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Abstract Objective: To externally validate the dynamic prediction model for prediction of
upper limb (UL) function 6 months after stroke. The dynamic prediction model has been devel-
oped and cross-validated on data from 4 Dutch studies.
Design: Data from a prospective Danish cohort study were used to assess prediction accuracy.
Setting: A Danish neurorehabilitation hospital.
Participants: In this external validation study, follow-up data for 80 patients in the subacute phase
after stroke (N=80), mean age 64 (SD11), 43% women, could be obtained. They were assessed at 2
weeks, 3 months, and 6 months after stroke with the Action Research Arm Test (ARAT), Fugl-Meyer
Motor Assessment upper limb (FMA), and Shoulder Abduction (SA) Finger Extension (FE), (SAFE) test.
Intervention: Not applicable.
Main Outcome Measures: Prediction accuracy at 6 months was examined for 3 categories of ARAT
(0-57 points): mild (48-57), moderate (23-47), and severe (0-22). Two individual predictions of
ARAT scores at §6 months post-stroke were computed based on, respectively, baseline (2 weeks)
and 3 months ARAT, FE, SA values. The absolute individual differences between observed and
predicted ARATscores were summarized.
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Results: The prediction model performed best for patients with relatively good UL motor func-
tion, with an absolute error median (IQR) of 3 (2-9), and worst for patients with severe UL
impairment, with a median (IQR) of 30 (3-39) at baseline. In general, prediction accuracy sub-
stantially improved when data obtained 3 months after stroke was included compared with base-
line at 2 weeks after stroke.
Conclusion: We found limited clinical usability due to the lack of prediction accuracy 2 weeks
after stroke and for patients with severe UL impairments. The dynamic prediction model could
probably be refined with data from biomarkers.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American Congress of Rehabilitation
Medicine. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
According to the World Stroke Organization, stroke has
reached endemic proportions, as 1 in 4 adults over 25 will
suffer from a stroke in their lifetime.1 Because of aging pop-
ulations in most Western and many developing countries,
stroke incidence and consequently the need for effective
rehabilitation will increase.2 Personalized rehabilitation,
based on the individual’s recovery potential, life situation,
and preferences, could help to find appropriate treatment
strategies and thereby effectively use limited resources.
Ideally, a prediction model should be able to incorporate rel-
evant candidate predictors whenever they are available and
for as long as the prediction is relevant. Predictor variables
should be limited to the most necessary to facilitate applica-
tion in clinical practice. Therapists can use prediction mod-
els to plan and implement targeted interventions. The
prediction model should be stable enough to incorporate rel-
evant predictor variables based on the patient status at the
time of assessment, even if the assessment does not conform
to set time points, such as day 3 or 3 months or 6 months
post-stroke as used in formal model validation studies.

Several models have been suggested to predict upper
limb (UL) function after stroke, but they suffer from sub-
stantial shortcomings. The proportional recovery rule, first
published by Prabhakaran et al in 2008, claims that people
with stroke will recover 70% of their maximal possible
improvement based on their initial Fugl-Meyer Motor Assess-
ment Upper Limb (FMA) score.3 Yet, this rule is weakened by
a substantial part of “nonfitters” with severe paresis and
appears to only apply to patients with mild to moderate
paresis at a group level. Moreover, its fundamental assump-
tions have been challenged and debated.4-6

A simple bedside test based on shoulder abduction and
finger extension (FE) 72 h, 5, and 9 days after stroke is the
Early Prediction of Functional Outcome after Stroke (EPOS
model),7 which was recently externally validated.8 While
the EPOS model performed well in discriminating patients
with no and some dexterity 3 and 6 months after stroke, it is
still too coarse for clinical application because the outcome
categories are too broad to be meaningful at an individual
level in the clinical setting.

On an individual level, the Predict Recovery Potential
(PREP) algorithm appears to be the only suitable model.9,10

It comprises clinical assessments, and for patients with
severe paresis or paralysis, an examination with transcranial
magnetic stimulation (TMS) at predefined times after stroke.
These predefined times and the need for specific equipment
for a subgroup of patients are limiting factors of its applica-
tion in clinical practice. When applied at a later point in
time, the prediction accuracy of PREP expressed as Correct
Classification Rate in 4 categories decreased from 75% to
60%, although the prediction accuracy for poor motor func-
tion remained high at 78%.11

Most prediction models are based on either linear or
logistic regression, or Classification and Regression Tree
Analysis, predicting an outcome at a defined endpoint, such
as at 3 months or 6 months, based on data obtained at a spe-
cific baseline, such as day 3 post stroke. Consequently, they
do not reflect the nonlinear course of recovery, with most
spontaneous biological recovery occurring during the first
weeks.12

Moreover, they depend on specific days after stroke for
predictor measurements with only baseline values as a pre-
dictor and do not track interim progress.

Recently, a dynamic model of prediction was developed
by Selles et al to address the limitations of other models.13

This online-based mixed-effects prediction aims to provide
patient-specific prediction independent of specific time
points for data collection. The development of this model
was based on data from 4 Dutch cohort studies, including a
total of 450 patients.7,14

This model adds the substantial advantage of time-inde-
pendent measurements, that is, not dependent on specific
time points after stroke as suggested in other models.8,15 In
clinical routine, patients may not always be available for
assessments on specific days because of other examinations
and treatments. An online prediction visualization is avail-
able, including 68% and 98% prediction intervals reflecting
prediction uncertainty. Moreover, the model has been cross-
validated.

While conducting cross-validation with the same dataset
is an essential step to evaluate a model’s performance,
external validation is necessary to assess its generalizability
to other datasets. To address this need, we applied the
model to a sample from a Danish cohort study11 to perform
an in-depth analysis of its clinical applicability for different
levels of UL function after stroke. We hypothesized that the
model would perform equally well in the validation cohort.
Methods

Design

The data set for external validation was obtained from a
prospective cohort study where the prediction accuracy of
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the components of the PREP2 algorithm was assessed when
applied 2 weeks after stroke.11 Based on the same cohort, 3-
and 6-month follow-up data were obtained which have been
published elsewhere16,17 and were here used for the purpose
of external validation.

Patients

All patients were consecutively recruited at a Danish Neuro-
rehabilitation hospital from June 2018 to October 2019. The
hospital has 110 beds for patients with acquired brain inju-
ries. Patients ≥18 years were included if they suffered from
impaired UL function (Shoulder Abduction Finger Extension
[SAFE] score <10) after a first or recurrent stroke without
any residual motor deficits. They had to be admitted to
rehabilitation within 2 weeks after stroke and be able to
comply with assessment procedures and provide informed
consent. The included patients received standard rehabilita-
tion for UL and did not participate in specific UL treatment
studies. Ethical approval was obtained from the Ethical
Committee of the Central Jutland Region, approval number
628213.

Assessments

Patients were assessed at 2 weeks, henceforth referred to as
baseline, 3 months, and 6 months after stroke with the fol-
lowing measurements:

- SAFE score, based on shoulder abduction and FE, scored
according to Medical Research Council (MRC) guidelines
from 0 to 5 each, allowing for a maximum score of 10
(best).18

- Action Research Arm Test (ARAT), assessing UL function
on a scale from 0 to 57 (best), divided into subdomains
of gross motor function, grip, grasp, and fine motor
skills.19
Table 1 Patient demographics and medical data

Original Cohort

Number of patients 450
Inclusion period n/a
Data sources Data from 4 different studies

Time points for assessments
post stroke

EPOS study: 3, 5, 6 days and 6
EXPLORE and, 4D-EEG study:
EXPLICITstudy: 1, 2, 3, 5, 12,

Age, years mean § SD 65 (14)
Sex, women (%) 48
Type of stroke: ischemic/
hemorrhagic

450/0

NIHSS score mean § SD 8 (5)
Affected body side (right) (%) 39
ARAT baseline score
Mean § SD

Early post-stroke (within 1 we
14 (19)

FMA mean § SD 25 (22)
Neglect (present) (%) 166 (36.9)

Abbreviations: ARAT, Action Research Arm Test; EPOS, Early Prediction o
after stroke; FMA, Fugl-Meyer Motor Assessment upper limb; NIHSS, Nat
- Fugl-Meyer Motor Assessment Upper Limb (FMA), assess-
ing UL impairment on a scale of 0-66 (best).20

Not all assessments were available at all time points;
some had to be calculated based on other data described
below. However, ARAT data were available for most patients
at baseline, 3 months, and 6 months post stroke.

All assessments were performed by trained therapists,
blinded for baseline scores at 3- and 6-month assessments.

Outcome

The main outcome was prediction accuracy for ARAT scores
at 6 months post-stroke. For external validation, the predic-
tion accuracy was compared with the accuracy of the devel-
opment cohort.

The development cohort of the dynamic prediction
model

The original dynamic prediction model13 was first studied
with data from 4 Dutch cohort studies.7,14,21 Characteristics
of the Dutch and the Danish sample are displayed in table 1.
The model development and validation were extensively
described elsewhere.13 In short, during the development
and evaluation of the model, 5 different model structures
with different co-variates were considered. An internal vali-
dation using a cross-validation technique was performed.
For the model development, a broad array of demographic
and clinical co-variates was included, such as age, sex, body-
side affected, stroke classification according to the Bamford
Scale, thrombolysis, level of impairment according to the
National Institute of Health Stroke Scale (NIHSS), and
neglect.

The following time-dependent UL motor function varia-
bles were included in the dynamic prediction model: days of
measurement post stroke, ARAT score, SAFE. Shoulder
Validation Cohort

80
June 2018 to October 2019

in The Netherlands Data from 1 longitudinal cohort
study in Denmark

months
5, 12, and 26 weeks
and 26 weeks

14 days, 3 and 6 months post stroke

64 (11)
43
60/20

9.4 (5.0)
36

ek) 2 weeks post-stroke
22 (19)
34 (22)
19 (24.1)

f Functional Outcome after Stroke; EXPLICIT, EXplaining PLastICITy
ional Institute of Health Stroke Scale.
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abduction (SA) was derived from Motricity Index (0-33),
which contains 6 categories which are congruent with the SA
score from the SAFE score (0= no active movement; 1= active
movement palpable, not visible; 2= active movement, but
against gravity; 3= active movement, but not against resis-
tance; 4= active movement against resistance, but weaker
than other side; 5= normal strength has compared with other
side). The FE score was derived from FMA item 25 for FE (0=
none, 1= partial, 2= full). The development included 5 dif-
ferent models containing different fixed-effect structures
from the most complex to the simplest. This led to a final
model based on the SAFE score only.12 In general, the predic-
tion error decreased as the number of measurements
increased. In particular, a median error of 8.4 (Q1−Q3:1.7-
28.1) was observed when 1 measurement early poststroke
was used and a median error of 2.3 (Q1−Q3:1-7.2) was
observed when 7 measurements were used. Furthermore, an
increased error was observed when the baseline ARAT was
low (between 0 and 22). In the development cohort, the pre-
dictive performance measure of the dynamic prediction
model was investigated in 3 baseline ARAT categories (0-22,
23-47, 48-57 points). Both the predicted ARAT score at 6
months and the uncertainty were displayed.
The validation cohort

The external validation cohort consisted of the above-
described patients from a longitudinal cohort study. The val-
idation data set contained 103 patients at baseline. Com-
plete datasets including both follow-up assessments at 3 and
6 months could be obtained for 80 patients and only those
were used to test the model. Model predictions were derived
twice (at baseline and at 3 months), leading to 80 predic-
tions at each of the 2 time points.

Because both cohorts did not have all variables in com-
mon, some predictor variables of the validation cohort had
to be converted to be entered into the model. More specifi-
cally, the model by Selles et al requires measurements of
ARAT and the SA item of the SAFE score at the same time
point. These were not available for all patients in the cur-
rent cohort, but we derived a proxy from the FMA item 15
(shoulder abduction to 90 degrees with forearm pronated
and elbow extended, for the assessments at 3 and 6 months
post-stroke. To do so, the FMA scores 0 (no movement) were
replaced by SA score 1 (visible contraction without move-
ment of the limb), FMA score 1 (partial movement) was
replaced by SA score 2 (movement of the limb- but not
against gravity), and the FMA score 2 (full movement) was
replaced by SA score 3 (movement across the total move-
ment range).
Statistical analyses

Individual predictions of ARAT scores at 6 months post stroke
were computed based on the baseline values obtained
around 2 weeks post-stroke of ARAT, FE, and the SA proxy as
well as based on these values and the corresponding values
obtained around 3 months post-stroke. The absolute individ-
ual differences between observed and predicted ARATscores
were summarized in box plots. In this comparison of
observed and predicted ARAT values, predictions were
truncated at ARAT values 0 (for 7 patients), and 57 (for 18
patients), to avoid predictions outside the ARAT scale,
although truncation violates the assumptions behind the
95%-prediction intervals provided by the model. Individual
prediction trajectories were investigated to see if they were
within the ARAT range and if they were monotonic, that is,
following a nonoscillating time course. Further analyses
were performed to identify categories of prediction trajec-
tories.
Results

The validation cohort consisted of complete datasets at 3
and 6 months post stroke for 80 patients. Patients in the
original cohort were comparable in age and sex but were on
average more severely affected and only patients with
ischemic stroke were included, table 1.

The model performance illustrated with 6 cases

In figure 1, we present examples of model performance
for different levels of impairment. In panels A1 and A2, 2
patients with severe impairment (paralysis) are depicted.
The model performs well for A1 but underestimates the
recovery of A2 from baseline to 3 months post-stroke. In
2 patients at the lower end of moderate impairment
(ARAT 23-47) at baseline, the model predicts reasonably
for B1 but again underestimates for B2 from baseline to 3
months. In some cases, as shown in panel C, the 95% pre-
diction uncertainty of the model exceeds the upper limit
of 57 on ARAT.
The overall model performance

We compared the prediction error to the error in the devel-
opment cohort by setting up figure 2 directly comparable
with a similar figure in Selles et al.13 The absolute errors for
the 3 ARAT categories of UL impairment, 0-22, 23-47, and
48-57, were similar to the original validation cohort. In
figure 2, the model validation for the Danish cohort is
depicted according to 3 ARATcategories applied in the publi-
cation by Selles et al.13 The absolute error for ARAT scores 6
months post-stroke is largest at baseline (day 11-18) and for
patients with severely impaired UL function (ARAT 0-22)
with a median (min; IQR; max) 30 (1; 3 - 39; 56), at 3 months
post-stroke 7 (0; 1 - 14; 21). For patients in the midrange
(ARAT 23-47) of impairment level the absolute error is 11 (0;
7 - 16; 31) at baseline, diminished to 2 (0; 1 - 4; 11) 3 months
after. In patients with relatively good baseline UL function
(ARAT 48-57) the absolute error is small both at baseline, 3
(0; 2 - 5; 17), and 3 months, 0 (0; 0 - 3; 7), after stroke.
These results are consistent with those obtained in the inter-
nal validation.

Individual prediction trajectories showed a large variety
of recovery patterns, figure 3. In general, the model did not
perform satisfactorily enough to be clinically relevant at
baseline after stroke but improved over time. Thus, its clini-
cal applicability is limited.



Fig 1 Examples of predictions for different levels of UL impairment. A1: the prediction interval (PI) is below 0; A2: The recovery
potential is not detected by the model; B1: The model predicts well; B2: The model does not detect the recovery potential; C1: The
model predicts deterioration and improvement; C2: The PI exceeds beyond the maximum score of 57.

Fig 2 Model validation of the Danish data within the same
ARATcategories used by Selles et al13 (baseline ARAT score 0-22,
23-47, 48-57). Within categories, the absolute difference
between observed and predicted ARATscore (absolute error), at
approximately 180 days post stroke, is summarized by box and
whiskers plots for predictions computed from, respectively, the
baseline ARAT score (approximately 14 days post stroke) and
both the baseline score and the score approximately 90 days
post stroke.

Fig 3 The large variation in actual recovery profiles of all
included 80 patients in the validation cohort.
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Discussion

In this study, we externally validated the computerized pre-
diction model developed by Selles et al.13 In accordance
with the original cohort, the prediction model performed
best for patients with relatively good UL motor function and
worst for patients with severe UL impairment, especially at
the first prediction, 2 weeks after stroke. In general, predic-
tion accuracy substantially improved when obtained 3
months after stroke as compared with baseline. Conse-
quently, the model performs best when there is less room
for improvement, either as a factor of time or an already
favorable initial UL function.

The dynamic prediction model developed by Selles et al
provides some major improvements over other prediction
models. First, it is independent of assessments being
obtained at fixed time points after stroke and provides a pre-
diction on an individual level which improves according to
the number of measurements. Second, the easily available
online tool can be connected to electronic patient records
which adds to its clinical usefulness. Comparable with the
original study by Selles et al, prediction errors at 6 months
after stroke decreased in the present study, as the number
of assessments and time points increased. However, in our
cohort, the prediction uncertainty was still substantial when
it was needed most, at baseline and for patients with severe
UL impairment. Thus, while the model is independent of
defined time points of measurement after stroke, its accu-
racy is not. Initial patient status affects accuracy of predic-
tions as does time since stroke, regardless of using a
dynamic model with flexible or specific days after stroke for
measurements. Nevertheless, more measurements during
the early post stroke phase are desirable. Unfortunately, our
study did not incorporate additional measurements between
the 2-week and 3-month post-stroke periods. Including more
measurements during this timeframe would have likely miti-
gated prediction uncertainty.

It is common that a model performs worse in another
cohort than the original development cohort, which could
partly be attributed to differences between the
cohorts.22,23 While they were similar in age and sex, they
differed in several other respects, such as type of stroke. We
included both ischemic and hemorrhagic and recurrent
strokes, while the development cohort only comprised ische-
mic anterior circulation first-ever strokes. Patients with
hemorrhagic stroke may show a different recovery profile. In
a cohort study from Sweden, it was demonstrated that
patients with hemorrhagic stroke had a larger improvement
during the first 3 months, though there was no difference at
1-year post-stroke.24 In our cohort, only 3 assessments were
performed contrary to the development cohort with a
median of 6 assessments. Taking into account the nonlinear
nature of recovery and clinical needs more assessments
early, that is, during the first days and weeks after stroke
are needed to improve prediction accuracy. Accordingly, the
more frequent early measurements in the studies used in
the development cohort provide increased prediction
accuracy.13

At 3 months post-stroke, most patients have reached a
plateau and completed the most intensive rehabilitation.25

Thus, prediction is less meaningful both to the patient and
health professionals. Prediction at an earlier time point
would provide the opportunity to adapt the treatment plan
to the individual recovery potential and focus on areas
where improvement can be expected and focus on compen-
satory strategies where it cannot. Ideally, repeated meas-
urements should be performed weekly during the first 4
weeks as part of clinical routine.

The individual prediction for patients with severe paresis
during the first days and weeks after stroke seems to pose
the biggest challenge. Clinical measures are useful for a
wide range of patients with mild to moderate impairments.
In the current model’s development, several mixed models
were examined containing all potentially relevant medical
and demographic features, such as age, body side affected,
in addition to time after stroke. Still, the model’s best per-
formance was found when ARAT scores were a function of
the SAFE score and their interaction with time and model.
This suggests that simple clinical assessments such as the
SAFE score may be sufficient for a broad range of patients,
as earlier suggested by Nijland et al.7

Veerbeek et al validated the model based on the SAFE
score only. However, they only differentiated between
patients who will reach some dexterity, defined ≥10 ARAT,
and those who will not.8 The return of FE during the first days
after stroke is generally regarded as promising for future UL
function. If FE is not present, prediction is difficult. In their
PREP2 algorithm, Stinear et al therefore included an examina-
tion with TMS for patients with severe impairment.15 TMS
seems to increase prediction accuracy substantially and is rec-
ommended for stratification in clinical trials.9,10,26 However,
while TMS is relatively inexpensive and easy to administer, it
is not available at all rehabilitation facilities.

Other demographic and clinical factors such as neglect,
handedness, site of lesion, and so on have been examined in
several studies with some, but not substantial contribu-
tions.11,27-29 Consequently, a focus on initial impairment in
combination with biomarkers for the severely impaired
seems to be justified.

The online calculation and linkage to medical records is a
huge advantage of the model proposed by Selles et al13 and
increases clinical usability.30 Future prediction models
should include these possibilities.

Study limitations

Some limitations of this study should be mentioned. This
external validation cohort differed from the original cohort
in several respects, such as the number of assessments, the
average severity of impairment, and clinical features. Yet,
both cohorts comprised patients for whom a prediction
model should be applicable.

A limitation of the dynamic model applied is that it
exceeds 57 and deceeds 0 which does not make sense in a
clinical application because it is outside the scale of the
ARAT. Future prediction models should take this into
account and find ways of truncating these values without
violating the model assumptions. Most challenging appears
the prediction of UL function for patients with severe
impairment during the first days and weeks after stroke
where the use of biomarkers may substantially improve
prediction accuracy.30
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Conclusions

An increased demand for rehabilitation services will meet
even more limited resources in the nearer future. There is a
need for reliable prediction tools for core functional areas
to target rehabilitation. In this study, we found limited clini-
cal usability of an UL prediction model due to the lack of
prediction accuracy when obtained 2 weeks after stroke and
for patients with severe UL impairments. Prediction accu-
racy was reasonable for patients with mild impairment and
when obtained 3 months after stroke. The dynamic predic-
tion model provides an important step toward individual
prediction of UL function and could probably be refined with
data from biomarkers.
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