dose.
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dental fillings. Traversing of shoulders was prevented with
avoidance structures comprising the caudal parts of CTVs.
CTV doses were robustly optimized for 21 scenarios with a
3-mm isotropic setup uncertainty and §3% density uncer-
tainty. Doses to OARs were minimized in line with the
OAR planning goals in Table 2. The clinical IMPT plans
were optimized and calculated using the RayStation Monte
Carlo dose engine with 1.0% statistical uncertainty.
Automated planning
Wish list tuning
Configuration of the Erasmus-iCycle wish list aimed at
automated generation of clinically acceptable robust IMPT
plans, with at least similar plan quality as the manually gen-
erated clinical plans. Definition of an initial wish list is based
on the planning protocol (Table 2) and discussions with
clinicians and planners, whereafter this initial wish list is
applied to a limited number of tuning patients. The IMPT
plans of 3 clinical patients, so called “tuning patients”, were
randomly selected from the 33 available IMPT patient plans
and used to guide the iterative wish list tuning process. Dur-
ing the iterative wish list tuning, plans were evaluated, and
if further enhancements were considered feasible, the wish
list was updated. See the appendix of Heijmen et al20 for a
more detailed description of the process of wish list tuning.
The wish list used in this study is presented in Table E1.
Automated plan generation
After wish list tuning, automated plans were generated for
the remaining 30 “test” patients with HNC. Automated
IMPT plan generation was performed with the recently pro-
posed SISS-MCO method.32 In SISS-MCO, sparsity induced
spot selection (SISS) precedes final MCO with Erasmus-
iCycle. In SISS-MCO, scenario-based minimax robust opti-
mization33 of CTV doses was applied, using the same 21 sce-
narios as in clinical manual planning (discussed in previous
sections). All plans were generated with the same beam
arrangement as clinically used. As in clinical manual plan-
ning, a 5-cm range shifter was used, and applied contours
and avoidance structures were the same as those used in
clinical planning. During optimizations, machine parameters
of the applied Varian treatment unit were taken into consid-
eration for deliverability, with a minimal monitor unit (MU)
per spot constraint of 3 MU and a maximum of 80 MU.
Doses were computed with the Astroid dose engine,34 which
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was tuned for accurate dose prediction for the applied treat-
ment unit.31
Plan evaluations and comparisons

For the 30 test patients, automatically generated IMPT plans
were compared with the corresponding manually generated
clinical IMPT plans. For the CTVs, coverage was evaluated
for nominal dose and for voxel-wise minimum (vw-min)
dose, constructed from 28 scenarios with 3-mm setup error
and §3% density uncertainty. Both for the nominal plans
and the vw-min dose distributions, the clinical D98%≥95%
coverage criterion was used, in accordance with the protocol
based on consensus within the Dutch Proton Therapy
(DUPROTON) group.35 For CTV7000, the D2%≤107% crite-
rion was applied to nominal dose and voxel-wise maximum
(vw-max) dose distributions, again constructed from the 28
robustness scenarios. Doses in parallel OARs were assessed
using mean dose (Dmean) in nominal plans, while for serial
OARs, D0.03cm3 or D2% in nominal and vw-max plans were
reported. To evaluate the overall dose to the tissues, the vol-
ume of the body that received 5 Gy was evaluated (V5Gy).
Normal tissue complication probability (NTCP) for xerosto-
mia (grade ≥2 and grade ≥3) and dysphagia (grade ≥2 and
grade ≥3) were calculated for nominal plans, using a
Clinical plan

CTV700
CTV542

Fig. 1. Transversal (top row) and sagittal cross-sections (botto
distribution of a clinical plan (left) and an automated plan (right)
mated plan, the isodose lines conform better to the targets with les
baseline score of zero for both the clinical and automated
plans (Table E2).36 Wilcoxon signed rank tests were per-
formed to assess statistical significance of observed differen-
ces between automated and manual planning (P < .05).
Results
Automatically generated IMPT plans with Erasmus-iCycle
had similar (robust) target coverage D98%, statistically signif-
icant lower doses to OARs, and statistically significant lower
NTCP for xerostomia and dysphagia compared with clinical
IMPT plans.

Figure 1 shows an example of dose distributions from
automated and manual plans, where in the automatically
generated plans the isodose lines conform better to the tar-
gets, resulting in lower doses in the surrounding healthy tis-
sues, especially in the posterior part of the neck.

For the nominal scenario, the D98%≥95% criterion was ful-
filled in all 30 automated and all clinical plans, for both
CTVs. For CTV7000, the median D98% of the nominal auto-
mated plans was 24-cGy lower than for the nominal clinical
plans, and for CTV5425 the automated plans showed a 40-
cGy higher median D98% (Table 3). In 2 clinical plans, the
D98%≥95% criterion for vw-min dose was not fulfilled for
Automated plan

0
700

1750
3500
4200
4900
5150
5424
5805
6650
7000
7490

cGy

0
5

m row) of a computed tomography with the nominal dose
of 1 representative patient (patient 30). Note that in the auto-
s dose to the surrounding healthy tissues.



Table 3 Dose/volume metrics (median and range) for the CTVs and OARs and predicted NTCPs for the clinical and automated
plans

Metric*
Clinical plan

median (min-max)
Automated plan

median (min-max) P value

CTV7000 D98%≥95% (6650 [cGy]) 6889 (6821-6933) 6865 (6792-6889) <.001y

vw-min D98%≥95% (6650 [cGy]) 6687 (6634-6788) 6707 (6656-6736) .131

D2%≤107% (7490 [cGy]) 7305 (7242-7346) 7226 (7049-7259) <.001y

vw-max D2%≤107% (7490 [cGy]) 7428 (7355-7501) 7344 (7128-7386) <.001y

CTV5425 D98%≥95% (5150 [cGy]) 5371 (5342-5427) 5411 (5357-5516) <.001y

vw-min D98%≥95% (5150 [cGy]) 5196 (5153-5238) 5193 (5156-5264) .572

Parotid contra Dmean [cGy] 1537 (7-3546) 1287 (0-3093) <.001y

Parotid ipsi Dmean [cGy] 2650 (1430-6266) 2368 (1147-5998) <.001y

SMG contra Dmean [cGy] 3753 (14-5418) 3345 (0-5002) <.001y

SMG ipsi Dmean [cGy] 6287 (4479-6954) 6045 (3806-6867) <.001y

Oral cavity Dmean [cGy] 2793 (597-5144) 2678 (707-4876) <.001y

PCM superior Dmean [cGy] 5663 (3521-7084) 5233 (2975-6936) <.001y

PCM medius Dmean [cGy] 4854 (2637-7053) 4276 (2282-6954) <.001y

PCM inferior Dmean [cGy] 2348 (1178-6678) 1681 (821-6533) <.001y

Larynx Dmean [cGy] 3919 (1674-6725) 3425 (930-6281) <.001y

Cochlea left Dmean [cGy] 145 (13-1995) 7 (0-750) <.001y

Cochlea right Dmean [cGy] 308 (15-2158) 48 (0-866) <.001y

Brain stem Core D0.03cm3 [cGy] 1201 (125-3054) 95 (0-738) <.001y

vw-max core D0.03cm3 [cGy] 1684 (208-3495) 206 (0-841) <.001y

Surface D0.03cm3 [cGy] 1639 (177-3424) 195 (0-880) <.001y

vw-max surface D0.03cm3 [cGy] 2020 (260-3822) 430 (2-1375) <.001y

Spinal cord Core D0.03cm3 [cGy] 2485 (1024-3588) 856 (349-2014) <.001y

vw-max core D0.03cm3 [cGy] 2798 (1139-4084) 1005 (384-2448) <.001y

Surface D0.03cm3 [cGy] 2741 (1092-4099) 946 (363-2299) <.001y

vw-max surface D0.03cm3 [cGy] 3226 (1388-4570) 1468 (587-3076) <.001y

Mandible D2% [cGy] 6687 (4369-6959) 6463 (3302-6887) <.001y

vw-max D2% [cGy] 6913 (4980-7059) 6715 (4043-6996) <.001y

Body V5Gy [cm
3] 3342 (1478-5122) 2396 (1233-3401) <.001y

NTCP Xerostomia Grade ≥2 [%] 38.0 (26.5-50.3) 34.4 (27.7-47.7) <.001y

Grade ≥3 [%] 10.2 (6.7-14.8) 9.0 (6.2-13.7) <.001y

NTCP Dysphagia Grade ≥2 [%] 15.0 (8.8-30.3) 11.8 (6.9-26.7) <.001y

Grade ≥3 [%] 2.8 (1.4-14.2) 1.8 (0.9-12.3) <.001y

In the last column are the P value outcomes of the Wilcoxon signed rank tests.
Abbreviations: CTV = clinical target volume; Dmean = mean dose; NTCP = normal tissue complication probabilities; OAR = organ at risk;

PCM = pharyngeal constrictor muscle; SMG = submandibular gland; vw-max = voxel-wise maximum; vw-min = voxel-wise minimum.
* Metrics are provided for nominal plans, unless stated otherwise by “vw-min” or “vw-max.”
y Statistically significant, with P < .05
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CTV7000, but the criterion was respected in all automated
plans for both CTVs. Differences between automated and
manual planning in vw-min D98% were not statistically sig-
nificant for either of the 2 CTVs (Table 3). The D2% was
slightly improved in the automated plans compared with
the clinical plans for both nominal and vw-max dose. The
median D2% for CTV7000 in the automated plans was
79-cGy lower in the nominal dose and 84-cGy lower for the
vw-max dose compared with the clinical plans. For the
nominal dose, the D2%≤107% criterion was fulfilled in all
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30 automated and all clinical plans, and for the vw-max
dose, all 30 automated plans respected this constraint, while
it was exceeded in 2 clinical plans.

For all evaluated OARs, delivered dose was favorable in
the automated plans, with all P < .001 (Table 3). Observed
reductions in median dose parameters compared with man-
ual planning were 250/282 cGy for contralateral/ipsilateral
parotid Dmean, 408/242 cGy for contralateral/ipsilateral sub-
mandibular gland Dmean, 115 cGy for oral cavity Dmean,
430/578/667 cGy for pharyngeal constrictor muscle supe-
rior/medius/inferior Dmean, 494 cGy for larynx Dmean, 224/
198 cGy for mandible D2% and vw-min D2%. For the brain
stem, dose reductions in the automated plans compared
with the manual plans were 1106/1444 cGy for core/surface
D0.03cm3 and 1478/1590 cGy core/surface vw-max D0.03cm3.
For the spinal cord, dose reductions were 1629/1795 cGy for
core/surface D0.03cm3 and 1793/1758 cGy for core/surface
vw-max D0.03cm3 . The volume of the body that received 5
Gy was reduced by 946 cm3 in the automated plans com-
pared with the manual plans.

Figure 2 shows per patient the differences between auto-
mated and manual plans in the OAR Dmean that were used
in the NTCP calculations. For patients 1 and 23, the
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advantage of automated planning became maybe less clear,
but for all other 28 patients, automated planning resulted in
clearly favorable OAR Dmean. The achieved reductions in
OAR Dmean with automated planning led to statistically sig-
nificant (P < .001) decreases in the NTCP for xerostomia
grade ≥2 and grade ≥3 and dysphagia grade ≥2 and grade
≥3 (last rows Table 3, and Fig. 3).

The automatically generated IMPT plans by Erasmus-
iCycle were generated within several hours, similar to clini-
cal manual planning times of approximately 6 hours.
Discussion
In this study, robust IMPT plans, generated with fully auto-
mated multicriteria optimization as implemented in Eras-
mus-iCycle, were compared with manually created,
clinically applied robust IMPT plans for patients with HNC.
Erasmus-iCycle was able to automatically produce clinically
acceptable robust IMPT plans for all 30 test patients with
comparable (robust) target coverage to the clinical plans,
but highly favorable OAR dose parameters (all median dif-
ferences P < .001). The mean dose (Dmean) reductions to the
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parallel OARs resulted in statistically significant NTCP
reductions for xerostomia and dysphagia compared with
clinical plans.

Whereas in all 30 automated plans the clinical robust tar-
get D98% goals were achieved, this was not the case for 2 of
the clinical plans. For 28/30 patients, the automatically gen-
erated plan was clearly favorable for the obtained Dmean to
OARs. For the other 2 patients, there were gains and losses
in dose to OARs with automated planning (Fig. 2). The larg-
est median dose reductions were up to 667 cGy in the Dmean

to the inferior pharyngeal constrictor muscle. Large dose
reductions were also observed in serial OARs, for example, a
median reduction in D0.03cm3 of the spinal cord surface of
1795 cGy. Also, the posterior part of the neck was much bet-
ter spared with automated planning.

To the best of our knowledge, this is the first validation
study for fully automatedMCO in IMPT, and it shows clini-
cally relevant plan quality enhancements compared with
manual planning. Advantages of automated MCO com-
pared with manual planning have been observed previously
in external photon beam RT.17-25 In line with our results,
automated photon plans for HNC were superior to the
manual plans in 97% of the cases.37 Apparently, it is difficult
for human planners to consistently reach the quality
obtained by the wish list−driven systematic plan generation
in automated MCO. There are several factors that can con-
tribute to this, including restrictions in available planning
times for each individual patient’s plan in manual planning
and variations in the human planner experience and plan-
ning skills.

With Erasmus-iCycle automated MCO, generated plans are
guaranteed Pareto-optimal,12 and all objectives are minimized
to the maximum extent, while never violating constraints and
taking into account objective priorities (see Table E1). For spinal
cord and brain stem, the applied wish list has maximum dose
constraints. In clinical manual planning, a plan is generally
accepted if such constraints are met. In this study, we have
added low priority objectives (priority 12) to the wish list for
these structures. As a result, the optimizer will, at the end of the
plan generation, reduce doses in these OARs if possible, without
deteriorating the higher priority objectives. In this way, not only
are the constraints met, but doses are also maximally reduced.
Application of the low priority objectives for the brain stem and
spinal cord have contributed to the large dose reductions in
these structures compared with manual planning. It probably
also contributed to the obtained low-neck doses. Priorities 13 to
15 aimed at conformality improvements without deteriorating
any of the higher priority objectives.

The large reductions in observed D0.03cm3 for the brain
stem and spinal cord can be of importance in case future
reirradiations are necessary. In an eventual reirradiation
plan, some overlapping dose in these structures will be pos-
sible because the earlier delivered doses were far below the
clinical constraints. For the purpose of plan adaptation,
Erasmus-iCycle is highly suitable for offline replanning
because it is able to automatically produce an adjusted plan
with high and consistent plan quality within several hours
and without manual intervention. Speeding up this optimi-
zation time is part of further investigations.

The obtained NTCP reductions can be of clinical rele-
vance, not only because patients may develop fewer side
effects, but also in case patient selection for IMPT is accord-
ing to a photon-proton model-based plan comparison.36

Because NTCP reductions obtained with Erasmus-iCycle
potentially lead to larger differences in NTCP between the
photon-proton plans, this could increase the chance that
patients are eligible for proton therapy. However, the fairest
comparison would then be an automated Erasmus-iCycle
photon-to-proton plan comparison. Automation of photon-
proton plan comparisons could speed up the process and
prevent delays in starting with the (proton) treatment. An
extra added value of fully automated planning is cost
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reduction because of reduced planning workload, and it can
also solve problems in case of scarcity of well-trained plan-
ners. For photon therapy, several studies have reported on
workload reductions with automated planning. Buschmann
et al21 observed workload reductions of >70 minutes com-
pared with manual planning for prostate cancer VMAT.
Fjellanger et al38 observed reductions in hands-on planning
times for lung cancer VMAT from 2 to 4 h with manual
planning to less than 10 minutes for automated planning.
Marrazzo et al39 reported a reduction in hands-on planning
time for partial breast irradiation from 63 to 10 minutes. In
any case, we believe that development of planning tools that
allow proton centers to maximally exploit the benefit of pro-
ton beams is of crucial importance. It is of great interest for
the patient and also for society, as scarce and expensive
equipment will be used in the best way possible.

Whereas automated treatment planning methods for
photons have been increasingly investigated over the past
few years as described by Hussein et al,8 automated plan-
ning studies on IMPT are relatively scarce, but a few have
been performed previously.40-43 Delaney et al40,41 investi-
gated a commercially available knowledge-based planning
method for IMPT for patients with HNC, and also per-
formed a multicenter study. In line with our results, they
found comparable target coverage and reduced OAR dose
in the knowledge-based planning plans compared with the
clinical IMPT plans. Van Bruggen et al42 also investigated
a commercially available method for automated IMPT
planning in patients with HNC, based on machine learn-
ing. They found comparable target coverage and NTCP
and significantly higher dose to some OARs in the auto-
mated plans compared with the clinical plans. Both studies
are based on an atlas of earlier treated patients, and the
resulting IMPT plans are dependent on the quality of these
atlas patients. This contrasts with our Erasmus-iCycle
optimization method, which is an a priori MCO method
and able to produce high quality plans that are indepen-
dent of the quality of earlier applied plans. Taasti et al43

investigated an in-house developed fully automated treat-
ment planning method in protons for HNC cases and
extended this with an automated beam angle selection
method. Their optimization method is, similar to Eras-
mus-iCycle, based on hierarchical optimization of con-
straints. Plans with automated selected beam configuration
had reduced dose to the mandible and unspecified healthy
tissues compared with the configuration chosen by the
planner.

Although in this paper the beam arrangement in the clin-
ical and Erasmus-iCycle plans were generated with the same
4-field beam configuration, it is expected that the plan qual-
ity of IMPT plans can be further improved with the applica-
tion of automated beam angle selection.43 This has been
shown in various treatment sites for Erasmus-iCycle in pho-
ton plans.12,44-46 Automated beam angle selection will be
part of further development for Erasmus-iCycle IMPT.

A possible limitation of our current study is that our clin-
ical plans are calculated using Monte Carlo dose engine,
while we use a pencil beam dose calculation algorithm cali-
brated to the measured beam data from HollandPTC in our
automated plans. Ideally, exactly the same dose calculation
algorithm should have been used. However, in literature, we
found that differences between analytical dose calculation
and Monte Carlo in IMPT for HNC are small. Yepes et al47

investigated in a large HNC cohort (n = 125) the differences
between analytical and Monte Carlo dose calculations. They
found that target coverage was predicted slightly higher
with analytical computations compared with Monte Carlo
computations, and for all OARs, median differences in dose
computations were within 1%.

Erasmus-iCycle IMPT plans respect the clinically
applied minimum and maximum allowed MU per spot,
minimum and maximum available proton energies, and
they adhere to the clinically applied separation between
energy layers. However, currently the system is not cou-
pled to our treatment unit. Clinical application requires
regulatory procedures that follow the European Union
Medical Device Regulation (https://eumdr.com/), which
aims at guaranteeing safe usage of medical devices. The
rules apply both for in-house developed and commercial
software/devices.

This study is the first validation of the Erasmus-iCycle
for clinical IMPT planning. Erasmus-iCycle IMPT plans
showed excellent performance for HNC regarding dosimet-
ric plan parameters and predicted NTCPs. Further valida-
tion studies for other tumor sites should be done.
Conclusion
For patients with HNCs, fully automated MCO resulted in
clinically acceptable robust IMPT plans with comparable
target coverage to the clinical, manually generated plans,
but with highly favorable OAR dose parameters. Achieved
OAR Dmean reductions resulted in statistically significant
reductions in predicted xerostomia and dysphagia NTCPs.
For the vast majority of patients, the automatically gener-
ated plan was clearly favorable for obtained OAR Dmean.
Large dose reductions were also observed in serial OARs
and in the posterior part of the neck.
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