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RESEARCH ARTICLE

Animal and plant protein intake during infancy and childhood DNA methylation: 
a meta-analysis in the NutriPROGRAM consortium
Mohammed El Sharkawy a,b, Janine F. Felix c,d, Veit Grote a, Trudy Voortman e, Vincent W. V. Jaddoe c,d, 
Berthold Koletzko a*, and Leanne K. Küpers c,d*
aDivision of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. Von Hauner Children’s Hospital, LMU University Hospital 
Munich, Munich, Germany; bMunich Medical Research School, Faculty of Medicine, LMU - Ludwig-Maximilians Universität Munich, Munich, 
Germany; cThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; dDepartment of 
Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; eDepartment of Epidemiology, Erasmus MC, 
University Medical Center Rotterdam, Rotterdam, The Netherlands

ABSTRACT
Background: Higher early-life animal protein intake is associated with a higher childhood obesity 
risk compared to plant protein intake. Differential DNA methylation may represent an underlying 
mechanism.
Methods: We analysed associations of infant animal and plant protein intakes with DNA methyla
tion in early (2−6 years, N = 579) and late (7 ̄−12 years, N = 604) childhood in two studies. Study- 
specific robust linear regression models adjusted for relevant confounders were run, and then 
meta-analysed using a fixed-effects model. We also performed sex-stratified meta-analyses. 
Follow-up analyses included pathway analysis and eQTM look-up.
Results: Infant animal protein intake was not associated with DNA methylation in early childhood, 
but was associated with late-childhood DNA methylation at cg21300373 (P = 4.27 × 10¯8, 
MARCHF1) and cg10633363 (P = 1.09 × 10¯7, HOXB9) after FDR correction. Infant plant protein 
intake was associated with early-childhood DNA methylation at cg25973293 (P = 2.26 × 10−7, 
C1orf159) and cg15407373 (P = 2.13 × 10−7, MBP) after FDR correction. There was no overlap 
between the findings from the animal and plant protein analyses. We did not find enriched 
functional pathways at either time point using CpGs associated with animal and plant protein. 
These CpGs were not previously associated with childhood gene expression. Sex-stratified meta- 
analyses showed sex-specific DNA methylation associations for both animal and plant protein 
intake.
Conclusion: Infant animal protein intake was associated with DNA methylation at two CpGs in 
late childhood. Infant plant protein intake was associated with DNA methylation in early child
hood at two CpGs. A potential mediating role of DNA methylation at these CpGs between infant 
protein intake and health outcomes requires further investigation.
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Introduction

Dietary composition plays a crucial role in devel
opment during the early years of childhood. 
Protein intake is of particular importance as 
a source of essential amino acids [1]. Recent obser
vational studies and randomized controlled trials 
confirmed that high protein intake in early life 
increases early weight gain and the risk of later 
overweight and obesity, while growth can be 
restricted at lower intakes [2,3]. Although the 
exact pathophysiological mechanisms are unclear, 

some studies have shown stronger associations of 
animal protein as compared to plant protein, espe
cially during the first year of life, with higher body 
mass index (BMI) in later childhood [4,5] and 
especially higher body fat mass [4–7]. The most 
common hypothesis explaining these associations 
between higher animal protein intake and obesity 
is the effects of amino acids, especially branched- 
chained amino acids (BCAA) in addition to other 
amino acids like arginine [8], assumed to stimulate 
insulin and insulin-like growth factor 1 (IGF-I) 
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secretion as well as affect preadipocyte metabolism 
leading to overweight in children [9].

Differential DNA methylation might be 
a mechanism underlying these associations. 
Associations of early-life dietary intake with 
DNA methylation have been reported in several 
studies [10–12]. For example, breastfeeding is 
associated with early-life growth, with DNA 
methylation being a potential mediating factor 
[13–15]. Other studies found associations between 
the quality and quantity of dietary fat and fatty 
acids intake and DNA methylation in childhood 
[16–18].

Quality and quantity of infant protein intake 
have been previously investigated in association 
with DNA methylation in animal models [19– 
21], but never in humans. One study found that 
maternal protein restriction led to widespread dif
ferential methylation and gene expression in new- 
born rats [22]. Few recent studies found associa
tions between plasma protein metabolites, as an 
intermediate phenotype of protein intake, and 
DNA methylation in human adults [23,24].

Better knowledge on possible epigenetic path
ways, looking at specific protein sources, might 
help further understand the underlying mechan
isms of early-life dietary programming of later 
health. Therefore, we examined associations of 
dietary intake of animal protein in infancy with 
DNA methylation in early and late childhood. We 
additionally examined associations of dietary 
intake of plant protein with DNA methylation at 
the same time points.

Materials and methods

Participants

Data from two studies were used in this meta- 
analysis; the CHOP trial with participants from five 
European countries, and the Generation R Study 
with participants from the Netherlands. The CHOP 
study is a multi-centre double-blind randomized 
clinical trial with 1,678 children enrolled in 
Germany, Belgium, Italy, Poland and Spain. The 
Generation R Study is a prospective population- 
based cohort in Rotterdam, the Netherlands. In 
total, 9,778 mothers were enrolled in the 
Generation R Study. For CHOP, all children who 

attended the follow-up visits at ages of 5.5 and 11  
years and who agreed on blood withdrawal and 
DNA methylation measurement were included. In 
the Generation R Study, a subgroup of children with 
European ethnic background was selected for DNA 
methylation measurement at ages of 6 years and 10  
years, based on completeness of data. For CHOP, 
only children who were not breastfed during dietary 
data collection were included to dietary diary collec
tion. Generation R included only 26 children who 
were breastfed. In both studies, energy from infant 
feeding was included in energy intake calculation. 
Study design and characteristics of both studies have 
been described previously in detail [25,26]. From 
both studies, we included participants with informa
tion about infant animal protein intake and DNA 
methylation in early (2–6 years) and/or late child
hood (7–12 years). Participants with energy intake 
from animal and plant protein outside ±5 standard 
deviations (SDs) from the study mean were excluded 
from the analysis (n = 3 and n = 0 in early childhood 
for CHOP and Generation R, respectively, n = 1 and 
n = 0 in late childhood for CHOP and Generation R, 
respectively). N = 183 and N = 227 were included in 
both time points for CHOP and Generation R, 
respectively. Neither of the studies had siblings in 
the studied sample. Participants with missing data 
on any of the covariates were excluded from the 
analysis (complete case analysis). All children in 
both studies had European ethnicity. Informed con
sent was obtained for all participants, and both stu
dies received approval from the local ethics 
committees.

Animal and plant protein intake

Animal protein intake was defined as the average 
daily protein intake from animal food sources, 
including animal dairy, meat, eggs, and fish com
bined. Plant protein intake was defined as the 
average daily protein intake from non-animal 
sources. Both intakes were measured at approxi
mately 12 and 14 months of age in CHOP and 
Generation R, respectively. Because we were inter
ested in relative protein intake and to account for 
confounding by energy intake, we expressed ani
mal protein and plant protein intake as percentage 
of total energy intake (E%) and additionally 
included energy intake in our models. In CHOP, 
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dietary intakes were recorded using prospective 
3-day dietary diary protocol following standar
dized operating procedures [27]. Nutrient infor
mation was primarily based on the German 
national food composition database (BLS 3.01). 
Food items and recipes not identified in the data
base were added by CHOP dietitians at each study 
centre according to information from the manu
facturers, other databases or ingredients. Food 
records with energy or macronutrient intakes > 3 
SDs of the mean by month and country and those 
noted by the data entering dietitian to be incom
plete or inaccurate or with reported concurrent 
illness were excluded [28]. In the Generation 
R Study, dietary intake was evaluated using a 211- 
item semi-quantitative Food Frequency 
Questionnaire (FFQ) covering the previous 
month. The Dutch Food Composition Table 2006 
and standard Dutch portion sizes were used to 
convert food frequencies into energy and macro
nutrient intakes [29].

DNA methylation data acquisition, quality 
control, and normalization

DNA was isolated from peripheral whole blood sam
ples in both studies, using the salting out method. 
For early childhood, the average age at blood draw 
was 5.5 and 6 years for CHOP and Generation R, 
respectively, while it was 11 and 10 years for CHOP 
and Generation R, respectively, for late childhood. 
For CHOP and Generation R, 800 and 500 ng of 
DNA, respectively, per sample underwent bisulphite 
conversion. DNA methylation in early and late 
childhood was measured using the Illumina 
Infinium® HumanMethylation450 BeadChip assay. 
In both studies, DNA methylation data normaliza
tion and quality control were done following the 
quantile normalization method (CPACOR) by 
Lehne et. al [30]. DNA methylation was analysed as 
untransformed DNA methylation beta-values ran
ging from 0 (completely unmethylated) to 1 (com
pletely methylated) expressing the proportion of 
cells in which the DNA was methylated at a specific 
cytosine-phosphate-guanine (CpG) site. Non- 
autosomal probes were excluded. Control probes 
were removed as part of study-level QC performed 
on DNA methylation data. The top and bottom 0.5% 
methylation beta-values were winsorized.

Covariates

Models were adjusted for total energy intake (from 
FFQ or dietary protocol), age at blood collection, sex, 
self-reported highest completed maternal educational 
level (lower/higher), gestational age at birth, self- 
reported maternal pre-pregnancy BMI, self-reported 
sustained maternal smoking during pregnancy into at 
least the second trimester (yes/no), blood cell propor
tions (B-cells, CD8+ T-cells, CD4+ T-cells, granulo
cytes, NK-cells, and monocytes) estimated using the 
reference-based Houseman method [31] in the minfi 
package in R [32,33], with the Reinius reference [34] 
in both studies. To control for technical batch effects, 
both studies adjusted for sample plate number as 
a technical covariate. For CHOP, the country of 
study centre was also included in all models.

Statistical analysis

Robust linear regression models were run in both 
studies to analyse the associations of both infant 
animal and plant protein intake and DNA methy
lation at both time points following a pre-specified 
analysis plan and R code. For animal protein 
intake, each study ran eight robust linear regres
sion models (four models at each of the two time 
points) using the rlm() function of the ‘MASS’ 
package in R [33,35], with model 4 (fully adjusted 
model) being the main model. For covariance 
matrix estimation, ‘Heteroscedasticity-Consistent 
Covariance Matrix Estimation’ method was used. 
For plant protein intake, each study ran the fully 
adjusted model at each time point. To account for 
confounding by energy intake, the multivariate 
nutrient density model was used, expressing ani
mal protein in E% and additionally including 
energy intake as covariate:

(1) DNAm ~ Infant animal/plant protein 
intake + age at blood collection + sex + tech
nical covariates

(2) Model 1 plus adjustment for total energy 
intake

(3) Model 2 plus adjustment for maternal edu
cational level + gestational age at birth +  
pre-pregnancy BMI + maternal smoking 
during pregnancy

(4) Model 3 plus adjustment for cell counts

EPIGENETICS 3



To identify sex-specific DNA methylation differ
ences, we also performed sex-stratified meta- 
analyses for both animal and plant protein intake 
at both time points using the fully adjusted model 
4. Before meta-analysis, quality control was done 
on the results of both studies using the QCEWAS 
R package [36]. Results from both studies were 
centrally meta-analysed using METAL [37] by 
MeS, using fixed effects inverse variance- 
weighted meta-analysis in METAL. The meta- 
analysis was then independently repeated by JFF, 
to exclude the possibility of human error. 
Removing cross-reactive probes [38,39] (N =  
43,635 in early childhood and N = 43,702 in late 
childhood) and probes available only in one study 
(N = 13,428 in early childhood and N = 14,799 in 
late childhood) resulted in 415,274 and 414,307 
probes included in the meta-analyses for early 
and late childhood, respectively. We flagged 
CpGs potentially influenced by a single nucleotide 
polymorphism (polymorphic sites) [38,39] and 
CpGs listed as methylation quantitative trait loci 
(mQTLs) [40]. Hartigans’ dip test for unimodality 
was used to check if methylation level at signifi
cant CpGs was influenced by a nearby single 
nucleotide polymorphism. We also flagged CpGs 
with high between-study heterogeneity, defined as 
an I2 >50%. We decided a priori on a false dis
covery rate (FDR)-adjusted p-value significance 
level of < 0.05 [41]. All statistical analyses were 
performed using R statistical analysis software 
[33], except for the meta-analysis in METAL.

Additional analyses

Following the meta-analyses, multiple analyses 
were performed on the top CpGs (FDR P < 0.05) 
from the fully adjusted non sex-stratified meta- 
analyses at both time points, to examine potential 
functional consequences. First, the EWAS catalog 
[42] was used to identify previously published 
associations with other traits for the top CpGs. 
Second, we checked if the top CpGs were pre
viously reported to be associated with gene expres
sion in childhood blood, measured as expression 
quantitative trait methylation (eQTM). For this, 
we used the catalogue of 13.6 million blood auto
somal cis-eQTMs in children published by the 
Human Early Life Exposome (HELIX) project, 

after cell type adjustment [43]. Third, we ran func
tional enrichment analyses using Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) in the MissMethyl R package 
[44] on all CpGs with P < 1×10¯4 in the fully 
adjusted models at both time points for both ani
mal and plant protein intakes.

Results

Participants

In total, 579 and 604 children were included in the 
animal protein meta-analyses and 577 and 604 in 
the plant protein meta-analysis for early and late 
childhood, respectively. Study-specific descriptives 
are presented in Tables 1 and 2. Infant animal and 
plant protein intakes were normally distributed in 
both studies. Animal protein had means (SD) of 
10.6% (3.2) and 10.7% (3.5) in CHOP for the 
analyses in early and late childhood DNA methy
lation, respectively, and 8.1% (2.4) and 8.1% (2.4) 
in Generation R for analyses in early and late 
childhood DNA methylation, respectively. Plant 
protein intake had means (SD) of 4.04 (1.03) and 
3.93 (1.06) in CHOP for the analyses in early and 
late childhood DNA methylation, respectively, and 
4.67 (1.31) and 4.76 (1.26) in Generation R for 
analyses in early and late childhood DNA methy
lation, respectively (Supplementary Figures S1A- 
1D and 2A-2D).

Meta-analysis

Results of the epigenome-wide association study 
(EWAS) meta-analysis for the fully adjusted 
models (model 4) at both time points, for CpGs 
with P < 1×10¯5 are presented in Tables 3 and 4 
for animal protein and in Tables 5 and 6 for plant 
protein. Sex-stratified EWAS results are pre
sented in Supplementary tables S1-S8. Full 
EWAS meta-analysis results are available via: 
https://doi.org/10.5281/zenodo.8375454. Q-Q, 
Manhattan and Volcano plots for the meta- 
analysis results of the fully adjusted model at 
both time points are presented in Figure 1a–f 
for animal protein and Figure 2a–f for plant pro
tein. Cohort-specific Q-Q plots and lambdas are 
shown in Supplementary Figures S3A-3D for 
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animal protein and S4A-4D for plant protein. 
Q-Q plots for sex-stratified meta-analysis results 
are shown in Supplementary figures S5A-5D for 
animal protein and Supplementary figures S6A- 

6D for plant protein. Infant animal protein intake 
was not associated with DNA methylation at any 
CpG site in early childhood, after FDR 
correction.

Table 1. Study-specific descriptives for animal protein analysis.
Early childhood DNAm measurement Late childhood DNAm measurement

CHOP 
N = 255

Generation R 
N = 324

CHOP 
N = 300

Generation R 
N = 304

E% from animal protein (%) 10.6 (3.2) 8.1 (2.4) 10.7 (3.5) 8.1 (2.4)
Total energy intake (kcal) 894 (169) 1309 (331) 887 (167) 1322 (334)
Age at blood collection (years) 5.6 (0.1) 6.0 (0.2) 11.3 (0.13) 9.78 (0.24)
Age at dietary data collection (months) 11.9 (0.2) 13.8 (1.7) 11.9 (0.2) 14.0 (1.8)
Sex

Boy 120 (47.1%) 154 (47.5%) 147 (49.0%) 157 (51.6%)
Girl 135 (52.9%) 170 (52.5%) 153 (51.0%) 147 (48.4%)

Maternal smoking during pregnancy
No smoking/smoking stopped before 2nd trimester 217 (85.1%) 290 (89.5%) 252 (84.0%) 270 (88.8%)
Sustained smoking into 2nd trimester 38 (14.9%) 34 (10.5%) 48 (16.0%) 34 (11.2%)

Maternal educational level*
Low 45 (17.6%) 82 (25.3%) 51 (17.0%) 88 (28.9%)
High 210 (82.4%) 242 (74.7%) 249 (83.0%) 216 (71.1%)

Maternal BMI (kg/m2) 23.9 (4.1) 23.1 (3.6) 23.6 (3.8) 23.2 (3.6)
Gestational age at birth (weeks) 39.7 (1.2) 40.3 (1.4) 39.8 (1.2) 40.2 (1.4)
CHOP Study centre

Belgium 43 (16.9%) − 36 (12.0%) −
Spain 89 (34.9%) − 101 (33.7%) −
Germany 18 (7.1%) − 42 (14.0%) −
Italy 105 (41.2%) − 91 (30.3%) −
Poland − − 30 (10.0%) −

DNAm= DNA methylation. 
Results presented as mean ± SD or N (%). 
*In both cohorts, maternal educational level was defined as ‘Low’ if no, primary or secondary school education obtained, and as ‘High’ if college or 

university degree obtained. 

Table 2. Study-specific descriptives for plant protein analysis.
Early childhood DNAm measurement Late childhood DNAm measurement

CHOP 
N = 255

Generation R 
N = 322

CHOP 
N = 300

Generation R 
N = 302

E% from plant protein (%) 4.04 (1.03) 4.67 (1.31) 3.93 (1.06) 4.76 (1.26)
Total energy intake (kcal) 894 (169) 1311 (331) 887 (167) 1323 (333)
Age at blood collection (years) 5.6 (0.1) 6.0 (0.2) 11.3 (0.13) 9.77 (0.24)
Age at dietary data collection (months) 11.9 (0.2) 13.8 (1.7) 11.9 (0.2) 14.0 (1.8)
Sex

Boy 120 (47.1%) 154 (47.8%) 147 (49.0%) 157 (52.0%)
Girl 135 (52.9%) 168 (52.2%) 153 (51.0%) 145 (48.0%)

Maternal smoking during pregnancy
No smoking/smoking stopped before 2nd trimester 217 (85.1%) 288 (89.4%) 252 (84.0%) 268 (88.7%)
Sustained smoking into 2nd trimester 38 (14.9%) 34 (10.6%) 48 (16.0%) 34 (11.3%)

Maternal educational level*
Low 45 (17.6%) 82 (25.5%) 51 (17.0%) 88 (29.1%)
High 210 (82.4%) 240 (74.6%) 249 (83.0%) 214 (70.9%)

Maternal BMI (kg/m2) 23.9 (4.1) 23.1 (3.6) 23.6 (3.8) 23.2 (3.6)
Gestational age at birth (weeks) 39.7 (1.2) 40.3 (1.4) 39.8 (1.2) 40.2 (1.4)
CHOP Study centre

Belgium 43 (16.9%) − 36 (12.0%) −
Spain 89 (34.9%) − 101 (33.7%) −
Germany 18 (7.1%) − 42 (14.0%) −
Italy 105 (41.2%) − 91 (30.3%) −
Poland − − 30 (10.0%) −

DNAm= DNA methylation. 
Results presented as mean ± SD or N (%). 
*In both cohorts, maternal educational level was defined as ‘Low’ if no, primary or secondary school education obtained, and as ‘High’ if college or 

university degree obtained. 
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Infant animal protein intake was statistically 
significantly associated with DNA methylation 
in late childhood at two CpG sites: cg21300373 
(0.16% increase in DNA methylation per each 1 
E% increase in infant animal protein intake, SE  
= 0.0003, P = 4.27×10−8, PFDR = 0.018, I2 = 0) and 
cg10633363 (0.05% decrease in DNA methyla
tion per each 1 E% increase in infant animal 
protein intake, SE = 0.0001, P = 1.09×10−7, 

PFDR = 0.022, I2 = 51) after FDR correction. 
Forest plots for both CpGs associated with ani
mal protein intake are presented in 
Supplementary figures S7 and 8 and 
Supplementary figures S9 and 10 for plant pro
tein. Even though cg10633363 had an I2 of 50.6, 
the forest plots did not show clear heterogeneity 
between studies. Both CpGs were flagged as 
potentially associated with a SNP (mQTLs). 

Table 3. Meta-analysis results for associations of infant animal protein intake (E%) and early childhood whole blood DNA 
methylation levels at P < 1 × 10¯5..

CpG Effecta SEa P value FDR Directionb I2 Polymorphic mQTLc Chr Position
Relation to 

Island
Nearest 

Gene
Gene 

Region

cg02751838 −0.10 0.02 1.25E–06 0.12 - - 48.7 Yes Yes 16 75148330 N_Shore LDHD Body
cg19657814 0.04 0.01 1.29E–06 0.12 + + 13.4 No Yes 19 47137444 N_Shore GNG8 TSS1500
cg14183329 0.06 0.01 1.53E–06 0.12 + + 53.9 Yes Yes 7 131242962 Island PODXL TSS1500
cg11780382 −0.08 0.02 1.55E–06 0.12 - - 54.8 No Yes 6 24719812 N_Shore C6orf62 -
cg18177414 0.19 0.04 1.90E–06 0.12 + + 73 No Yes 7 149389929 Island KRBA1 -
cg24044478 0.17 0.04 1.94E–06 0.12 + + 0 No Yes 8 145035191 OpenSea PLEC Body
cg04730047 0.24 0.05 2.09E–06 0.12 + + 0 No Yes 3 99979355 N_Shore TBC1D23 Body
cg20469139 0.30 0.06 2.64E–06 0.12 + + 0 No Yes 17 29297458 N_Shore RNF135 TSS1500
cg27639457 0.20 0.04 2.76E–06 0.12 + + 0 No Yes 5 11384753 Island CTNND2 Body
cg05226685 0.15 0.03 3.46E–06 0.14 + + 0 Yes No 8 30010237 N_Shelf MIR548O2 -
cg10667167 0.10 0.02 3.97E–06 0.15 + + 38.3 No No 19 12662910 S_Shore ZNF564 TSS1500
cg08785524 0.24 0.05 6.49E–06 0.21 + + 0 No No 11 29340853 OpenSea KCNA4 -
cg04723723 0.09 0.02 7.50E–06 0.21 + + 0 No No 1 67966270 OpenSea SERBP1 -
cg08468732 0.14 0.03 7.54E–06 0.21 + + 0 No Yes 2 95722029 OpenSea MAL -
cg23991274 −0.10 0.02 7.61E–06 0.21 - - 68.3 No No 4 71860600 S_Shore DCK Body
cg08756033 0.31 0.07 9.65E–06 0.22 + + 85.5 Yes Yes 13 31480128 N_Shore TEX26-AS1 TSS200

aEffect sizes and SE are presented as a percent change in DNA methylation per 1 E% increase in energy from animal protein intake. 
bStudies are arranged from left to right as follows: CHOP then Generation R. 
cmethylation quantitative trait loci (mQTL) utilized from GoDMC database. 
EWAS model was adjusted for total energy intake, age at blood collection, sex, maternal educational level, gestational age, pre-pregnancy BMI, 

maternal smoking during pregnancy, technical covariates, cell counts. 

Table 4. Meta-analysis results for associations of infant animal protein intake (E%) and late childhood whole blood DNA methylation 
levels at P < 1 × 10¯5..

CpG Effecta SEa P value FDR Directionb I2 Polymorphic mQTLc Chr Position
Relation to 

Island
Nearest 

Gene
Gene 

Region

cg21300373 0.16 0.03 4.27E–08 0.018 + + 0 No Yes 4 165304540 Island MARCHF1 TSS200
cg10633363 −0.05 0.01 1.09E–07 0.022 - - 50.6 No Yes 17 46703854 Island HOXB9 TSS200
cg10167561 −0.06 0.01 1.13E–06 0.122 - - 0 Yes No 13 22244956 Island FGF9 TSS1500
cg15680470 0.17 0.04 1.18E–06 0.122 + + 49.5 Yes No 8 54938360 S_Shelf TCEA1 -
cg09463900 0.05 0.01 1.90E–06 0.157 + + 0 No No 19 12939587 Island RTBDN Body
cg27026673 −0.10 0.02 2.85E–06 0.180 - - 29.9 No Yes 2 39664343 Island MAP4K3 TSS200
cg16516295 0.23 0.05 3.25E–06 0.180 + + 0 No Yes 3 129147846 S_Shore EFCAB12 TSS1500
cg26730050 −0.20 0.04 4.04E–06 0.180 - - 27.2 No Yes 13 112655007 OpenSea SOX1 -
cg06993367 −0.11 0.02 4.36E–06 0.180 - - 0 No Yes 16 982031 S_Shore LMF1 Body
cg06516150 0.06 0.01 4.68E–06 0.180 + + 0 No Yes 12 109592528 Island ACACB Body
cg04621866 −0.10 0.02 4.97E–06 0.180 - - 0 No No 8 144567481 N_Shore ZC3H3 Body
cg13982505 −0.10 0.02 5.20E–06 0.180 - - 40.5 No Yes 2 233642094 OpenSea GIGYF2 TSS1500, Body
cg02288564 0.05 0.01 6.22E–06 0.182 + + 0 No No 19 49934404 Island SLC17A7 Body
cg12140668 0.04 0.01 6.46E–06 0.182 + - 84.5 No No 1 197744252 Island DENND1B Body
cg15355952 0.24 0.05 6.60E–06 0.182 + + 0 No Yes 5 36662829 OpenSea SLC1A3 Body
cg05965863 0.12 0.03 8.90E–06 0.222 + + 0 No Yes 3 137480182 Island SOX14 -
cg21074631 −0.04 0.01 9.12E–06 0.222 - - 0 No No 13 50422213 Island CTAGE10P -

aEffect sizes and SE are presented as a percent change in DNA methylation per 1 E% increase in energy from animal protein intake. 
bStudies are arranged from left to right as follows: CHOP then Generation R. 
cmethylation quantitative trait loci (mQTL) utilized from GoDMC database. 
EWAS model was adjusted for total energy intake, age at blood collection, sex, maternal educational level, gestational age, pre-pregnancy BMI, 

maternal smoking during pregnancy, technical covariates, cell counts. 
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Although the density plots showed a slight indi
cation of multimodality (Supplementary figures 
S11 and 12), Hartigans’ dip test had a P > 0.05 
for both CpGs in both studies, indicating no 
significant deviation from unimodality.

To check for consistency of results across both 
time points, we conducted a look-up in the early 
childhood results of the two CpGs associated 
with animal protein in late childhood. Neither 
of the CpGs, cg21300373 (Effect = 0.0006, 
SE = 0.0004, P = 0.13, PFDR = 0.84, I2 = 0) and 
cg10633363 (Effect = 0.0001, SE = 0.0002, 
P = 0.70, PFDR = 0.97, I2 = 21), was significantly 
associated with animal protein intake in early 
childhood. Also, for CpGs associated with plant 
protein in early childhood, we conducted a look- 
up in the late childhood EWAS results. Neither 
of the CpGs, cg15407373 (Effect= −0.0001, 
SE = 0.0006, P = 0.80, PFDR = 1.00, I2 = 0) and 
cg25973293 (Effect= −0.0009, SE = 0.0005, 
P = 0.09, PFDR = 0.96, I2 = 0), were significantly 
associated with plant protein intake in late child
hood (Supplementary table S9).

Infant plant protein intake was associated 
with DNA methylation after FDR correction at 
2 CpG sites: cg25973293 (0.003% decrease in 
DNA methylation per each 1 E% increase in 
infant plant protein intake, SE = 0.0006, P =  
2.26×10−7, PFDR = 0.047, I2 = 5.2) and 
cg15407373 (0.003% decrease in DNA methyla
tion per each 1 E% increase in infant plant 
protein intake, SE = 0.0005, P = 2.13×10−7, 
PFDR = 0.047, I2 = 95.6) in early childhood. 
Cg25973293 is flagged as potentially associated 
with an mQTL.

Plant protein intake was not associated with DNA 
methylation at any CpG site in late childhood, after 
FDR correction. Neither of the two CpGs associated 
with animal protein intake were associated with 
plant protein intake at P < 1×10¯5, or vice versa.

Sex-stratified meta-analyses showed sex-specific 
DNA methylation differences in both early and late 
childhood with infant animal protein intake. Infant 
animal protein intake was associated with early child
hood DNA methylation at 16 CpG sites in boys and at 
9 CpG sites in girls, after FDR correction. Infant 

Table 5. Meta-analysis results for associations of infant plant protein intake (E%) and early childhood whole blood DNA methylation 
levels at P < 1 × 10¯5..

CpG Effecta SEa P value FDR Directionb I2 Polymorphic mQTLc Chr Position

Relation 
to 

Island
Nearest 

Gene
Gene 

Region

cg15407373 −0.003 0.0005 2.13E–07 0.047 - - 95.6 No Yes 18 74800029 Island MBP Body
cg25973293 −0.003 0.0006 2.26E–07 0.047 - - 5.2 No Yes 1 1061647 OpenSea C1orf159 -
cg15473904 0.019 0.0038 5.62E–07 0.078 + + 73.3 No Yes 9 140446993 S_Shore MRPL41 3’UTR
cg23235135 −0.004 0.0008 9.22E–07 0.096 - - 39.0 No Yes 2 189850571 OpenSea COL3A1 Body
cg03460239 0.002 0.0005 1.73E–06 0.113 + + 71.8 No No 11 124311153 OpenSea OR8B8 TSS200
cg13920278 −0005 0.0010 1.98E–06 0.113 - - 0 No Yes 9 93852285 OpenSea LOC100129316 -
cg03870270 0.002 0.0003 2.08E–06 0.113 + + 0 No No 3 15643045 Island HACL1 1stExon; 

TSS1500
cg14784944 −0003 0.0006 2.30E–06 0.113 - - 0 No Yes 7 4855785 N_Shore RADIL Body
cg13558954 0.006 0.0013 2.45E–06 0.113 + - 75.4 Yes No 9 99521386 OpenSea ZNF510 Body
cg18861311 −0.002 0.0003 2.92E–06 0.117 - - 54.4 No Yes 10 102747418 Island TWNK 1stExon; 

TSS200
cg23290217 −0.001 0.0003 3.09E–06 0.117 - - 0 No Yes 19 4909290 Island UHRF1 TSS1500
cg05040429 0.002 0.0004 4.05E–06 0.140 + + 78.7 No No 8 119633844 N_Shore SAMD12 Body
cg01233720 −0.008 0.0016 4.45E–06 0.142 - - 0 Yes Yes 5 60456037 N_Shore SMIM15 5’UTR
cg23272399 −0.002 0.0004 6.32E–06 0.180 - - 81.1 No Yes 1 53068579 Island GPX7 Body
cg26753088 0.002 0.0004 6.74E–06 0.180 + + 75.0 No Yes 19 1293582 N_Shore EFNA2 Body
cg02006854 −0.002 0.0004 7.09E–06 0.180 - - 0 Yes No 2 239542460 Island LINC01107 -
cg18459618 −0.004 0.0010 7.38E–06 0.180 - - 78.6 No Yes 17 29297478 N_Shore RNF135 TSS1500
cg06747907 0.004 0.0009 9.22E–06 0.213 + + 0 No Yes 1 16091100 OpenSea FBLIM1 TSS1500; 

1stExon
cg19685229 0.006 0.0014 9.94E–06 0.216 + + 0 No No 12 116587387 OpenSea MED13L TSS1500; 

Body
aEffect sizes and SE are presented as a percent change in DNA methylation per 1 E% increase in energy from animal protein intake. 
bStudies are arranged from left to right as follows: CHOP then Generation R. 
cmethylation quantitative trait loci (mQTL) utilized from GoDMC database. 
EWAS model was adjusted for total energy intake, age at blood collection, sex, maternal educational level, gestational age, pre-pregnancy BMI, 

maternal smoking during pregnancy, technical covariates, cell counts. 
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animal protein intake was associated with late child
hood DNA methylation at 11 CpG sites in boys and at 
1 CpG site in girls, after FDR correction. Cg21300373, 
one of the CpGs significantly associated with animal 
protein in late childhood in both sexes combined, was 
only significant in boys (Effect = 0.002, SE = 0.0004, P  
= 1.24×10−6, PFDR = 0.046, I2 = 3.9) and not in girls 
(Effect = 0.001, SE = 0.0004, P = 7.6×10−4, PFDR =  
0.34, I2 = 0), after FDR correction. Cg10633363, the 
other CpG significantly associated with animal pro
tein in late childhood in both sexes combined, was not 
significant neither in boys (Effect = 0.001, SE = 0.0003, 
P = 2.41×10−4, PFDR = 0.34, I2 = 0) nor in girls (Effect  
= 0.001, SE = 0.0003, P = 1.17×10−5, PFDR = 0.14, I2 =  
57) (Supplementary tables S1-S4).

For infant plant protein intake, sex-stratified 
meta-analysis showed associations with DNA 
methylation in early childhood at 1 CpG site for 
boys and at 3 CpG sites for girls, respectively. 
Associations of infant plant protein intake with 
DNA methylation at late childhood were found 
at 9 CpG sites for boys and at 1 CpG site for 
girls, respectively. None of the findings in the sex- 
stratified plant protein meta-analyses was found in 
the other sex or in any of the other sex-stratified 
models (Supplementary tables S5-S8).

Functional analysis

Cg21300373 is mapped to MARCHF1 and 
cg10633363 is mapped to HOXB9, both CpGs are 

located in the transcription start site. We used the 
CpGs associated with animal protein for functional 
analyses. First, a look-up in the EWAS catalog 
showed that DNA methylation at cg21300373 was 
previously associated with pancreatic ductal adeno
carcinoma and clear cell renal carcinoma [45,46]. 
Cg10633363 was not reported in the EWAS catalog. 
Second, cg21300373 and cg10633363 were not asso
ciated with gene expression in the catalogue of 
blood autosomal cis-eQTMs in children [47]. 
Third, functional enrichment analysis was done 
using the CpGs with p-values <1×10¯4. For animal 
protein models, 120 CpGs for early childhood and 
98 CpGs for late childhood models were used as 
input. For plant protein, 88 CpGs for early child
hood and 89 CpGs for late childhood were used as 
input. There were no enriched GO or KEGG path
ways (FDR <0.05) at either animal or plant protein 
intake at either time point. Cg25973293 associated 
with infant plant protein intake at early childhood is 
mapped to C1orf159. Cg25973293 was not reported 
to be associated with other phenotypes in the EWAS 
catalog.

Discussion

In this meta-analysis, infant animal protein intake 
was associated with DNA methylation in late 
childhood at the age of 7–12 years at two CpG 
sites; cg21300373 and cg10633363, but not with 
DNA methylation in early childhood. No 

Table 6. Meta-analysis results for associations of infant plant protein intake (E%) and late childhood whole blood DNA methylation 
levels at P < 1 × 10¯5..

CpG Effecta SEa P value FDR Directionb I2 Polymorphic mQTLc Chr Position
Relation to 

Island
Nearest 

Gene
Gene 

Region

cg06623197 −0.005 0.001 2,39E–07 0.050 - - 85.1 No Yes 22 30400763 OpenSea MTMR3 Body
cg16739865 0.001 0.000 2,43E–07 0.050 + + 70.6 No No 12 3186281 Island TSPAN9 TSS1500
cg18106898 −0.010 0.002 7,79E–07 0.108 - - 0 No Yes 15 74229671 OpenSea LOXL1 Body
cg26954671 −0.004 0.001 1,97E–06 0.188 - - 0 Yes No 8 22223465 N_Shore SLC39A14 TSS1500
cg03368634 0.002 0.000 2,42E–06 0.188 + + 0 No No 16 3824553 OpenSea CREBBP Body
cg06333135 −0.002 0.000 2,84E–06 0.188 - - 24.2 No No 3 47460006 Island SCAP Body
cg20272155 0.006 0.001 3,17E–06 0.188 + + 38 No Yes 11 1769462 Island MOB2 Body; TSS200
cg01104489 −0.004 0.001 4,84E–06 0.204 - - 27.2 No Yes 1 3072235 Island PRDM16 Body
cg04450606 0.004 0.001 5,08E–06 0.204 + + 54.4 Yes No 1 1,53E + 08 OpenSea PGLYRP3 TSS200
cg12198729 −0.001 0.000 5,28E–06 0.204 - - 15.6 No No 10 1,03E + 08 Island BTRC TSS200; TSS200
cg01668281 −0.008 0.002 5,41E–06 0.204 - - 0 No Yes 21 37915281 OpenSea CLDN14 5’UTR; TSS1500
cg24353466 0.001 0.000 6,42E–06 0.222 + + 0 No No 3 1,5E + 08 Island RNF13 1stExon; 5’UTR
cg21953251 −0.003 0.001 8,13E–06 0.245 - - 51.5 Yes No 5 766985 OpenSea ZDHHC11 -
cg15209277 −0.002 0.000 8,29E–06 0.245 - - 0 No No 1 64472035 OpenSea ROR1 Body

aEffect sizes and SE are presented as a percent change in DNA methylation per 1 E% increase in energy from animal protein intake. 
bStudies are arranged from left to right as follows: CHOP then Generation R. 
cmethylation quantitative trait loci (mQTL) utilized from GoDMC database. 
EWAS model was adjusted for total energy intake, age at blood collection, sex, maternal educational level, gestational age, pre-pregnancy BMI, 

maternal smoking during pregnancy, technical covariates, cell counts. 
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associations with specific functional pathways or 
gene expression were identified. Infant plant pro
tein intake was associated with DNA methylation 
in early childhood at the age of 2–6 years at two 
CpG sites; cg25973293 and cg15407373.

Cg21300373 was mapped to the transcription 
start site of MARCHF1 which is a member of the 
MARCH family of membrane-bound E3 ubiquitin 

ligases and was linked to glucose-tolerance and 
lipid storage [48]. E3 ubiquitin ligases play 
a pivotal role in obesity-induced insulin resistance 
in humans [49]. DNA methylation of MARCHF1 
gene was found to be associated with adiposity in 
a previous EWAS in multi-ethnic Asian adults 
[50]. MARCHF1 genetic variants have also been 
associated with adiposity in adults [51,52]. 

(a) QQ plot early childhood – Animal Protein (b) QQ plot late childhood – Animal Protein

(e) Volcano plot early childhood – Animal Protein (f) Volcano plot late childhood – Animal Protein

Expected -log10(p)
Expected -log10(p)

λ =1.13
λ =1.06

(c) Manhattan plot early childhood – Animal Protein (d) Manhattan plot late childhood – Animal Protein

Figure 1. Q-Q, Manhattan and volcano plots for associations between infant animal protein intake (E%) and early and late childhood 
DNA methylation. Significance line in Manhattan and volcano plots is set to represent the Bonferroni-corrected p-value threshold of 
P < 1.1 × 10¯7.
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Therefore, this may be a first link between protein 
intake-related DNA methylation and obesity in 
children.

Cg10633363 was mapped to the transcription 
start site of HOXB9. HOXB9 is one of the HOX 
genes, a group of related genes responsible for 
mapping body organs along the head-tail axis dur
ing embryonic development. HOXB9 has not been 
linked to body composition. DNA methylation 

levels at CpG sites in or close to HOXB9 have 
been found to be associated with epigenetic ageing 
of liver tissue [53], a process that was previously 
found to be accelerated by obesity [54].

Cg25973293, associated with plant protein, is 
mapped to C1orf159 gene in an open sea. 
C1orf159 is a protein coding gene whose increased 
expression was found to be an unfavourable prog
nostic marker in renal [55] and liver [56] cancer. 

(a) QQ plot early childhood – Plant Protein (b)QQ plot late childhood – Plant Protein

(e) Volcano plot early childhood – Plant Protein (f) Volcano plot late childhood – Plant Protein

λ =1.01 λ = 1.01

(c) Manhattan plot early childhood – Plant Protein (d) Manhattanplot late childhood – Plant Protein

Figure 2. Q-Q, Manhattan and volcano plots for associations between infant plant protein intake (E%) and early and late childhood 
DNA methylation. Significance line in Manhattan and volcano plots is set to represent the Bonferroni-corrected p-value threshold of 
P < 1.1 × 10¯7.
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Despite being significant after FDR correction, 
cg15407373 had heterogeneity I2 = 95.6 denoting 
high heterogeneity between results from both ana
lysed studies results. Cg15407373, associated with 
plant protein, is mapped to MBP gene in an island. 
MBP gene is a protein coding gene responsible for 
encoding Myelin Basic Protein, a protein playing 
a pivotal role in nervous system development [57].

No associations of genetic variants of HOXB9, 
C1orf159 and MBP genes with metabolic pheno
types have been reported in the GWAS catalog 
[58]. Although all CpGs discovered in animal pro
tein and plant protein EWAS are listed to be 
associated with a genetic variant, the level of 
methylation at these sites did not seem to be 
strongly influenced by a nearby polymorphic site 
in our populations, as the distribution of the 
methylation values for both sites in both studies 
did not differ significantly from unimodality. 
Using CpGs associated with infant animal and 
plant protein intakes with P < 1×10¯4 for early 
and late childhood models, no enriched functional 
pathways or biological processes were found. 
Further research is needed to confirm any mediat
ing role for DNA methylation in the associations 
of animal protein intake and health in later life. 
The infant plant protein intake EWAS showed no 
association for the two CpGs discovered in infant 
animal protein EWAS with DNA methylation at 
either of the two time points investigated. Sex- 
specific DNA methylation differences were identi
fied at both time points for both infant animal and 
plant protein intakes.

Previous studies showed associations between 
early life protein intake, especially animal protein, 
and body composition, mainly higher fat mass 
[59]. Although studies in animal models have 
reported that quantity and quality of protein 
intake in pups are associated with DNA methyla
tion [21,60], whether this may be a potential 
underlying mechanism in the association of pro
tein with adiposity has not been investigated in 
humans [4,5,61].

Perinatal exposures, such as early nutrition, are 
important for early health programming. It is also 
becoming clear that nutritional associations with 
DNA methylation are not limited to perinatal per
iod, but further extend to postnatal life [62]. Infant 
breastfeeding was found to be associated with 

child’s growth and development, with DNA 
methylation being a potential mediating factor 
[14]. Our study contributes to this evidence, link
ing infant animal protein intake with DNA methy
lation. These associations appeared only later in 
childhood, suggesting an association with 
extended exposure. Furthermore, different associa
tions were found for infant animal and plant pro
tein intakes, suggesting a role for the difference in 
metabolism of animal and plant protein. The qual
ity of protein and availability of methyl group 
donors might play a role in differential methyla
tion of some CpG sites. Animal protein as 
a nutritional source is rich in methionine [63], 
a precursor to the universal methyl-donor 
S-adenosylmethionine, which is assumed to 
change the DNA methylation pattern, especially 
at specific loci rather than genome-wide [64].

Sex-specific differences were observed for infant 
animal and plant protein intakes which might be 
attributed to disparities in protein metabolism 
between the sexes [59,65]. Further research includ
ing more studies at multiple time points might 
better reveal the association of animal protein 
intake and DNA methylation throughout the life 
course and whether associations of animal protein 
with DNA methylation indeed mediate associa
tions with body composition.

This study has a number of strengths. We defined 
a strict age window for infant animal and plant 
protein intakes, because dietary composition in 
early life can change drastically over time [66]. 
Both cohorts included in this meta-analysis have 
detailed dietary data, as well as information on rele
vant confounders. The analyses were run using 
a pre-specified analysis plan. We included mother- 
offspring data from multiple European countries. 
The multivariate nutrient density model was used 
to account for total energy intake [67]. However, this 
study has a limited sample size, which may have 
limited our ability to find smaller effect sizes. As 
macronutrient intake is known to be correlated 
with total energy intake, analyses may be con
founded by total energy intake [67], to overcome 
this, we adjusted for total energy intake in the main 
models while using E% from animal protein sources 
as the exposure. With this adjustment we can inter
pret the results as the effect of isocaloric replacement 
of animal protein with any other macronutrient. 
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Children from both cohorts were of European eth
nicity which might limit generalizability of the find
ings to other ethnic groups, however it reduces the 
heterogeneity between the two studies included. 
Both cohorts relied on self-reported dietary assess
ment questionnaires, which might have introduced 
measurement error. Despite both cohorts using dif
ferent dietary assessment methods, forest plots for 
significant CpGs showed consistent results from 
both cohorts with slightly different effect sizes, 
which might be a reason for the marginally high I2 

(50.6%) for cg10633363 [68].
In conclusion, this meta-analysis showed asso

ciations of infant animal protein intake with DNA 
methylation at cg21300373 and cg10633363 in late 
childhood. No associations were found between 
infant animal protein intake and DNA methyla
tion in early childhood. Association of infant plant 
protein intake with DNA methylation was found 
at cg25973293 and cg15407373 in early childhood. 
No associations were found between plant protein 
and DNA methylation in late childhood. Potential 
mediating epigenetic pathways between infant 
protein intake and health outcomes require further 
investigation using larger sample sizes.
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