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SUMMARY
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease
(CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulato-
ry mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and
haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries
from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47%were previously un-
reported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups
of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including
TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demon-
strated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our
work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study
populations and multifaceted approaches to characterize gene regulation in disease processes.
INTRODUCTION

Coronary artery disease (CAD) is the leading cause of death

worldwide, and it results from chronic inflammatory processes

involving both genetic and environmental risk factors. CADman-

ifests as the development of atherosclerotic plaques in the cor-

onary arteries of the heart, which can lead to erosion or plaque

rupture and ultimately myocardial infarction. Genome-wide as-

sociation studies (GWASs) have now reported more than 400 in-

dependent loci for CAD and related clinical outcomes.1–11 As

with other common complex traits, the majority of lead CAD

GWAS variants reside in non-coding genomic regions, impli-
This is an open access article under the CC BY-N
cating regulatory effects on gene expression.12 Previous studies

have mapped CAD GWAS variants to specific cell types in the

vessel wall (e.g., smooth muscle cells [SMCs],13 endothelial

cells, and immune cells)14 and refined candidate cis-acting reg-

ulatory elements responsible for context-specific gene expres-

sion patterns.14,15 However, cultured vascular cells do not reca-

pitulate the in vivo cell phenotype: for instance, high-passage

SMCs reprogram toward a fibroblast-like state accompanied

by rapid loss of differentiated marker gene expression.

Fine-mapping GWAS loci can help prioritize candidate causal

variants within association signals, but identifying the causal

variant or target gene within a locus can still be difficult.
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Overrepresentation of European- and East Asian-ancestry pop-

ulations in most GWASs to date has also limited the capacity to

identify independent associations within a locus and the gener-

alizability of findings to global populations.16–18 Furthermore,

genes within most CAD loci have not been associated with tradi-

tional risk factors (e.g., lipid levels or cholesterol metabolism),

suggesting molecular mechanisms underlying physiological ef-

fects on the coronary artery vessel wall itself.

Molecular quantitative trait locus mapping in a disease-rele-

vant tissue or cell line is a powerful approach to prioritize candi-

date causal genes and underlying mechanisms for complex

GWAS loci.19 Prior studies have identified CAD-relevant expres-

sion quantitative trait loci (eQTLs) in bulk arterial tissues20 or

vessel wall cell types, including human aortic endothelial cells,21

human coronary artery smooth muscle cells (HCASMCs),13,22

and monocytes.23 Similar to CAD GWASs and other eQTL

studies, published summary statistics represent exclusively or

primarily European-ancestry populations, often lack detailed

phenotyping for the patients/participants.

To identify variants associated with coronary artery-specific

gene expression and fine-map colocalized CAD GWAS associa-

tions, we performed a QTL mapping study in coronary artery tis-

sues from an ancestrally diverse American patient-derived sam-

ple. We utilized multiple methods to identify eQTLs and splicing

quantitative trait loci (sQTLs) in human coronary artery tissue, fol-

lowed by bioinformatic characterization of potential eGene-

phenotype associations. Our results not only highlight new cor-

onary artery eQTLs at promising GWAS loci such as TBX20,

but they also replicate and refine eQTLs previously reported in

other arterial tissues, includingARHGAP42. Our approach repre-

sents an improved capacity to characterize gene regulation in

coronary artery tissue through all stages of CAD progression.

This dataset will therefore be a highly beneficial resource for bet-

ter characterization of functional variants and molecular mecha-

nisms driving CAD development.

RESULTS

Study overview for transcriptomic profiling of human
coronary artery
We conducted transcriptome-wide QTL mapping of autosomal

gene expression in human coronary artery tissue samples from

explanted transplant tissue as well as samples collected from re-

jected transplant donors (STARMethods, Table S1). An overview

of our sample characteristics and primary diagnoses are

described in Figure 1 and Tables S1–S3. The study comprised

138 individuals from 19 to 72 years old, with 30% being female.

While 57% of these individuals were of exclusively European

ancestry, 15% were of majority South Asian ancestry, 5% East

Asian, 5% Indigenous American, 7% African, and 10% had no

majority ancestry, representing the broad genetic diversity of

the American population (Figures 1A–1C and S1). Samples

were derived from all three major coronary arteries (i.e., left ante-

rior descending coronary artery [LAD], right coronary artery

[RCA], and left circumflex artery [LCX], Figure 1D). Majority in-

ferred ancestry groups were represented across diagnoses,

but only majority-European and -South Asian genetic ancestries

were represented in all primary diagnostic categories (Figure 1E;
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Table S1). Up to 5.83 million variants genotyped via low-pass

whole-genome sequencing were included depending on

method-specific allele frequency and annotation requirements

(described in STAR Methods, Table S2).

Weperformed total RNAsequencing toamediandepth of 102.6

million reads per sample (Table S3) to profile both protein-coding

and non-coding RNAs (Figure S1). To determine the similarity of

our expression profiles to bulk RNA profiles of other tissues in

GTEx as well as cultured HCASMCs, we performed multidimen-

sional scaling. Our samples form a cluster located near the left

ventricle, muscle, pancreas, fibroblasts, and liver tissues (Fig-

ure S1). This distinct but proximal clustering aligns with expecta-

tions given differences in sample collection/storage methods

and cold ischemia times (time lapsed after cessation of blood

flow). Since eQTL studies have primarily been performed in genet-

ically homogeneous populations, information on preferred

methods for inclusive study populations is limited. We therefore

applied two complementary approaches to attempt to maximize

power for identifying associations that may not have globally

consistentallele frequencies, i.e., byevaluatinghaplotype-specific

associations (‘‘mixQTL’’ for the total sample or ‘‘mixQTLEUR’’ for

the 100% European-ancestry subset analysis) or ancestry-spe-

cific associations (local ancestry adjusted, henceforth referred to

as ‘‘LA’’).24,25 For mixQTL analyses, we incorporated three global

genetic principal components; for LA, locus-specific genetic

ancestry was statistically inferred on a continental scale using a

reference panel of genotypes from1000Genomes (1000G) partic-

ipants (see STAR Methods). After filtering for method-specific

criteria, up to 20,100 autosomal protein-coding genes and

lncRNAs met inclusion criteria for eQTL and sQTL analyses.

Coronary artery eQTL discovery
To identify genetic variants associated with gene expression in

our diverse coronary artery tissue cohort, we performed eQTL

analyses incorporating haplotype-specific (mixQTL)24 or LA in-

formation. Overall, we identified 2,132 and 793 coronary artery

eGenes using mixQTL or LA, respectively (Tables 1, S4, and

S5; Figure 2A). Between LA and mixQTL analyses, 457 shared

eGenes were identified (Figure 2B); 45 lead SNPs were common

to both approaches (Table S6). Of note, across all analyses, we

report 735 total discovery eGenes (351 mixQTL, 163 LA, 210

mixQTLEUR, 395 mixQTLdownsample; 213 protein-coding genes,

514 lncRNAs) with no expression QTLs reported in any arterial

tissue in GTEx or Stockholm-Tartu Atherosclerosis Reverse Net-

works Engineering Task (STARNET), including genes with estab-

lished roles in vascular cell types (e.g., lipase G, endothelial type

[LIPG] and AKT serine/threonine kinase 3 [AKT3]).26,27 40% of

discovery eQTLs were >100 kb from the gene transcription start

site, in line with long-standing evidence of both short- and long-

range cis-acting regulatory mechanisms.28,29 We report mixQTL

results from the entire study sample as our primary findings given

the higher statistical power of this method.

Overview of mixQTL results
Of the 2,132 protein-coding or lncRNA mixQTL eGenes, 16%

(n = 351) have not been previously reported in published arterial

tissue QTL studies (Table S4). In concordance with published

studies, most eQTLs were annotated as intergenic or intronic to
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Figure 1. Overview of patient and sample characteristics
(A) Boxplot showing the age range of study participants (y axis) in females and males (x axis; orange and green, respectively). Lines represent median, boxes

represent interquartile range (IQR), and upper and lower whiskers represent 1.5 3 IQR.

(B) Genetic ancestry principal components 1 (x axis) and 2 (y axis) mapped onto the 1000 Genomes phase 3 reference population (bold color dots), with color

corresponding to Gencove-assigned majority ancestry in our samples (lighter color dots with black outline).

(C) Local ancestry inference reveals a complex genetic substructure for individuals with ancestral admixture, with each row in the plot representing inferred local

ancestry for one haplotype of one study participant and x axis representing position on respective chromosomes. Inset, zoomed in region on chr 20 showing

genetic substructure for a subset of the individual haplotypes.

(D) Number (y axis) of coronary artery segments by type (x axis) used for RNA isolation in samples from explants (turquoise) and rejected donors (gold).

(E) Number (y axis) of coronary artery segments by primary ICD-10 code diagnosis for explanted hearts or donor hearts. Samples were grouped into main

categories listed in Table S1.
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their eGenes (2,859 of 3,952 available annotations for 1,122

eGenes, Figure S2). Only 2% of lead eQTLs (n = 59) were protein

coding within their respective eGene, implicating the regulation of

gene expression through transcriptional, splicing, or epigenetic

mechanisms.20 Thirty-nine and 119 eGeneswere identified based

solely on allele-specific expression and total read count tests,

respectively. Overall, 1,779 published arterial eGenes had signifi-

cant eQTLs in our study sample (Figure 2C; Table S7). Fewer than

5% of shared associations had the same lead eQTL, but among

shared lead eQTLs, we observed 98% directional consistency

(64% of all replicated lead eQTLs, Figures 2D and S2). Nearly

one in five eGenes exhibited cell-type-specific expression in a

coronary artery single-cell RNA sequencing reference dataset

(cell specificity expression score R0.7, Figure S2; Table S8),30

and functional enrichment analysis revealed several pathways

for cell adhesion and inflammation (Table S9).31
Local-ancestry-adjusted and ancestry-specific eQTLs
With regard to LA analyses, 337 eGenes were identified that did

not exceed a false discovery rate (FDR) of 5% in the overall

mixQTL analysis, demonstrating the merit of incorporating mul-

tiple approaches in a diverse study sample with genetic admix-

ture (Table S5). Among LA-specific eGenes was YY1-associated

protein 1 (YY1AP1), which has no reported coronary artery

eQTLs but has been associated with vascular diseases including

Grange syndrome and sudden coronary artery dissection.32,33

Seventeen LA lead variants were monomorphic in the 1000G

East Asian superpopulation (Table S10A). Despite high-confi-

dence calling of 1000G continental ancestries in our study sam-

ple, the small numbers of shared haplotypes at any given locus

likely limited our ability to identify ancestry-specific associations

using this method. Using mixQTL, 54 eGenes with lead SNPs

monomorphic in one or more 1000G superpopulations were
Cell Genomics 4, 100465, January 10, 2024 3



Table 1. Discovery expression and splicing quantitative trait loci in human coronary artery tissue

Molecular phenotype Method Gene type No. evaluated

No. genes

(FDR <0.01)

No. genes

(FDR <0.05)

No. genes

(FDR <0.1)

No. discovery

genes

Gene expression mixQTL protein-coding 14,235 1,118 1,457 1,668 127

lncRNA 5,874 510 682 794 224

local ancestry protein-coding 14,274 330 482 602 41

lncRNA 7,395 234 311 378 122

mixQTL (Euro) protein-coding 14,082 671 916 1,087 94

lncRNA 5,219 285 395 467 116

mixQTL (diverse) protein-coding 14,084 766 1,075 1,303 127

lncRNA 5,222 323 477 569 294

Splicing QTLtools protein-coding 13,103 1,134 1,496 1,735 357

lncRNA 1,700 152 194 232 93
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identified; four overlapped with the LA results, and lead eQTLs

were either shared or in high linkage disequilibrium (‘‘LD,’’ Fig-

ure S2; Tables S10B and S11).

Among the genes with no eQTLs exceeding genome-wide

significance in the mixQTL were several interesting genes

with sub-significant associations, including VPS37B (vacuolar

protein sorting-associated protein 37B). VPS37B is involved in

endosomal protein binding activity, and the genomic region

has been associated with CAD-relevant traits including adipo-

nectin levels, BMI, and cholesterol traits.34–38 MixQTL and LA

methods resulted in the same lead variant, rs897392, in the

intron of neighboring gene HIP1R, which exhibits modest to

strong LD with reported arterial eQTLs for VPS37B

(Table S11) as well as different expression between CAD

cases and controls in multiple tissues in the STARNET study

population (Table S12).20,39 rs897392 had a mixQTL adjusted

p value of 0.14, meaning VPS37B would not be considered an

eGene using this method alone, despite evidence favoring ge-

netic regulation of this gene in cardiac tissues. In combination,

these results indicate the benefit of including genetically

diverse individuals as well as multiple approaches to improve

effective sample size across the lower end of the global allele

frequency range.

Colocalization of eQTLs
We next evaluated the overlap between coronary artery gene

expression and genetic associations with CAD and intermediate

risk factors including blood pressure, cholesterol, and arterial

calcification traits. Across all phenotypes, 108 GWAS associa-

tion signals colocalized with eQTLs, including 25 discovery

eGenes (Figure 3A; Table S13). Thirty-one eGenes exhibiting

cell type specificity colocalized to one ormore GWASs, including

Rho GTPase-activating protein 42 (ARHGAP42) in pericytes and

discovery eGenes LIPG and adhesion G protein-coupled recep-

tor G6 (ADGRG6) in endothelial cells (Figure 3A; Table S8). We

further assessed GWAS associations overlapping our eQTL

associations using summarized Mendelian randomization

(SMR).40 Given LD-dependent restrictions for both colocaliza-

tion and SMR, as expected, we identified fewer associations

but notable overlap between the two methods (25 overlapping

signals and 18 unique to SMR, Table S15).
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We observed strong evidence of colocalization and general-

ization at the TCF21/TARID locus. TCF21, a known regulator of

the SMC phenotype transition to fibromyocytes in plaque,41,42

exhibited a significant eQTL for the same variant, rs12190287,

in our study as well as in STARNET aorta (AOR) and GTEx coro-

nary artery (COR) samples (Figures 3B and S3). The TCF21 eQTL

overlapped with the association for the adjacent lncRNA TARID

(TCF21 antisense RNA inducing promoter demethylation). Our

lead TARID eQTL, rs1535616, was also significant in GTEx

COR, though not for other arterial tissues (Figure S3). Interest-

ingly, GTEx COR exhibited similarly strong associations at both

ends of the TARID coding region, while AOR showed a much

stronger association at the 30 end (Figure S3). TCF21 and TARID

also colocalized with CAD and BP (blood pressure) trait associ-

ations but not coronary artery calcification or cholesterol traits

(Figure 3B), suggesting themechanism for this knownCAD locus

may be functioning via a causal blood pressure pathway.

TBX20, coding for transcription factor T-box 20, is another gene

with established cardiac development and disease associa-

tions.43 However, the mechanism of its genetic regulation in

CAD risk remains unclear. Our lead eQTL, rs11976145 (Figure 3C),

is located in the fourth intron and colocalizes with a CAD GWAS

signal but is independent from the DBP association at the same

locus, suggesting a multifaceted approach may be required to

ascertain disease-relevantmechanisms underlying transcriptional

regulation. While TBX20 has no reported eQTLs for GTEx arterial

tissues, we identify an overlapping association with the eQTL for

STARNET (AOR), for which the lead eQTL rs10249005 is in

high LD (r2 R 0.94) with rs11976145 in all European-ancestry

1000G reference populations (Table S11). Coronary artery sin-

gle-cell RNA and assay for transposase-accessible chromatin

sequencing (scRNA-seq, snATAC-seq) reference datasets show

that TARID and TCF21 are both expressed most highly and

most accessible in fibroblasts and SMCs (including SMC-derived

fibromyocytes resulting from SMC phenotypic switching during

atherosclerosis, Figures 3D, 3E, andS3).30,44TBX20 ismost abun-

dant in cardiac muscle and vascular tissues in GTEx, with coro-

nary artery reference expression predominantly restricted to

SMCs and fibroblasts (Figures 3D and 3E).

Among LA eGenes, colocalization was limited to 27 associ-

ations, but four of these were not eGenes in mixQTL, and a
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Figure 2. Overview of eQTL analysis and generalization to published arterial eQTLs

(A) Miami plot of lead eQTLs for mixQTL (top) and local ancestry (LA) adjusted (bottom). Navy blue and orange dots represent reported and discovery eGenes

Benjamini-Hochberg adjusted p-value (pBH) < 0.05, respectively; gray dots represent non-significant genes. A subset of top eGenes are labeled for clarity.

(B) Venn diagram showing the overlap of mixQTL and LA-based eGenes and LeafCutter sQTL sGenes.

(C) Circos plot portraying generalized (UVA pBH <0.05) published arterial eGenes from GTEx AOR (blue green), COR (orange), and TIB (purple), and STARNET

AOR (pink) and MAM (light green) tissues, with significance increasing toward the outer edge of the circle.

(D) Direction of effect for genes in which the UVA lead eQTL was significant (pBH < 0.05) in any of the aforementioned tissues using the same color scheme for

GTEx (top) and STARNET (bottom). Pearson’s r correlation coefficients shown for overlapping significant UVA coronary eQTL detected in GTEx or STARNET

eQTL with tissue indicated in parentheses. AOR: aorta; COR: coronary artery; TIB: tibial artery; MAM: mammary artery.
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further three were mixQTL eGenes that did not colocalize to

any GWAS trait (Table S15; Figure S4). Of particular interest

is ANAPC13, a component of an anaphase-associated E3

ubiquitin ligase for which the LA eQTL (led by rs9809619,

pLA = 2.3E�6) colocalized to the MVP CAD association signal

but did not meet the threshold for colocalization (PPH4 R 0.8)

for any trait in micQTL. Rs9809619 is in close proximity to and

exhibits near perfect LD globally with the lead mixQTL variant,

rs4367113 (pmixQTL = 1.6E�5, Table S11), across 1000G pop-

ulations. LA adjustment resulted in lower p values for

ANAPC13-associated variants compared to mixQTL (Fig-

ure S4), showing the benefit of complementary approaches

for a locus with similar associations but different significance

between methods.
Fine-mapping significant coronary artery eQTLs
Next, we used a combination of methods to identify both cred-

ible sets (CSs) and independent associations within previously

unreported coronary artery eGenes. First, we used the Bayesian

mixFine function from the mixQTL package to identify indepen-

dent CSs for significant associations (Table S16). Only 3% of

eGenes with converging association signals fine-mapped to a

single variant (n = 44 of 1,388). As expected, 91% of CSs con-

tained the lead eQTL, which was the sole credible variant for

29 eGenes. Eighty-three eGenes exhibited multiple independent

eQTL signals.

Including prior functional annotations in relevant tissues

can refine association signals and prioritize variants and candi-

date cis-regulatory mechanisms.45,46 Therefore, we employed
Cell Genomics 4, 100465, January 10, 2024 5



Figure 3. Colocalization reveals trait- and cell-type-specific associations

(A) GWAS colocalization to eGene associations: each column represents the –log10(p value) of the study (first author last name) and relevant GWAS trait, with

intensity of shading corresponding to a higher posterior probability of a shared association at that locus. Each row represents one protein-coding gene with a

PPH4 R0.8 in at least one GWAS. The leftmost column (‘‘Target cell type’’) indicates cell-type specificity for SMC (dark blue), pericyte (light blue), endothelial

(green), fibroblast (gold), or blood (pink) cells. Size of the circle represents the CELLEX combined gene score (range: 0.7–1.0).

(B and C) Top: normalized expression (y axis) by lead eQTL genotype (x axis) for TCF21 (B) and TBX20 (C); bottom: regional association plots showing overlap

between our study (violet) and GWAS associations for CAD (red triangle) and blood pressure traits (gold diamonds).

(D and E) Human artery atherosclerosis single-cell RNA sequencing (left) and single-nuclear ATAC sequencing (right) showing TCF21 (D) and TBX20 (E) gene

expression- and chromatin accessibility-based gene scores, respectively, with changes indicated by intensity of red (left) and pink/yellow (right).
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FastPaintor to fine-map associations with epigenomic annota-

tions (ENCODE coronary artery H3K4me3 and H3K27Ac marks

and activity-by-contact scores for human coronary artery

SMCs as well as BP and CAD GWAS), which both exhibited

strong evidence of colocalization. 1,964 eGenes had a sufficient

number of eQTLs to converge for fine-mapping annotation for

one or both GWAS traits (Tables S17A and S17B). Across both

traits and three epigenetic marks, CSs for 106 eGenes were nar-

rowed to a single likely causal variant. The lead eQTL was

included in 11% of CSs. Regardless of epigenetic annotation,

most CSs (>80%) were narrowed to five or fewer SNPs (Fig-

ure S5). While the majority of CSs contained the same variants
6 Cell Genomics 4, 100465, January 10, 2024
regardless of epigenetic annotation, they often differed by

GWAS annotation. Lead eQTLs in the 247 loci for which at least

one variant was shared between BP trait and CAD annotations

exhibited lower p values and nearer to the eGene transcription

start site (TSS) on average (median p values 1E�08 vs. 5E�4,

Figure S5).

We demonstrated the utility of combining multi-omic data with

fine-mapped associations in ARHGAP42, a Rho-A GTPase-acti-

vating protein with functional evidence for disease relevance,

and IL5, a discovery coronary eGene. Lead ARHGAP42 eQTL

rs2455569 exhibited similar effect direction and magnitude in

STARNETaorta tissue (FigureS6), inwhichdecreasedARHGAP42



Figure 4. Fine-mapping identifies candidate causal variants for ARHGAP42 and IL5 eQTLs at known GWAS loci

(A)ARHGAP42 association driven by lead eQTL rs2455569, exhibiting differences in expression by genotype but not sex ormajority continental ancestry. p values

calculated from paired t test (t) or Kruskal-Wallis test (KW).

(B) Regional association plot depicting variants in PAINTOR credible sets specific to BP (violet) or CAD (golden) GWAS annotations, mixFine only (light blue), and

variants not in any credible set (light gray).

(C) Variants of interest (rs604723 and rs2455569) are indicated by blue lines, and rs604723 is highlighted in gray box and corresponds to UCSCGenome Browser

tracks indicating cell-type-specific chromatin accessibility.

(D) Location of rs604723 in critical nucleotides (in gray outlined boxes) of consensus transcription factor binding sequences for SRF and STAT6 as identified using

the JASPAR 2022 database.

(E) IL5 association driven by lead eQTL rs7719499, exhibiting differences in expression by genotype but not sex or majority continental ancestry. p values

calculated from paired t test (t) or Kruskal-Wallis test (KW).

(F) Regional association plot depicting variants in PAINTOR credible sets specific to BP (violet) or CAD (golden) GWAS annotations, mixFine only (light blue),

mixFine and PAINTOR CS (green), and variants not in any credible set (light gray).

(G) Variants of interest (rs7719499 and rs10065633) are indicated by blue lines, and rs7719499 is highlighted in gray box and corresponds to UCSC Genome

Browser tracks indicating cell-type-specific chromatin accessibility.

(H) Location of rs7719499 in critical nucleotides (in gray outlined boxes) of consensus transcription factor binding sequences for RUNX3 and nearby IRF4

(+10 bp), as identified using the JASPAR 2022 database.
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expression was significantly associated with case status

(Table S12). The ARHGAP42 eQTL overlapped with GTEx

AOR and COR associations, and it colocalized with both BP traits

and CAD GWAS associations (Table S13; Figure S6). ARHGAP42
(alsoknownasGRAF3) regulates vascular toneviaexpressionpre-

dominantly in mural cells and fibroblasts (Figure S6),30,44,47 and

insufficiency causes hypertension.48,49 Rs2455569 is located in

an intronic pericyte-specific chromatin-accessibility peak, with
Cell Genomics 4, 100465, January 10, 2024 7
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fine-mapping highlighting proximal SNPs encompassing a region

accessible in multiple vascular cell types (Figures 4A–4C).44 Inter-

estingly, rs604723, 25 kb upstream of and in high LD with

rs2455569 (padj = 4.6E�13, Table S11), has been shown tomodu-

lateARHGAP42expression inSMCsviaSRF (serumresponse fac-

tor)binding.50Rs604723 isalsopredicted todisruptabindingmotif

for STAT6, which has been implicated in the proliferation of

vascular SMCs in an injury-response murine model,51 suggesting

multiple functional avenues for genetic regulation of ARHGAP42

and its downstream effects (Figure 4D).

IL5 encodes for interleukin 5, an inflammatory cytokine with no

eQTLs reported in any GTEx tissue but highly significant eQTLs

in both STARNET arterial tissues (Figure S7). Lead eQTL

rs7719499 lies 75 kb downstream of IL5 adjacent to a plasma-

specific chromatin accessible region for human coronary artery,

proximal to IRF1 (lead eQTL rs72797327, pBH = 1, Figures 4E–

4G). Rs7719499 is also predicted to alter a RUNX3 transcription

factor binding motif and is proximal to an IRF4 motif, supporting

putative cis-regulatory mechanisms in plasma cell types (Fig-

ure 4H). While IL5 is expressed at low levels across most tissue

types and coronary cell types (Figure S7), it is significantly upre-

gulated in aortic tissues from patients with CAD compared to

controls (Figure S7; Table S12).39

Sensitivity analysis: European ancestry only compared
to random downsampling
We also assessed whether our inclusive study design affected

discovery, colocalization, and fine-mapping by restricting our

sample to European-ancestry individuals (n = 80), as well as a

random subset of 80 members approximating the representation

of genetic ancestry of the total sample. In the European-ancestry-

only subset, we identified 1,311 eGenes (16% discovery eGenes;

79% eGenes in the combined analysis), compared to 1,469

eGenes in the genetically diverse subset (27% discovery, 71%

present in combined analysis, Figure S8; Tables S18A and S18B).

With regard to generalization of published arterial eQTLs, 983

and 1,074 eGenes in the European-only and representative sub-

sets respectively also had eQTLs in a GTEx or STARNET arterial

tissue, and directional consistency with GTEx coronary was over

90% (Figure S8; Tables S19A and S19B). Compared to the over-

all sample, less than half the number of eGenes from either sub-

set colocalized to relevant GWAS traits—fewer than would be

expected if colocalization were linearly correlated with sample

size (Figure S4; Tables S20A and S20B). The reduction in asso-

ciations across all analyses in the European-only subset

compared to the genetically diverse subset reinforces the bene-

fits of methodological approaches designed to maximize study

sample size and diverse genetic ancestry representation.

Coronary artery splicing QTL discovery
Differential isoform expression affects a wide array of complex

diseases, and genetic variants affecting splicing events have

been shown to be a major and distinct source of regulation un-

derlying disease phenotypes.52 However, tissue-specific tran-

script specificity and isoform switching are not detected through

eQTLmethods unless total expression is affected. To identify ge-

netic contributions to isoform-specific expression, we therefore

evaluated genetic associations with 132,373 splice junctions in
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14,815 genes. We identified 3,590 sQTLs (pBH<0.05) in 1,690

sGenes (Figure 5A; Table S21). Only 296 sGenes (17.5%) were

also identified as eGenes using mixQTL or LA approaches (Fig-

ure 2B), pointing to the importance of evaluating isoform-related

events in addition to total gene expression.

Lead sQTLs for 96 splice junctions (71 total sGenes) were an-

notated as splice region variants or splice acceptors in SnpEff

(Table S22), and nine discovery sGenes (Table S21) had pro-

tein-coding variants as lead QTLs. While effect size was not

correlated with broadly defined variant category (pANOVA =

0.62), there was a significant association with p value (Figure S9,

pANOVA = 3.65E�11), suggesting small effects in isoform-specific

differences may be functional. While fine-mapping sQTL associ-

ations is difficult without isoform-specific expression informa-

tion, for sGenes with lead sQTLs within 10 kb of the overall

TSS, approximately half overlapped enhancer histone modifica-

tion marks in relevant tissues or cells (Figure 5B).

Generalization and colocalization of lead sQTLs
Tissue-specific differences in isoform proportion cannot neces-

sarily be detected with bulk sequencing, implicating potentially

distinct regulatory mechanisms for splicing compared to overall

expression. Therefore, we first directly compared the gene sets

represented by eQTLs and sQTLs. Only modest overlap was

observed (297 eGenes were also sGenes, 23 of which shared

the same lead variant, Table S23), suggesting that splicing

analyses likely represent unique disease-relevant pathways

compared to overall expression. Among 71 sGenes with lead

sQTLs reported to have splicing functions in SnpEff, 59 have

no eQTLs, with five having no expression variants exceeding

even nominal significance (Table S23). This difference is

further exemplified by differences in cell type specificity in our

scRNA-seq reference dataset: while nearly all cell-type-specific

(score >0.7 as described in STAR Methods) reference genes

were eGenes (408 of 411 total), only 37 sGenes (of 83 total) ex-

hibited cell-type specificity. Compared to published arterial

sQTL data, 871 (52%)were also sGenes inGTEx coronary artery,

while 875 sGenes had no reported sQTLs in GTEx AOR, COR, or

tibial artery (TIB) tissues (Figure 5C; Table S21).

Colocalization of sQTL data exhibited a similar pattern to

eQTLs, with a small subset of overlapping colocalized signals

shared between CAD and BP trait GWAS and a higher number

of quantitative trait associations (Figure 5D; Table S24). Despite

a similar pattern of colocalization with CAD and BP traits being

most well represented, none of the eQTLs for shared associa-

tions colocalized with tested GWAS traits, affirming the likely

different causal mechanisms underlying genetic effects on

gene expression compared to splicing activity.

Splicing contributes to CAD-relevant gene regulation
We highlight two plausible candidates for functional splicing ef-

fects in the coronary artery: ULK3 and TOR1AIP1 (Figures S9).

ULK3 is a broadly expressed serine/threonine kinase exhibiting

autophosphorylation activity.53,54 The ULK3 locus has also

been associated with various CAD-relevant traits, including

blood pressure, total cholesterol, and estimated glomerular

filtration rate.18,55–57 Of thirteen junctions tested in our study,

common missense variant rs2290572 was the lead sQTL for



Figure 5. Coronary artery sQTL overview and characterization

(A) Manhattan plot of lead sQTLs. Navy blue and orange dots represent reported and discovery sGenes (pBH < 0.05), respectively; gray dots represent non-

significant genes.

(B) Upset plot of generalization of GTEx arterial sQTLs. Black bars represent GTEx-specific sGenes; orange bars represent generalized sGenes, and the blue bar

represents previously unreported sGenes.

(C) Upset plot of histone modifications in aorta, coronary, and liver from one individual in ENCODE as well as HCASMCs. Light blue bars represent lead sQTLs

overlapping modifications specific to one cell or tissue type, gold bars for H3K27 acetylation in coronary and any other tissue or cell type, and magenta bars for

both coronary artery H3K4 tri-methylation and H3K27 acetylation.

(D) GWAS colocalization to sQTL associations: each row represents the colocalization PPH4 of the study (first author last name) and relevant GWAS trait, with

intensity of shading corresponding to a higher posterior probability of a shared association at that locus. Each column represents one protein-coding gene with a

PPH4 R0.8 in at least one GWAS.

(E and F) Percent spliced in of ULK3 and TOR1AIP1 exons by genotype of their lead sQTLs (rs2290572 and rs2245425, respectively) in our study (left) and GTEx

(right).

(G) Schematic of TOR1AIP1 gene and alternatively spliced isoforms, showing location and effect estimates for top splice acceptor variant (rs2245425) identified in

our samples. rs2245425-G creates TAGCAG splice acceptor sequence at 30 end of intron-exon 3 junction. Spliced CAG nucleotides (orange) encoding alanine

amino acid distinguish LAP1B isoforms 1 and 2.
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both significant associations: chr15:74837435:74837757 and

chr15:74837435:74837751 (Figure 5E). Rs2290572 was also

significantly associated with chr15:74837435:74837751 in

GTEx tissues with directional consistency (Figure S9). The lead

sQTL for GTEx arterial tissues, rs12898397, is in high LD with
rs2290572 in reference populations (Table S11) and represents

a two-codon difference in an MIT domain in the fourteenth

exon for which the T allele is predicted by SpliceAI to

cause loss of a splice donor (D score = 0.67, https://

spliceailookup.broadinstitute.org).58 Rs12898397 is our lead
Cell Genomics 4, 100465, January 10, 2024 9
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eQTL (pBH = 1.3E�14), and its contribution to isoform specificity

makes it a clear candidate for functional follow-up.

TOR1AIP1 (torsin 1A-interacting protein 1) is a broadly ex-

pressed lamin-binding protein that localizes to the inner nuclear

membrane. Causal TOR1AIP1 variants have been found for

several autosomal recessive disorders, including limb-girdle

muscular dystrophy with cardiac failure.59,60 Located in the first

intron, splice acceptor variant rs2245425 is the lead sQTL for

both significant splice excision events (of six tested in our study;

chr1:179884769:179889313 and chr1:179884769:179889310),

exhibiting nearly binary effects on the PSI of the third exon in cor-

onary artery (Figures 5F and 5G). Rs2245425 is also the lead

sQTL of GTEx arterial tissues (Figure S9); TOR1AIP1 has no

eQTLs in our study or any GTEx artery tissue, pointing to splicing

rather than transcription levels as themain effect of genetic regu-

lation for this gene.

DISCUSSION

We report a coronary artery eQTL mapping study accounting for

local ancestry and allele-specific expression. Our study sam-

ple’s representation of both ancestral diversity and phenotypic

heterogeneity allowed us to capture eQTLs that likely affect

vessel wall integrity and maintenance throughout the life course.

The disruption of these transcriptional regulatory networks may

be critical to plaque progression in coronary artery atheroscle-

rosis. Our approach maximizes the likelihood of identifying

eGenes in a rarely available tissue type, providing a roadmap

for future QTL studies of diverse populations.

While tissues from patients with advanced CAD are useful for

therapeutic development, profiling gene expression changes in

subclinical CAD patients with multiple risk factors may point to

avenues to prevent lesion progression. For example, molecular

pathways for the strong epidemiologic association between

blood pressure and CAD61 are incompletely described, while

our work importantly begins to elucidate these mechanisms

by highlighting a subset of eGenes colocalizing to GWAS find-

ings of both traits. Furthermore, eGenes colocalizing to one or

more GWAS traits can be prioritized for functional characteriza-

tion, particularly those exhibiting cell-type specificity, e.g., hep-

aranase 2 (HPSE2), which is enriched in SMCs in coronary artery

and for which our eQTL colocalizes with SBP and DBP.30HPSE2

would not be a strong candidate gene in a QTL study focused on

disease outcomes rather than intermediate phenotypes, but

recent characterization of this extracellular matrix protein in

endothelial maintenance suggests a contribution to vascular

function during inflammation.62,63

Statistical fine-mapping analyses may prioritize causal genes

and mechanisms of CAD loci, and we highlight example eGenes

TBX20 and TCF21. Here we identify the first genetic evidence of

TBX20 regulation in the human coronary artery, filling in a key

knowledge gap in characterizing this gene in atherosclerosis.

TBX20 is required for normal cardiovascular development and

was recently identified as regulating PROK2, a critical component

of angiogenesis.64TBX20 has been implicated in causal pathways

for congenital heart defects and continuous traits involving the

great vessels.65–67 However, the role of TBX20 in atherosclerosis

has beenminimally investigated, despite expression in arterial tis-
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suesandawell-replicatedCADGWASsignal.5,10,11Conflictingev-

idence about cell-type-specific expression of TBX20 related to

vascular function and neointimal hyperplasia68 demands func-

tional characterization of regulatory elements in this locus that

may modulate vessel wall pathways both during development

and in a diseased state. Our TCF21/TARID findings also build on

existing work by our lab and others characterizing an established

CAD locus.13,69–71 This relationship is supported by research

demonstrating regulationofTCF21expressionby longnon-coding

RNATARID in the context ofCADvia promoter demethylation.72,73

The mural cell-enriched expression and chromatin accessibility of

both genes, as well as overlapping association signals, compel a

deeper look into the potential co-regulation of TCF21 and TARID

during SMC phenotypic transition.

It is nowwell appreciated that a large fraction of candidate reg-

ulatory variants are predicted to function via transcription factor

binding-independent mechanisms, requiring comprehensive

fine-mapping of candidate loci to prioritize likely causal vari-

ants.20 Our results expand the current focus on disease out-

comes such as CAD by incorporating intermediate phenotype

summary statistics into fine-mapping analyses. Using this

approach, we narrowed colocalized GWAS signals to CSs of

candidate variants, highlighting ARHGAP42 and IL5. The ARH-

GAP42 locus is associated with blood pressure and cIMT: ca-

rotid intima-media thickness,74 and gene expression changes

affect smooth muscle cell contractility.75 Multi-omic fine-map-

ping revealed two candidate causal SNPs, of which the

rs604723 risk allele has been shown to generate a cryptic SRF

binding site to increase expression.50 We also highlight a puta-

tive STAT6 binding site created by the risk allele, suggesting a

potential IL-4/IL-13-mediated activation of SMCs, both of which

are normally lowly expressed in the coronary artery.

Another candidate gene identified through our eQTL discovery

and fine-mapping analyses, IL5, resides in a gene-dense SBP

GWAS locus.76 While IL5 is reported to function in Th2 cells or

eosinophils associated with atherosclerosis progression,77–79

its precise role and regulation in the coronary artery remains un-

known. Notably, we did not identify eQTLs for neighboring in-

flammatory genes IL4, IL13, and CSF2,80 despite proposed

overlapping functions and regulatory mechanisms.81,82 Aorta-

specific upregulation of IL5 in STARNET CAD cases supports a

potential disease-specific effect for IL5 in multiple arterial tis-

sues.39 Our lead eQTL, rs7719499, overlaps a plasma cell-spe-

cific chromatin-accessibility peak in the coronary artery. Given

the known influence of inflammatory cytokines on endothelial

and SMC activation, future studies are warranted to investigate

the immune cell-derived IL5-mediated vascular wall injury in

cell and animal models.

Finally, we demonstrated distinct genetic contributions for

expression and splicing activity in the coronary artery. The rela-

tionship between isoform specificity and overall expression is

complex.83,84 We observed a modest sharing of eGenes and

sGenes (14%) and <10% overlap for GWAS colocalization, sup-

porting orthogonal effects of genetic variation on total transcrip-

tion compared to isoform regulation. Development in the areas of

single-cell long-read sequencing will provide a more complete

understanding of isoform-specific regulatory mechanisms in

coronary artery.
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Weexplored two sGeneswith potential roles in coronary artery

disease—ULK3 and TOR1AIP1. TOR1AIP1mutations have been

reported for monogenic dystrophic developmental disorders via

dysregulation of necessary protein complex formation at the in-

ner nuclear membrane.59,85 The TOR1AIP1 sQTL regulates the

addition of an alanine residue to the third exon (position 185).

While this variant has not been associated with disease, its

high allele frequency suggests differential isoform expression

may have an important functional role, particularly given the

lack of TOR1AIP1 eQTLs. Regarding ULK3, though mainly

described in the context of cancers,86 this gene may mediate

vascular disease through autophagy dysregulation and interac-

tions in the Shh signaling pathway.87,88 Although the ULK3 locus

has also been reported in BP and cholesterol GWAS, the pub-

lished associations are located downstream of the ULK3 coding

region and are statistically independent of our sQTL and

eQTL.9,55,76 Publicly available data do not implicate a particular

cell type of interest for functional studies, pointing to the future

benefits of long-read sequencing to characterize isoform-spe-

cific and cell-type-specific mechanisms relevant to disease

pathways.89,90 Our findings for both transcriptional and iso-

form-specific regulation by variants with no GWAS signal point

to the importance of considering multiple ‘omics datasets

when evaluating candidate genes for complex diseases and

traits.

Overall, our findings emphasize the importance of context in

interpreting genetic associations with disease. Characterizing

loci within a comprehensive genomic and physiologic setting

helps prioritize top candidate genes uniquely relevant to athero-

sclerosis disease processes. While coronary artery tissue re-

mains the most relevant single tissue type for prioritizing CAD

candidate genes, the gene expression program changes during

atherosclerosis likely involve multi-tissue and multi-cellular

gene-regulatory networks. Multi-tissue network analyses may

further resolve underlying paracrine signaling pathways and reg-

ulatory mechanisms for eGenes without an obvious role in pre-

dominant intimal or medial cell types.91 For instance, inflamma-

tory processes driven by cytokine signaling may be difficult to

detect in target cell types, but significantly different expression

of IL5 specifically in the aorta in STARNET cases compared to

controls provides both validation of our approach and options

for identifying other genes functioning in the same molecular

pathway.39

A major strength of our work is demonstrating the feasibility

and promise of incorporating local genetic ancestry and allele-

specific expression into eQTL analyses to discover disease-rele-

vant genes/pathways. Our inclusive study design increased

statistical power in both our diverse downsampled subset and

overall study population compared to a genetically homoge-

neous European-ancestry-only subset. This is significant given

the predominantly European genetic architecture of GTEx and

published GWASs: while these resources have been crucial for

genomics discovery to date, work highlighting the limitations of

genetically restricted samples92 and technologies developed

based on those samples93 points to the necessity of new,

more expansive approaches.94–97 This also aligns with current

appeals in basic science and public health to promote equitable

research benefiting all populations, rather than studies that may
extend the health disparity gap.17,98,99 Furthermore, incorpora-

tion of single-cell chromatin accessibility datasets in coronary

artery complemented our eQTL-based gene prioritization

approach to nominate cis-regulatory mechanisms underlying

complex diseases associations.44 Finally, our findings benefited

from comparing epigenomic and genetic annotations, providing

a more tenable suite of candidate variants for future functional

work. Our multiple-phenotype fine-mapping approach will be

particularly relevant as the field moves toward functional charac-

terization of disease-associated lncRNAs and splice isoforms,

for which traditional metrics such as evolutionary conservation

cannot be consistently applied.

In summary, we present a genetically diverse evaluation of

coronary artery gene expression across the phenotypic spec-

trum of atherosclerosis. Our inclusive study design with respect

to ancestry and robust pipeline facilitated the discovery of

atherosclerosis-associated genes with plausible functional

roles in the vascular wall. Molecular characterization of these

genes in environments representing subclinical atherosclerosis

will improve the identification of therapeutic targets for CAD

patients.

Limitations of the study
It is worth noting limitations both common to eQTL studies and

unique to our approach. First, restricting to 5% minor-allele fre-

quency variants limited detection of ancestry-specific associa-

tions; previous work has shown that effectively capturing lower

frequency variants increases discovery both across and within

ancestral populations.100 A second limitation relates to interpret-

ability of our colocalization and fine-mapping results based

on genetically homogeneous public datasets.17 Individuals with

genetic ancestry from Africa and the Americas in particular

continue to be severely underrepresented in both GWASs and

‘omics reference datasets. Homogeneous study populations

not only prevent identification of ancestry- or haplotype-specific

associations, but they also limit generalizability of global associ-

ations when fine-mapping is restricted to genetic architecture

from a single ancestry group.92,101 With the generation of new

eQTL datasets from admixed populations, establishing best

practices such as minimizing LD mismatch and using local

ancestry estimates is needed to improve data standards, inte-

gration, and replication efforts. Additionally, we acknowledge

that both sample quality and disease status may affect interindi-

vidual cell-type proportions and therefore eQTL detection.102

Adjusting for estimated cell type proportions using single-cell

reference-based deconvolution may improve discovery across

tissues103 and complement cell-type-specific QTL studies.104

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability
Cell Genomics 4, 100465, January 10, 2024 11



Article
ll

OPEN ACCESS
d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B Ethics statement

B Sample acquisition

d METHOD DETAILS

B DNA genotyping

B Bulk RNA sequencing and processing

B RNA-seq read mapping and quality control

B Detection of RNA-seq sample swaps

B RNA sequencing data phasing for allele-specific

expression

B Multidimensional scaling

B Quantitative trait loci mapping

B Characterization and fine-mapping of QTLs

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100465.

ACKNOWLEDGMENTS

This work was supported by grants from the following: theNational Institutes of

Health (grant numbers R01HL148239 and R01HL164577 to C.L.M.;

T32HL007284 to C.J.H.; and R01HL125863 to J.L.M.B.; R01HL130423,

R01HL135093, and R01HL148167 to J.C.K.), the American Heart Association

(grant number 20POST35120545 to A.W.T.; AHA909150 to J.V.M.; and

A14SFRN20840000 to J.L.M.B.), the Swedish Research Council and Heart

Lung Foundation (grant numbers 2018-02529 and 20170265 to J.L.M.B.),

the Fondation Leducq (grant number ‘‘PlaqOmics’’ 18CVD02 to C.L.M. and

J.L.M.B.), and the Single-Cell Data Insights award from the Chan Zuckerberg

Initiative, LLC, and Silicon Valley Community Foundation (to C.L.M.). This work

was also supported by fellowship grants from the Bench to Bassinet Pediatric

Cardiac Genomics Consortium (PCGC) and Cardiovascular Development

Data Resource Center (CDDRC) (to C.J.H.), as well as the UVA MSTP training

grant (NIH T32GM007267, to W.F.M.). S.W.v.d.L. is supported by EU H2020

TO_AITION (grant number: 848146). We are thankful for the support of the

Netherlands CardioVascular Research Initiative of the Netherlands Heart

Foundation (CVON 2011/B019 and CVON 2017-20: Generating the best evi-

dence-based pharmaceutical targets for atherosclerosis [GENIUS I&II]) and

the ERA-CVD program ‘‘druggable-MI-targets’’ (grant number: 01KL1802).

The research for this contribution was made possible in part by the AI for

Health working group of the EWUU alliance and the CZI Foundation. The au-

thors would like to thank Yipei Song and Wesley Craig for assistance with

scripting and troubleshooting; Catherine Robertson for assistance with fine-

mapping study design; Katia Sol-Church and Yongde Bao for assistance

with library preparation and sequencing; Peter Chiu, Paul Chang, A.J. Pe-

droza, Tiffany Koyano, Euan Ashley, Tom Quertermous, and all of the trans-

plant recipients, heart donors, family members, study coordinators, and trans-

plant procurement team at Stanford for coronary artery tissue procurement.

AUTHOR CONTRIBUTIONS

We used CRediT taxonomy to determine the authors’ contributions. C.J.H.,

A.W.T., J.L.M.B., and C.L.M. conceptualized the study. C.J.H., A.W.T.,

M.D.K., and N.G.L. curated the data. C.J.H., A.W.T., M.D.K., N.B.B., R.M.,

L.M., and J.V.M., performed formal data analysis. C.J.H., A.W.T., N.J.L.,

J.C.K., J.L.M.B., and C.L.M. acquired funding. C.J.H., A.W.T., and E.F. per-

formed the experiments. M.D.K., N.B.B., R.M., E.F., D.W., and S.O.-G.

contributed to methods development. G.A. and S.O.-G. performed project

administration. A.W.T., L.M., N.G.L., J.V.M., W.F.M., M.K., P.A.P.,

S.W.v.d.L., N.J.L., J.C.K., J.L.M.B., and C.L.M. contributed biospecimens, da-

tasets, scripts, or other resources. C.J.H. and W.F.M. contributed software

tools. C.L.M. supervised the project. L.M., J.V.M., and J.L.M.B. contributed
12 Cell Genomics 4, 100465, January 10, 2024
to validation of the results. C.J.H., A.W.T., M.D.K., N.B.B., J.V.M., and

C.L.M. contributed to data visualization. C.J.H., A.W.T., and C.L.M. prepared

the manuscript draft. All authors reviewed and edited the manuscript.

DECLARATION OF INTERESTS

J.L.M.B. is a shareholder in Clinical Gene Network AB and has an invested in-

terest in STARNET. J.C.K. is the recipient of an Agilent Thought Leader Award,

which includes funding for research that is unrelated to the current manuscript.

S.W.v.d.L. has received Roche funding for unrelated work. C.L.M. has

received AstraZeneca funding for unrelated work.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: April 17, 2023

Revised: September 7, 2023

Accepted: November 19, 2023

Published: December 15, 2023

REFERENCES

1. Khera, A.V., and Kathiresan, S. (2017). Genetics of coronary artery dis-

ease: discovery, biology and clinical translation. Nat. Rev. Genet. 18,

331–344.

2. Watkins, H., and Farrall, M. (2006). Genetic susceptibility to coronary ar-

tery disease: from promise to progress. Nat. Rev. Genet. 7, 163–173.

3. Schunkert, H., König, I.R., Kathiresan, S., Reilly, M.P., Assimes, T.L.,

Holm, H., Preuss, M., Stewart, A.F.R., Barbalic, M., Gieger, C., et al.

(2011). Large-scale association analysis identifies 13 new susceptibility

loci for coronary artery disease. Nat. Genet. 43, 333–338.

4. Webb, T.R., Erdmann, J., Stirrups, K.E., Stitziel, N.O., Masca, N.G.D.,

Jansen, H., Kanoni, S., Nelson, C.P., Ferrario, P.G., König, I.R., et al.

(2017). Systematic evaluation of pleiotropy identifies 6 further loci

associated with coronary artery disease. J. Am. Coll. Cardiol. 69,

823–836.

5. van der Harst, P., and Verweij, N. (2018). Identification of 64 novel genetic

loci provides an expanded view on the genetic architecture of coronary

artery disease. Circ. Res. 122, 433–443.

6. Nikpay, M., Goel, A., Won, H.-H., Hall, L.M., Willenborg, C., Kanoni,

S., Saleheen, D., Kyriakou, T., Nelson, C.P., Hopewell, J.C., et al.

(2015). A comprehensive 1,000 Genomes-based genome-wide asso-

ciation meta-analysis of coronary artery disease. Nat. Genet. 47,

1121–1130.

7. Nelson, C.P., Goel, A., Butterworth, A.S., Kanoni, S., Webb, T.R., Mar-

ouli, E., Zeng, L., Ntalla, I., Lai, F.Y., Hopewell, J.C., et al. (2017). Associ-

ation analyses based on false discovery rate implicate new loci for coro-

nary artery disease. Nat. Genet. 49, 1385–1391.

8. Koyama, S., Ito, K., Terao, C., Akiyama, M., Horikoshi, M., Momozawa,

Y., Matsunaga, H., Ieki, H., Ozaki, K., Onouchi, Y., et al. (2020). Popula-

tion-specific and trans-ancestry genome-wide analyses identify distinct

and shared genetic risk loci for coronary artery disease. Nat. Genet.

52, 1169–1177.

9. Hartiala, J.A., Han, Y., Jia, Q., Hilser, J.R., Huang, P., Gukasyan, J.,

Schwartzman, W.S., Cai, Z., Biswas, S., Trégouët, D.A., et al. (2021).
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104. Maria, M., Pouyanfar, N., Örd, T., and Kaikkonen, M.U. (2022). The Power

of Single-Cell RNA Sequencing in eQTL Discovery. Genes 13, 502.

105. Kavousi, M., Bos, M.M., Barnes, H.J., Lino Cardenas, C.L., Wong, D., Lu,

H., Hodonsky, C.J., Landsmeer, L.P.L., Turner, A.W., Kho, M., et al.

(2023). Multi-ancestry genome-wide analysis identifies effector genes

and druggable pathways for coronary artery calcification. Nat. Genet.

55, 1651–1664.
Cell Genomics 4, 100465, January 10, 2024 15

http://refhub.elsevier.com/S2666-979X(23)00309-9/sref73
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref73
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref74
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref74
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref74
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref74
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref74
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref74
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref75
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref75
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref75
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref75
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref76
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref76
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref76
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref76
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref77
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref77
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref77
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref77
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref77
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref77
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref78
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref78
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref78
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref78
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref78
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref79
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref79
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref79
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref79
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref80
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref80
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref80
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref80
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref81
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref81
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref81
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref82
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref82
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref82
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref82
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref82
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref83
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref83
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref83
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref84
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref84
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref84
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref85
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref85
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref85
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref85
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref86
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref86
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref86
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref86
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref87
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref87
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref87
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref88
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref88
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref88
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref88
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref89
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref89
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref89
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref89
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref90
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref90
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref90
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref90
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref91
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref91
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref91
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref91
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref92
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref92
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref92
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref92
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref93
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref93
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref93
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref94
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref94
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref94
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref94
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref94
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref95
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref95
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref95
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref95
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref95
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref96
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref96
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref96
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref97
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref97
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref97
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref97
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref98
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref98
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref98
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref99
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref99
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref100
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref100
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref100
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref101
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref101
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref101
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref101
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref102
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref102
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref102
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref102
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref103
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref103
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref103
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref103
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref104
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref104
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref147
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref147
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref147
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref147
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref147


Article
ll

OPEN ACCESS
106. Franceschini, N., Giambartolomei, C., de Vries, P.S., Finan, C., Bis, J.C.,

Huntley, R.P., Lovering, R.C., Tajuddin, S.M., Winkler, T.W., Graff, M.,

et al. (2018). GWAS and colocalization analyses implicate carotid in-

tima-media thickness and carotid plaque loci in cardiovascular out-

comes. Nat. Commun. 9, 5141.

107. Pan, H., Xue, C., Auerbach, B.J., Fan, J., Bashore, A.C., Cui, J., Yang,

D.Y., Trignano, S.B., Liu, W., Shi, J., et al. (2020). Single-Cell Genomics

Reveals a Novel Cell State During Smooth Muscle Cell Phenotypic

Switching and Potential Therapeutic Targets for Atherosclerosis in

Mouse and Human. Circulation 142, 2060–2075.

108. Alsaigh, T., Evans, D., Frankel, D., and Torkamani, A. (2020). Decoding

the transcriptome of atherosclerotic plaque at single-cell resolution. Pre-

print at bioRxiv.

109. Hu, Z., Liu, W., Hua, X., Chen, X., Chang, Y., Hu, Y., Xu, Z., and Song, J.

(2021). Single-Cell Transcriptomic Atlas of Different Human Cardiac Ar-

teries Identifies Cell Types Associated With Vascular Physiology. Arte-

rioscler. Thromb. Vasc. Biol. 41, 1408–1427.

110. Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., and Weir,

B.S. (2012). A high-performance computing toolset for relatedness

and principal component analysis of SNP data. Bioinformatics 28,

3326–3328.

111. Browning, B.L., Zhou, Y., and Browning, S.R. (2018). A One-Penny

Imputed Genome from Next-Generation Reference Panels. Am. J.

Hum. Genet. 103, 338–348.

112. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S.,

Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast uni-

versal RNA-seq aligner. Bioinformatics 29, 15–21.

113. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

114. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities

for comparing genomic features. Bioinformatics 26, 841–842.

115. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo,

M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al.

(2011). The variant call format and VCFtools. Bioinformatics 27,

2156–2158.

116. Castel, S.E., Mohammadi, P., Chung,W.K., Shen, Y., and Lappalainen, T.

(2016). Rare variant phasing and haplotypic expression from RNA

sequencing with phASER. Nat. Commun. 7, 12817.

117. van de Geijn, B., McVicker, G., Gilad, Y., and Pritchard, J.K. (2015).

WASP: allele-specific software for robust molecular quantitative trait lo-

cus discovery. Nat. Methods 12, 1061–1063.

118. Martin, A.R., Gignoux, C.R., Walters, R.K., Wojcik, G.L., Neale, B.M.,

Gravel, S., Daly, M.J., Bustamante, C.D., and Kenny, E.E. (2017). Human

Demographic History Impacts Genetic Risk Prediction across Diverse

Populations. Am. J. Hum. Genet. 100, 635–649.

119. Delaneau, O., Ongen, H., Brown, A.A., Fort, A., Panousis, N.I., and Der-

mitzakis, E.T. (2017). A complete tool set for molecular QTL discovery

and analysis. Nat. Commun. 8, 15452.

120. Wallace, C. (2021). A more accurate method for colocalisation analysis

allowing for multiple causal variants. PLoS Genet. 17, e1009440.

121. Kichaev, G., Roytman, M., Johnson, R., Eskin, E., Lindström, S., Kraft, P.,

and Pasaniuc, B. (2017). Improved methods for multi-trait fine mapping

of pleiotropic risk loci. Bioinformatics 33, 248–255.

122. Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize Imple-

ments and enhances circular visualization in R. Bioinformatics 30,

2811–2812.

123. Yin, L., Zhang, H., Tang, Z., Xu, J., Yin, D., Zhang, Z., Yuan, X., Zhu, M.,

Zhao, S., Li, X., and Liu, X. (2021). rMVP: A Memory-efficient, Visualiza-

tion-enhanced, and Parallel-accelerated Tool for Genome-wide Associ-

ation Study. Dev. Reprod. Biol. 19, 619–628.

124. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal pat-

terns and correlations in multidimensional genomic data. Bioinformatics

32, 2847–2849.
16 Cell Genomics 4, 100465, January 10, 2024
125. Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R. (2012). Using

probabilistic estimation of expression residuals (PEER) to obtain

increased power and interpretability of gene expression analyses. Nat.

Protoc. 7, 500–507.

126. Li, Y.I., Knowles, D.A., Humphrey, J., Barbeira, A.N., Dickinson, S.P., Im,

H.K., and Pritchard, J.K. (2018). Annotation-free quantification of RNA

splicing using LeafCutter. Nat. Genet. 50, 151–158.

127. Maples, B.K., Gravel, S., Kenny, E.E., and Bustamante, C.D. (2013).

RFMix: a discriminative modeling approach for rapid and robust local-

ancestry inference. Am. J. Hum. Genet. 93, 278–288.

128. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and

Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of

larger and richer datasets. GigaScience 4, 7.

129. Delaneau, O., Howie, B., Cox, A.J., Zagury, J.-F., and Marchini, J. (2013).

Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 93,

687–696.

130. 1000 Genomes Project Consortium; Auton, A., Brooks, L.D., Durbin,

R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy,

S., McVean, G.A., and Abecasis, G.R. (2015). A global reference for hu-

man genetic variation. Nature 526, 68–74.

131. Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I.,

Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al.

(2019). GENCODE reference annotation for the human and mouse ge-

nomes. Nucleic Acids Res. 47, D766–D773.

132. Auwera, G.A.V. der, and O’Connor, B.D. (2020). Genomics in the Cloud:

Using Docker, GATK, and WDL in Terra, 1st ed. (O’Reilly Media).

133. Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification

from RNA-Seq data with or without a reference genome. BMC Bioinf.

12, 323.

134. Jun, G., Flickinger, M., Hetrick, K.N., Romm, J.M., Doheny, K.F., Abeca-

sis, G.R., Boehnke, M., and Kang, H.M. (2012). Detecting and estimating

contamination of human DNA samples in sequencing and array-based

genotype data. Am. J. Hum. Genet. 91, 839–848.

135. Lee, S., Lee, S., Ouellette, S., Park, W.-Y., Lee, E.A., and Park, P.J.

(2017). NGSCheckMate: software for validating sample identity in next-

generation sequencing studies within and across data types. Nucleic

Acids Res. 45, e103.

136. Kumasaka, N., Knights, A.J., and Gaffney, D.J. (2016). Fine-mapping

cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213.

137. Amemiya, H.M., Kundaje, A., and Boyle, A.P. (2019). The ENCODE black-

list: identification of problematic regions of the genome. Sci. Rep.

9, 9354.

138. Zhong, Y., Perera, M.A., and Gamazon, E.R. (2019). On using local

ancestry to characterize the genetic architecture of human traits: genetic

regulation of gene expression in multiethnic or admixed populations. Am.

J. Hum. Genet. 104, 1097–1115.

139. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,

Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Pro-

cessing Subgroup (2009). Genome Project Data Processing Subgroup

(2009). The Sequence Alignment/Map format and SAMtools. Bioinfor-

matics 25, 2078–2079.

140. Cotto, K.C., Feng, Y.-Y., Ramu, A., Skidmore, Z.L., Kunisaki, J., Conrad,

D.F., Lin, Y., Chapman, W., Uppaulri, R., and Govindan, R. (2023). Re-

gTools: Integrated analysis of genomic and transcriptomic data for dis-

covery of splicing variants in cancer. Preprint at bioRxiv.

141. GTEx Consortium; Laboratory, Data Analysis &Coordinating Center

LDACC—AnalysisWorking Group; Statistical Methods groups—Analysis

Working Group; Enhancing GTEx eGTEx groups; NIH Common Fund;

NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection

Source Site—NDRI (2017). Genetic effects on gene expression across

human tissues. Nature 550, 204–213.

142. Franzén, O., Ermel, R., Cohain, A., Akers, N.K., Di Narzo, A., Talukdar,

H.A., Foroughi-Asl, H., Giambartolomei, C., Fullard, J.F., Sukhavasi, K.,

http://refhub.elsevier.com/S2666-979X(23)00309-9/sref105
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref105
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref105
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref105
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref105
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref106
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref106
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref106
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref106
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref106
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref107
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref107
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref107
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref108
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref108
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref108
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref108
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref109
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref109
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref109
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref109
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref110
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref110
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref110
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref111
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref111
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref111
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref112
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref112
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref113
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref113
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref114
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref114
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref114
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref114
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref115
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref115
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref115
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref116
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref116
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref116
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref117
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref117
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref117
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref117
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref118
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref118
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref118
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref119
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref119
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref120
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref120
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref120
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref121
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref121
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref121
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref122
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref122
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref122
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref122
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref123
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref123
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref123
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref124
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref124
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref124
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref124
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref125
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref125
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref125
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref126
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref126
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref126
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref127
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref127
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref127
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref128
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref128
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref128
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref129
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref129
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref129
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref129
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref130
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref130
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref130
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref130
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref131
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref131
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref132
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref132
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref132
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref133
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref133
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref133
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref133
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref134
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref134
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref134
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref134
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref135
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref135
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref136
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref136
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref136
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref137
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref137
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref137
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref137
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref138
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref138
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref138
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref138
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref138
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref139
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref139
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref139
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref139
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref140
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref140
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref140
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref140
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref140
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref140
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref141
http://refhub.elsevier.com/S2666-979X(23)00309-9/sref141


Article
ll

OPEN ACCESS
et al. (2016). Cardiometabolic risk loci share downstream cis- and trans-

gene regulation across tissues and diseases. Science 353, 827–830.

143. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of

fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 15, 550.

144. Shabalin, A.A. (2012). Matrix eQTL: ultra fast eQTL analysis via large ma-

trix operations. Bioinformatics 28, 1353–1358.

145. Zhu, Y., Orre, L.M., Zhou Tran, Y., Mermelekas, G., Johansson, H.J., Ma-
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Deposited data

Genotypes from low-pass whole genome sequencing This paper dbGaP: phs002855.v1.p1

Bulk RNA sequencing (raw files and TPMs) This paper GEO: GSE225650

eQTL and sQTL summary statistics This paper Zenodo: https://doi.org/10.5281/zenodo.7581778

snATAC sequencing (raw and processed data) This paper GEO: GSE175621 and GEO: GSE188422

ATAC sequencing and H3K27 Hi-ChIP for human coronary

artery smooth muscle cells (HCASMCs)

This paper GEO: GSE113348 and GEO: GSE101498

GWAS summary statistics for coronary artery disease Tcheandjieu et al.11 GWAS catalog: GCST90132305

GWAS summary statistics for myocardial infarction Hartiala et al.9 GWAS catalog: GCST011365

GWAS summary statistics for coronary artery disease Matsunaga et al.10 GWAS catalog: GCST010480

GWAS summary statistics for coronary artery disease Koyama et al.8 Biobank Japan:

https://biobankjp.org

GWAS summary statistics for coronary artery disease van der Harst et al.5 GWAS catalog: GCST005194

GWAS summary statistics for coronary artery calcification Kavousi et al.105 GWAS catalog: GCST90278455

and GCST90278456

GWAS summary statistics for lipid traits (HDL, LDL,

TC, logTG)

Graham et al.18 GWAS catalog: GCST90239649,

GCST90239655, GCST90239661,

and GCST90239673

GWAS summary statistics for blood pressure traits

(DBP, SBP, PP)

Evangelou et al.76 GWAS catalog: GCST006624, GCST006629,

and GCST006630

GWAS summary statistics for carotid plaque and IMT Franceschini et al.106 GWAS catalog: GCST001231

ENCODE CTCF, H3K27Ac, and H3K4me3 annotations

for coronary artery

ENCODE15 ENCODE Pproject:

https://www.encodeproject.org/

GTEx summary statistics for eQTLs in AOR, COR, and

TIB tissues

GTEx20 GTEx Portal:

https://www.gtexportal.org/home/

STARNET eQTL summary statistics, gene expression,

and clinical trait enrichment for AOR & MAM tissues

Koplev et al.39 dbGaP: phs001203.v2.p1

http://starnet.mssm.edu/

scRNAseq data for coronary and carotid tissues

(integrated single-cell reference)

Verdezoto et al.30;

Wirka et al.41; Pan

et al.107; Alsaigh

et al.108; Hu et al.109

GEO: GSE131778, GSE155512,

and GSE159677. Zenodo:

https://doi.org/10.5281/zenodo.6032099

Software and algorithms

Custom R and shell scripts scripts (data processing;

plot generation; coloc, Paintor, SnpEff, SMR, RFMix

implementation)

This paper GitHub: https://github.com/MillerLab-CPHG/

CAD_QTL and zenodo: https://doi.org/

10.5281/zenodo.10095581

R 4.0.3 R Core Team https://www.r-project.org/

R package SNPRelate v1.24.0 Zheng et al.110 https://github.com/zhengxwen/SNPRelate

Beagle v5.2 Browning et al.111 https://bioinformaticshome.com/tools/

imputation/descriptions/BEAGLE.html

STAR Dobin et al.112 https://github.com/alexdobin/STAR/releases

samtools v1.10 Li & Durbin113 http://samtools.sourceforge.net/

bedtools v2.29.2 Quinlan et al.114 https://github.com/arq5x/bedtools2

VCFtools v0.1.16 Danecek et al.115 https://vcftools.github.io

BCFtools v1.9 https://doi.org/10.1093/

gigascience/giab008

http://www.htslib.org/

Tabix v0.6 https://doi.org/10.1093/

gigascience/giab008

https://www.htslib.org/doc/tabix.html

Python library phaser (requires python 3.7) Castel et al.116 https://github.com/secastel/phaser
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WASP v0.3.4 van de Geijn et al.117 https://github.com/bmvdgeijn/WASP

SnpEff (requires java 1.11.0) https://pcingola.

github.io/SnpEff/adds/

SnpEff_paper.pdf

https://pcingola.github.io/SnpEff/

Local ancestry inference R pipeline Martin et al.118 https://github.com/armartin/ancestry_pipeline

QTLtools v1.3.1 Delaneau et al.119 https://qtltools.github.io/qtltools/

R package mixqtl v0.2 Liang et al.24 https://github.com/hakyimlab/mixqtl

R package coloc v5.1.1 Wallace et al.120 https://github.com/chr1swallace/coloc

SMR v1.03 Zhu et al.40 https://yanglab.westlake.edu.cn/software/smr/

paintor v3.0 Kichaev et al.121 https://github.com/gkichaev/PAINTOR_V3.0

R package tidyverse v1.3.1 https://cran.r-project.org/

R package dplyr v1.0.7 https://cran.r-project.org/

R package data.table v1.14.2 https://cran.r-project.org/

R package ggplot2 v3.4.0 https://cran.r-project.org/

R package susie v0.11.92 https://cran.r-project.org/

R package BiocManager v1.30.6 https://cran.r-project.org/

R package devtools v2.4.3 https://cran.r-project.org/

R package reshape2 v1.4.4 https://www.jstatsoft.org/

article/view/v021i12

https://cran.r-project.org/

R package ggrepel v0.9.2 https://cran.r-project.org/

R package VennDiagram v1.7.3 https://cran.r-project.org/

R package UpSetR v1.4.0 https://cran.r-project.org/

R package circlize v0.4.15 Gu et al.122 https://cran.r-project.org/

R package GetoptLong v1.0.5 https://cran.r-project.org/

R package RColorBrewer v1.1-3 https://cran.r-project.org/

R package CMplot v4.2.0 Yin et al.123 https://cran.r-project.org/

R package extrafont v0.19 https://cran.r-project.org/

R package ComplexHeatmap v2.14.0 Gu et al.124 https://github.com/jokergoo/ComplexHeatmap

R package peer v1.0 Stegle et al.125 https://github.com/PMBio/peer

LeafCutter v1.0 Yang et al.126 https://github.com/davidaknowles/leafcutter

RFMix v2.0 Maples et al.127 https://github.com/slowkoni/rfmix

Plink v1.9 Chang et al.128 https://www.cog-genomics.org/plink/

Custom QTL scripts This paper GitHub: https://github.com/MillerLab-CPHG/

CAD_QTL and zenodo: https://doi.org/

10.5281/zenodo.10095581

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Clint L.

Miller (clintm@virginia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data

All raw and processed bulk RNA-sequencing data are available in the Gene Expression Omnibus database (GEO: GSE225650). Low-

pass whole-genome sequencing-based genotyping data are available on dbGaP: phs002855.v1.p1. The full summary statistics for

the mixQTL eQTL analyses (full sample as well as subsamples for sensitivity analyses), as well as the local ancestry eQTL and the

sQTL analyses are available on zenodo: https://doi.org/10.5281/zenodo.7992146
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The single-cell RNA-seq datasets from coronary and carotid artery were re-analyzed and integrated from the original datasets

available through GEO: GSE131778, GSE155512, GSE159677, and zenodo: https://doi.org/10.5281/zenodo.6032099.109 The raw

and processed single-nucleus ATAC-seq datasets are available through GEO: GSE175621 and GEO: GSE188422. The reprocessed

and analyzed human scRNA-seq datasets are also available on PlaqView (https://plaqview.com). GTEx gene expression and eQTL

data were obtained from the v8 portal website (https://gtexportal.org). STARNET gene expression, eQTL, and clinical trait enrichment

data were obtained from dbGaP: phs001203.v2.p1 and are also available at http://starnet.mssm.edu. The HCASMC ATAC-seq and

H3K27ac HiChIP data used to calculate ABC scores are available through GEO: GSE113348 and GEO: GSE101498).

Code

All custom scripts used to generate the results are available on GitHub: https://github.com/MillerLab-CPHG/CAD_QTL and zenodo:

https://doi.org/10.5281/zenodo.10095581. Specific parameters and versions for published software tools are also included in the

key resources table and method details.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement
All research described herein complies with ethical guidelines for human subjects research under approved Institutional Review

Board (IRB) protocols at Stanford University (#4237 and #11925) and the University of Virginia (#20008), for the procurement and

use of human tissues and information, respectively.

Sample acquisition
Freshly explanted hearts from heart transplant recipients were obtained at Stanford University under approved Institutional Review

Board protocols and written informed consent. Hearts were arrested in cardioplegic solution and rapidly transported from the oper-

ating room to the lab on ice. The proximal 5-6cm of three major coronary vessels (left anterior descending, left circumflex, and right

coronary artery) were dissected from the epicardium on ice, trimmed of surrounding adipose and adventitia, rinsed in cold phosphate

buffered saline, and rapidly snap frozen in liquid nitrogen. Similarly, aortic root and left ventricular free-wall tissues were also pro-

cessed and stored at�80C until processing. Throughout the manuscript, these tissues will be referred to as "Explants.’’ Normal cor-

onary artery, aorta, and left ventricle tissues were obtained by Stanford University (from Donor Network West and California Trans-

plant Donor Network) from donor hearts rejected for transplantation, procured for research studies and were treated following the

same protocol as the explanted hearts. The collected tissues will be referred to hereby as ‘‘Donors.’’ Tissues were de-identified

and clinical information (e.g., ICD-10 codes) was used to classify normal, ischemic and non-ischemic hearts. Frozen tissues were

transferred to the University of Virginia through a material transfer agreement and IRB-approved protocols.

METHOD DETAILS

DNA genotyping
Genomic DNA isolation and sequencing

Approximately 20-25mg of frozen left ventricle or coronary artery tissue was used to isolate genomic DNA for each donor sample

following the manufacturer’s protocol (Qiagen DNeasy Blood and Tissue Kit, cat# 69504). Genomic DNA samples for all donors in

the study were diluted using TE buffer to [5–15 ng/mL] in skirted 96-well PCR plates. Plates were sealed and shipped to Gencove

(New York, USA) for 0.4X low-pass genomic DNA sequencing.

Genomic DNA sequence processing

Phasing and imputation. Unphased low-pass whole genome sequencing files were provided by Gencove in build b37. VCFs pro-

vided byGencove included just over 38million variants imputed to 1000G using a proprietary pipeline–imputation quality scores were

not provided. Because phasing was necessary for downstream analyses, samples were phased and subsequently re-imputed to

1000G phase 3 b37 reference panel using Beagle with impute = true and gp = true options.111,129 No additional variants had been

imputed at the conclusion of this process.

Liftover of genomic coordinates. Phased autosomal VCFs were lifted over from b37 to hg19 to hg38 using Picard (‘‘Picard Toolkit",

2019, Broad Institute. GitHub Repository: http://broadinstitute.github.io/picard/). After excluding approximately 10,000 variants that

could not be mapped, approximately 38 million total variants were available for consideration in analyses.

Principal component estimation

We calculated ancestral principal components using the R package SNPrelate.110 Briefly, SNPRelate uses LD pruning to restrict ge-

notype data to�500,000 independent biallelic SNPs with a MAF >1% across the autosomal chromosomes. We used all participants

from 1000 Genomes Phase 3 as a reference panel given the diversity of our sample.130 Eigenvectors (EVs) 1 through 3 demonstrated

clustering and correlation with Gencove-assigned majority continental ancestry, but subsequent EVs were driven by one or a small

number of individuals (Figure S1). Analyses adjusting for global ancestry were therefore restricted to the first three EVs.

Local ancestry estimation

Self-reported race/ethnicity and Gencove-reported regional ancestry estimates suggested that adjustment for local ancestry

(LA) might improve discovery compared to global EVs. We adapted the local-ancestry pipeline developed by Alicia Martin
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(https://github.com/armartin/ancestry_pipeline), including incorporation of several Python scripts.118 We used RFmix2 (https://

github.com/slowkoni/rfmix) to calculate ancestry from one of five continental reference populations127; ancestry was recorded as

‘‘missing’’ for a region if >90% probability of concordance with a reference was not attained. We randomly selected genotypes rep-

resenting continental ancestries from each superpopulation for 1,200 total 1000 Genomes participants: 400 AFR (African), and 200

each of AMR (Indigenous to the Americas), EAS (East Asian), EUR (European), and SAS (South Asian) superpopulations.130 Because

the most recent dataset with a 1000G genetic map is b37, we performed LA estimation and all downstream analyses using hg19 po-

sitions and gencode ‘v37lift37’ annotations.131

Bulk RNA sequencing and processing
Coronary artery tissue processing and RNA isolation

Coronary artery samples were selected for RNA sequencing based tissue availability (>50mg) and disease status (prioritizing

capturing a range of phenotypes). Total RNA was extracted from using the QIAGEN miRNeasy Mini RNA Extraction kit (catalog

#217004). Approximately 20 mg of frozen tissue pulverized using a pre-chilled mortar and pestle under liquid nitrogen was added

to 1.5mLRINO tubes (Next Advance, SKU TUBE1R5-S) whichwere stored on dry ice. As expected, ease of sample processing under

liquid nitrogen varied depending on sample calcification. Tissue powder was then further homogenized in Qiazol lysis buffer using

stainless steel beads in a Bullet Blender (Next Advance) homogenizer, followed by column-based purification according to the man-

ufacturer’s instructions. RNA concentration was determined using Qubit 3.0; RNA quality was determined using Agilent 4200

TapeStation. Three to five samples were processed per day by one of three individuals. Samples with RNA Integrity Number

(RIN) > 4.5 and Illumina DV200 values > 75 were included for library construction.

RNA library sequencing

Total RNA libraries were constructed using the Illumina TruSeq Stranded Total RNAGold kit (catalog #20020599) and barcodes were

added to RNA libraries using the IDT for Illumina-TruSeq RNAUnique Dual Indexes (96 indices, 96 samples) Kit (IDT, Illumina, catalog

#20022371. This library preparation captured coding RNAs and some noncoding RNAs, while depleting ribosomal RNAs. After re-

evaluating library quality using TapeStation, individually barcoded libraries were sent to Novogene for next generation sequencing.

After passing additional QC, libraries were multiplexed and subjected to paired-end 150bp read sequencing on an Illumina NovaSeq

S4 Flowcell to a median depth of 100 million total reads (>30G) per library.

RNA-seq mapping

Our RNA sequencing QC pipeline and scripts pertaining to all analyses described can be publicly accessed at: (https://github.com/

MillerLab-CPHG/CAD_QTL)

RNA-seq read mapping and quality control
The raw passed filter sequencing reads obtained from Novogene were demultiplexed using the bcl2fastq script. Read quality was

assessed using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.11.9) and the adapter sequences

were trimmed using Trim Galore version 0.6.5 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore). Reads with Phred

scores <20 were also removed, after which all samples passing the quality control analysis were considered for inclusion. Trimmed

reads were mapped to the hg38 human reference genome using STAR v2.7.3a according to the GATK Best Practices for RNA-

seq.132 To increase mapping efficiency and sensitivity, new splice junctions discovered in a first alignment pass with high stringency

were used as annotation in a second pass to permit lower stringency alignment and therefore increase sensitivity. PCR duplicates

were marked using Picard; WASP was used to filter reads prone to mapping bias. Total read counts and RPKMwere calculated with

RNA-SeQC v1.1.8 using default parameters and additional flags ‘‘-n 1000 -noDoC -strictMode’’ and GENCODE v32 reference anno-

tation. Transcript and isoform expression levels were estimated using RSEM v1.3.3.133

Detection of RNA-seq sample swaps
Using known genotypes for an individual from our cohort, we used verifyBamID134 to check for contaminated reads or sample swaps,

we identified four swapped samples. To crosscheck these swaps, we ran NGSCheckMate, which uses a depth-dependent correla-

tion model of allele fractions of known SNPs to identify samples from the same individual.135 Consistent with VerifyBamID, we found

four swapped samples, two of which we rematched and two of which were duplicates and therefore excluded from downstream

analysis.

RNA sequencing data phasing for allele-specific expression
In order to capture allele-specific expression within RNAseq data, we phased all reads using RASQUAL.136 Haplotype phasing of

RNA sequencing reads was performed using phASER v1.1.1.116 Known sites for allelic mapping bias and HLA genes were excluded

because of their high mapping error rates and introduction of bias using the ENCODE Unified GRCh38 Blacklist (as of 5-5-2020).137

The phASER pipeline was performed using the guided tutorial with additional flags; ‘‘–paired_end 1 –mapq 255 –baseq 10’’. Gener-

ation of the haplotype expression quantifications was performed with the companion tool called ‘‘phASER Gene AE’’ using the stan-

dard pipeline and the GENCODE v36 GRCh38 gene coordinates for haplotypic expression calculation.131
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Multidimensional scaling
We performed nonparametric clustering in transcriptomic space to determine whether the transcriptomes of our coronary artery

samples were unique from GTEx tissues as well as previously published HCASMC transcriptomes. We performed multidimensional

scaling on log-transformed RPKM values (excluding genes in our study which did not have R0.1 RPKM in R10 individuals) of all

GTEx tissues, our samples, andHCASMCcells using Kruskal’s non-parametricmethod. The 54 uniqueGTEx tissue siteswere group-

ed into 27 broad tissue categories as previously described.13

Quantitative trait loci mapping
eQTL analysis

PEER factor calculation and optimization. Probabilistic Estimation of Expression Residuals (PEER) was used to account for unmea-

sured confounders related to RNA sequencing (e.g., batch effects).125 No covariates were included. Based on recommendations

regarding sample size and statistical models, we expected to incorporate up to five PEER factors in all models. In order to determine

how the number of PEER factors may affect our results, we selected a random subset of 400 genes on chr17 (�30% of annotated

lncRNAs or protein-coding genes on that chromosome). We then performed linear regression using QTLtools (described below but

with an allele frequency cutoff of 1% rather than 5%) with no additional covariates and compared the number of eGenes with an FDR

<0.05 adjusting for 1, 2, 3, 5, 8, 10, 15, 20, and 25 PEER factors (Figure S1). The number of eGenes was not meaningfully affected by

the number of PEER factors, hence we continued with five as expected.

Regression analyses. To maximize true positive associations and minimize Type I error, we excluded variants that did not meet the

following criteria: biallelic single-nucleotide variants with a minor allele frequency >5% and HWE p value >1E�6 (http://samtools.

github.io/bcftools/bcftools.html). Approximately 6,100,000 variants were available for inclusion in each analysis. Bed files were

generated using the criteria implemented by GTEx: all lncRNA and protein-coding genes exceeding 0.1 TPM for at least 20%of sam-

ples were included.29 Genes were annotated with name, genomic coordinates, and strand using Gencode v32 (https://www.

gencodegenes.org/human/release_32.html) for hg38 analyses and gencode v37liftb37 for hg19 analyses.131 Due to strong selection

and high likelihood of population stratification contributing to false-positive identification of genes in the MHC region which is under

high selective pressure, HLA genes and other MHC components were not considered candidates for fine-mapping in downstream

analyses.

Statistical significance reporting. For all regression analyses, the following standards will be used for reporting p values throughout

the manuscript. For single variant association tests, pnom refers to the p value reported in the ‘‘pval_meta’’ column for mixQTL or the

12th output column for QTLtools run under the nominal passmodel. For variants that were not lead QTLs, padj refers to the Bonferroni-

corrected pnom, where the correction is adjusting for the number of SNPs tested for each gene or splice junction respectively. For lead

QTLs, pBH refers to the value obtained by correcting for the total number of genes or splice junctions tested within eachmethod using

the Benjamini-Hochberg FDR correction applied to the padj for mixQTL analyses and the 19th output column for QTLtools analyses.

Local ancestry adjustment. Local-ancestry-adjusted cis-eQTL analyses were performed using a new pipeline which incorporates

QTLtools (a computationally efficient implementation of MatrixQTL which allows adjustment for SNP-level covariates).119,138 Models

adjusted for age, sex, local ancestry, and five PEER factors. Because local ancestry designations occur at the SNP level and cannot

be included as traditional covariates in genome-wide eQTL regression analyses, proportions of estimated continental ancestry for

each individual were calculated for each gene, and gene-specific covariate and bed files were used in QTLtools. Local ancestry

interpolation scripts as well as scripts to run each gene individually and select lead SNPs with adjusted p values can be found on

the lab GitHub repository referenced above.

Permutation pass mode was run in QTLtools using up to 100,000 iterations per gene based on the method described by Gay

et al.,25 to generate a lead variant for each gene tested. ‘‘Nominal-pass’’ results were run for significant eGenes only to obtain a

non-permuted p value for each variant within 500kb up- or downstream of the transcription start site (TSS). Isoforms were not eval-

uated separately, therefore the TSS used for each gene was the most upstream TSS for transcripts with multiple annotated isoforms.

Combined global-ancestry-adjusted and allele-specific expression analysis. We implemented the R package ‘mixQTL’ (https://

github.com/hakyimlab/mixqtl) to identify eQTLs incorporating allele-specific expression in our data.24 All mixQTL analyses were per-

formed using genome build hg38; RNA transcripts were mapped to Gencode v32 (https://www.gencodegenes.org/human/

release_32.html). Briefly, mixQTL tests for an association between a genotype and total read count; an association between specific

alleles and corresponding haplotype expression (allele-specific expression); and the meta-analysis of both scores when inclusion

criteria are met for both methods. MixQTL inputs include phased genotypes, total read counts, allele-specific read counts, and

covariate information. Because mixQTL has to be run separately for each gene and does not have a way to account for missing

data, all data frames (covariate, haplotype, and expression) would need to be re-generated for each gene in the course of running

the R script to account for ‘‘missing’’ values for any covariate, haplotype, or expression value for one or more individuals. We did

not have missing data for any included covariates or genetic variants. Most genes with any missing expression values were lowly

expressed, therefore we do not expect inflation that would not be accounted for by adjusting the resulting p values and set all

missing values in the phased RNAseq data to zero. We adjusted the example script on the mixQTL Github (https://github.com/

liangyy/mixqtl) to limit our window to variants within 500kb of the transcription start sites of each gene for a maximum window

size of 1Mb, and analyzed associations all genes with R0.1 mean TPM. MixQTL models included three ancestry EVs, age, sex,

and five PEER factors as covariates.
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Sensitivity analyses in European-ancestry-specific and ancestrally proportional sample subsets. Most statistical fine-mapping

methods and publicly available genomics references continue to over-represent ancestrally homogeneous European-ancestry pop-

ulations. To evaluate whether discovery or replication could be improved in a genetically homogeneous study sample despite a

meaningful decrease in sample size, we performed mixQTL and downstream analyses in subsets of our sample restricted either

to individuals with 100% European ancestry (n = 80) or an 80-person downsample of the total study population randomly

selected within each majority-assigned-ancestry group. Regression, generalization, and colocalization were performed within

both subsets as described above for the combined sample.

Splicing analysis

Generation and processing of BAMand junction files for splice QTL analysis. We aligned to the human genome the FASTQ files from

RNAseq data of 138 ancestrally diverse heart transplant patients using the aligner tool STAR (version 2.7.2b) in 2-pass mode.112 An

STAR index was generated using Gencode v37 annotations and the UCSC hg38 reference genome. BAM files were generated using

the –twopassmode basic and –outSAMtype BAM SortedByCoordinate options with a minimum overhang of 8 bp for spliced

alignments. Additionally, the WASP correction option, –waspOutputMode SAMtag, was used to mitigate allelic mapping bias.117

The generated BAM files were further indexed using the option –index from the package Samtools.139 Next, junction files were

generated using the package RegTools.140 The option ‘‘-junctions extract’’ was used with the following parameters: (1) minimum

intron size of 50 bp, (2) maximum intron length (100 kbp), (3) minimum overlap between junctions of 8 bp, and (4) leaving the

strand specificity as ‘unstranded’ to analyze both positive and negative strands. We removed unknown or unwanted

chromosomes from junction files.

LeafCutter. QTL input files were generated using the modified LeafCutter-GTEX pipeline.126,141 Junction files were used as input to

generate a count matrix of intron excision ratios. Clusters of alternatively spliced introns were identified using split reads that mapped

with a minimum of 8 bp into each exon. Singleton introns that did not cluster with other introns were discarded. LeafCutter iteratively

analyzed each intron cluster and removed introns in two ways: (1) introns with fewer than 50 reads across all samples, or (2) intron

reads present in less than 0.1% of the total number of reads in the entire cluster. LeafCutter re-clustered introns and only included

those with a maximum length of 100,000 bp. The count matrix was further processed to (1) generate a BED file and its index in a

format compatible for QTL mappers, such as QTLtools; and (2) to calculate splice principal components. The LeafCutter protocol

specifically outputs percent spliced in (PSI) for each splice junction, which adjusts for splicing events with overlapping start or

stop positions to account for gene-level variation.

sQTL association. Genetic variants affecting the quantity of proximal splice junctions (cis-sQTLs) were estimated using QTLtools as

described above, with age, sex, and four ancestry principal components included in the model. Nominal-pass was used to obtain

non-permuted p values for each variant within 250kb up- or downstream of the LeafCutter-generated BED file of splice junction

expression. 100,000 permutations were run with a permutation pass to generate an adjusted p value for each lead sQTL.

Characterization and fine-mapping of QTLs
Characterization of coronary artery QTLs

STARNET gene and protein expression analysis. In order to compare magnitude and direction of effect at eGenes of interest, we

generated expression plots by genotype for normalized expression and applied the FDR of 0.05 in the published work as a threshold

for significance. Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study (STARNET) subject recruitment and

tissue collection were performed as described previously.142 Briefly, patients with coronary artery disease (CAD) who were

eligible for open-thorax surgery at the Department of Cardiac Surgery, Tartu University Hospital in Estonia were enrolled after

informed consent. Venous blood was drawn, and DNA was isolated for genotyping using the Illumina Infinium assay. Tissue

biopsies from aorta and mammary artery were obtained to study tissue-specific gene expression and the disease. RNA was

extracted from tissues and sequenced for whole transcriptome as described.142 In addition, 250 subjects who were eligible for

open-heart surgery for reasons other than coronary artery bypass graft surgery were consented and recruited as controls.39 For

case control study cohort, whole transcriptome sequencing was performed on selected CAD cases and non-CAD controls with

matched age, gender and BMI. Transcriptome data was processed and differential gene expression between cases and controls

was estimated using DESeq2.143 Association of gene expression with clinical phenotypes of subjects was calculated by

Pearson’s correlation coefficients. Matrix eQTL was used for the inference of cis-regulated eQTLs analysis on genotype and

expression data from individuals with CAD cases.144 Association of gene expression with genotypes of SNPs were plotted using

ggplot2 in R. For protein study, EDTA plasma was collected after blood drawn. In total, 304 cases and 217 controls were

selected with matched age, sex, and BMI. Full-scale screening of Olink’s library of 11 panels targeting 1,012 proteins was

performed by multiplex Proximity Extension Assay (Olink Proteomics, Uppsala, Sweden). R package DEqMS was used for quality

control, data normalization, and statistical analysis for differential protein expression.145

Generalization of previously published eQTLs in our study. We compared LA and mixQTL eGenes to published eQTL datasets in

relevant tissues. Specifically, we assessed whether eGenes in our study also had significant eQTLs–and whether our lead

variants were correlated using European-ancestry LD–in GTExv8 coronary, thoracic aorta, and tibial artery tissues29; and

STARNET internal mammary artery and aortic root tissues.39 Due to differences in annotation, overlap between each dataset and

genes meeting our inclusion criteria was identified using the maximum set of gene names or primary ENSG identifiers (excluding

post-decimal identifying numbers).
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Annotation of eQTLs and sQTLs. To identify potential causal mechanisms of QTLs, we annotated lead eQTLs and sQTLs to their

respective eGenes and sGenes using the ‘‘GRCh38.p13’’ database in SnpEff to correspond to the Gencode v32 annotation we

aligned our RNAseq data to.146 SnpEff reports variant annotations by gene (i.e., specific variant-gene annotations are not

provided in the main output). For this reason, we utilized the verbose (-v) option and the log file to identify gene-variant-specific

annotations to ensure the eQTL-eGene association was maintained. Corresponding scripts are available on our Github. We

further evaluated gene-based and region-based annotations using the annotate_variation.pl script with Annovar, also for build

hg38.147

Co-localization of eQTLs and sQTLs with GWAS variants. We tested for colocalization of eQTLs with significant (p < 5x10�8) pub-

lished genetic associations in GWAS of coronary artery disease and myocardial infarction.5,8–11 Due to the phenotypic heterogeneity

within our study population, we additionally evaluated quantitative traits that are traditional risk factors for CAD including blood pres-

sure traits (systolic [SBP], diastolic [DBP], and pulse [PP] pressures),76 cholesterol traits (total cholesterol [TC], high-density lipopro-

tein [HDL], low-density lipoprotein [LDL], and triglycerides (reported as a log concentration, logTG]),18 carotid artery calcification

(CAC),105 and intima media thickness (IMT).106 The GWAS catalog (https://www.ebi.ac.uk/gwas) was most recently accessed on

November 1, 2022. We considered PPH3 >0.8 to implicate two independent causal SNPs associated with eQTL and GWAS asso-

ciation signals, and PPH4 >0.8 to support evidence of a shared causal variant.120,148

Summary-data-based Mendelian randomization (SMR). SMR evaluates evidence for statistical pleiotropy by comparing summary

statistics fromGWAS to eQTL results from expression data in relevant tissues; i.e., to test whether the association between a genetic

variant and CAD-related phenotypes is mediated by gene expression in our study sample.40 Due to the complexity and low informa-

tiveness likely in LD generated from our genetically diverse but modestly sized sample, we generated bed files in Plink using 1000G

EUR population (excluding Finnish samples due to genetic distinction of that population, which was not represented in our samples)

as our LD ref. 128,130. We then performed SMR (https://yanglab.westlake.edu.cn/software/smr) using mixQTL results and GWAS

summary statistics from CAD and BP traits included in colocalization analyses.5,9,11,76,106 We were not able to evaluate Japanese

CAD GWAS8,10 due to the large number of variants with allele frequency differences >30% between the GWAS study populations

and ours. Options included a minor allele frequency threshold of 0.01, a 1Mb window surrounding the most significant eQTL per lo-

cus, and a maximum mixQTL p value of 5E�06 required for variant inclusion.

Fine-mapping of eGene association signals

mixFine. To identify independent associations and prioritize credible sets for discovery coronary artery eGenes, we used the com-

mand line implementation of mixFine (https://github.com/hakyimlab/mixqtl).24 Mixfine runs SuSiE internally to accommodate the

possibility of multiple causal variants in a dataset where many of the input variables (SNPs) are likely highly correlated.148 Input files

utilized by mixFine are the same as those for mixQTL and were prepared as described above.

Fine-mapping with GWAS and variant annotations. To combine the effects of GWAS association signals, eQTLs identified in our

coronary artery tissue samples, and tissue-relevant variant annotations, we fine-mapped mixQTL eGene associations using fast

Paintor (v3.0, https://github.com/gkichaev/PAINTOR_V3.0).121 Due to FastPaintor input requirements and the ancestral

representation in published GWAS of relevant traits, we restricted published datasets included in these analyses to European-

only ancestry. MixQTL results were combined with overlapping SNPs from GWAS summary statistics for two groups of traits–

CAD/MI and blood pressure traits.5,9,10 For each eGene (+/�500kb from TSS), VCFs and LD matrices were generated with Plink,

using hg38 1000G EUR samples excluding FIN samples (which are minimally represented in our study or published

GWAS).115,128,130 We evaluated four annotations based gene repression, activation, transcription, and chromatin-contact-based

enhancer activity: CTCF only, H3K4me3 only, and H3K4me3/H3K27Ac combined. To do this, we included ENCODE binary SNP

annotations for chromatin accessibility (CTCF, H3K27ac, and H3K4me3 in coronary artery tissue from one 53yo female).15 To

apply enriched enhancer regulatory activity in coronary artery tissue, we also used the activity-by-contact model (ABC; https://

github.com/broadinstitute/ABC-Enhancer-Gene-Prediction). ABC scores were obtained from previous H3K27ac HiChIP and

ATAC data in HCASMC and coronary artery from our previous work are publicly available (see ‘‘Data and Code Availability’’).13,149
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