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Simple Summary: Ferritin is a ferroxidase, which protects cellular components from the potentially
toxic effects of free iron. The expression and localization of ferritin-heavy chain (FTH1), the catalytic
subunit of ferritin, was shown to predict survival for triple-negative breast cancer (BC) patients and
be related to T-cell response. Here, we studied the association between FTH1 and time to survival
in primary BCs from 222 BRCA1/2 mutation carriers. We found that nuclear, but not cytoplasmic,
localization of FTH1 expression was associated with a shorter time to recurrence. In a subset of
51 BRCA1/2 mutation carriers, we evaluated the relation between localization and expression of FTH1
and T-cell response. However, we did not detect any association between FTH1 and the amount
or composition of CD8+ cytotoxic, CD4+ helper, or FOXP3+ regulatory T cells. Further research
is necessary to unravel the mechanism by which nuclear FTH1 influences the clinical outcome of
BRCA1/2-associated BC patients.

Abstract: The ferritin-heavy chain (FTH1) is the catalytic subunit of the ferroxidase ferritin, which
prevents oxidative DNA damage via intracellular iron storage. FTH1 was shown to be a prognostic
marker for triple-negative breast cancer (BC) patients and associated with an enrichment of CD8+
effector T cells. However, whether the expression and localization of FTH1 are also associated with
clinical outcome in other BC subtypes is unknown. Here, we investigated the association of FTH1
with time to survival in BCs from 222 BRCA1/2 mutation carriers by immunohistochemistry on tissue
microarrays. In addition, for 51 of these patients, the association between FTH1 and specific subsets
of T cells was evaluated on whole slides using automatic scoring algorithms. We revealed that nuclear
FTH1 (nFTH1) expression, in multivariable analyses, was associated with a shorter disease-free
(HR = 2.71, 95% CI = 1.49–4.92, p = 0.001) and metastasis-free survival (HR = 3.54, 95% CI = 1.45–8.66,
p = 0.006) in patients carrying a BRCA1/2 mutation. However, we found no relation between
cytoplasmic FTH1 expression and survival of BRCA1/2 mutation carriers. Moreover, we did not detect
an association between FTH1 expression and the amount of CD45+ (p = 0.13), CD8+ (p = 0.18), CD4+
(p = 0.20) or FOXP3+ cells (p = 0.17). Consequently, the mechanism underlying the worse recurrence-
free survival of nFTH1 expression in BRCA1/2 mutation carriers needs further investigation.
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1. Introduction

Ferritin is an iron-binding protein that is present in both the intra- and extracellular
compartments. It mainly functions as a ferroxidase in iron sequestration, capturing and
converting ferrous iron (Fe2+) into ferric iron (Fe3+). Ferritin is essential for iron home-
ostasis by making iron available for critical cellular processes, such as oxygen transport
or conversion of oxygen into usable cellular energy. On the other hand, ferritin protects
cellular components such as DNA and proteins from the potentially toxic effects of free iron,
which can directly generate reactive oxygen species (ROS) via the Fenton reaction. The
latter induces ferroptosis, a lipid peroxidation-driven and iron-dependent form of regulated
cell death. Non-canonical induction of ferroptosis may occur through decreased ferritin
expression, for example, through NCOA4-mediated ferritin autophagy. In addition, an
excess of iron has also been linked to an altered distribution of T-cell subsets by increasing
and decreasing the number and activity of CD8+ cytotoxic T cells and CD4+ helper T cells,
respectively. Moreover, excess iron also alters the anti-tumor action of monocytes and
macrophages [1–4].

The ferritin protein is made up of 24 subunits of two different subtypes: ferritin-heavy
chains (FTH1; 21 kD) and ferritin-light chains (FTL; 18.5 kD) [5]. The ratio of FTH1, which
possesses the ferroxidase catalytic activity, to FTL in the ferritin protein varies widely among
tissue types and can be modulated under inflammatory or infectious circumstances [1].
Interestingly, tissue ferritin levels are significantly increased in breast cancer (BC) compared
to normal or benign breast tumor tissue [6,7]. Moreover, both FTH1 and FTL expression
have been associated with clinical outcomes of BC patients. FTL was shown to be associated
with shorter metastasis-free survival (MFS) in node-negative BC patients [8]. However, in
a study by Liu et al. FTL was not associated with MFS, while FTH1 was associated with
longer MFS in triple-negative BC (TNBC) patients [9].

Previous research has also indicated that the subcellular localization of ferritin is
relevant. Particularly in aggressive spindle-like TNBC cell lines, which displayed elevated
levels of FTH1 and FTL compared with epithelial BC cell lines, increased ferritin was
localized in the nucleus [10]. In line with this, Liu et al. showed that TNBC patients with
high (>1%) nuclear FTH1 (nFTH1) expression had a higher risk of metastasis, while high
(>75%) cytoplasmic FTH1 (cFTH1) was associated with lower risk of metastasis in these
patients [11]. Intriguingly, high expression of cFTH1 was linked to an increase in CD8+
effector T cells but not CD4+ helper T cells. Finally, activation of the CXCL12-CXCR4
signaling pathway was shown to induce time-dependent cFTH1 to nFTH1 switching [12].
Concordantly, CXCL12-CXCR4 signaling promotes migration, invasion, and metastasis of
malignant BC cells [13,14].

Around 10% of BC patients have a family history of the disease. In this respect, BRCA1
and BRCA2 are the two most prevalently mutated and penetrant BC genes. In a cancer
genetic clinic-based setting, BRCA1 and BRCA2 mutation carriers have a cumulative BC
risk of 71% and 64% at 70 years old, while this is 65% and 45% at 70 years in a cohort
unselected for family history [15,16]. Importantly, patients with a BRCA1 mutation mostly
develop TNBC, while BCs of BRCA2 mutation carriers are generally ER+ [17]. Moreover,
BRCA1 and BRCA2-deficient BCs are unable to adequately repair DNA double-strand
breaks through the homologous recombination pathway, rendering these tumors highly
sensitive to DNA-damaging agents, such as interstrand crosslinking agents, topo-isomerase
II inhibitors or PARP inhibitors [18–20]. So far, a few studies have indicated either a direct
or indirect link between BRCA1, PARP inhibition, and ferroptosis [21–23].

By using immunohistochemistry on tissue microarrays, we evaluated whether subcel-
lular localization and expression of FTH1 in 222 BCs of BRCA1/2 mutation carriers were
associated with clinical outcome after BC. In addition, we also analyzed whether cFTH1
and nFTH1 expression were correlated with different subsets of T cells in these BCs using
an automated scoring algorithm.
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2. Materials and Methods
2.1. Study Population

We retrieved primary formalin-fixed paraffin-embedded (FFPE) breast tumor blocks
from 241 BRCA1/2 mutation carriers who were counseled at our Clinical Genetic Center
and from whom we had previously collected clinical data for survival analyses, as well as
treatment data and clinicopathological variables. Tumor blocks were retrieved from the
pathology lab at the Erasmus University Medical Center as well as pathology labs from
12 other Dutch hospitals. Patients were diagnosed with BC between 1982 and 2008 and
received genetic testing for BRCA1/2 genes between 1996 and 2008. In 191 patients (79.3%),
a pathogenic BRCA1 germline mutation was detected, whereas 50 (20.7%) patients carried
a pathogenic BRCA2 germline mutation. This study was approved by the Medical Ethics
Committee of the Erasmus University Medical Center (MEC 02-953).

2.2. Tissue Microarray Generation

Primary FFPE tumor blocks were sectioned, and H&E stains were prepared. The
invasive tumor area was marked on these H&E sections, and tumor grade and histology
were reevaluated by a breast pathologist (CvD). Tissue microarray blocks were constructed
by punching three 0.6 mm cores from the invasive tumor area from each patient’s primary
tumor block and placing these in three different donor blocks using a TMA Grand Master
(3DHisTech, Budapest, Hungary). This way, three donor TMA blocks were generated, all
including one core from each patient, but organized in a different order.

2.3. Immunohistochemical Staining

Tissue microarray blocks were sectioned and placed on SuperFrost Plus slides (Fisher
Scientific, Waltham, MA, USA). After deparaffination and dehydration of sections, antigen
retrieval was performed by boiling sections for 40 min in DAKO Target Retrieval Solution
(TRS) pH = 6 using a water bath (Glostrup, Denmark). Next, sections were blocked for
endogenous peroxidase with 0.3% H2O2 in PBS and additionally blocked using 5% BSA
in PBS. The primary antibody against FTH1 (rabbit anti-human FTH1, clone EPR3005Y;
Genetex, Irvine, CA, USA) was diluted 1:100 in DAKO Antibody Diluent and incubated
for 1 h at room temperature. FTH1 expression was visualized using the rabbit Envision+
system (DAKO), and nuclei were counterstained with hematoxylin.

FFPE blocks from 51 of the 241 BRCA1/2 (42 BRCA1 and 9 BRCA2) mutation carriers
that were retrieved from the Erasmus University Medical Center were additionally stained
for leukocyte marker CD45, cytotoxic T-cell marker CD8, helper T-cell marker CD4, and
regulatory T-cell marker FOXP3 on whole sections, as described above. Antibodies were
mouse anti-human CD45 clone 2B11 and PD7/26 (Cell Marque (Rocklin, CA, USA); TRS
pH = 8, ready-to-use), mouse anti-human CD8 clone C8/144B (DAKO; TRS pH = 9, 1:100),
mouse anti-human CD4 clone 4B12 (DAKO; TRS pH = 9, 1:80), and mouse anti-human
FOXP3 clone 236A/E7 (Abcam (Cambridge, UK); TRS pH = 6, 1:50).

2.4. Manual and Automated Scoring

Tissue microarray and whole slides were digitized using the Nanozoomer 2 digital
slide scanner (Hamamatsu, Bridgewater, NJ, USA). Tissue microarray scans were up-
loaded to the Distiller TMA software v2.2 (Leica Microsystems, Wetzlar, Germany) and
manually scored for cytoplasmic as well as nuclear FTH1 staining by quantifying the
percentage of positively stained invasive tumor cells (Figure 1). Cytoplasmic FTH1 scores
were dichotomized into low (≤75%) and high (>75%), whereas nuclear FTH1 scores were
dichotomized into negative (≤1%) and positive (>1%), according to Liu et al. [11]. For 19
out of the 241 BRCA1/2 mutation carriers, we were unable to quantify the nFTH1 and cFTH1
scores from the breast tumor tissues due to lost or folded cores or cores not containing
invasive tumor cells. Therefore, all analyses were performed with a maximum total of
222 BRCA1/2 mutation carriers, of whom 178 were BRCA1 and 44 were BRCA2 mutation
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carriers. The patient characteristics of these 222 BRCA1/2 mutation carriers can be found in
Table 1.
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Whole slide scans were uploaded to QuPath v0.2.0, and the invasive tumor area was
annotated. The percentages of CD45+, CD8+, CD4+, and FOXP3+ cells from the total
number of cells in the annotated region were quantified using the positive cell detection
algorithm. For all parameters except background radius (6 µm), sigma (1.65 µm), and
cell expansion (4 µm), we used standard settings for this algorithm. In addition, we
quantified the composition of the three different types of T cells by using the following
ratios: CD8+/CD45+; CD4+/CD45+; CD4+/CD8+; and FOXP3+/CD4+.

2.5. Statistical Analysis

To evaluate the association between dichotomized FTH1 expression and clinicopatho-
logical factors, we performed a χ2 test or a Fisher’s Exact test when expected values in
one of the groups were smaller than five. Because the majority of patients (87.1%) had
their genetic DNA test after BC diagnosis, we accounted for potential survival bias by
performing left-truncated survival analysis for disease-free, metastasis-free, overall, and
BC-specific survival [24]. Consequently, time at risk started at the date of BC diagnosis or
DNA test result, whichever came last, and ended either at the date of an event or censoring.
This did not change the moment the event occurred but modified the time at risk until
the event occurred. Events for DFS included contralateral BCs, local recurrences, lymph
node metastases, or distant metastases, while for MFS, only distant metastases were con-
sidered. For OS, we considered death from all causes, whereas only death from BC was
considered an event for BCSS. Censoring events were a secondary non-BC malignancy or
end of follow-up time. Survival probabilities were plotted using the Kaplan–Meier method,
and differences between survival curves were evaluated using the logrank test. Cox pro-
portional hazard models were used to calculate hazard ratios (HRs) and 95% confidence
intervals (CIs), and p-values were from the Wald test. Evaluation of proportional hazard
assumptions was performed via plotting the Schoenfeld residuals. Multivariable Cox re-
gression models included all clinicopathological values that were associated with survival
time in the univariable model. Associations between dichotomized FTH1 expression and
the amount and composition of T cells were evaluated using the Wilcoxon rank sum test
with continuity correction. All reported p-values are two-sided.
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Table 1. Patient characteristics for 222 BRCA1/2 mutation carriers.

All Mutation
Carriers

BRCA1 Mutation
Carriers

BRCA2 Mutation
Carriers p-Value

Total number 222 178 (80.2%) 44 (19.8%)
Median follow-up time (range) in years 9.2 (0.1–18.1) 9.7 (0.1–18.1) 8.3 (0.1–15.2)
Year of diagnosis 0.053

<2000 102 88 (86.3%) 14 (13.7%)
≥2000 120 90 (75.0%) 30 (25.0%)

Age at diagnosis (in years) 0.23
≤35 69 60 (87.0%) 9 (13.0%)
36–50 124 96 (77.4%) 28 (22.6%)
>50 29 22 (75.9%) 7 (24.1%)

Menopausal status 0.12
Premenopausal 164 129 (78.7%) 35 (21.3%)
Postmenopausal 29 27 (93.1%) 2 (6.9%)

Tumor size 0.72
pT1 124 101 (81.5%) 23 (18.5%)
pT2-4 + Unknown 98 77 (78.6%) 21 (21.4%)

Nodal status 0.019
Negative 152 129 (84.9%) 23 (15.1%)
Positive 67 47 (70.1%) 20 (29.9%)

Tumor grade <0.001
Good/Moderate 35 21 (60.0%) 14 (40.0%)
Poor 157 135 (86.0%) 22 (14.0%)

Tumor histology <0.001
NST 141 109 (77.3%) 32 (22.7%)
Medullary 45 43 (95.6%) 2 (4.4%)
Other 23 13 (56.5%) 10 (43.5%)

ER status <0.001
Negative 159 147 (92.5%) 12 (7.5%)
Positive 63 31 (49.2%) 32 (50.8%)

PR status <0.001
Negative 176 161 (91.5%) 15 (8.5%)
Positive 46 17 (37.0%) 29 (63.0%)

HER2 status 1
Negative 214 171 (80.0%) 43 (20.0%)
Positive 8 7 (87.5%) 1 (12.5%)

Surgery 1
Lumpectomy 118 95 (80.5%) 23 (19.5%)
Mastectomy 103 82 (79.6%) 21 (20.4%)

Adjuvant systemic therapy 0.87
No 73 58 (79.5%) 15 (20.5%)
Yes 148 119 (80.4%) 29 (19.6%)

Note: If the number of patients did not add up to 222, there were missing values for these variables. NST,
non-specific type.

3. Results
3.1. Clinicopathological Variables

The patient cohort consisted of 222 BC patients, of whom 178 were BRCA1 and 44
were BRCA2 mutation carriers. As expected, BCs from BRCA1 mutation carriers were
more frequently of medullary histology and ER and PR negative. Moreover, BCs from
these patients more often had a poor differentiation grade compared with BRCA2 mutation
carriers (Table 1). For these 222 BC patients with a germline BRCA1 or BRCA2 mutation,
we analyzed the association of cFTH1 (Table 2) and nFTH1 (Table 3) expression with the
relevant clinicopathological variables. The data showed that cFTH1 expression levels were
lower in tumors from patients diagnosed after 2000 in all mutation carriers (p = 0.033) and
BRCA1 mutation carriers (p = 0.028) but not BRCA2 mutation carriers. In addition, BRCA2
carriers with ER- BC had a higher cFTH1 (p < 0.001; Table 2).
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Table 2. Association of cytoplasmatic FTH1 expression status with clinicopathological variables in primary breast cancers from 222 BRCA1 or BRCA2 mutation carriers.

Variables
All Mutation Carriers

p-Value
BRCA1 Mutation Carriers

p-Value
BRCA2 Mutation Carriers

p-Value
cFTH1 ≤ 75% cFTH1 > 75% cFTH1 ≤ 75% cFTH1 > 75% cFTH1 ≤ 75% cFTH1 > 75%

Total number 106 (49.3%) 109 (50.7%) 88 (50.9%) 85 (49.1%) 18 (42.9%) 24 (57.1%)
Median follow-up time
(range) in years 9.1 (0.1–17.3) 9.5 (0.4–18.1) 9.7 (0.1–17.3) 10.0 (0.4–18.1) 8.1 (0.1–12.6) 9.2 (2.5–15.2)

Year of diagnosis 0.033 0.028 0.74
<2000 41 (41.0%) 59 (59.0%) 36 (41.9%) 50 (58.1%) 5 (35.7%) 9 (64.3%)
≥2000 65 (56.5%) 50 (43.5%) 52 (59.8%) 35 (40.2%) 13 (46.4%) 15 (53.6%)

Age at diagnosis
(in years) 0.47 0.52 0.24

≤35 36 (54.5%) 30 (45.5%) 33 (56.9%) 25 (43.1%) 3 (37.5%) 5 (62.5%)
36–50 58 (48.3%) 62 (51.7%) 44 (47.3%) 49 (52.7%) 14 (51.9%) 13 (48.1%)
>50 12 (41.4%) 17 (58.6%) 11 (50.0%) 11 (50.0%) 1 (14.3%) 6 (85.7%)

Menopausal status 1 0.96 0.50
Premenopausal 74 (46.8%) 84 (53.2%) 59 (47.2%) 66 (52.8%) 15 (45.5%) 18 (54.5%)
Postmenopausal 13 (46.4%) 15 (53.6%) 13 (50.0%) 13 (50.0%) 0 (0%) 2 (100%)

Tumor size 0.52 0.84 0.50
pT1 62 (51.7%) 58 (48.3%) 51 (52.0%) 47 (48.0%) 11 (50.0%) 11 (50.0%)
pT2-4 + Unknown 44 (46.3%) 51 (53.7%) 37 (49.3%) 38 (50.7%) 7 (35.0%) 13 (65.0%)

Nodal status 0.31 0.32 1
Negative 76 (51.7%) 71 (48.3%) 67 (53.6%) 58 (46.4%) 9 (40.9%) 13 (59.1%)
Positive 28 (43.1%) 37 (56.9%) 20 (43.5%) 26 (56.5%) 8 (42.1%) 11 (57.9%)

Tumor grade 0.33 0.86 0.075
Good/Moderate 20 (60.1%) 13 (39.4%) 12 (57.1%) 9 (42.9%) 8 (66.7%) 4 (33.3%)
Poor 75 (49.3%) 77 (50.7%) 68 (52.3%) 62 (47.7%) 7 (31.8%) 15 (68.2%)

Tumor histology 0.86 0.96 0.53
NST 65 (48.1%) 70 (51.9%) 52 (50.0%) 52 (50.0%) 13 (41.9%) 18 (58.1%)
Medullary 22 (48.9%) 23 (51.1%) 22 (51.2%) 21 (48.8%) 0 (0%) 2 (100%)
Other 12 (54.5%) 10 (45.5%) 7 (53.8%) 6 (46.2%) 5 (55.6%) 4 (44.4%)

ER status 0.24 0.77 <0.001
Negative 71 (46.4%) 82 (53.6%) 71 (50.0%) 71 (50.0%) 0 (0%) 11 (100%)
Positive 35 (56.5%) 27 (43.5%) 17 (54.8%) 14 (45.2%) 18 (58.1%) 13 (41.9%)
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Table 2. Cont.

Variables
All Mutation Carriers

p-Value
BRCA1 Mutation Carriers

p-Value
BRCA2 Mutation Carriers

p-Value
cFTH1 ≤ 75% cFTH1 > 75% cFTH1 ≤ 75% cFTH1 > 75% cFTH1 ≤ 75% cFTH1 > 75%

PR status 0.44 0.66 0.057
Negative 81 (47.6%) 89 (52.4%) 78 (50.0%) 78 (50.0%) 3 (21.4%) 11 (78.6%)
Positive 25 (55.6%) 20 (44.4%) 10 (58.8%) 7 (41.2%) 15 (53.6%) 13 (46.4%)

HER2 status 0.49 1 0.43
Negative 101 (48.8%) 106 (51.2%) 84 (50.6%) 82 (49.4%) 17 (41.5%) 24 (58.5%)
Positive 5 (62.5%) 3 (37.5%) 4 (57.1%) 3 (42.9%) 1 (100%) 0 (0%)

Surgery 0.69 0.87 0.82
Lumpectomy 54 (47.4%) 60 (52.6%) 45 (49.5%) 46 (50.5%) 9 (39.1%) 14 (60.9%)
Mastectomy 51 (51.0%) 49 (49.0%) 42 (51.9%) 39 (48.1%) 9(47.4%) 10 (52.6%)

Adjuvant systemic
therapy 0.21 0.12 0.96

No 31 (42.5%) 42 (57.5%) 24 (41.4%) 34 (58.6%) 7 (46.7%) 8 (53.3%)
Yes 74 (52.5%) 67 (47.5%) 63 (55.3%) 51 (44.7%) 11 (40.7%) 16 (59.3%)

Note: If the number of patients did not add up to 222, there were missing values for these variables. NST, non-specific type.

Table 3. Association of nuclear FTH1 expression status with clinicopathological variables in primary breast cancers from 222 BRCA1 or BRCA2 mutation carriers.

Variables

All Mutation
Carriers p-Value

BRCA1 Mutation Carriers
p-Value

BRCA2 Mutation Carriers
p-Value

nFTH1 ≤ 1% nFTH1 > 1% nFTH1 ≤ 1% nFTH1 > 1% nFTH1 ≤ 1% nFTH1 > 1%

Total number 76 (34.2%) 146 (65.8%) 65 (36.5%) 113 (63.5%) 11 (25.0%) 33 (75.0%)
Median follow-up time
(range) in years 9.9 (0.1–16.7) 9.1 (0.1–18.1) 9.7 (0.1–16.7) 9.7 (0.1–18.1) 10.4 (0.1–12.8) 8.2 (0.5–15.2)

Year of diagnosis 0.87 1 0.72
<2000 36 (35.3%) 66 (64.7%) 32 (36.4%) 56 (63.6%) 4 (28.6%) 10 (71.4%)
≥2000 40 (33.3%) 80 (66.7%) 33 (36.7%) 57 (63.3%) 7 (23.3%) 23 (76.7%)

Age at diagnosis
(in years) 0.18 0.24 0.53

≤35 20 (29.0%) 49 (71.0%) 18 (30.0%) 42 (70.0%) 2 (22.2%) 7 (77.8%)
36–50 42 (33.9%) 82 (66.1%) 36 (37.5%) 60 (62.5%) 6 (21.4%) 22 (78.6%)
>50 14 (48.2%) 15 (51.7%) 11 (50.0%) 11 (50.0%) 3 (42.9%) 4 (57.1%)
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Table 3. Cont.

Variables

All Mutation
Carriers p-Value

BRCA1 Mutation Carriers
p-Value

BRCA2 Mutation Carriers
p-Value

nFTH1 ≤ 1% nFTH1 > 1% nFTH1 ≤ 1% nFTH1 > 1% nFTH1 ≤ 1% nFTH1 > 1%

Menopausal status 0.75 1 0.39
Premenopausal 54 (32.9%) 110 (67.1%) 47 (36.4%) 82 (63.6%) 7 (20.0%) 28 (80.0%)
Postmenopausal 11 (37.9%) 18 (62.1%) 10 (37.0%) 17 (63.0%) 1 (50.0%) 1 (50.0%)

Tumor size 0.26 0.045 0.17
pT1 38 (30.6%) 86 (69.4%) 30 (29.7%) 71 (70.3%) 8 (34.8%) 15 (65.2%)
pT2-4 + Unknown 38 (38.8%) 60 (61.2%) 35 (45.5%) 42 (54.5%) 3 (14.3%) 18 (85.7%)

Nodal status 0.40 1 0.18
Negative 56 (36.8%) 96 (63.2%) 48 (37.2%) 81 (62.8%) 8 (34.8%) 15 (65.2%)
Positive 20 (29.9%) 47 (70.1%) 17 (36.2%) 30 (63.8%) 3 (15.0%) 17 (85.0%)

Tumor grade 0.015 0.056 0.25
Good/Moderate 6 (17.1%) 29 (82.9%) 4 (19.0%) 17 (81.0%) 2 (14.3%) 12 (85.7%)
Poor 64 (40.8%) 93 (59.2%) 56 (41.5%) 79 (58.5%) 8 (36.4%) 14 (63.6%)

Tumor histology 0.074 0.15 0.55
NST 45 (31.9%) 96 (68.1%) 38 (34.9%) 71 (65.1%) 7 (21.9%) 25 (78.1%)
Medullary 22 (48.9%) 23 (51.1%) 21 (48.8%) 22 (51.2%) 1 (50.0%) 1 (50.0%)
Other 6 (26.1%) 17 (73.9%) 3 (23.1%) 10 (76.9%) 3 (30.0%) 7 (70.0%)

ER status 0.002 0.12 0.004
Negative 65 (40.9%) 94 (59.1%) 58 (39.5%) 89 (60.5%) 7 (58.3%) 5 (41.7%)
Positive 11 (17.5%) 52 (82.5%) 7 (22.6%) 24 (77.4%) 4 (12.5%) 28 (87.5%)

PR status 0.029 0.11 0.47
Negative 67 (38.1%) 109 (61.9%) 62 (38.5%) 99 (61.5%) 5 (33.3%) 10 (66.7%)
Positive 9 (19.6%) 37 (80.4%) 3 (17.6%) 14 (82.4%) 6 (20.7%) 23 (79.3%)

HER2 status 0.053 0.049 1
Negative 76 (35.5%) 138 (64.5%) 65 (38.0%) 106 (62.0%) 11 (25.6%) 32 (74.4%)
Positive 0 (0%) 8 (100%) 0 (0%) 7 (100%) 0 (0%) 1 (100%)

Surgery 1 0.90 0.49
Lumpectomy 41 (34.7%) 77 (65.3%) 34 (35.8%) 61 (64.2%) 7 (30.4%) 16 (69.6%)
Mastectomy 35 (34.0%) 68 (66.0%) 31 (37.8%) 51 (62.2%) 4 (19.0%) 17 (81.0%)

Adjuvant systemic therapy 0.28 0.054 0.14
No 21 (28.8%) 52 (71.2%) 15 (25.9%) 43 (74.1%) 6 (40.0%) 9 (60.0%)
Yes 55 (37.2%) 93 (62.8%) 50 (42.0%) 69 (58.0%) 5 (17.2%) 24 (82.8%)

Note: If the number of patients did not add up to 222, there were missing values for these variables. NST, non-specific type.
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BRCA1/2 mutation carriers whose tumors displayed expression of nFTH1 more fre-
quently had a favorable tumor grade (p = 0.015) as well as positive ER (p = 0.002) and
PR status (p = 0.029). Moreover, for BRCA1 mutation carriers, nFTH1 expression in
the tumor was associated with smaller tumor size (p = 0.045) and positive HER2 status
(p = 0.049), while in BRCA2 mutation carriers, nFTH1 expression was associated with
positive ER status (p = 0.004; Table 3).

3.2. Survival Analysis

We analyzed the association of FTH1 localization and expression with different sur-
vival parameters, including disease-free survival (DFS), MFS, overall survival (OS), and BC-
specific survival (BCSS). In patients carrying a germline BRCA1/2 mutation, cFTH1 expres-
sion was not associated with any of the survival parameters in Cox proportional hazards
analysis (DFS HR = 1.17, 95% CI = 0.72–1.90, p = 0.53; MFS HR = 1.10, 95% CI = 0.55–2.21,
p = 0.79; OS HR = 1.09, 95% CI = 0.62–1.91, p = 0.78; BCSS HR = 1.17, 95% CI = 0.61–2.25,
p = 0.64; Table 4). Also, when analyzing BRCA1 and BRCA2 mutation carriers sepa-
rately, cFTH1 expression was not associated with time to survival in either of the two
subgroups (Table 4). We also analyzed the relationship between the expression of nFTH1
and the time to survival in patients carrying BRCA1/2 mutations. Interestingly, we found
nFTH1 expression to be associated with a shorter DFS and MFS in both univariable (DFS
HR = 2.32, 95% CI = 1.29–4.20, p = 0.005; MFS HR = 2.94, 95% CI = 1.21–7.12, p = 0.017;
Figure 2 and Table 4) and multivariable analyses (DFS HR = 2.71, 95% CI = 1.49–4.92,
p = 0.001; MFS HR = 3.54, 95% CI = 1.45–8.66, p = 0.006; Table 4). However, OS (HR = 1.40,
95% CI = 0.75–2.61, p = 0.28) and BCSS (HR = 1.38, 95% CI = 0.68–2.80, p = 0.37) were not
associated with nFTH1 expression in BRCA1/2 mutation carriers (Figure 2 and Table 4).
Because their clinicopathological characteristics differ considerably, we also performed
subanalyses in BRCA1 and BRCA2 mutation carriers separately. Consistent with the re-
sults in all mutation carriers, nFTH1 expression was associated with a shorter DFS and
MFS in both univariable (DFS HR = 2.29, 95% CI = 1.20–4.39, p = 0.012; MFS HR = 3.14,
95% CI = 1.18–8.39, p = 0.022) and multivariable (DFS HR = 3.02, 95% CI = 1.54–5.91,
p = 0.001; MFS HR = 4.47, 95% CI = 1.62–12.3, p = 0.004) analyses in BRCA1 mutation
carriers, but not with differences in OS and BCSS (Supplementary Figure S1 and Table 4).
However, we found no association between nFTH1 and survival in BRCA2 mutation
carriers (Supplementary Figure S1 and Table 4).

Table 4. Uni- and multivariable Cox regression analysis of 222 BRCA1 or BRCA2 mutation carriers by
FTH1 expression and localization.

FTH1 Localization Survival Endpoint Analysis All Mutation
Carriers

BRCA1 Mutation
Carriers

BRCA2 Mutation
Carriers

Cytoplasmic DFS Univariable

N = 166, E = 66,
HR = 1.17,
95% CI = 0.72–1.90,
p = 0.53

N = 131, E = 52,
HR = 1.22,
95% CI = 0.70–2.11,
p = 0.48

N = 35, E = 14,
HR = 0.99,
95% CI = 0.33–2.98,
p = 0.99

MFS Univariable

N = 170, E = 32,
HR = 1.10,
95% CI = 0.55–2.21,
p = 0.79

N = 134, E = 25,
HR = 1.10,
95% CI = 0.50–2.41,
p = 0.82

N = 36, E = 7,
HR = 1.05,
95% CI = 0.23–4.76,
p = 0.95

OS Univariable

N = 206, E = 49,
HR = 1.09,
95% CI = 0.62–1.91,
p = 0.78

N = 167, E = 40,
HR = 1.03,
95% CI = 0.55–1.93,
p = 0.93

N = 39, E = 9,
HR = 1.47,
95% CI = 0.37–5.93,
p = 0.59

BCSS Univariable

N = 200, E = 36,
HR = 1.17,
95% CI = 0.61–2.25,
p = 0.64

N = 162, E = 29,
HR = 1.24,
95% CI = 0.60–2.57,
p = 0.57

N = 38, E = 7,
HR = 0.98,
95% CI = 0.22–4.40,
p = 0.97
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Table 4. Cont.

FTH1 Localization Survival Endpoint Analysis All Mutation
Carriers

BRCA1 Mutation
Carriers

BRCA2 Mutation
Carriers

Nuclear DFS Univariable

N = 172, E = 67,
HR = 2.32,
95% CI = 1.29–4.20,
p = 0.005

N = 135, E = 52,
HR = 2.29,
95% CI = 1.20–4.39,
p = 0.012

N = 37, E = 15,
HR = 3.59,
95% CI = 0.79–16.24,
p = 0.097

Multivariable a

N = 172, E = 67,
HR = 2.71,
95% CI = 1.49–4.92,
p = 0.001

N = 135, E = 52,
HR = 3.02,
95% CI = 1.54–5.91,
p = 0.001

MFS Univariable

N = 176, E = 33,
HR = 2.94,
95% CI = 1.21–7.12,
p = 0.017

N = 138, E = 25,
HR = 3.14,
95% CI = 1.18–8.39,
p = 0.022

N = 38, E = 8,
HR = 2.91,
95% CI = 0.35–23.98,
p = 0.32

Multivariable b

N = 174, E = 33,
HR = 3.54,
95% CI = 1.45–8.66,
p = 0.006

N = 137, E = 25,
HR = 4.47,
95% CI = 1.62–12.3,
p = 0.004

OS Univariable

N = 213, E = 50,
HR = 1.40,
95% CI = 0.75–2.61,
p = 0.28

N = 172, E = 41,
HR = 1.52,
95% CI = 0.77–3.00,
p = 0.23

N = 41, E = 9,
HR = 0.94,
95% CI = 0.19–4.71,
p = 0.94

BCSS Univariable

N = 207, E = 37,
HR = 1.38,
95% CI = 0.68–2.80,
p = 0.37

N = 167, E = 30,
HR = 1.42,
95% CI = 0.66–3.04,
p = 0.37

N = 40, E = 7,
HR = 1.53,
95% CI = 0.18–13.22,
p = 0.70

DFS, disease-free survival; MFS, metastasis-free survival; OS, overall survival; BCSS, breast cancer-specific
survival; N, number of patients in the analysis; E, number of events; HR, hazard ratio; CI, confidence interval.
p-values are from the Wald test. a adjusted for tumor size; b adjusted for tumor size and nodal status.
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3.3. Immune Cells

In 2014, Liu et al. showed that high cFTH1 expression was associated with a favorable
prognosis and a clearly decreased ratio between CD4+ and CD8+ T cells in TNBC. In
addition, they hypothesized that the decreased CD4+ T-cell density in cFTH1 high TNBC
tumors could be related to a lower density of FOXP3+ regulatory T cells [11]. Although we
only found an association between nFTH1, not cFTH1, expression, and clinical outcome in
BRCA1/2 mutation carriers, we still aimed to verify whether T-cell response played a role
in this. Therefore, we determined the percentages of CD45+, CD8+, CD4+, and FOXP3+
cells in whole slides of BCs from 51 BRCA1/2 mutation carriers using an automated scoring
algorithm. In this cohort, we did not find any association between cFTH1 expression and the
amount (CD45+ p = 0.32, CD8+ p = 0.34, CD4+ p = 0.93, FOXP3+ p = 0.48) or composition
(CD8+/CD45+ p = 0.33, CD4+/CD45+ p = 0.80, CD4+/CD8+ p = 0.41, FOXP3+/CD4+
p = 0.63) of the various immune cells. Similarly, we did not find any relation between the
amount (CD45+ p = 0.13, CD8+ p = 0.18, CD4+ p = 0.20, FOXP3+ p = 0.17) or composition
(CD8+/CD45+ p = 0.91, CD4+/CD45+ p = 0.98, CD4+/CD8+ p = 0.84, FOXP3+/CD4+ p = 1)
of the various immune cells and nFTH1 expression.

4. Discussion

Here, we studied the expression and subcellular localization of FTH1 in BCs from
222 BRCA1/2 mutation carriers and investigated the association with the patients’ clinico-
pathological variables, survival, as well as their T-cell response in a subset of 51 BRCA1/2
mutation carriers.

We noticed that the expression of nFTH1 was associated with more favorable clinico-
pathological parameters in our study, including a smaller tumor size and a lower tumor
grade. In addition, nFTH1-positive BCs were also more frequently ER- and PR-positive.
This seems counterintuitive since we also established that nFTH1 is an independent predic-
tor of shorter DFS and MFS. Positive associations between cFTH1 as well as nFTH1 and
the clinicopathological variables, however, could have been false positive associations as a
consequence of the multiple statistical tests we performed. Indeed, after conservative Bon-
ferroni adjustment for multiple tests, only the association between high cFTH1 expression
and negative ER status in BRCA2 mutation carriers remained significant.

Based on our results in BRCA1/2 mutation carriers, nuclear expression of FTH1 was
only associated with patients’ DFS and MFS but not with OS or BCSS. It is, however,
implausible that nFTH1 is associated with the recurrence of the disease but not death.
Therefore, we considered that the number of events is likely higher for DFS and MFS
compared with OS and BCSS, and the absence of an association with OS and BCSS might
be a consequence of statistical power. In line with this, 39.0% of BRCA1/2 mutation carriers
had a DFS event, while 23.5% and 17.9% of carriers had an OS or BCSS event. However,
the rate of MFS events in these patients was similar to the rate of OS and BCSS events
(i.e., 18.8%), suggesting that power was likely not an issue in our analyses unless the effect
size for OS and BCSS was smaller. Considering the survival probability curves of the
two nFTH1 groups were closer in Figure 2 for BCSS and OS than for DFS and MFS, this
might be a plausible explanation. Since we had a relatively long median follow-up time of
111 months for our cohort, it is likely that conclusive evidence requires an expansion of the
number of patients rather than the follow-up time. We do have to point out, though, that
numbers at risk become very low after 15 years of follow-up time.

The expression of nFTH1 was significantly associated with shorter DFS and MFS in
BRCA1/2 and BRCA1 mutation carriers but not in BRCA2 mutation carriers alone. This may
not be entirely unexpected since nFTH1 expression was previously found to be related to
worse prognosis in TNBC patients [11], and BRCA1 mutation is generally associated with
TNBC [17]. Thus, the function of FTH1 may be associated with hormone receptor status.
Alternatively, the loss of genome stability in both TNBC and BRCA1/2 mutation carriers,
in combination with the deregulation of iron homeostasis, could also be the underlying
mechanism. Since we were only able to include 42 BRCA2 mutation carriers in this study,
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we may not have had enough power to detect an association in this group. Therefore,
conclusive evidence regarding the role of nFTH1 expression in the survival of BRCA2
mutation carriers requires a larger study population.

We did not detect any associations between cFTH1 expression and survival in BRCA1
mutation carriers. These results conflict with the study of Liu et al., in which they showed
that high expression of cFTH1 was related to a favorable prognosis in TNBC [11]. In
concordance with our results, though, Liu et al. showed that nFTH1 expression was
associated with an adverse prognosis. Further research has to determine whether this
discrepancy is a consequence of biological differences between TNBC and BCs of BRCA1/2
mutation carriers.

Liu et al. also suggested that high cFTH1 expression indicated a favorable prognosis
via enrichment of CD8+ T cells in TNBCs, while CD4+ T cells were diminished [11]. They
hypothesized that this lower density of CD4+ T cells could be related to a lower density
of immune suppressive regulatory T cells. Moreover, in our data, we observed a lower
percentage of medullary BCs among nFTH1-positive compared with nFTH1-negative BCs
(16.9% vs. 30.1%), which suggests a lower amount of tumor-infiltrating lymphocytes among
nFTH1 positive BCs. However, we do not find any relation between the expression and
localization of FTH1 and the density of CD8+, CD4+, or FOXP3+ T cells, as well as the ratios
between CD8+/CD45+, CD4+/CD45+, CD4+/CD8+, and FOXP3+/CD4+ cells. Compared
with Liu et al.’s study, we used a more quantitative method involving automated scoring
of the immune cell markers using QuPath v0.2.0 while they estimated the percentage of
positively stained cells. However, this disconcordance may more likely be the result of true
biological differences between TNBCs and BCs from BRCA1/2 mutation carriers. Therefore,
future research avenues should focus on the biological effects of cellular FTH1 localization
and its relation to BRCA1/2 mutation status, hormone receptor status, ferroptosis, other
immune cells such as monocytes and macrophages and activation of the CXCL12-CXCR4
signaling pathway [1–4,12,21–23].

5. Conclusions

Nuclear localization of FTH1 was associated with a shorter DFS and MFS but not OS
and BCSS in a cohort of 222 BRCA1/2 mutation carriers. This association was particularly
pronounced in BRCA1 mutation carriers; however, conclusive evidence regarding this
association in BRCA2 mutation carriers is pending. We found no evidence of an association
between cytoplasmic localization of FTH1 and the time to survival. Moreover, we did
not find a relation between the expression and localization of FTH1 and the density or
composition of CD8+ cytotoxic T cells, CD4+ helper T cells, or FOXP3+ regulatory T cells
in these BCs. Therefore, the mechanism by which nFTH1 influences the clinical outcome of
BRCA1/2 mutation carriers is still unclear. Further research should focus on the biological
effects of cellular FTH1 localization and its relation to BRCA1/2 mutation status, hormone
receptor status, ferroptosis, and downstream immune response.
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