
Calhoun: The NPS Institutional Archive
DSpace Repository

NPS Scholarship Theses

2023-12

RISC-V PROCESSOR PERFORMANCE ANALYSIS
OF SECURE DESIGN PRINCIPLES

Shin, Roy S.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/72604

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

RISC-V PROCESSOR PERFORMANCE ANALYSIS
OF SECURE DESIGN PRINCIPLES

by

Roy S. Shin

December 2023

Thesis Advisor: Chad A. Bollmann
Second Reader: Douglas J. Fouts

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2023 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
RISC-V PROCESSOR PERFORMANCE ANALYSIS OF SECURE DESIGN
PRINCIPLES

 5. FUNDING NUMBERS

 6. AUTHOR(S) Roy S. Shin

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 This project explores processor microarchitecture features that impact security and performance by
conceptualizing and describing a RISC-V processor design with security as the priority.
 We begin by evaluating causes of several key classes of security vulnerabilities and then considering
alternative architectures that address principal causes. We implemented portions of our design in
SystemVerilog and demonstrated the functionality and performance of implemented features through
simulation. Instantiation efforts are limited to microarchitecture design and writing register-transfer level
(RTL) descriptions of the processor; formal verification, synthesis, and fabrication steps are specifically
excluded.
 Specifically, we implemented a single-core RISC-V processor with a modified Harvard architecture for
improved isolation of memory resources between privilege levels. Our implementation also mitigates
side-channel attacks by avoiding data-dependent timing and adding power obfuscating features. We found
that these changes reduced IPC performance by 55%, due to the increased impact of memory latency while
eliminating most security vulnerabilities due to cache timing, branch prediction, and power analysis.

 14. SUBJECT TERMS
RISC-V, side-channel, security, HDL, microprocessor 15. NUMBER OF

PAGES
 65
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Approved for public release. Distribution is unlimited.

RISC-V PROCESSOR PERFORMANCE ANALYSIS
OF SECURE DESIGN PRINCIPLES

Roy S. Shin
Captain, United States Marine Corps

BS, Carnegie Mellon University, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2023

Approved by: Chad A. Bollmann
 Advisor

 Douglas J. Fouts
 Second Reader

 Preetha Thulasiraman
 Chair, Department of Electrical and Computer Engineering

iii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

iv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ABSTRACT

 This project explores processor microarchitecture features that impact security

and performance by conceptualizing and describing a RISC-V processor design with

security as the priority.

 We begin by evaluating causes of several key classes of security vulnerabilities

and then considering alternative architectures that address principal causes. We

implemented portions of our design in SystemVerilog and demonstrated the functionality

and performance of implemented features through simulation. Instantiation efforts are

limited to microarchitecture design and writing register-transfer level (RTL) descriptions

of the processor; formal verification, synthesis, and fabrication steps are specifically

excluded.

 Specifically, we implemented a single-core RISC-V processor with a modified

Harvard architecture for improved isolation of memory resources between privilege

levels. Our implementation also mitigates side-channel attacks by avoiding

data-dependent timing and adding power obfuscating features. We found that these

changes reduced IPC performance by 55%, due to the increased impact of memory

latency while eliminating most security vulnerabilities due to cache timing, branch

prediction, and power analysis.

v

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

vi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 1
1.3 Scope . 1
1.4 Thesis Organization . 2

2 Background 3
2.1 Overview . 3
2.2 Major Security Vulnerabilities 3
2.3 Prior Work . 10
2.4 Summary . 15

3 Methodology 17
3.1 Overview . 17
3.2 Secure Design Principles . 17
3.3 Instruction Set Architecture . 19
3.4 Simulation and Testing Environment 19
3.5 Summary . 21

4 Results 23
4.1 Feature Omissions . 23
4.2 Design Features . 23
4.3 Simulation Results . 31

5 Conclusion 33
5.1 Assessment of Design and Goals 33
5.2 Future Work . 33

Appendix A RTL Code Repository 37

vii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Appendix B Compliance Test Repositories 39

Appendix C Benchmark Code Repositories 41

List of References 43

Initial Distribution List 47

viii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of Figures

Figure 2.1 Spectre Attack Diagram . 7

Figure 2.2 Meltdown Attack Diagram . 9

Figure 2.3 Side-Channel Protection Classification 12

Figure 2.4 Spectre and Meltdown Classification 14

Figure 4.1 Processor Overview . 25

Figure 4.2 Two-bit Counter FSM . 27

Figure 4.3 Encryption Overview . 30

ix

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

x

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of Tables

Table 2.1 RISC-V Privilege Levels . 10

xi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

xii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of Acronyms and Abbreviations

AES Advanced Encryption Standard

ALU arithmetic logic unit

BTB branch target buffer

CHERI Capability Hardware Enhanced RISC Instructions

CSR control and status register

DPA differential power analysis

ECC error correction code

FIFO first in, first out

HDL hardware description language

HVL hardware verification language

IPC instructions per clock

ISA instruction set architecture

IRAM instruction random access memory

IROM instruction read only memory

JALR jump and link register

LFSR linear feedback shift register

NIST National Institute of Standards and Technology

ORAM open random access memory

PC program counter

xiii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

PHT pattern history table

PMP physical memory protection

PRAM privileged random access memory

PRNG pseudorandom number generator

RAW read after write

RISC reduced instruction set computer

RTL register-transfer level

ROB reorder buffer

RSA Rivest–Shamir–Adleman

SGX Software Guard Extensions

SRAM static random access memory

TRNG true random number generator

UOP micro-operation

xiv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Acknowledgments

I wish to thank my advisor, Captain Chad Bollmann, for facilitating this research. It was a
great opportunity, and I learned so much from this. I appreciated your candor and outlook
on both life and academia during our work together.

Also, I want to give special thanks to G. Glenn Henry for his time and mentorship over the
year. Much of this research would not have been possible without his knowledge, expertise,
and guidance. Our many meetings and discussions have imparted much greater awareness
and appreciation for the complexities of computer design that I would not have gotten
through classes alone.

A special mention to Krystof C. Zmudzinksi for his assistance in the testing and pro-
gram compilation portion of this research. His help was instrumental in overcoming my
inexperience with program compilation and linker files for bare metal execution.

xv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 1:
Introduction

1.1 Motivation
Processor design has historically prioritized performance improvement. Unfortunately,
many features that improve performance have also led to numerous security vulnerabilities;
vulnerabilities that are difficult or even impossible to mitigate after a design is produced
and installed in a system. Many modern military systems are highly dependent on these
processors, which renders our systems vulnerable to cyberattacks. As such, effective mili-
tary cyber defense needs to start with the foundation of secure hardware design instead of
relying on software patches and post-production mitigations.

1.2 Research Questions
This research aims to answer how a processor should be designed if security is the driving
priority. To accomplish this, we must understand the mechanisms of significant processor
features as well as the vulnerabilities that they cause. We must also consider proposed
solutions and examine their effectiveness against their related vulnerabilities.

1.3 Scope
The scope of this research is limited to the microarchitecture design of a central processing
unit. Post-design process steps of design verification, synthesis, and fabrication are outside
the scope of this research due to the time and resource constraints at the Naval Postgraduate
School. This research makes a few assumptions in the hardware timing of our design in order
to simulate its functionality for compliance testing and benchmarking. These assumptions
are detailed in Chapter 4. Future work would involve actual timing analysis and refinement
based on a synthesized gate level design.

1

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1.4 Thesis Organization
Chapter 2 details significant processor design features that are particularly vulnerable as
well as proposed solutions. Chapter 3 describes the design principles that we used to
design our processor as well as the design and testing methodology used. Chapter 4 details
our design features in-depth as well as analysis of benchmark results. Chapter 5 is the
concluding chapter. Appendix A contains the link to the GitHub repository of the author
containing the full RTL description for the processor. Appendix B contains the links to
GitHub repositories containing the compliance testing files. Appendix C contains the links
to GitHub repositories containing the benchmark files.

2

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 2:
Background

2.1 Overview
The purpose of this research was to explore processor design choices that are inherently
simple, yet effective, against major vulnerabilities and malicious attacks. Generally, pro-
cessor designs have prioritized performance and function, which have created numerous
security vulnerabilities that have been discovered over time. We aim to prioritize security
above all else, so we need to establish an understanding of the causes and mechanisms of
security vulnerabilities in order to effectively mitigate them.

2.2 Major Security Vulnerabilities
We briefly review major processor security vulnerabilities that were considered in our
design process. While this is not an exhaustive list of all hardware vulnerabilities, we
believe that these issues are the most important vulnerabilities to consider at this stage of
microarchitecture design.

2.2.1 Main Memory Organization
Protecting computer memory is a critical aspect of security. The organization and manage-
ment of instructions and data by the processor in memory has a significant impact on the
ability of the system to handle confidentiality and integrity. The processor needs to prevent
unauthorized access to sensitive memory contents as well as maintain integrity of stored
information. Two common descriptions for memory organization are the von Neumann
architecture and the Harvard architecture.

A computer using the von Neumann architecture stores instructions and data in the same
main memory with a shared memory address space; the contents of any given address can
be interpreted and used as an instruction or data. This provides a lot of flexibility with how
memory is allocated for program instructions versus data structures. Also, programs are
capable of writing new instructions during run-time through data store operations.

3

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

In contrast, a computer using the Harvard memory architecture separates instructions and
data in different memory spaces. This is inherently less flexible than a von Neumann
architecture, but provides a natural partition between instructions and data. This can prevent
programs from accidentally or intentionally accessing and modifying instructions through
data operations.

A simple type of attack on systems using shared memory resources without adequate
protection is a buffer overflow attack. This type of attack exploits how program instructions
may be stored adjacent to data structures in memory. By attempting to access beyond the
bounds allocated for a data structure, it is possible to read or write into memory addresses
holding instructions if there are not adequate control mechanisms to prevent these actions.
Furthermore, an attacker could hĳack the processor by rewriting their own instructions
into this space and forcing the processor to execute them. Von Neumann architectures are
generally more vulnerable to these types of attack compared to Harvard architectures, due
to the how instructions and data are stored in a shared memory resource.

2.2.2 Differential Power Analysis
A significant amount of information can be indirectly determined from hardware devices
through side-channel attacks. One such attack is differential power analysis (DPA), which is
accomplished by monitoring and deducing information by observing the power consumption
or other physical emanations of a device as it operates. Different operations within the
processor will consume varying amounts of power, such as writing to a register or performing
arithmetic. By observing and correlating the subtle patterns in power consumption while
the processor is executing a particular program, an attacker can learn information about the
program or the data being processed. DPA has been proven to be effective in recovering the
encryption key of cryptographic algorithms, as patterns created by the encryption operations
are quite distinct and easily measurable [1].

2.2.3 Cache Memory
Cache memory improves memory access times where processor speeds can significantly
outpace the latency of cheap, high-capacity devices used for main memory. By storing select
portions of memory in a highly responsive cache memory device, a processor is able to
quickly access the contents of frequently-used memory locations and adjacent addresses. A

4

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

cache miss occurs when the processor attempts to access a memory address that is not in
cache, and the processor must wait for the relatively long latency of main memory to load
the appropriate data into cache.

This time difference between a cache hit or a miss is easily measurable, and attackers can
exploit this difference in timing as a side-channel. A attack called FLUSH+RELOAD has
demonstrated how cache architectures used in many modern processors can be exploited as
a side-channel [2]. According to the paper, the attack is set up by intentionally flushing a
specific portion, or line, of memory from the cache in order to monitor the specific line. A
victim program that shares a cache with the attacker might end up refilling this monitored
line. The attacker can re-attempt to access the monitored cache line through a reload and
measure how quickly the processor can return the data. Depending on the measured time,
the attacker can determine whether the victim program accessed the monitored cache line
or not. In [2], Yarom proves how this information could be used to extract secret data, such
as encryption keys used in a Rivest–Shamir–Adleman (RSA) cryptographic algorithm.

Cache timing is also used frequently as a side-channel to enable other attacks, including
those discussed in the next sections.

2.2.4 Branch Prediction
Branch instructions can be a significant performance hindrance for pipelined processors.
Normally, the program counter (PC) increments sequentially to fetch instructions that are
adjacent to one another in memory. A branch instruction can change the PC to a nonsequen-
tial address, which requires the pipeline to be flushed of all previously fetched instructions
which have become invalid due to the direction of the branch. To prevent a pipeline flush,
modern processors will often attempt to predict where the PC may branch to and pre-
emptively fetch from the predicted instruction address. Most predictor designs will store
information such as previous branch directions in a pattern history table (PHT) and pre-
viously calculated branch target addresses in a branch target buffer (BTB). When fetching
an instruction from memory, the processor will index into the PHT and BTB in order to
predict whether the fetched instruction is a branch instruction as well as the target address.
Neither of these tables are typically large enough to hold unique values for each PC value;
this results in aliasing where more than one instruction will index into the same PHT and

5

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

BTB values. This aliasing behavior is critical to how PHT and BTB states are manipulated
because an attacker can access and alter PHT and BTB values used by a victim program
without directly modifying the victim program instructions.

In [3], Evtyushkin et al. demonstrates how branch prediction can be exploited in a side-
channel attack called BranchScope. According to the paper, the attack begins executing a
program to prime the PHT into a known state. Once the PHT is in this known state, a victim
program is executed on the same processor. Upon completion of the victim program, the
attacker can determine changes to the PHT from the known state by probing each entry and
measuring the response times. Despite not being able to directly observe the execution of
the victim program, an attacker can potentially infer the behavior of the victim program as
well as determine memory contents that influence branches. This attack has been proven to
be effective against computations used for RSA [3].

2.2.5 Speculative Execution
Speculative execution is a design feature intended to address potential performance loss from
branch instructions. While branch prediction anticipates which instructions are to follow
a branch instruction, speculative execution issues and executes the instructions before the
actual branch result has been fully resolved. While the actual results of transient instruction
can be discarded, remnants of their execution can still be found in other parts of the processor.

In [4], Kocher et al. demonstrates how to exploit speculative execution in an attack known as
Spectre. According to the paper, the Spectre attack begins by priming the branch predictor
to deliberately cause a misprediction for a future branch instruction. The second stage of
the attack will execute a program where a branch misprediction will allow speculative
instructions to be executed but ultimately flushed from the pipeline once the branch result is
resolved. These speculatively-executed instructions will attempt to load a memory address
based on the contents of some secret data location. Normally, memory access controls
would raise an exception against this illegal access and handle the exception once it reaches
retirement. However, because the memory load is only speculative and will never actually
retire due to the branch misprediction, the illegal memory access exception is ignored as it
was never supposed to happen in the first place.

Meanwhile, the effects of the speculatively executed instructions remain in the system in the

6

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

form of a cache line update in anticipation of the memory load. An attacker can determine
the memory address for the attempted load instruction by probing the cache state and
measuring cache timings to determine a hit or miss. By determining the attempted address,
the attacker can determine the value of the secret data based on how it related to the load
address. This attack sequence is illustrated in Figure 2.1. Through repetition of this process,
the attacker can potentially reveal the entire memory state of the processor [4].

Figure 2.1. Spectre Attack Diagram. Source: [5].

7

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

2.2.6 Out-of-Order Execution
Out-of-order execution is another critical design feature meant to optimize the processor
pipeline usage of available resources. For maximum efficiency in the pipeline, instructions
may be issued and executed in a different order than they were fetched and decoded to fill the
gaps created by stalls due to data dependencies between pipeline stages. These out-of-order
instructions will ultimately retire through a construct known as the reorder buffer (ROB)
that ensures that executed instructions are committed in the order that the program dictates.

Similar to speculative execution, out-of-order execution can be exploited to reveal secret data
without proper privileges. In [6], Lipp et al. demonstrate how out-of-order execution can
be exploited in another attack known as Meltdown. According to the paper, the Meltdown
attack functions similarly to Spectre by creating conditions where the processor executes
transient instructions that will leave behind information in a side-channel. However, Melt-
down exploits out-of-order execution to create a race condition where transient instructions
are executed but flushed out of the ROB. Figure 2.2 illustrates how a basic Meltdown attack
functions. Meltdown has been proven to bypass memory protections and reveal the memory
state of the processor of all privilege levels [6].

8

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 2.2. Meltdown Attack Diagram. Source: [5].

2.2.7 Quantum Computing and Cryptographic Algorithms
Recent advances in quantum computing have created a growing concern over the security of
existing cryptographic algorithms. In 2016, a National Institute of Standards and Technol-
ogy (NIST) report evaluated the vulnerability of widely used ciphers to large-scale quantum
computing and found that a number of ciphers such as RSA would no longer be considered
secure [7]. Many of these ciphers have been essential to data and communication confiden-
tiality, and quantum-computing threatens to dissolve many trust and security protocols in
cyberspace. Finding effective quantum-resistant algorithms and implementations will only
become more important over time, as cryptography is a necessity for modern cybersecurity.

9

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

2.3 Prior Work
We must also review some mitigation strategies for the discussed hardware vulnerabilities
that were considered in our design. While the effects of these mitigation measures are
discussed in this chapter, their impact on our design choices is detailed in Chapter 4.

2.3.1 Memory Protection
Memory protection is critical for maintaining data integrity and confidentiality. Unautho-
rized programs should not be able to access or modify sensitive memory locations, especially
for designs with shared memory resources. A common approach uses privilege levels and
memory tagging to control access to shared memory resources.

Privilege levels are used to restrict access to special functions and resources based on the
particular program being executed on the processor. Table 2.1 lists the various privilege
levels for a RISC-V processor. The most trusted programs are executed in machine mode,
which grants the greatest access to processor functions and resources. Programs executed
in lower modes, such as user mode, have more restrictions based on designer specifications.

Table 2.1. RISC-V Privilege Levels. Source: [8].

Level Encoding Name Abbreviation
0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

A tagged memory architecture uses tag bits as metadata for memory addresses. In a simple
memory protection implementation, these tags can correspond to a privilege level require-
ment for accessing particular memory regions. A program executing in user mode would
not be allowed to access a memory region that is tied to a memory tag requiring supervisor

10

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

or machine mode privileges. A processor can dynamically change access requirements for
memory regions by changing these tag bits.

Capability Hardware Enhanced RISC Instructions (CHERI) is a modern example of memory
protection using memory tagging and metadata to control memory access [9]. With CHERI,
all memory operations (such as data load/store or instruction fetch) must be authorized by
a construct called a capability. A capability consists of a memory address (to be used as a
pointer to a program instruction or data) and metadata bits that control the privileges and
access permissions specific to that address. This scheme allows greater control over the
permissions and memory boundaries granted to a given program.

Many modern processor designs use privilege levels and memory tagging to protect sensitive
instructions and data that are stored in a shared memory resource. However, Meltdown
demonstrated how standard memory protection implementations using privilege levels and
memory tagging are not fully effective against speculative execution attacks [6]. Even
CHERI has been found to be vulnerable to speculative execution attacks like Spectre [10].

Another approach to memory protection is Intel Software Guard Extensions (SGX), where
protected portions of memory are dynamically encrypted to further protect the contents
from unauthorized programs [11]. While SGX was initially thought to be resistant against
speculative execution attacks such as Spectre and Meltdown, a new attack called Foreshadow
was proven to be able to bypass the countermeasure [12]. Foreshadow takes advantage of
the fact that encrypted secrets that have been recently accessed by the processor are stored
in plaintext form in the cache.

2.3.2 Side-Channel Protection
According to [13], protections against side-channel attacks such as cache timing analysis or
DPA can be categorized as either a hardware or software approach, depicted in Figure 2.3.

11

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 2.3. Defense Approaches to Side-Channel Protection. Source: [13].

Countermeasures for DPA and other physical emission analysis attacks primarily involve
adding noise to make observations more difficult to analyze as well as reducing the amount of
information that could be leaked by sensitive operations such as encryption [14]. Shielding
a processor to physically prevent information leaks is beyond the scope of this research (and
most practical implementations), so we primarily considered methods for introducing noise
in the power consumption of the system.

Countermeasures for cache timing attacks primarily involve randomization and/or parti-
tioning to prevent attackers from accessing information that could be stored in the cache
state [13]. We considered a proposed cache design using partitioning as the security fea-
ture, known as Partition-Locked cache [15]. In [15], Wang and Lee proposed and evaluated
the Partition-Locked cache design that uses an extra lock bit that can indicate whether a
particular cache line is not to be evicted. This implementation is intended to prevent an
attacker from manipulating the cache state when sensitive data is locked within the cache.
However, further testing and evaluation have discovered that Partition-Locked cache can
still be vulnerable to other types of side-channel attack methods [16].

We also considered a different design using randomization as a security measure, known as
the Random-Fill Cache [17]. In [17], Liu and Lee proposed and evaluated the Random-Fill
cache design that does not always fill the cache with the requested address on a cache miss;
instead, the fetched cache line is randomly selected from a range of addresses based on

12

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

the originally requested address. This implementation is intended to make it difficult for an
attacker to determine a particular address was accessed by the victim program. However,
since the randomly fetched cache line is still related to the requested address, Random-Fill
cache was also demonstrated to be vulnerable to certain side-channel attack methods [16].

2.3.3 Spectre and Meltdown Mitigation
Due to the widespread vulnerability of modern processors to Spectre and Meltdown, there
has been significant amount of work to mitigate and patch against these attacks without sac-
rificing significant amounts of performance. Simultaneously, many Spectre and Meltdown
variants have also been discovered, making it difficult for a single mitigation to fully protect
against every variation [18]. A recent survey of major variants are shown in Figure 2.4.

13

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 2.4. Spectre and Meltdown Classification Tree. Source: [19].

In [4], several suggested countermeasures to Spectre are weighed against the increased hard-
ware requirements and performance impacts. The simplest countermeasure considered is to
disable speculative execution, as the attack relies on the execution of transient instructions.

14

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Given the performance impact of disabling speculative execution, this solution is generally
avoided by most hardware designers. Canella et al. found that most Spectre defenses only
address the effectiveness of a specific covert channel rather than addressing the root cause
of the vulnerability [18]. These defenses are often found to be ineffective against different
Spectre variants.

Similarly, in [6], the most effective countermeasure against Meltdown would be to disable
out-of-order execution. This is also difficult for most modern hardware designs to accept
given the performance loss. An interesting solution proposed by Lipp et al. was to implement
hardware-level separation of memory spaces between privilege levels, where privilege
requirements for accessing a given memory location could be quickly determined based on
the address alone [6].

2.3.4 Post-quantum Cryptography
Many public key ciphers used for cybersecurity were assessed to be vulnerable against large-
scale quantum computing, while some symmetric key ciphers such as Advanced Encryption
Standard (AES) were determined to remain secure as long as sufficiently larger key sizes
are used [7]. In anticipation for a post-quantum world, more robust ciphers have since
been developed and proposed to become standards as quantum-resistant algorithms, such
as Crystals-Kyber and Crystals-Dilithium [20]. Many of these quantum-resistant algorithms
are too complex for the scope of this research, so our attention is primarily be focused on
easier, yet robust ciphers such as AES.

2.4 Summary
This chapter discussed various processor design features, security vulnerabilities that exploit
them, and prior work studying how future designs could mitigate or prevent these attacks.
These works have informed our decision-making and selection of design features to max-
imize security. In the next chapter, we will discuss the design philosophies that will guide
our decision-making and selection of design features, as well as the testing environment
used for our research.

15

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

16

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 3:
Methodology

3.1 Overview
The purpose of this research was to explore processor design choices that can effectively
mitigate or eliminate major vulnerabilities and malicious attacks. In the previous chapter,
we highlighted several major processor design features and the associated security vulnera-
bilities they created. In this chapter, we describe specific secure design principles that will
guide our design as well as explain how our design was written, simulated, and tested.

3.2 Secure Design Principles
We used the following five principles to guide our design choices. We believe that these
principles are foundational to our security philosophy because they address the root cause
of hardware vulnerabilities.

3.2.1 Reduce Bugs through Simplicity
Hardware bugs pose a significant security risk, as unintended behaviors can be exploited to
undermine the functionality and reliability of our system. Simple designs are easier to test
and verify to eliminate bugs, therefore secure designs must be as simple as possible.

However, a simple design is not enough to guarantee security. In order to prove that our
design functions as intended, formal verification is required. This is a lengthy process
using formal mathematical methods to prove and guarantee the functionality of our design.
Unfortunately, formal verification is beyond the scope of this research due to time and
resource constraints. Nonetheless, our design must be as simple as possible in anticipation
of future work involving formal verification.

3.2.2 Be Unpredictable to Observation
Predictable behavior is important to ensuring that results of the processor are consistent,
but predictability can also allow side-channels to reliably extract information through anal-

17

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ysis. We need to simultaneously ensure that our processor produces consistent results in
execution while being unpredictable under observation. Out of the four major side-channel
defense categories, we chose to adopt noise addition as our primary defense mechanism.
By obfuscating the power consumption related to the processor execution with noise, it
should be difficult to reliably correlate discernible features and infer information from the
processor.

3.2.3 Avoid Hidden Secrets in Design
Achieving security through obscurity is rarely an effective strategy. Obscure secrets can
be discovered by a determined attacker through hardware reverse engineering. While there
are countermeasures to hardware reverse engineering, these mitigations are outside the
scope of this project. Therefore, we must ensure that the security of our design cannot be
compromised simply by an attacker understanding the system.

3.2.4 Isolate Resources Between Privileges
Many of the discussed attacks are able to bypass privilege mode protections and access
sensitive memory regions because resources are not well isolated between privilege levels.
Shared resources, such as general purpose registers and memory regions, are commonly
used by programs running at different privilege modes, and memory protection features
cannot always detect and prevent unauthorized access attempts before secrets are revealed.
One previously discussed method for resource isolation was using a Harvard memory
architecture to separate instruction memory from data memory. This is an important design
feature that will be examined in detail in Chapter 4.

3.2.5 Fast Encryption Capability
Cryptography is a necessity for secure systems, because encryption is used for data authen-
tication, integrity, and confidentiality. A secure processor will likely need to interact with
external systems, so a fast encryption process is needed to keep up with external commu-
nication in order to validate the security of data entering and exiting the processor. At the
same time, this encryption must also be unpredictable to observation as well as isolated
from unauthorized access.

18

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

3.3 Instruction Set Architecture
In order to simulate and test the design of our processor, we need to select an instruction set
architecture (ISA) that determines how the processor should function. We chose to use RISC-
V, an open-source reduced instruction set computer (RISC) ISA that is gaining popularity
with many hardware designers. Another benefit of RISC-V is its load-store architecture;
only load and store instructions can access memory while other instructions can only access
registers. This simplicity is advantageous for security because memory operations are easier
to control. The basic functions are outlined in the unprivileged specification [21], while
details regarding privilege management and exception handling are found in the privileged
specification [8].

We implemented the base RV32I module, which includes arithmetic, logical, memory, and
branch control instructions. The Ziscr extension was also implemented for control and status
register (CSR) operations required for exception handling and feature control.

3.4 Simulation and Testing Environment
Our processor was written as a register-transfer level (RTL) design using a hardware de-
scription language (HDL) known as SystemVerilog. The Xilinx Vivado 2022.1 software
suite was used to simulate and test the design.

3.4.1 SystemVerilog
The RTL design, found in Appendix A, outlines the structure and function of the processor
components. SystemVerilog was originally an extension to another HDL known as Verilog,
providing greater functionality for hardware design, modeling, and verification. The use of
SystemVerilog as a hardware verification language (HVL) is especially useful for future
work in verification of our design.

However, certain SystemVerilog features (such as delay statements and looping statements)
cannot be synthesized into gate-level designs using software tools because they model be-
haviors that cannot translate directly to hardware logic. However, many of these nonsynthe-
sizable features are useful for simulation, testing, and verification, and they are extensively
used in our testbench design. In order to ensure that our design was synthesizable we re-
stricted the scope of SystemVerilog functions and features used in our RTL design. While

19

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

a standard for synthesizable SystemVerilog does not exist, [22] was a useful reference for
best practices for RTL design.

Our design was primarily written to model combinational logic using continuous assign-
ment, logic variables, and simple operators (such as bitwise OR, AND, and XOR functions).
Modeling behavioral logic using procedural assignment functions (such as always_ff or al-
ways_comb) is generally avoided because synthesis tools may need to infer the intent and
functionality of the design; this can result in unexpected post-design elements that were
not explicitly declared in the RTL design. The most common issue created from the use
of procedural assignment features include unintended latches and flip-flops being added to
the design during synthesis. We used a common library of pre-defined modules to model
registers and multiplexers to model sequential logic in our processor components. The use
of procedural assignment for these specific components are not an issue with synthesis tools
because they are standard designs that do not require inference from synthesis tools.

The specific details of the processor design choices are discussed further in Chapter 4.

3.4.2 Program Compilation and Testing
We used the RISC-V GNU Compiler Toolchain [23] to compile programs into RISC-V
instructions. A RISC-V simulator called Spike [24] to generate logs of expected outputs for
executed programs. These logs were used with a testbench in Vivado in order to compare
against the simulated execution of our processor design. As part of our testing process, we
used compliance tests developed by the RISC-V Architectural Framework [25] to partially
verify that instructions function as intended on our design. We can only claim partial
verification because the compliance tests are not a replacement for formal verification.

All programs simulated through Spike and tested on our design were executed on bare metal,
which means that program instructions are executed directly on the processor without the
aid of an operating system or kernel. This allows the processor to be more efficient and
secure, and the security of the processor is not be compromised by software vulnerabilities
found in operating systems.

20

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

3.4.3 Linker Control Script
In order to execute programs in bare metal on our processor, we had to ensure that programs
are compiled properly to execute on our processor. When a program written in C is compiled
into an executable binary code format, the last major step involved is called linking. One of
the important functions of the linking process is to organize the compiled and assembled
machine code in memory. In order to ensure that program instructions and program data
are organized properly for the memory architecture of our design, we wrote a linker control
script that describes how assembled objects such as instructions or data should be organized
in memory. The linker control script can be found in Appendix B.

3.5 Summary
In this chapter, we outlined the concepts and ideas that we aim to implement in our processor
design. We also described how our design was realized in RTL for simulation and testing.
In the following chapter, specific design features are discussed along with results collected
from benchmark simulation.

21

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

22

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 4:
Results

4.1 Feature Omissions
Certain features were omitted from our design due to the severity of their proven vulner-
abilities as well as the complexity of imperfect mitigation measures. While these features
provide significant performance benefits, their inclusion would seriously compromise the
security of our design.

One of the most important features we chose to omit is cache memory. Many of the security
vulnerability examples discussed in Chapter 2 rely on cache memory as a measurable and
reliable side-channel to retrieve information from the processor. By not using a cache, we
can completely negate the potential of cache-timing attacks. While we considered a few
secure cache design options, we currently do not believe that a particular cache design has
been fully tested and formally verified to be completely secure. In order to prevent the
possibility of including a potentially flawed feature, we chose not to include a cache in our
processor design. However, not using cache memory should have a significant impact on
our processor performance, and this is evident in our benchmark results.

We also omitted speculative execution and out-of-order execution due to the significant
vulnerability of executing transient instructions. In addition, they would add to the overall
complexity of our design. We expected that omission of these features should also have an
impact on our processor performance, but the effect of their omission in our benchmark
results is not as clear.

4.2 Design Features
Here we detail the specific features implemented in our microarchitecture design. All RTL
files are included in Appendix A.

23

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4.2.1 Memory Organization
In the previous chapter, we discussed the vulnerability of the von Neumann memory ar-
chitecture. We also considered a few memory protection features such as memory tags
and privilege modes. Due to the various residual vulnerabilities presented by many of
these solutions, we believe that we can achieve greater memory protection by permanently
compartmentalizing different memory resources and outright preventing shared resources
between privilege levels.

For these reasons, we chose to implement a modified Harvard memory architecture for our
design. Instructions and data are stored in separately-defined memory regions and accessed
through separate data pathways. This architecture prevents instructions from being corrupted
by data structure attacks or self-modifying code. This design also has a subtle performance
benefit because instructions and data can be simultaneously accessed by the processor
without conflict.

Instruction memory consists of instruction read only memory (IROM) and instruction
random access memory (IRAM). IROM is for static programs that are immutable to the
processor while IRAM can have programs can have loaded onto it by IROM. Because IROM
instructions cannot be changed, they are considered the most trustworthy programs. As the
designers, we can control its contents and verify its security before production. Due to this
high level of trust, IROM instructions have the most privileged access to processor features,
such as memory locations and sensitive registers. The boot code is stored here as well as
other special programs such as an exception handler or feature control functions. Branching
into random addresses in IROM from IRAM is prohibited and raises an exception in order to
prevent unauthorized access to privileged instructions. However, specific starting addresses
for special functions can be branched into in order to allow the processor to request privileged
functions to be executed. IROM also has the exclusive privilege of accessing and writing
data into IRAM in order to load new programs onto the processor. Instructions executing
from IRAM inherently have less privilege in order to prevent potentially malicious code
from accessing sensitive data.

Data memory is composed of open random access memory (ORAM) and privileged random
access memory (PRAM). ORAM is the main memory space that can be used by any program
being executed on the processor. PRAM is a data memory region that is exclusive to IROM

24

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

instructions, providing a secure memory space for data that should not be accessed by IRAM
instructions. This prevents sensitive data used by programs with elevated privileges from
being leaked through attacks that can bypass memory protection features.

All memory components were simulated using a Vivado Block Memory Generator, simulat-
ing a three-clock-cycle latency for load operations. We simulated memory in this fashion in
order to mimic how memory components are generally slower than the base clock speed of
the processor. This latency could be further reduced in post-design synthesis by implement-
ing and synthesizing memory components using high-speed hardware like static random
access memory (SRAM) that is capable of keeping up with the processor clock speed.

4.2.2 Pipeline Organization
Our design is organized as a five stage, single pipeline processor, depicted in Figure 4.1.
The five stages are fetch, decode, register file, execute, and writeback. An instruction is
converted into a micro-operation (UOP) at the decode stage to control the later stages in the
pipeline. A UOP is a set of signals that control the behavior and output of the register file,
execute, and retirement stages.

Figure 4.1. Block Diagram Overview of Processor Stages and Features

A 16-element first in, first out (FIFO) queue was also included at the end of the decode
stage; the queue provides a buffer so that fetch and decode stages can continuously fetch

25

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

instructions from instruction memory and decode them while later stages of the pipeline
are stalled from pipeline hazards. The execution stage handles arithmetic logic unit (ALU)
operations and memory operations, while the retirement stage handles data writes to the
register file and branch control.

Due to our single pipeline design without out-of-order execution, the most likely data
hazard requiring the pipeline to stall is a read after write (RAW), where an instruction in
the execute stage requires a register value that is actively being handled by the writeback
stage. We eliminated the need to stall for this hazard through data forwarding, enabling the
register data to be simultaneously written to the register file and input to the execute stage.
Due to the latency of our simulated memory components, memory load operations require a
three-clock-cycle stall before the data is retrieved from memory. During this latency period,
the register read and execute stages stall while the fetch and decode stages continue to cycle
and store new instructions into the FIFO queue.

4.2.3 Branch Prediction
While our processor does not feature speculative execution, we can still benefit from pre-
emptively fetching and decoding instructions in anticipation of a predicted branch.

Our design is different from most others because our system does not attempt to predict on
instructions at the fetch stage before the instruction is decoded. Instead, our branch predictor
predicts at the decode stage for instructions that are decoded and verified as a conditional
branch. Due to this difference, an attacker cannot force the processor to incorrectly predict
a fetched instruction as a branch.

Our branch predictor uses a PHT containing 4096 two-bit saturating counters. A decoded
branch instruction indexes to a particular PHT counter using its memory address. The state
of the corresponding saturating counter determines the predicted direction of a decoded
branch, depicted in Figure 4.2.

26

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.2. Finite State Machine Depiction of a Two-Bit Saturating Counter

When a conditional branch retires from the pipeline, its corresponding counter is incre-
mented if the branch is taken or decremented when the branch is not taken.

Furthermore, our design is different than most because branch targets are calculated rather
than predicted. This is possible due to how target address values are typically encoded in
the branch instruction for RISC-V. An attacker cannot alter the predicted branch address
without changing the instruction itself. Due to this ISA feature, we do not need to use a
BTB.

However, RISC-V has one indirect branch instruction where the target address cannot
be accurately calculated at the decode stage, which is the jump and link register (JALR)
instruction. The target address for a JALR instruction depends on a register value, which may
change by the time the branch instruction reaches the execute stage. Instead of using a BTB
to predict the branch address, our design never predicts for JALR instructions. This choice
prevents indirect branch poisoning, which is used in many Spectre attack variants [18].

As previously discussed, the small size of the PHT compared to the instruction address
space can cause aliasing, where multiple different branch instructions map to the same
PHT counter. This aliasing makes our design still vulnerable to side-channel attacks such
as BranchScope [3]. For improved security in situations where attacks like BranchScope
are of concern, our branch predictor can be disabled through a custom CSR. This CSR is a
special register whose sole purpose is to control the branch predictor. When the processor
is booted or reset, the branch predictor is automatically enabled. A CSR write instruction

27

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

from either IROM or IRAM may disable the branch predictor and force the decode stage
to always assume that a branch is never taken. Re-enabling the branch predictor requires
privileged access from IROM.

4.2.4 Data Independent Instruction Timing
To defend against side-channel vulnerabilities such as timing attacks, we need to design our
processor to prevent leaking information about the data being executed on through patterns
in its timing. To prevent this, we ensured that instruction timing does not vary based on the
data being executed. All ALU instructions are assumed to take one-clock-cycle regardless of
the input data. Similarly, load instructions have consistent latency regardless of the address
being accessed because we are not using cache memory. This prevents attackers from
deducing information about the data being executed on the processor through observation
of subtle timing differences and patterns.

4.2.5 Power and Emission Obfuscation
Another significant side-channel we addressed is a processor leaking information about its
execution state through power consumption and physical emissions. Unlike most modern
processors, our design does not feature an idle state where power conservation measures
such as varying clock speeds or power gating are used to consume less power.

Our design also issues dummy instructions during pipeline stalls or pipeline where the
execution stage would otherwise be unused. Dummy instructions are issued whenever the
FIFO queue is directed to stall; these instructions are always considered invalid in order to
prevent any meaningful modifications to the processor state, but they consume power as if
they were regular ALU operations.

Currently, dummy instructions are produced using a pseudorandom number generator
(PRNG) based on a 32-bit linear feedback shift register (LFSR). We chose to use a LFSR
because it was a simple and quick method of generating non-sequential instructions over
a period of 4 294 967 295 clock cycles. However, this method is not truly random as the
LFSR output depends directly on the previous value and the design of the feedback loop. An
attacker with enough knowledge on the specific design of our LFSR can easily predict the

28

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

sequence of dummy instructions being issued. The LFSR is just a temporary measure until
we can implement a true random number generator (TRNG) that uses a physical process.

Additionally, writing data to a register consumes a noticeable amount of power, so we
created a solution to obfuscate when instructions write to registers. Within the RISC-V
specification, register 0 is fixed to the value 0, and writing to register 0 does not change the
register file state. While some implementations would simply omit the physical register and
hardwire a fixed value in place of register 0, we chose to implement a physical register in its
place to accept data writes to register 0. However, any data read from register 0 is hardwired
to the value 0 and has no connection to the output of the physical register. Furthermore,
instructions without a destination register, as well as dummy instructions, write to this
dummy register in order to further obfuscate when the register file is modified.

4.2.6 Encryption Engine
Typically, many ISAs use a dedicated instruction set extension for encryption algorithms.
The proposed cryptographic extension to the RISC-V ISA uses unique instructions to direct
the processor to execute individual stages of encryption for AES [26]. We deviated from this
approach because we believe that encryption through the pipeline can create recognizable
patterns in the processor execution. This has also been proven in many side-channel attacks
focused on detecting and analysing encryption in processors.

We believe that an encryption engine separate from the pipeline provides better security
over executing encryption instructions on the processor. By separating from the pipeline,
we can outright prevent any user-defined code from revealing intermediate states of the
encryption process and allow the encryption process to operate independently from the rest
of the processor. Furthermore, a dedicated encryption engine can encrypt faster as well as
execute concurrently with the processor.

Given the concerns for the security of encryption ciphers in a post-quantum world, we chose
128-bit AES for the processor encryption engine. The structure of the proposed engine is
depicted in Figure 4.3.

29

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Figure 4.3. Block Diagram Overview of Encryption Engine

The engine is designed to be constantly encrypting with minimal intervention required by
the processor. Similar to how the pipeline executes dummy instructions during pipeline
stalls and flushes, the engine encrypts dummy data when it does not actively have useful
data provided by the processor. This design will obfuscate the presence of meaningful
encryption because the engine simply looks like it is always encrypting when observed.
This behavior also contributes to the power and emissions obfuscation scheme of the
processor by introducing more noise in power consumption and physical emanation. By
relying solely on a separate encryption engine rather than utilizing the standard processor
pipeline resources, we can ensure that the timing of encryption and decryption process is
independent of stalling or data dependencies in the normal pipeline.

The processor communicates with the encryption engine through CSRs. The data block
consists of four CSRs while the 128-bit encryption key is held by eight CSRs. Only IROM
instructions have the ability to load the encryption key into the these CSRs in order to ensure
that the remnants of the key are not leaked in the processor state upon resuming normal
operation. Reading data from these key CSRs are never permitted. An encryption control
CSR is used to direct the encryption engine to the loaded data. An encryption status CSR will
indicate to the processor when the engine has completed the encryption/decryption process.
The processor must poll this status CSR in order to know when the process is complete.
When attempting to read from the encryption data CSRs before encryption/decryption is
complete, the engine simply outputs a zero value in order to prevent the processor from

30

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

accessing the intermediate states of the block cipher.

Due to time constraints, we were not able to fully complete the RTL implementation for the
encryption engine. The completion and testing of an encryption engine for our processor is
deferred as future work.

4.3 Simulation Results
We will now discuss the results of our simulation and testing. The testbench simulates a
clock signal for the processor and monitors for retiring instructions. Retiring instructions
and their effect on the processor state (changes to registers, memory, or program counter)
are compared to a log generated by the Spike simulation to ensure that the processor is
executing instructions in the proper order and producing the correct results.

4.3.1 Compliance Testing
The RISC-V Compliance Tests are designed to test whether our design will meet the bare
minimum standard of the specification. Each test executes multiple iterations of a specific
instruction in order to test whether our design can execute according to the specification. For
example, the ADD test will execute 587 different add instructions using various values across
all available registers to ensure that the simple ADD instruction functions as expected. Our
design successfully passed all tests included in the RV32I suite of tests, passing the minimal
standard for RISC-V. However, these tests cannot be considered as substitutes for formal
verification, therefore we cannot claim that our design has fully passed the verification
process. All compliance test files can be found in Appendix B.

4.3.2 Dhrystone Benchmark
Dhrystone is a synthetic benchmark program originally written in 1984 by Reinhold P.
Weicker [27], and it tests the integer performance of a processor. While Dhrystone is not a
realistic benchmark for measuring real world performance, it is often used in the processor
design industry as a standard. The benchmark score is normally represented in amount of
time taken to complete an iteration of the benchmark, but we chose to focus on instructions
per clock (IPC) as a benchmark metric as it is independent of the clock timing. The adapted
source files for the benchmark program can be found in Appendix C.

31

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

The benchmark was run for ten iterations, or ten Dhrystones. The benchmark executed a
total of 7563 instructions in 17 475 clock cycles, resulting in approximately 0.43 IPC. These
results include the clock cycles used to execute the setup instructions executed prior to
the start of a Dhyrstone iteration. In comparison, a similar RISC-V processor designed for
performance, the SiFive E31 Standard Core, is capable of reaching 0.95 IPC [28].

Further analysis of the benchmark run shows that memory load operations account for a
significant amount of the stalled cycles. Of the 2137 load instructions were executed in the
benchmark, stalls represented 36 percent of the total runtime. This underscores that the IPC
performance of the design is highly dependent on the memory load latency due to the lack
of a memory cache.

Another significant contributor to the performance loss is branch misprediction. The bench-
mark executed a total of 1008 total branch instructions. 189 JALR instructions were not
predicted because our design does not predict for indirect branch instructions. 134 branches
(or 16%) of the 819 remaining branch instructions were mispredicted. Many of these mis-
predictions are difficult to avoid during the first few iterations of the benchmark because
the predictor must guess without prior branch histories. Further iterations will improve the
overall misprediction rate. Each mispredicted and unpredicted branch instruction incurs
a ten-clock-cycle penalty before the next valid instruction retires in the pipeline. Branch
misprediction accounted for 18% of the total clock cycles. If branch prediction is disabled,
the benchmark runtime increases by 39%.

Throughout the benchmark, a total of 9912 dummy instructions were also executed. Dummy
instructions accounted for over half of the total time of the benchmark. Without the dummy
instructions, the pipeline would simply be stalled for more than half of the total runtime of
the benchmark. However, our design makes it difficult for an attacker to determine when
meaningful instructions are being executed because the processor is technically executing all
the time. A consequence of this power obfuscation design is that the system could consume
up to 130% more power. Comparing power consumption to other processors is difficult at
this stage of design and is an item of future work. Key factors such as clock frequency
and voltage specific to this processor are required to calculate how much power would be
consumed.

32

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHAPTER 5:
Conclusion

5.1 Assessment of Design and Goals
Our research highlights how difficult secure processor design is without noticeable com-
promises to performance and power consumption. However, these compromises may be
acceptable for computer systems that do not need to be the fastest or most power-efficient,
but they should be more protected because they are likely targets of interest to adver-
saries. Many military embedded systems handling important functions such as encryption,
navigation, or fire control systems would benefit from increased resilience to cyberattacks.

5.2 Future Work

5.2.1 Additional RISC-V Extensions and Features
RISC-V offers many extensions and features that we did not implement due to time con-
straints. Their additional functionality was not a priority for this project, but they are of
interest for future work. Extensions for multiplication, division, floating point operations
would improve the processor capabilities to execute more sophisticated programs while
other features such as encryption, privilege modes and physical memory protection (PMP)
features would further enhance the security of the processor design.

An important feature of our design was eliminating variable instruction timing depending
on data. Each instruction consumes the same number of clock cycles regardless of the data
that is being operated on in order to prevent side-channel attacks that could deduce data
values based on their effect on instruction timing. Future implementations of extensions
and their instructions, such as integer multiply or divide operations, must adhere to data
independent instruction timing in order to align with our design principle.

33

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

5.2.2 True Random Number Generation
An important design principle for security that we previously discussed was being un-
predictable to observation. However, we noted how the PRNG we used to issue dummy
instructions is not truly unpredictable. Its predictability poses a vulnerability to our desired
unpredictable noise generation. A TRNG using an unpredictable physical process would be
a vital enhancement for the security of our design.

5.2.3 Encryption Implementation
As previously discussed, encryption capabilities are a requirement for secure hardware, as
they are used to ensure data integrity, confidentiality, and authentication. Thus, completing
the AES encryption engine for the processor is a priority for future work. Furthermore,
quantum-resistant ciphers such as Crystals-Kyber should be of great interest for future work
in anticipation of encryption algorithms in a post-quantum world.

5.2.4 Root of Trust
While our design is organized to control how data can be written into IRAM, we do not
have a mechanism to ensure a valid program is being loaded and executed. Many of the
discussed attacks are possible because attackers are able to execute their own code on the
processor. We can heavily limit the ability of an attacker to manipulate the state of the
processor by authenticating a loaded program. What we need to incorporate into our design
is a set of built-in cryptographic keys, known as a root of trust, to authenticate programs
and data before they are used by our system [13]. After the processor is produced, programs
developed for the system can be written and submitted to an approval authority. Once a
program is deemed secure and approved to be executed, a digital signature can be appended
to prove to the processor that the program has been authorized for execution. Without the
proper signature, the processor should reject the program and any data attempting to enter
into memory.

5.2.5 Error Detection and Correction
A key factor that we did not specifically address in our design was error detection and
correction. Like bugs, hardware errors pose a security risk due to the unintended side
effects they might cause. While it is not possible to prevent all hardware errors entirely,

34

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

our design should prevent as many undetected errors as possible. At minimum, we need
to protect data integrity and reliability with some form of error correction code (ECC) to
detect errors.

35

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

36

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

APPENDIX A:
RTL Code Repository

The RTL code can be examined at the following repository.

RTL Repository: https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-/tree/main/RTL

POC: Author, shin@usna.edu, roy.shin@usmc.mil.

37

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-/tree/main/RTL

THIS PAGE INTENTIONALLY LEFT BLANK

38

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

APPENDIX B:
Compliance Test Repositories

The source code for the compliance tests were adapted from the following repository.

Compliance Tests Source Code Repository: https://github.com/riscv-non-isa/riscv-arch-
test/tree/main

POC: Neel Gala, CTO, InCore Semiconductors, neelgala@incoresemi.com.

The adapted code and simulation outputs can be examined at the following repository.

Test Binaries and Results Repository: https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-
/tree/main/testing

POC: Author, shin@usna.edu, roy.shin@usmc.mil.

List of compliance tests passed:

add-01

addi-01

and-01

andi-01

auipc-01

beq-01

bge-01

jal-01

jalr-01

lui-01

39

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://github.com/riscv-non-isa/riscv-arch-test/tree/main
https://github.com/riscv-non-isa/riscv-arch-test/tree/main
https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-/tree/main/testing
https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-/tree/main/testing

or-01

ori-01

sll-01

slli-01

slt-01

slti-01

sltiu-01

sra-01

srai-01

srl-01

srli-01

sub-01

xor-01

xori-01

40

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

APPENDIX C:
Benchmark Code Repositories

The source code for the Dhrystone benchmark can be found at the following repository.

Benchmark Source Code Repository: https://github.com/riscv-software-src/riscv-tests/tree/
master/benchmarks/dhrystone

POC: Steven Pemberton, CWI, Amsterdam, Steven.Pemberton@cwi.nl.

The adapted code used for the simulated benchmark can be examined at the following
repository.

Adapted Source Code and Benchmark Binaries Repository: https://gitlab.nps.edu/roy.shin/
NPS_RISC-V_Thesis/-/tree/main/benchmark

POC: Author, shin@usna.edu, roy.shin@usmc.mil.

41

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://github.com/riscv-software-src/riscv-tests/tree/master/benchmarks/dhrystone
https://github.com/riscv-software-src/riscv-tests/tree/master/benchmarks/dhrystone
https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-/tree/main/benchmark
https://gitlab.nps.edu/roy.shin/NPS_RISC-V_Thesis/-/tree/main/benchmark

THIS PAGE INTENTIONALLY LEFT BLANK

42

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

List of References

[1] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power
analysis,” Journal of Cryptographic Engineering, vol. 1, pp. 5–27, 2011 [Online].
Available: https://api.semanticscholar.org/CorpusID:12262854

[2] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low noise, l3
cache Side-Channel attack,” in 23rd USENIX Security Symposium (USENIX Se-
curity 14). San Diego, CA: USENIX Association, August 2014, pp. 719–732 [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/yarom

[3] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev, “Branch-
scope: A new side-channel attack on directional branch predictor,” in Proceed-
ings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’18). New York, NY,
USA: Association for Computing Machinery, 2018, p. 693–707 [Online]. Available:
https://doi.org/10.1145/3173162.3173204

[4] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in 40th IEEE
Symposium on Security and Privacy (S&P’19), 2019 [Online]. Available: https://
spectreattack.com/spectre.pdf

[5] A. Johnson and R. Davies, “Speculative execution attack methodologies (SEAM):
An overview and component modelling of spectre, meltdown and foreshadow attack
methods,” in 2019 7th International Symposium on Digital Forensics and Security
(ISDFS), 2019, pp. 1–6 [Online]. Available: https://doi.org/10.1109/ISDFS.2019.
8757547

[6] M. Lipp et al., “Meltdown: Reading kernel memory from user space,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018 [Online]. Available:
https://meltdownattack.com/meltdown.pdf

[7] L. Chen et al., “Report on post-quantum cryptography,” 2016-04-28 2016 [Online].
Available: https://doi.org/https://doi.org/10.6028/NIST.IR.8105

[8] A. Waterman, K. Asanović, and J. Hauser, “The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Document Version 20211203,” Rep., Decem-
ber 2021 [Online]. Available: https://github.com/riscv/riscv-isa-manual/releases/
download/Priv-v1.12/riscv-privileged-20211203.pdf

43

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://api.semanticscholar.org/CorpusID:12262854
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1145/3173162.3173204
https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf
https://doi.org/10.1109/ISDFS.2019.8757547
https://doi.org/10.1109/ISDFS.2019.8757547
https://meltdownattack.com/meltdown.pdf
https://doi.org/https://doi.org/10.6028/NIST.IR.8105
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

[9] R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann, “An introduction
to CHERI,” Rep., 2019 [Online]. Available: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-941.pdf

[10] F. A. Fuchs, “Developing a test suite for transient-execution attacks on RISC-V
and CHERI-RISC-V,” Rep., 2021 [Online]. Available: https://www.cl.cam.ac.uk/
research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf

[11] N. C. Will and C. A. Maziero, “Intel software guard extensions applications: A sur-
vey,” ACM computing surveys, vol. 55, no. 14s, pp. 1–38, 2023.

[12] J. Van Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in Proceedings of the 27th USENIX Security Sym-
posium. USENIX Association, August 2018. See also technical report Foreshadow-
NG [29].

[13] J. Szefer, “Principles of secure processor architecture design,” Synthesis Lectures
on Computer Architecture, vol. 13, pp. 1–173, 10 2018 [Online]. Available: https:
//doi.org/10.2200/S00864ED1V01Y201807CAC045

[14] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis attacks on the AES-128 S-
box using differential power analysis (DPA) and correlation power analysis (CPA),”
Journal of Cyber Security Technology, vol. 1, no. 2, pp. 88–107, 2017 [Online].
Available: https://doi.org/10.1080/23742917.2016.1231523

[15] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based side
channel attacks,” in Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA ’07). New York, NY, USA: Association for Com-
puting Machinery, 2007, p. 494–505 [Online]. Available: https://doi.org/10.1145/
1250662.1250723

[16] S. Deng, N. Matyunin, W. Xiong, S. Katzenbeisser, and J. Szefer, “Evaluation of
cache attacks on arm processors and secure caches,” IEEE Transactions on Comput-
ers, vol. 71, no. 9, pp. 2248–2262, 2022 [Online]. Available: https://doi.org/10.1109/
TC.2021.3126150

[17] F. Liu and R. B. Lee, “Random fill cache architecture,” in 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014, pp. 203–215 [On-
line]. Available: https://doi.org/10.1109/MICRO.2014.28

[18] C. Canella et al., “A systematic evaluation of transient execution attacks and de-
fenses,” in 28th USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 249–266 [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/canella

44

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://doi.org/10.2200/S00864ED1V01Y201807CAC045
https://doi.org/10.2200/S00864ED1V01Y201807CAC045
https://doi.org/10.1080/23742917.2016.1231523
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/TC.2021.3126150
https://doi.org/10.1109/TC.2021.3126150
https://doi.org/10.1109/MICRO.2014.28
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

[19] C. Canella et al., “A Systematic Evaluation of Transient Execution Attacks and
Defenses,” in USENIX Security Symposium, 2019. extended classification tree at
https://transient.fail/.

[20] G. Alagic et al., “Status report on the third round of the nist post-quantum cryp-
tography standardization process,” 2022-07-05 04:07:00 2022 [Online]. Available:
https://doi.org/https://doi.org/10.6028/NIST.IR.8413

[21] A. Waterman and K. Asanović, “The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 2.2,” Rep., May 2017 [Online]. Available:
https: //github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/
riscv-spec-20191213.pdf

[22] S. Sutherland, RTL Modeling with SystemVerilog for Simulation and Synthesis Using
SystemVerilog for ASIC and FPGA Design. Tualatin, OR, USA: Sutherland HDL,
Inc, 2017.

[23] T. R. of the University of California, 2023. GNU toolchain for RISC-V, including
GCC. [Online]. Available: https://github.com/riscv-collab/riscv-gnu-toolchain/tree/
master

[24] T. R. of the University of California, 2021. Spike, a RISC-V ISA Simulator. [Online].
Available: https://github.com/riscv-software-src/riscv-isa-sim

[25] T. R. of the University of California, 2023. RISC-V-tests. [Online]. Available:
https: //github.com/riscv-software-src/riscv-tests/tree/master

[26] A. Zeh et al., “RISC-V Cryptography Extensions Volume I,” February 2022 [On-
line]. Available: https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar

[27] R. P. Weicker, March 1995. Dhrystone. [Online]. Available: https://github.com/riscv-
software-src/riscv-tests/tree/master/benchmarks/dhrystone

[28] “Dhrystone performance tuning on the freedom platform,” SiFive [Online]. Avail-
able: https://www.sifive.com/blog/dhrystone-performance-tuning-on-the-freedom-
platform

[29] O. Weisse et al., “"Foreshadow-NG": Breaking the virtual memory abstraction with
transient out-of-order execution,” Rep., 2018. See also USENIX Security paper
Foreshadow [12].

45

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://doi.org/https://doi.org/10.6028/NIST.IR.8413
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/master
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/master
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-tests/tree/master
https://github.com/riscv-software-src/riscv-tests/tree/master
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv-software-src/riscv-tests/tree/master/benchmarks/dhrystone
https://github.com/riscv-software-src/riscv-tests/tree/master/benchmarks/dhrystone
https://www.sifive.com/blog/dhrystone-performance-tuning-on-the-freedom-platform
https://www.sifive.com/blog/dhrystone-performance-tuning-on-the-freedom-platform

THIS PAGE INTENTIONALLY LEFT BLANK

46

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

47

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

WWW . N P S . E D U

W H E R E S C I E N C E M E E T S T H E A R T O F W A R F A R E

	23Sep_Shin_Roy_First8
	23Sep_Shin_Roy new
	Introduction
	Motivation
	Research Questions
	Scope
	Thesis Organization

	Background
	Overview
	Major Security Vulnerabilities
	Prior Work
	Summary

	Methodology
	Overview
	Secure Design Principles
	Instruction Set Architecture
	Simulation and Testing Environment
	Summary

	Results
	Feature Omissions
	Design Features
	Simulation Results

	Conclusion
	Assessment of Design and Goals
	Future Work

	RTL Code Repository
	Compliance Test Repositories
	Benchmark Code Repositories
	List of References
	Initial Distribution List

	Branding_Back Cover File.pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

