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ABSTRACT

Naval expeditionary forces lack the ability to adequately estimate the level of spending required
to achieve a minimum level of readiness. Currently the Navy Expeditionary Combat Enterprise
Capability Costing Model forecasts requirements using Excel Solver and data from the
Optimized Fleet Response Plan and Certified Obligation Reports. To explore methods of
improving requirement forecasts, this research limits its focus to one program, explosive
ordinance disposal (EOD), one component, active duty, and one training and testing data split. It
then attempts multiple forecasting methods over multiple levels of cost aggregation. These
forecasting methods include exponential smoothing, autoregressive integrated moving averages
(ARIMA), and dynamic regression models. The analysis then evaluates models made with those
methods using the accuracy measures of absolute error, mean absolute percentage error, and
mean absolute scaled error. It also attempts hierarchical models to forecast costs and evaluates
those models in the same way. Finally, it calculates forecasts for two years in the future and
compares those forecasts to actual costs. This final calculation mimics the process required in the
Program Objective Memorandum process.

This technical report finds that the various models forecast at different levels of accuracy across
different levels of cost aggregation. The best model to forecast total EOD costs, two years in the
future, is an ARIMA model. It possesses a 10 percent difference in its forecast. The best
aggregated model is an exponential smoothing model for the Budget Submitting Office (BSO)
60 and the warfare pillars of personnel (P) and training (T). Its delta is three percent. However,
some levels of aggregation are much worse, with the best model possessing a difference of 36
percent for BSO 70 for supply (S) and equipment (E) costs.

This technical report ends with several recommendations for future research.



THIS PAGE INTENTIONALLY LEFT BLANK

Vi



TABLE OF CONTENTS

TABLE OF CONTENTS ..ucoiitiiiiniinninstinnniissississsicssesssssssssssssssssssssssssssssssssssssssssssssssssns VII
TABLE OF FIGURES. .......uoiiitiiiictininnniinntisnissniississstsssisssesssssssssssssssssssssssssssssssssssasssss X
EXECUTIVE SUMMARY ..uuiiniiiiinsinnninninsnesssenssnesssessssecssessssssssessssssssssssassssassssssssssssssssss XII
A. PROBLEM STATEMENT ......uoiiiiiniinsinnninsnnnnesssessssssssssssssssesssssssssssssssssessss XII
B. ANALYTICAL TOOLS AND PROCESS.....titnniiirsnrissssnissssnesssssssssssossssssssssssssseses XII
C. CONCLUSIONS AND RECOMMENDATIONS......cconiniinnniisencsnecsnncssessancssncnns XIII

I.  INTRODUCTION....cotiiruiirtinsnecssnecssnnsssesssncsssessssssssssssasssssssssssssssssassssasssssssassssassssssssasssssssse 1
A, BACKGROUND ...coviiiiiisnensrecsnenssnecssesssnssssesssassssesssassssesssassssssssassssesssssssassssassssssssasssssssss 1
B. ANALYTICAL APPROACH........uitiitiintinstnistessneisssisssnssssesssssssssssssssssessssssssssssassnns 1
I1. ANALYSIS cotitininnninnniennenneensneesaesssesssscssessssssssesssssssssssssssssasssssssssssssssssassssssssssssasssss 3
A. AGGREGATED EOD COSTS...uitiitiiniinninsnicssisseissssssssssssesssssssssssssssssassssssssssssasssss 3
B. BSO 60: P/T PILLARS.....cotiiiintintictenstensnensnecssesssecssessssssssessssesssssssassssassssasssssssassses 9
C. BSO 60: S/E PILLARS ....uutiiiiticteineentnisntsseisssisssesssssssssssssissssssssssssssssssssssssssssnss 11
D. BSO 70: P/T PILLARS....ccotiitinticstiintenstecssnecssissssesssessssessssssssssssasssssssssssssssssassssesssssss 13
E. BSO 70: S/E PILLARS ....uciiiticttintnnnecnticssiissssssesssisssssssssssssssssssssssssssssssssssssssssss 15
F. HIEARCHICAL METHODS .....ccovvtiiniiiinsnicssnnicsssnissssnesssssessssssssssssssssossssssssssssssssssssss 17
III.  RESULTS AND CONCLUSION...uutiiniiniiiniisenssnnsssensssncssssssnsssesssssessassssssssssssssessases 20
A. VALIDATING SHIP COUNT ....cciiivriirsrricsssrccsssnssssssesssssssssssssssssossssssssssssssssssssssssssssssss 20
IV.  RECOMMENDATIONS FOR FUTURE WORK.......uccnvirruinrenssnrcsenssancsnecsssncsaenes 21
A. CREATE ADDITIONAL TRAINING AND TEST SETS....ccoviiviirinneecsnecsencsnenas 21
B. EXPLORE RELEVANCE OF MONTHLY ACCURACY MEASURES................. 21
C. IDENTIFY AND REMOVE OUTLIERS.........uouiiiiinninsninseicssnssnnsssnssssncssessssnenns 21
D. FUTHER EXPLORE LEVELS OF AGGREATION .....civvviinnneicssnncssnnncssssecsssesnns 21
AYZSRN i D101 D (0 O 22
A. GRAPHS AND TABLES ...uuitiitinsnensnensnecssesssnecssessssesssesssssssssssssssssasssssssssssssssssasssses 22

1. BSO060 (P/T) Exponential Models and ACCUIaCY ......ccceeeecrunreccsssnnsecsssssssesssnssssssnnns 22

2. Residuals for Best BSO60 (P/T) Exponential Model..........ccccceevvuerercuercrcnnrcssneccsnnnes 22

3.  ACF/PACEF Charts for BSOO60 (P/T)..ccucevveiisiissencsuensercsnnissensssnsssnncssnssssssssessssscsseeas 23

4. BSO60 (P/T) ARIMA Models and ACCUIaCY....cccevereerseressssressssrcssssrcsssssssssssssssssssees 23

5. Parameters for Best BSO60 (P/T) ARIMA Model........ccccuvnrneeeiieccssscsssnnensesccsssssens 24

6. BSO60 (P/T) Dynamic Regression Models and ACCUraCY......ccceecveersneecssarecssssecsannes 24

7. Graph of Best Dynamic Regression Model for BSO60 (P/T)...ccccccereecccnnreccscnneecens 24

8. BSO60 (S/E) Exponential Models and ACCUTACY ......ccceervurrersnercssnrrcssnsecssssecsssessanees 25

9. Residuals for Best BSO60 (S/E) Exponential Model .........cccceeevvvnerccissnreccscnnsecsens 25

10.  ACF/PACEF Charts for BSOO60 (S/E) .uciciicrvricssricsseressssncsssnessssncssssscssssssssssssans 26

11. BSO60 (S/E) ARIMA Models and ACCUTACY ....ccccvurressssnnrecsssnsssssssssssssssssssssssssass 26

12. Parameters for Best BSO60 (S/E) ARIMA Model.......uuiieenrnniccscsnniccsssnsseccssnnns 27

13.  Residuals for Best BSO60 (S/E) ARIMA Model........cueeveiieinsenssnecsuenssancsnecsnnee 27

14. BS060 (S/E) Dynamic Regression Models and Accuracy........ccceeerescnrccscnsecsennes 28

vii



15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
3S.
36.
37.
38.
39.
40.
41.
42.

Parameters of Best BSO60 (S/E) Dynamic Regression Model.........c..ccccceevnnnnee. 28

Residuals for Best BSO60 (S/E) Dynamic Regression Model..........c.cccceevureennnee 29
BSO70 (P/T) Exponential Model and ACCUIACY .....cccovvvurricsssnsrccsssansncsssssssessssnnss 29
Graph of Best Exponential Model for BSO70 (P/T).ccccceeverrveensuecssnrcsnenssnecseecsnnes 30
Residuals of Best BSO70 (P/T) Exponential Models ........ccoccveeeeerivnriecscnnreccsnnns 30
ACF/PACF Charts for BSO70 (P/T).ccccveiccscsssniccsssansecssssssesssssssssssssssssssssssssssssnass 31
BSO70 (P/T) ARIMA Models and Their ACCUracy ......cccceceecnerccscsnnercsssnssecssnnns 31
Graph of Best BSO70 (P/T) ARIMA Model........ceierveicrsricscnnicssnnncssanccssnsecsannes 32
Parameters of Best BSO70 (P/T) ARIMA Model ......eeiiiiciiiiscssnnnneiiccsssscssnnnns 32
Residuals of Best BSO70 (P/T) ARIMA Model......ccueeeeeieecsenssnecseecssnecsannsneenne 33
BSO70 (P/T) Dynamic Regression Models and AcCCuracy.......ccceeeeueeeccscneeeccsnnes 33
Parameters of Best BSO70 (P/T) Dynamic Regression Model ............cccocuveeuneee. 34
Residuals of Best BSO70 (P/T) Dynamic Regression Model............cccooevuerecenunnes 34
BSO70 (S/E) Exponential Models........coceievveicssricssnricssnrcssnncssnncssssncssssscsssessssses 35
Residuals for Best BSO70(S/E) Exponential Model .........ccocueeriercvnriccccnnreccsnnns 35
ACF/PACF Charts for BSO70 (S/E) cccccveiiernssnriccsssansecsssasssssssssssssssssssesssssssssssssass 36
BSO70 (S/E) ARIMA MOEIS ....cuueevueiivuiiseinsunnsninsanisnnssanssnncssessssnsssesssssessssssssenss 36
Parameters for Best BSO70 (S/E) ARIMA Model.......uuiieinvnniccscsnniccsssnesccsssnnns 37
Residuals for Best BSO70 (S/E) ARIMA Model.........uuuueiivueisnensuensercsaensanenne 37
BSO70 (S/E) Dynamic Regression Models ..........ccoeeevcericsvnniscercscnnicssnnscssasecsnnnes 38
Residuals for Best BSO70 (S/E) Dynamic Regression Model...........ccccccuereeennnes 38
Hierarchical Exponential ModelS........cccceeeiveicssnicssnnicssnrisssnnessnnncssnsncssssscsssessssses 39
Accuracy of Aggregated, Hierarchical Exponential Models............cccoeevuvreceunnes 39
Average Accuracy of Disaggregated, Hierarchical Exponential Models........... 39
Graph of Aggregated, Exponential Hierarchical Models .......c...ccceeevcnnreccicnnnnees 39
Hierarchical ARIMA ModelS........ccovueieevnicssnicssnnicssnnicsssnesssnossssncssssscsssssssssssssssses 40
Accuracy of Aggregated, Hierarchical ARIMA Models ........ccceervvunerccccnnreccsnnns 40
Average Accuracy of Disaggregated, Hierarchical ARIMA Models ................. 40

viii



THIS PAGE INTENTIONALLY LEFT BLANK

iX



TABLE OF FIGURES

Figure 1: Aggregated Raw Data for AIl EOD .......c.ccooiiiiiiiiiiiieeeeee e 3
Figure 2: Exponential Models for EOD.........cccooiiiiiiiiiiiiiee e 3
Figure 3: Table of EOD Exponential Model ACCUTACY ........cccuvieiiiieiiiieeiieeciie e 4
Figure 4: Graph of Best EOD Exponential Model.............ccoociiriiiiiiniiiiiciecceeeeeee e 4
Figure 5: ACF/PACF Graphs for EOD ARIMA ModelS ......c.ooeuiiiiiiieriieeciieeeeeeeee e 5
Figure 6: ARIMA Models for EOD ......cccoooiiiiiiiiiiiieceee ettt 5
Figure 7: Table of EOD Arima Model ACCUTACY ......cc.ceeriiiriiiieeiiiecieeeeiee et 6
Figure 8: Graph of Best EOD ARIMA MoOdEel........cccoooiiiiiiiiiiiieeiieieeeeeee et 6
Figure 9: Parameters for Best EOD ARIMA Model ..........ooooiiiiiiiiiiiieieeeeeeeeee e 6
Figure 10: Residuals of Best EOD ARIMA MoOdel........ccccieiiiiniiiiiiiieeieeie et 7
Figure 11: Table of Raw EOD Data for Dynamic Regression ..........ccceecvveeviiieeniieecieeeieeeieeeene 7
Figure 12: Dynamic Regression Models for EOD...........ccccooviiiiiiiiiiiniieieeceee e 8
Figure 13: Table of EOD Dynamic Regression Model Accuracy .........ccccveevvveenieeecveescieeeieeeene 8
Figure 14: Graph of Best EOD Dynamic Regression Model ...........cccoveiieiiiiiiiiniiniieieeiceee 8
Figure 15: Parameters for Best EOD Dynamic Regression Model ...........cccccveeviiieiiieecieeciieeee, 9
Figure 16: Residuals for Best EOD Dynamic Regression Model............cccooovevciiiniiniieniieniieene 9
Figure 17: Graph of Best BSO60 (P/T) Exponential Model............cccveeviiieiiiiiiieeieecieeeeeee 10
Figure 18: Graph of Best BSO60 (P/T) ARIMA Model........cccoooiiiiiiiiiiieieciieieee e 11
Figure 19: Graph of Best BSO60 (S/E) Exponential Model............cccveeeiiieiiiiiiiieeieeceeeeeeee 12
Figure 20: Graph of Best BSO60 (S/E) ARIMA Model........cccocoiimiiiiiiiiieiecieeieeeeee e 12
Figure 21: Graph of Best BSO60 (S/E) Dynamic Regression Model ...........cccoeeevveeviieniieenneene 13
Figure 22: Graph of Best BSO70 (P/T) Exponential Model............cccoviiiiniiniininiiniiciene 14
Figure 23: Graph of Best BSO70 (P/T) Dynamic Regression Model ...........cccccovveeviiencieennnnn, 15
Figure 24: Graph of Best BSO70 (S/E) Exponential Model............c.cccovviieniiniiiinieeiieieieee. 16
Figure 25: Graph of Best BSO70 (S/E) ARIMA Model........cccooviiiiiiiiiiieeeeeiee e 16
Figure 26: Graph of Best BSO70 (S/E) Dynamic Regression Model ............cccceevieniiiniiennennen. 17
Figure 27: Graph of Hierarchical Data EXploration ............ccccceeeviiieiiiieniieeciee e 18
Figure 28: Graph of Hierarchical Exponential Models............ccoceeviriiniiiiniiniiniciienccceeee 18
Figure 29: Graph of Hierarchical ARIMA MoOdeIS.........cccueeiiiiiiiiiieeiiieceeccee e 19
Figure 30: Summary of Standard Model Performances ............ccccoeeueevieniienieniiienieeieeeeeieeeen 20
Figure 31: Summary of Hierarchical Model Performances............cccccoeeviieeniieiniieeiieeciee e 20



THIS PAGE INTENTIONALLY LEFT BLANK

xi



EXECUTIVE SUMMARY

A. PROBLEM STATEMENT

Naval expeditionary forces lack the ability to adequately estimate the level of spending
required to achieve a minimum level of readiness. Under the status quo, the Navy Expeditionary
Combat Enterprise (NECE) Capability Costing Model (NCCM) forecasts routine requirements
using Excel Solver and data from the Optimized Fleet Response Plan (OFRP) and Certified
Obligation Reports. This model receives historical data obtained from Command Financial
Management System (DFMS), Standardized Accounting and Reporting System — Field Level
(STARS-FL), past OFRP schedules, and notional OFRP schedules. Using least-square-
optimization and various constraints, Solver estimates the cost of each phase of the OFRP and
then applies those costs to the notional OFRP schedule of each program. The reasoning behind
the constraints used in the model is unclear. The sponsor also believes a more accurate model to
forecast costs exists. The purpose of this research is to explore forecasting methods that may be
able to improve the determination of requirements in the Program Objective Memorandum
(POM) process.
B. ANALYTICAL TOOLS AND PROCESS

The first step in the analytical process of the author is to retrieve, review, and wrangle
data. The author of this technical report received raw cost and OFRP data in the forms of CSV
files directly from the NCCM tool. This analysis then combines yearly cost and OFRP data,
identifies relevant columns, and then formats the data to be the appropriate data type. This
analysis focuses on programs, BSOs, program elements (PE), components, and warfare pillars.
The data is then divided into training and testing data. The analysis uses training data to
determine the optimal coefficients in the models and then testing data to assess the quality of the
models. The author also filters training and testing data into multiple data frames that represent
different levels of cost aggregation: All explosive ordinance disposal (EOD) costs; BSO 60 costs
across E/S (equipment and supply) and P/T (personnel and training) pillars; and BSO 70 costs
across E/S and P/T pillars. Note that BSO 60 is the comptroller for EOD units on the East Coast
while BSO 70 is the comptroller on the West Coast. The author chose the E/S and P/T pillars as

levels of aggregation because the distinction between E and S is sometimes unclear.

xii



Using the programming language R and the Fable package, this analysis builds models
that can be divided into three broad categories: exponential smoothing, autoregressive integrated
moving averages (ARIMA), and dynamic regression. The author defines various parameters
across these model types and Fable determines the coefficients for those models based on the
training data and various optimization criteria. The author then determines the best models
within each model category using testing measures of absolute error, mean absolute percentage
error, and mean absolute scaled error. Finally, using a two-year forecast, the author compares
forecasted costs and actual costs. This technical report also explores hierarchical methods, but it
produces worse results than the best-in-category approach above.

C. CONCLUSIONS AND RECOMMENDATIONS

This technical report finds that the various models forecast at different levels of accuracy
across different levels of cost aggregation. The most accurate aggregated model to forecast all
EOD costs two years in the future is an ARIMA model. Its delta when compared to actual costs
is 10 percent. The most accurate disaggregated model is an exponential smoothing model for
BSO 60 and the warfare pillars P/T. Its delta when compared to actual costs is three percent.
However, some levels of aggregation are much less accurate. For example, the most accurate
model for BSO 70 for S/T costs possess a delta of 36 percent.

Standard forecasting methods, therefore, can predict requirements at reasonable levels of
accuracy for certain levels of aggregation. Before these methods can be implemented, however,
further research is required to explore different levels of aggregation and different training and
testing splits. For example, instead of aggregating based on pillars, aggregation based on Special
Interest Code or List Item may produce superior models relative to aggregation based on warfare
pillars. In the meantime, the forecasting methods in this technical report can serve as secondary

forecasting methods to supplement the NECE NCCM.
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I. INTRODUCTION

A. BACKGROUND

The Naval expeditionary forces lack the ability to adequately estimate the level of
spending required to achieve a minimum level of readiness. Under the status quo, the
Navy Expeditionary Combat Enterprise (NECE) Capability Costing Model (NCCM)
forecasts routine requirements using Excel Solver and data from the Optimized Fleet
Response Plan (OFRP) and Certified Obligation Reports. This model receives historical
data obtained from Command Financial Management System (DFMS), Standardized
Accounting and Reporting System — Field Level (STARS-FL), past OFRP schedules, and
notional OFRP schedules. Using least-square-optimization and various constraints,
Solver determines the cost of each phase of the OFRP and then applies those costs to the
notional OFRP schedule of each program. Note that the output of this model only relates
to costs in the P/S/T (personnel, supply, and training) pillars. A separate deterministic
model is used for the E pillar. This deterministic method is based on equipment
allowances and maintenance factors associated with that equipment.

The reasoning behind the constraints used in Solver is unclear, and the sponsor
believes better models to forecast costs exist. The purpose of this research, therefore, is to
explore forecasting methods to improve the determination of requirements in the POM
process. Initially, this analysis forecast at highest levels of aggregation. It then attempts to
forecast routine costs of BSO 60 and BSO 70 across E/S and P/T pillars. The analysis
combined these pillars because the distinction between E/S is sometimes unclear or
confused. Finally, the author uses automated and hierarchical methods to forecast costs.
This method is much quicker but provides less control over the parameters of the
forecast.

B. ANALYTICAL APPROACH

The raw data of this research is historical costs and the planned number of
expeditionary units in each phase of the Optimized Fleet Response Plan. The raw data
contains programs other than EOD and funds other than Operations and Maintenance,

Navy (OMN). The data also includes granularity that is outside of the scope of this



research. The author therefore filters and summarizes the raw data to information relevant
to this report.

The raw data also marks some P/S/T pillar costs as “excluded” because they are
not representative of routine costs. All E pillar costs are marked as excluded because a
different method is used to predict them. This technical report considers all “included”
historical P/S/T costs. However, it also considers all E pillar costs, including the non-
routine ones. The inclusion of non-routine equipment costs, which are not explicitly
identified in the raw cost data, is a limitation in the analysis. The author inflates historical
costs to fiscal year (FY) 22 based on the approved Office of Secretary of Defense (OSD)
inflation factors where available and Consumer Price Index factors where OSD rates are
not available.

The author divides this raw data into training and testing data. It then further
divides both into data related to all EOD costs, BSO 60 P/T and S/E costs, and BSO 70
P/T and S/E costs. The author further wrangles this cost data into a combined data frame
with OFRP schedules—this is necessary for dynamic regression which uses exogeneous
variables like the number of units in each phase of the OFRP.

Using this raw data, the analysis creates numerous models within the broad
categories of exponential smoothing, ARIMA, and dynamic regression. It also uses top-
down and bottom-up hierarchical models based on ARIMA and exponential models. The
R programming package and Fable package are the main tools to create all these models.
The best model under each broad modeling category is determined based on MAE,
MAPE, MASE, and subjective judgment where necessary. These best models are then
forecasted two years into the future and compared to actual costs in a step comparable to

the POM process.



II. ANALYSIS

This section explores different forecasting methods across different aggregations
of cost data. The first sub-section relates to aggregated EOD costs and will include most
of the graphs and tables used in the analysis. Later sub-sections, however, will include
most of these items referenced appendixes. This report displays R code when appropriate.
A. AGGREGATED EOD COSTS

The author created the raw data in the following way. Note that the PE below is
the PE for EOD costs. The costs were filtered to those that are “included”—that is,
routine—or equipment costs. The APPN refers exclusively to the active-duty element.

Note that Tsibble is a special type of data frame used by the Fable package.

EOD_ALL <- ActualCosts_forecasting %>%
filter(PE == "0204424N",
APPN == "OMN",
FY >= 2017,
EXCLUDED_INCLUDED == "Included" | PILLAR == "E") %>%
group_by(fyMonth) %>%
summarise(totalCost = sum(inflatedCost)) %>%
select(fyMonth,totalCost) %>%
as_tsibble(index = fyMonth)

Figure 1: Aggregated Raw Data for All EOD

The next step is to attempt exponential smoothing models using the following
code in Figure 2. Note that the four primary types of exponential models are additive,
multiplicative, additive damped, and multiplicative damped. These models differ based
on error, trend, and season parameters. The parameters of the next four models are
determined automatically based on an algorithm within the Fable package. The difference
between the last four models is what the algorithm attempts to minimize: likelihood,

average mean squared error, mean squared error, and mean absolute error.

EOD_ExponentialFits <- EOD_ALL_Train %>%

model(Add = ETS(totalCost ~ error("A") + trend("A") + season("A")),
HWMult = ETS(totalCost ~ error("M") + trend("A") + season("M")),
Add_Damped = ETS(totalCost ~ error("A") + trend("Ad") + season("A")),
HWMult_Damped = ETS(totalCost ~ error("M") + trend("Ad") + season("M")),
ETSAuto_LIK = ETS(totalCost, opt_crit = "lik", ic = "aicc"),
ETSAuto_AMSE = ETS(totalCost, opt_crit = "amse", ic = "aicc"),
ETSAuto_MSE = ETS(totalCost, opt_crit = "mse", ic = "aicc"),
ETSAuto_MAE = ETS(totalCost, opt_crit = "mae"”, ic = "aicc"))

forecastEOD <- EOD_ExponentialFits %>%
forecast(h=24)

accuracy(forecastEOD,EOD_ALL) %>%

select(.model, .type,MAE,MAPE,MASE) %>%
arrange(MAPE)

Figure 2: Exponential Models for EOD



The result is that multiplicative damped and additive damped models are the best

models.

## # A tibble: 8 x 5

##
##
##
##
##
##
##
##
##
##

1
2
3
4
5
6
7
8

.model .type
<chr> <chr>

HWMult_Damped Test
Add_Damped Test
HWMult Test
Add Test

ETSAuto_LIK Test
ETSAuto_MAE Test
ETSAuto_MSE Test
ETSAuto_AMSE Test

MAE MAPE MASE

<dbl> <dbl>
4365339.
4890149.
4870673.
5465968.
5468214.
5468214.
5468214.
5712984.

44.6
45.6
49.4
51.1
70.7
70.7
70.7

73.4 0.

®© 0O ® 0O 0O O

<dbl>
.515
.577

574
645
645
645
645
674

Figure 3: Table of EOD Exponential Model Accuracy

The best model, multiplicative damped, looks like the following. Note that the

black line is actual costs and the blue line is forecasted costs.
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Figure 4: Graph of Best EOD Exponential Model
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The next category of models is ARIMA models. These models require data that

lacks trends and seasons. That is, the data must be “stationary.” Differencing and

seasonal differencing can make non-stationary data stationary. After differencing, the

data identifies the change from unit of time to the next unit of time, monthly in this case.

Seasonal differencing identifies the change across seasons, yearly in this case. Fable

contains a function that estimates the level of differencing required for the data to be

stationary. Graphs of autocorrelation (ACF) and partial autocorrelation (PACF) are also

useful because statistically significant ACF and PACF indicate that the data is not

stationary.



Based on unitroot ndiffs test in Fable, one differencing appears to be required for
this data. Based on ACF and PACF graphs, however, no differencing appears to be
required. Another stationary check will be conducted when the best model is identified.
The final model must pass this test to be legitimate.

Figure 5 illustrates the ACF and PACF graphs. There does not appear to be any
significant autocorrelation or partial autocorrelation. In addition, the charts do not
provide any clear guidance on the order of the autoregressive or moving average parts of
the ARIMA model. As a rule of thumb, a statistically significant ACF suggests the
autoregressive term in the ARIMA model, and a statistically significant PACF suggests a

weighted average term.
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Figure 5: ACF/PACF Graphs for EOD ARIMA Models

The following code in Figure 6 creates the ARIMA models. The sixth model
appears to be the best one.

EOD_ARIMAFits <- EOD_ALL_Train %>%
model(stepwiseARIMA = ARIMA(totalCost,ic = "aicc", stepwise = TRUE),

autoARIMA = ARIMA(totalCost, ic = "aicc",stepwise = FALSE, approximation = FALSE,),
ARIMA1 = ARIMA(totalCost ~ pdq(1,1,1) +PDQ(1,1,1)),

ARIMA2 = ARIMA(totalCost ~ pdq(1,0,1) + PDQ(®,0,1)),

ARIMA3 = ARIMA(totalCost ~ pdq(1,0,8) + PDQ(8,1,1)),

ARIMA4 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(1,1,0)),

ARIMAS = ARIMA(totalCost ~ pdq(1,1,8) + PDQ(1,1,0)),

ARIMA6 = ARIMA(totalCost ~ pdq(®,1,1) + PDQ(8,1,1)),

ARIMA7 = ARIMA(totalCost ~ pdq(1,1,8) + PDQ(8,1,1)),

ARIMAS = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(®,1,1)),

ARIMA9 = ARIMA(totalCost ~ pdq(1,0,1) + PDQ(®,1,1)),

ARIMA1@ = ARIMA(totalCost ~ pdq(1,1,1)),

ARIMA11 = ARIMA(totalCost ~ pdq(®,1,1)))

ARIMAforecastEOD <- EOD_ARIMAFits %>%
forecast(h=24)

accuracy (ARIMAforecastEOD,EOD_ALL) %>%

select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

Figure 6: ARIMA Models for EOD



The accuracy of each ARIMA model are displayed in Figure 7.

Figure 8 illustrates what the best model looks like.
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## # A tibble: 13 x 5

## .model
## <chr>

## 1 ARIMA6
## 2 ARIMA3
## 3 ARIMAlL
## 4 ARIMA4

.type
<chr>
Test
Test
Test
Test

MAE MAPE
<dbl> <dbl>
3948069. 33.0
3986458. 33.3
4926561. 42.9
5212748. 44.9

MASE
<dbl>
0.466
0.470
0.581
0.615

Figure 7: Table of EOD Arima Model Accuracy
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Figure 8: Graph of Best EOD ARIMA Model

Figure 9 provides the parameters of the best models.

##
##
##
#H#
##
##
#H#
##
##
HH#

Series: totalCost
Model: ARIMA(®,1,1)(0,1,1)[12]

Coefficients:
mal

-1.0000 -

s.e. 0.1174

sigma”2 estimated as 9.638e+13:

smal
0.5494
0.3898

AIC=1238.66  AICc=1239.43

log likelihood=-616.33
BIC=1243.33

Figure 9: Parameters for Best EOD ARIMA Model

The best model passes the Ljung-Box test, meaning that autocorrelation does not

invalidate the model. The residuals displayed in Figure 10 also appear sufficiently

normal.
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Figure 10: Residuals of Best EOD ARIMA Model

The final type of forecasting model is dynamic regression. In addition to the

month and total cost, the raw data divides units across the maintenance, preparation, and

readiness stages. Note that unit counts in these phases are the planned amount and not the

actual—a certain amount of noise is, therefore, included in these numbers.

Dynamic regression includes relevant information other than past cost values and

assumes that errors follow an ARIMA model. It requires that all the models in the

variable be stationary. Unfortunately for ease of interpretation, this is not the case for any

of the exogenous variables—they all fail the Ljung-Box test, some by massive amounts.

After differencing the exogeneous variables, they are now sufficiently stationary. Figure

11 provides what the data frame looks like after one differencing. After differencing the

exogeneous variables, they are now sufficiently stationary.

## # A tsibble: 6 x 5 [1M]

##
##
##
##
##
##
H#
##

o Vb wN R

fyMonth maintenence preparation readiness totalCost
<mth>

2018
2018
2018
2018
2018
2018

Feb
Mar
Apr
May
Jun
Jul

<int>

'
NN® VNN

<int>

<int>
2

' '
a0 N W

<dbl>
21834786.
12796587.
24234735.
13780909.
21705880.
12828784.

Figure 11: Table of Raw EOD Data for Dynamic Regression

Figure 12 shows a few models. The analysis includes models with lagged values

for readiness because the cost of “expending readiness” in deployments may not appear

until sometime after the deployment and sustainment phases, which is referred to as



“readiness” in the author’s model. The analysis also includes models that force the

inclusion of pre-determined ARIMA errors.

EOD_AdvancedARIMA_Fit <- EOD_ALL_Train_DR %>%
model(advancedARIMA1 = ARIMA(totalCost ~ © + diff(maintenence,differences = 1) + diff(readiness,differences = 1)),
advancedARIMA2 ARIMA(totalCost ~ © + maintenence + preparation),
advancedARIMA3 = ARIMA(totalCost ~ @ + preparation + readiness),
advancedARIMA_maint = ARIMA(totalCost ~ © + maintenence),
advancedARIMA_read = ARIMA(totalCost ~ @ + readiness),
advancedARIMA_prep = ARIMA(totalCost ~ © + preparation),
advancedARIMA1_lag = ARIMA(totalCost ~ @ + maintenence + lag(readiness,6)),
= +

advancedARIMA3_lag = ARIMA(totalCost ~ @
advancedARIMA_read_lag = ARIMA(totalCost

preparation + lag(readiness,6)),
© + lag(readiness,6)),

advancedARIMA_miscl = ARIMA(totalCost ~ © + pdq(1,0,0) + readiness),
advancedARIMA_misc2 = ARIMA(totalCost ~ © + pdq(1,0,0) + preparation + readiness),
advancedARIMA_misc3 = ARIMA(totalCost ~ © + pdq(1,1,0) + readiness),
advancedARIMA_misc3 = ARIMA(totalCost ~ © + pdq(1,1,0) + preparation + readiness))

EOD_AdvancedARIMA_Forecast <- EOD_AdvancedARIMA_Fit %>%
forecast(new_data = EOD_ALL_Test_DR,h = 24)

accuracy (EOD_AdvancedARIMA_Forecast,advancedARIMA_EOD) %>%
select(.model,MAE,MAPE,MASE) %>%
arrange (MAPE) %>%
head(5)

Figure 12: Dynamic Regression Models for EOD
The best model appears to be “advancedARIMA1 lag” based on Figure 13..

## # A tibble: 5 x 4

## .model MAE MAPE MASE
##  <chr> <dbl> <dbl> <dbl>
## advancedARIMA1l_lag 3707525. 41.1 0.400

1
## 2 advancedARIMA2 6014538. 45.5 0.649
## 3 advancedARIMA_maint 6241311. 47.2 0.673
## 4 advancedARIMA_prep 6115395. 47.8 0.660
## 5 advancedARIMA_read 6152107. 48.7 0.664

Figure 13: Table of EOD Dynamic Regression Model Accuracy

Figure 14 depicts what the best model looks like. The analysis includes the

confidence levels to show that the confidence level expands dramatically with time.
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Figure 14: Graph of Best EOD Dynamic Regression Model

The parameters of the best model are given in Figure 15.



## Series: totalCost

## Model: LM w/ ARIMA(1,1,0) errors
##

## Coefficients:

## arl maintenence lag(readiness, 6)
## -0.6172 -570391.1 87377.94
## s.e. 0.1544 311444.2 152213.58

##
## sigma”2 estimated as 8.995e+13: log likelihood=-438.76
## AIC=885.52 AICc=887.06 BIC=891.25

Figure 15: Parameters for Best EOD Dynamic Regression Model
The residuals are represented in the graphs in Figure 16. The tail of the
distribution is larger than residuals produced by other models, indicating that this method
is not the best model.
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Figure 16: Residuals for Best EOD Dynamic Regression Model

In conclusion, several models provide strong modeling potential. ARIMAG,
however, appears to be the best based on its simplicity and accuracy. Surprisingly, while
calling for an ARIMA model, the result is simple exponential smoothing model with a

seasonal element.

B. BSO 60: P/T PILLARS

After exploration of forecasts for overall expenditure, the next step is to take a
step down in the hierarchy: where the BSO is 60 and the pillars are P/T. This is the first
section where most of the figures, graphs, and tables will be included in the appendix.

The data was wrangled in a similar fashion as overall costs.



A large outlier of -$6,180,000 is included in this dataframe. The List Item (LI) of
1C6C indicates that it relates to “Combat Support Forces,” and the pillar is T. Because
this cost is marked as “included,” the author left it in the analysis. A large negative value
under the T-pillar is likely due to recoupment of funds previously obligated to a training
contract.

The first category of the model is exponential. Appendix-Al is a list of several
models and their accuracy. The best model is Additive damped. The MASE for the best
model, however, is over 1. This indicates that the naive model outperforms the proposed
models. Although this is typically an indication of poor model quality, the large outlier
may be distorting accuracy calculations.

The graph of this best model is presented in Figure 17. Apart from the large
outlier, it appears to be a better model than the accuracy models suggest. The residuals,

shown in Appendix-A2, appear to be skewed right.
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Figure 17: Graph of Best BSO60 (P/T) Exponential Model

The next broad model category is ARIMA. No differencing appears to be
required based on the unitroot ndiffs test. The ACF and PACF charts shown in
Appendix-A3, however, show a less clear picture. The ACF and PACF suggest a possible
bi-yearly seasonality rather than a yearly one.

Appendix-A4 contains the tested ARIMA models. The second model appears to
be the best one. However, the MASE is still above one.
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The best ARIMA model is seen in Figure 18.
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Figure 18: Graph of Best BSO60 (P/T) ARIMA Model

Its specific parameters are illustrated in Appendix-AS. This model passes the
Ljung Box Test. In addition, the residuals appear to be reasonably normal but contain two
outliers.

The final type of forecasting model is dynamic regression. Appendix-A6 contains
several models and their testing accuracy. The “advancedARIMA_Read” is the best
model. The graph of the model is in Appendix-A7 for readability. It appears to possess
poor quality.

In conclusion, the best model appears to be exponential smoothing, although the
accuracy measures for this model are still poor.

C. BSO 60: S/E PILLARS

The author wrangled this data frame in the same manner as before with one
exception: A missing row was added because zero dollars appear to be spent on S/E in
one month: Oct, 2018.

The first category is exponential. Appendix-A8 contains the modelling attempts
and accuracy measures. The best model appears to be the multiplicative one.

This graph of this exponential model is in Figure 19. The residuals appear to be

reasonable as illustrated in Appendix-A9.
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Figure 19: Graph of Best BSO60 (S/E) Exponential Model

The next model is the ARIMA model. No differencing seems to be required based
on the unitroot ndiffs test, but the ACF and PACF graphs in Appendix-A10 appear to
indicate that autocorrelation may be a problem.

Appendix-Al1 contains the ARIMA modeling attempts and their accuracy

measures. The best model is in Figure 20.
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Figure 20: Graph of Best BSO60 (S/E) ARIMA Model
The parameters of this model are in Appendix-A12. The best model passes the
Ljung Box test, but only barely with an alpha of 0.05. This is an indication that this is not
an appropriate model. The residuals are in Appendix-A13.
The final forecasting model is dynamic regression. Appendix-A14 contains the

modeling attempts and their accuracy measures. The predictive power of these model
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categories appears to be comparable to other attempts. In addition, the measures of
accuracy point to different models as the best one. The author subjectively chose
advancedARIMA3 as the best model.

The graph of this model is in Figure 21. The parameters of the best model are
contained in Appendix-AlS.
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Figure 21: Graph of Best BSO60 (S/E) Dynamic Regression Model

Based on Appendix-A16, the residuals appear to be skewed right.

In conclusion, the exponential model appears to be the best model. However, the
unusual shape of these execution costs create difficulty in predicting these costs.

D. BSO 70: P/T PILLARS

The author wrangled the data for this level of aggregation like before.

The first modeling attempt is exponential. Appendix-A17 contains several
modeling attempts and their accuracy measures. The best model appears to be
multiplicative.

The graph of the best exponential model according to accuracy measures is
contained in Appendix-A18. It does not track the data well. Based on a subjective
assessment, however, the second-best model, additive damped, is superior. It is graphed
in Figure 22. Interestingly, both the best and second-best models tend to underestimate

actual costs.

13



$10M -
$5M -

$0-

2018 Jan 2020 Jan 2022 Jan
Date

Figure 22: Graph of Best BSO70 (P/T) Exponential Model

The residuals of this model appear to be skewed left as shown in Appendix-A19.

The next set of models is ARIMA. No differencing appears to be required as
shown by the unitroot ndiffs test. The ACF and PACF graphs, contained in Appendix-
A20, show the same thing.

Appendix-A21 shows several attempts at models their accuracy measures. The
best model appears to be the sixth one, although the accuracy measures point to different
models as the best. The graph of this model is shown in Appendix-A22. It does not fit the
data well. The parameters of this model are in Appendix-A23.

The best model passes the Ljung Box test. Appendix-A24 shows the residuals of
the model. It appears sufficiently normal but contains several large outliers.

The final model type is dynamic regression. Appendix-A25 shows several
attempts at models and their accuracy measures. The best model appears to be
advancedARIMA1 lag.

The model is displayed in Figure 23. It does not fit the data well but may be the

best model for this level of aggregation in cost data.
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Dynamic Regression Model for EOD
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Figure 23: Graph of Best BSO70 (P/T) Dynamic Regression Model

The parameters of the models are in Appendix-A26. It contains one seasonal
regression term as an error and two coefficients for maintenance and lagged readiness.
Appendix-A27 contains the residuals—they appear reasonably normal. It also passes the
Ljung Box Test.

In conclusion, the best model appears to be dynamic regression.

E. BSO 70: S/E PILLARS

The author wrangled the data for this level of aggregation like before.

The first modeling category is exponential. Appendix-A28 contains several
modeling attempts and their accuracy measures. The graph of this best model looks like
the multiplicative model and additive model (Figure 24). The author chose the additive

model as the best one because it does not consistently overestimate actual costs.
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Figure 24: Graph of Best BSO70 (S/E) Exponential Model

The residuals appear to be normal based on Appendix-A29. It may be the most
normal distribution yet.

The next model type is ARIMA. One differencing appears to be required to force
the model to be stationary. The ACF and PACEF plots contained in Appendix-A30 appear
to be less clear, however. Appendix-A31 contains several ARIMA modeling attempts and
their accuracy measures.

The best model appears to be the fifth one and is graphed in Figure 25.
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Figure 25: Graph of Best BSO70 (S/E) ARIMA Model

The parameters are in Appendix-A32. It passes the Ljung Box Test. The residuals,

as shown in Appendix-A33, appear to be excessively flat.
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The final type of model is dynamic regression. Appendix-A34 contains several
dynamic regression modeling attempts and their accuracy measures. The best model

appears to be the first one (Figure 26).
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Figure 26: Graph of Best BSO70 (S/E) Dynamic Regression Model

This model consistently underestimates actual cost. The parameters of the best
model are in Appendix-A34. The residuals are contained in Appendix-A35.

In conclusion, the best model appears to be the ARIMA model for this level of
cost aggregation.
F. HIEARCHICAL METHODS

Hierarchical methods are useful because they are quick and automated. The
algorithm, however, does not allow the inclusion of exogeneous variables. The author
creates a training and test set as before, and then creates hierarchical exponential
smoothing as well as hierarchical ARIMA models. There is only one method to
determine the bottom-up forecasts. The top-town method contains four separate methods
based on different estimation criteria.

For the sake of exploration, the following are the disaggregated costs across

pillars and BSOs. No obvious pattern emerges as shown in Figure 27.
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Exploratory Analysis: BSO by PT/SE
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Figure 27: Graph of Hierarchical Data Exploration

Appendix-A36 contains hierarchical exponential models, and Appendices-A37
and A38 contain the accuracy from aggregated and disaggregated perspectives.
Appendix-A39 shows their aggregated forecast. Their forecasts are in Figure 28. Some of
the automated forecasts for BSO 60 and P/T pillar do well. The other models do not

appear to be accurate.

PT SE

$20M -

$10M -
= 3 .model
$0- autoBu

autoMint

A autoOLS

/\/ autoTopDown_AProps

autoTopDown_FProps

09

$20M -

base

$10M -

0L

2018 Jan 2020 Jan 2022 Jan 2018 Jan 2020 Jan 2022 Jan
Date

Figure 28: Graph of Hierarchical Exponential Models

The next hierarchical method is ARIMA methods. The author chose one model

based on the best ARIMA model for overall costs. The second model is an automatically
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determined model. Appendix-A40 contains exponential models and their forecasts below
and Appendix-A41 and A42 contains their accuracy measures. The graphs of the
disaggregated forecasts are in Figure 29, and Appendix-A43 shows the aggregated

forecasts.
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Figure 29: Graph of Hierarchical ARIMA Models

In general, hierarchical ARIMA models appear to perform better than exponential

models. However, only one aggregated and two disaggregated forecasts perform well.
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III. RESULTS AND CONCLUSION

A. VALIDATING SHIP COUNT

The following is what the summary of the best-of-category model performances

relative to the test set two years into the future. Notice that the best model performances

are very strong while other areas are very poor (Figure 30).

Cost Set__Model Type Model MAE MAPE MASE Predicted Cost Delta (Predicted - Actual) Delta Percent
EOD i ETS(totalCost ~ error("M") + trend("Ad") + season("M") 4365339.00) 44.57 0,51 $173,445,896.00] 46,134,806.00 36%]
EOD ARIMA ost ~ pda(0,1,1) + PDQ(0,1,1) 3948069.00 33.01 0.47| $114,130,211.00[ § (13,180,879.00) -10%|
EOD Dynamic ost~ 0+ + 6)) 3707525.00 41.09 0.40| $148,243,588.00| $ 20,932,498.00 16%)
EOD60_PT i Add_Damped = ETS|totalCost  error("A") + trend("Ad") + season("A")) 1898313.00 65.49 1.09|  $43,999,300.00| § 2,248,869.00 5%|
EOD60_PT |ARIMA |ARIMAtotalCost ~ pda(1,0,1) + PDQ(0,0,1)) 1895014.00 75.90 1.08]  $40,447,816.00| § (1,302,615.00) -3%|
EOD60_PT |Dynamic |ARIMAtotalCost ~ 0 + readiness) 2408705.00 63.88 138  $17,238,442.00| § (24,511,989.00) -59%|
EOD60_SE i ETS(totalCost ~ error("M") + trend("A") + season("M")) 1248080.00 74.22 038 $26,912,125.00[ $ 8,749,408.00 8%
EOD60_SE |ARIMA |ARIMA(totalCost ~ pda(1,1,1) +PDQ(1,1,1)) 1670622.00 95.34 051 $24,646,669.00[ $ 6,483,952.00 36%|
EOD60_SE |Dynamic |ARIMA(totalCost ~ 0 + readiness) 1768410.00 70.21 0.57|  $7,803,036.00[ $ (10,359,681.00) -57%|
EOD70_PT i Add_Damped = ETS(totalCost ~ error("A") + trend("Ad") + season("A")) 2167099.00] 77.63 0.78 $26,862,215.00| § (5,898,138.00) -18%|
EOD70_PT |ARIMA |ARIMAtotalCost ~ pda(0,1,1) + PDQ(0,1,1)) 2063416.00 86.96 0.74]  $18,621,928.00[ $ (14,138,425.00) -43%)
EOD70_PT |Dynamic advancedARIMA1_lag = ARIMA(totalCost ~ 0 + mai + 6)) 1910743.00 81.21 0.68|  $18,209,107.00| $ (14,551,246.00) -44%|
EOD70_SE i ETS(totalCost ™ error("A") + trend("A") + season("A")) 3179989.00 118.71 0.53|  $31,886,067.00] $ (2,751,522.00) -8%|
EOD70_SE |ARIMA |ARIMA(totalCost ~ pda(1,1,0) + PDQ(1,1,0)) 2713753.00 117.18 0.45] $26,640,458.00[ $ (7,997,131.00) -23%)
E0D70_SE [Dynamic |ARIMAtotalCost ~ 0 + maintenence + readiness) 3118256.00 85.85 052[  $3,057,353.00[$ (31,580,236.00) -91%|

Figure 30: Summary of Standard Model Performances

The “autoMint” method appears to be the best method for hierarchical

Exponential models and the “average proportions” method appears to be the best method

for the hierarchical ARIMA model. Surprisingly this is true for the best aggregated

prediction and best disaggregated predictions. The ARIMA models tend to be the better

of the two sets of hierarchical models. The best and worst models are exponential ones: a

delta of 1 percent and 199 percent as shown in Figure 30.

Cost Set__Model Type Model MAE MAPE MASE Predicted Cost Delta (Predicted - Actual) Delta Percent
EOD i [autoMint 0.65[ $ 206,942,682.00 | § 79,631,592.00 63%]
EOD ARIMA top_down(ARIMAL,method = "average_proportions") 0.47/'$ 114,130,212.00 | § (13,180,878.00), -10%]
EOD60_PT S 42,250,077.00 | $ 499,646.00 1%|
EOD60_PT [ARIMA S 24,196,661.00 | $ (17,553,770.00), -42%)
EOD70_PT i $ 39,147,347.00 | $ 6,386,994.00 19%|
EOD70_PT |ARIMA $ 27,439,533.00 [ $ (5,320,820.00) -16%)
EOD60_SE $ 54,304,707.00 | $ 36,141,990.00 199%]
Fonsujs ARIMA $ 26,070,557.00 | $ 7,907,840.00 44%|
EOD70_SE i $ 71,240,551.00 | $ 36,602,962.00 106%]
[EoD70_SE [ARIMA S 36,423,460.00 | § 1,785,871.00 5%

Figure 31: Summary of Hierarchical Model Performances

Using the summary information above in Figure 31, traditional forecasting

techniques appear to do well at forecasting FY22 costs for Aggregated EOD, EOD60 PT
projections, and EOD70 SE. However, it does poorly with EOD60 SE and EOD70 PT.

Overall, the additional work to create unique models at a disaggregated level appears to

be worth the additional time to produce them.

20



IV.  RECOMMENDATIONS FOR FUTURE WORK

The following are some recommendations for future work.
A. CREATE ADDITIONAL TRAINING AND TEST SETS

Create multiple training and testing splits to verify that the best models for one
training/test split are consistently the best across the other splits. Future analysis, for
example, can apply the models that are currently the best to predict FY23 costs. The
training and testing split would be Oct 2021 rather than Oct 2020.
B. EXPLORE RELEVANCE OF MONTHLY ACCURACY MEASURES

Explore what accuracy metrics are the most meaningful in predicting yearly
accuracy. Based on quick analysis of correlation between monthly testing accuracy and
absolute values of percent deltas for FY22, MAE possesses the strongest negative
correlation while MAPE has a weak positive one—a positive correlation indicates that
MAPE may not be a meaningful measure if the goal is to predict yearly costs.
C. IDENTIFY AND REMOVE OUTLIERS

Work with sponsor to determine what outlier costs can be excluded from analysis
of routine costs. The presence of extreme values (e.g., a monthly expenditure of -$6M)
distorts budget accuracy.
D. FUTHER EXPLORE LEVELS OF AGGREATION

Further explore the appropriate level of aggregation to create accurate forecasts
and apply forecasting techniques to other programs. The next step would be to create a

forecast for each BSO or a budget for each division of the BSO budget besides pillars.
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A.

V. APPENDICES

GRAPHS AND TABLES
1. BS060 (P/T) Exponential Models and Accuracy

EOD_60PT_ExponentialFits <- EOD6@_PT_Train %>%
model(Add = ETS(totalCost ~ error("A") + trend("A") + season("A")),

HWMult = ETS(totalCost ~ error("M") + trend("A") + season("M")),
Add_Damped = ETS(totalCost ~ error("A") + trend("Ad") + season("A")),
HWMult_Damped = ETS(totalCost ~ error("M") + trend("Ad") + season("M")),
ETSAuto_LIK = ETS(totalCost, opt_crit = "1lik", ic = "aicc"),
ETSAuto_AMSE = ETS(totalCost, opt_crit = "amse", ic = "aicc"),
ETSAuto_MSE = ETS(totalCost, opt_crit = "mse", ic = "aicc"),

ETSAuto_MAE = ETS(totalCost, opt_crit = "mae", ic = "aicc"))

forecastEOD_60OPT <- EOD_6OPT_ExponentialFits %>%
forecast(h=24)

accuracy(forecastEOD_60PT,EOD60_PT) %>%
select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble: 8 x 5

##
##
##
##
##
##
##
##
##
##

Innovation residuals

I
4e+06  6e+06

.model .type MAE MAPE MASE

<chr> <chr> <dbl> <dbl> <dbl>
1 Add_Damped Test 1898313. 65.5 1.09
2 ETSAuto_MAE Test 1948885. 65.6 1.12
3 HWMult_Damped Test 1875451. 66.8 1.07
4 HWMult Test 2004874. 71.6 1.15
5 Add Test 2015117. 79.0 1.15
6 ETSAuto_LIK Test 1956773. 79.4 1.12
7 ETSAuto_AMSE Test 1956773. 79.4 1.12
8 ETSAuto_MSE Test 1956773. 79.4 1.12

2. Residuals for Best BSO60 (P/T) Exponential Model
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3. ACF/PACF Charts for BSO60 (P/T)
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4. BS060 (P/T) ARIMA Models and Accuracy
EOD6@_PT_ARIMAFits <- EOD6@_PT_Train %>%
model (stepwiseARIMA = ARIMA(totalCost,ic = "aicc", stepwise = TRUE),
autoARIMA = ARIMA(totalCost, ic = "aicc",stepwise = FALSE, approximation = FALSE,),

ARIMA1 = ARIMA(totalCost ~ pdq(1,1,1) +PDQ(1,1,1)),
ARIMA2 = ARIMA(totalCost ~ pdq(1,8,1) + PDQ(®,0,1)),
ARIMA3 = ARIMA(totalCost ~ pdq(1,8,0) + PDQ(®,1,1)),
ARIMA4 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(1,1,0)),
ARIMAS = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(1,1,0)),
ARIMA6 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(®,1,1)),
ARIMA7 = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(®,1,1)),
ARIMA8 = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(®,1,1)),
ARIMA9 = ARIMA(totalCost ~ pdq(1,8,1) + PDQ(®,1,1)))

ARIMAforecastEOD6@_PT <- EOD6O_PT_ARIMAFits %>%
forecast(h=24)

accuracy (ARIMAforecastEOD6@_PT,EOD6@_PT) %>%
select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble:

##
##
##
##H
##
##
##
##
##
##
##
## 10
## 11

VW 00NV A WN R

11 x 5
.model .type MAE MAPE MASE
<chr> <chr> <dbl> <dbl> <dbl>
ARIMA2 Test 1895014. 75.9 1.08
autoARIMA Test 1902271. 76.2 1.09
stepwiseARIMA Test 1902271. 76.2 1.09
ARIMAS Test 2170804. 78.7 1.24
ARIMA3 Test 2142456. 79.3 1.23
ARIMA7 Test 2186053. 79.3 1.25
ARIMA8 Test 2186053. 79.3 1.25
ARIMAS Test 2411719. 84.3 1.38
ARIMA1 Test 2188521. 85.0 1.25
ARIMA6 Test 2252307. 90.7 1.29
ARIMA4 Test 2406013. 96.8 1.38
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5. Parameters for Best BSO60 (P/T) ARIMA Model

## Series: totalCost
## Model: ARIMA(1,0,1)(0,0,1)[12] w/ mean

##

## Coefficients:

## arl mal smal constant
## -0.3271 0.4347 0.6287 4471426.5

## s.e. 0.6243 0.5819 0.2404 612050.5

6. BSO60 (P/T) Dynamic Regression Models and Accuracy

EOD66_PT_AdvancedARIMA_Fit <- EOD6@_PT_Train_DR %>%

model (advancedARIMA1l = ARIMA(totalCost ~ © + maintenence + readiness),
advancedARIMA2 = ARIMA(totalCost ~ © + maintenence + preparation),
advancedARIMA3 = ARIMA(totalCost ~ @ + preparation + readiness),
advancedARIMA_maint = ARIMA(totalCost ~ © + maintenence),
advancedARIMA_read = ARIMA(totalCost ~ @ + readiness),
advancedARIMA_prep = ARIMA(totalCost ~ @ + preparation),
advancedARIMA1_lag = ARIMA(totalCost ~ © + maintenence + lag(readiness,6)),
advancedARIMA3_lag = ARIMA(totalCost ~ © + preparation + lag(readiness,6)),
advancedARIMA_read_lag = ARIMA(totalCost ~ © + lag(readiness,6)),
advancedARIMA_miscl = ARIMA(totalCost ~ © + pdq(1,0,1) + readiness),
advancedARIMA_misc2 = ARIMA(totalCost ~ © + pdq(1,0,1) + preparation + readiness))

EOD60_PT_AdvancedARIMA_Forecast <- EOD6@_PT_AdvancedARIMA_Fit %>%
forecast(new_data = EOD6@_PT_Test_DR)

accuracy(EOD60_PT_AdvancedARIMA_Forecast,advancedARIMA_EOD60_PT) %>%
select(.model,MAE,MAPE,MASE) %>%
arrange(MAPE) %>%
head(5)

## # A tibble: 5 x 4

##  .model MAE MAPE MASE
##  <chr> <dbl> <dbl> <dbl>
## 1 advancedARIMA_read 2408705. 63.9 1.38
## 2 advancedARIMA_read_lag 2424229. 64.1 1.39
## 3 advancedARIMA3 2410710. 64.5 1.38
## 4 advancedARIMA3_lag 2429806. 64.7 1.39
## 5 advancedARIMA_prep 2411010. 64.8 1.38

7. Graph of Best Dynamic Regression Model for BSO60 (P/T)
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8. BS060 (S/E) Exponential Models and Accuracy

EOD_6OSE_ExponentialFits <- EOD6@_SE_Train %>%

model(Add = ETS(totalCost ~ error("A") + trend("A") + season("A")),
HWMult = ETS(totalCost ~ error("M") + trend("A") + season("M")),
Add_Damped = ETS(totalCost ~ error("A") + trend("Ad") + season("A")),
HWMult_Damped = ETS(totalCost ~ error("M") + trend("Ad") + season("M")),
ETSAuto_LIK = ETS(totalCost, opt_crit = "lik", ic = "aicc"),
ETSAuto_AMSE = ETS(totalCost, opt_crit = "amse", ic = "aicc"),
ETSAuto_MSE = ETS(totalCost, opt_crit = "mse", ic = "aicc"),
ETSAuto_MAE = ETS(totalCost, opt_crit = "mae", ic = "aicc"))

forecastEOD_60SE <- EOD_6OSE_ExponentialFits %>%
forecast(h=24)

accuracy(forecastEOD_60OSE,EOD60_SE) %>%

select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble: 8 x 5

#i#t .model .type MAE MAPE MASE
##  <chr> <chr> <dbl> <dbl> <dbl>
## 1 HWMult Test 1248080. 74.2 0.405
## 2 HWMult_Damped Test 1603638. 109. 0.521
## 3 Add Test 2235040. 232. 0.726
## 4 Add_Damped Test 2211214. 235. 0.718
## 5 ETSAuto_MAE  Test 2574530. 281. 0.836
## 6 ETSAuto_LIK Test 2892127. 327. 0.939
## 7 ETSAuto_AMSE Test 2892127. 327. 0.939
## 8 ETSAuto_MSE  Test 2892127. 327. 0.939
9. Residuals for Best BSO60 (S/E) Exponential Model
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10.  ACF/PACF Charts for BSO60 (S/E)
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11. BSO60 (S/E) ARIMA Models and Accuracy

EOD60_SE_ARIMAFits <- EOD60@_SE_Train %>%
model(stepwiseARIMA = ARIMA(totalCost,ic = "aicc", stepwise = TRUE),

autoARIMA = ARIMA(totalCost, ic = "aicc",stepwise = FALSE, approximation = FALSE,),
ARIMA1 = ARIMA(totalCost ~ pdq(1,1,1) +PDQ(1,1,1)),
ARIMA2 = ARIMA(totalCost ~ pdq(1,0,1) + PDQ(9,0,1)),
ARIMA3 = ARIMA(totalCost ~ pdq(1,0,0) + PDQ(©,1,1)),
ARIMA4 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(1,1,0)),
ARIMAS = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(1,1,0)),
ARIMA6 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(8,1,1)),
ARIMA7 = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(9,1,1)),
ARIMA8 = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(©,1,1)),
ARIMA9 = ARIMA(totalCost ~ pdq(1,0,1) + PDQ(@,1,1)),
ARIMA1@ = ARIMA(totalCost ~ pdq(1,1,1)),
ARIMA11 = ARIMA(totalCost ~ pdq(@,1,1)))

ARIMAforecastEOD6@_SE <- EOD6@_SE_ARIMAFits %>%
forecast(h=24)

accuracy (ARIMAforecastEOD6@_SE,EOD6O_SE) %>%
select(.model, .type,MAE ,MAPE,MASE) %>%
arrange(MAPE) %>%
head(5)

## # A tibble: 5 x 5
## .model .type MAE MAPE MASE
##  <chr> <chr> <dbl> <dbl> <dbl>

## 1 ARIMAL1 Test 1670622. 95.3 0.542
## 2 ARIMA6 Test 1595294. 104. 0.518
## 3 ARIMA4 Test 1761455. 114. 0.572
## 4 ARIMA3 Test 2145640. 163. 0.697
## 5 ARIMA9 Test 2317075. 198. 0.752
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##
##

##

Innovation residuals

acf

12.

Series: totalCost
Model: ARIMA(®,1,1)(@,1,1)[12]

Coefficients:
mal smal
-0.9994 -0.3651
s.e. 0.2929 0.2586

sigma”2 estimated as 1.619e+13:

AIC=1173.54 AICc=1174.31 BIC=1178.2

13.
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log likelihood=-583.77

Residuals for Best BSO60 (S/E) ARIMA Model
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14. BSO60 (S/E) Dynamic Regression Models and Accuracy

EOD60_SE_AdvancedARIMA_Fit <- EOD6@_SE_Train_DR %>%

model(advancedARIMAL1 = ARIMA(totalCost ~ @ + maintenence + readiness),
advancedARIMA2 = ARIMA(totalCost ~ @ + maintenence + preparation),
advancedARIMA3 = ARIMA(totalCost ~ @ + preparation + readiness),
advancedARIMA_maint = ARIMA(totalCost ~ @ + maintenence),
advancedARIMA_read = ARIMA(totalCost ~ © + readiness),
advancedARIMA_prep = ARIMA(totalCost ~ © + preparation),
advancedARIMA1_lag = ARIMA(totalCost ~ © + maintenence + lag(readiness,6)),
advancedARIMA3_lag = ARIMA(totalCost ~ @ + preparation + lag(readiness,6)),
advancedARIMA_read_lag = ARIMA(totalCost ~ @ + lag(readiness,6)))

EOD60_SE_AdvancedARIMA_Forecast <- EOD60_SE_AdvancedARIMA_Fit %>%
forecast(new_data = EOD6O_SE_Test_DR)

accuracy (EOD6@_SE_AdvancedARIMA_Forecast,advancedARIMA_EOD6@_SE) %>%

select(.model,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble: 9 x 4

H## .model MAE MAPE MASE
##  <chr> <dbl> <dbl> <dbl>
## 1 advancedARIMA_read 1768410. 70.2 0.574
## 2 advancedARIMA3 1767217. 75.7 0.574
## 3 advancedARIMA3_lag 1807855. 79.3 0.587
## 4 advancedARIMA_read_lag 1724989. 87.7 0.560
## 5 advancedARIMA2 1903299. 97.6 0.618
## 6 advancedARIMA1_lag 1896616. 98.6 0.616
## 7 advancedARIMA_maint 1910553. 98.9 0.620
## 8 advancedARIMA1 1908744. 99.0 0.620
## 9 advancedARIMA_prep 2085062. 107. 0.677

15. Parameters of Best BSO60 (S/E) Dynamic Regression Model

## Series: totalCost
## Model: LM w/ ARIMA(3,0,0)(1,0,0)[12] errors

#it

## Coefficients:

## arl ar2 ar3 sarl preparation readiness
H#H# 0.1341 0.1952 ©0.3284 0.4288 -74580.33 75774.16
## s.e. 0.1763 0.1427 0.1472 0.2131 119373.81 106276.27
H#H#

## sigma”2 estimated as 1.32e+13: log likelihood=-795.72
## AIC=1605.45 AICc=1607.78 BIC=1619.62
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16. Residuals for Best BSO60 (S/E) Dynamic Regression Model
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17. BSO70 (P/T) Exponential Model and Accuracy

EOD_70PT_ExponentialFits <- EOD70_PT_Train %>%

model(Add = ETS(totalCost ~ error("A") + trend("A") + season("A")),
HWMult = ETS(totalCost ~ error("M") + trend("A") + season("M")),
Add_Damped = ETS(totalCost ~ error("A") + trend("Ad") + season("A")),
HWMult_Damped = ETS(totalCost ~ error("M") + trend("Ad") + season("M")),
ETSAuto_LIK = ETS(totalCost, opt_crit = "1lik", ic = "aicc"),
ETSAuto_AMSE = ETS(totalCost, opt_crit = "amse", ic = "aicc"),
ETSAuto_MSE = ETS(totalCost, opt_crit = "mse", ic = "aicc"),
ETSAuto_MAE = ETS(totalCost, opt_crit = "mae", ic = "aicc"))

forecastEOD_70PT <- EOD_70PT_ExponentialFits %>%
forecast(h=24)

accuracy(forecastEOD_70PT,EOD70_PT) %>%

select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble: 8 x 5

## .model .type MAE MAPE MASE
##  <chr> <chr> <dbl> <dbl> <dbl>
## 1 HWMult Test 1899789. 67.3 0.680
## 2 Add_Damped Test 2167099. 77.6 0.775
## 3 HWMult_Damped Test 1983863. 85.7 0.710
## 4 ETSAuto_MAE Test 1739338. 93.1 0.622
## 5 ETSAuto_MSE  Test 1777922. 97.4 0.636
## 6 ETSAuto_LIK Test 1777922. 97.4 0.636
## 7 ETSAuto_AMSE Test 1837039. 103. 0.657
## 8 Add Test 2881601. 104. 1.03
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18. Graph of Best Exponential Model for BSO70 (P/T)
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20.
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21.

EOD76_PT_ARIMAFits <- EOD7@_PT_Train %>%

model(stepwiseARIMA = ARIMA(totalCost,ic = "aicc", stepwise
FALSE, approximation = FALSE,),

autoARIMA = ARIMA(totalCost, ic = "aicc"

,stepwise =

ARIMA1 = ARIMA(totalCost ~ pdq(1,1,1) +PDQ(1,1,1)),

ARIMA2 = ARIMA(totalCost ~ pdq(1,08,1) +
ARIMA3 = ARIMA(totalCost ~ pdq(1,0,0) +
ARIMA4 = ARIMA(totalCost ~ pdq(@,1,1) +
ARIMAS = ARIMA(totalCost ~ pdq(1,1,0) +
ARIMA6 = ARIMA(totalCost ~ pdq(@,1,1) +
ARIMA7 = ARIMA(totalCost ~ pdq(1,1,0) +
ARIMA8 = ARIMA(totalCost ~ pdq(1,1,0) +
ARIMA9 = ARIMA(totalCost ~ pdq(1,0,1) +
ARIMA1@ = ARIMA(totalCost ~ pdq(1,1,1)),
ARIMA11 = ARIMA(totalCost ~ pdq(®,1,1)),
ARIMA12 = ARIMA(totalCost ~ pdq(1,1,0)))

ARIMAforecastEOD70_PT <- EOD70_PT_ARIMAFits %>%
forecast(h=24)

accuracy (ARIMAforecastEOD70_PT,EOD70_PT) %>%
select(.model, .type,MAE,MAPE,MASE) %>%
arrange(MAPE) %>%
head(5)

## # A tibble: 5 x 5

## .model .type MAE MAPE MASE
##  <chr> <chr> <dbl> <dbl> <dbl>
## 1 ARIMA7 Test 2304971. 84.5 0.825
## 2 ARIMA8 Test 2304971. 84.5 0.825
## 3 ARIMA6 Test 2063416. 87.0 0.738
## 4 ARIMA1O Test 1879214. 98.5 0.672
## 5 ARIMA4 Test 2238587. 103. 0.801

PDQ(0,8,1)),
PDQ(0,1,1)),
PDQ(1,1,0)),
PDQ(1,1,0)),
PDQ(0,1,1)),
PDQ(0,1,1)),
PDQ(0,1,1)),
PDQ(0,1,1)),

ACF/PACF Charts for BSO70 (P/T)

2026Jan
fyMonth

TRUE),
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22, Graph of Best BSO70 (P/T) ARIMA Model
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23. Parameters of Best BSO70 (P/T) ARIMA Model

## Series: totalCost
## Model: ARIMA(1,1,0)(@,1,1)[12]

Hit

## Coefficients:

#H arl smal
HH -8.4850 -0.7020

## s.e. 0.1445 0.8476
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24.  Residuals of Best BSO70 (P/T) ARIMA Model

1.0e+07 -
5.0e+06 -
0.0e+00-
-5.0e+06 -
-1.0e+07 -
-1.5e+07 - ] 1 1 1
2017 Jan 2018 Jan 2019 Jan 2020 Jan
fyMonth
ik ————————————————————
02-
15-
0.1-
0.0 L . | ‘ ‘E 10 -
o
-0.1-
5 -
-02-
----------------------------------- Il Il
-0.3_ ) ) 0- ) 1 II IIIIIIIIIIIIII|IIIII IIII, II 1
6 12 -1.5e+07-1.0e+07-5.0e+06 0.0e+00 5.0e+06 1.0e+07
lag [1M] .resid

25. BSO70 (P/T) Dynamic Regression Models and Accuracy

D70_PT_AdvancedARIMA_Fit <- EOD70_PT_Train_DR %>%

model(advancedARIMA1 = ARIMA(totalCost ~ © + maintenence + readiness),
advancedARIMA2 = ARIMA(totalCost ~ © + maintenence + preparation),
advancedARIMA3 = ARIMA(totalCost ~ © + preparation + readiness),
advancedARIMA_maint = ARIMA(totalCost ~ © + maintenence),
advancedARIMA_read = ARIMA(totalCost ~ © readiness),
advancedARIMA_prep = ARIMA(totalCost ~ © + preparation),
advancedARIMAL_lag = ARIMA(totalCost ~ © + maintenence + lag(readiness,6)),
advancedARIMA3_lag = ARIMA(totalCost ~ © + preparation + lag(readiness,6)),
advancedARIMA_read_lag = ARIMA(totalCost ~ © + lag(readiness,6)))

+
+
+
h

D70_PT_AdvancedARIMA_Forecast <- EOD70_PT_AdvancedARIMA_Fit %>%
forecast(new_data = EOD70_PT_Test_DR)

curacy (EOD70_PT_AdvancedARIMA_Forecast,advancedARIMA_EOD70_PT) %>%
select(.model,MAE,MAPE,MASE) %>%
arrange (MAPE)
# A tibble: 9 x 4
.model MAE MAPE MASE
<chr> <dbl> <dbl> <dbl>
1 advancedARIMAl_lag 1910743. 81.2 0.684
2 advancedARIMA_maint 1911712. 81.2 0.684
3 advancedARIMA_read_lag 19180632. 81.8 0.686
4 advancedARIMA2 1965337. 85.9 0.703
5 advancedARIMA_prep 1969308. 86.0 0.705
6 advancedARIMA3_lag 1968296. 86.3 0.704
7 advancedARIMA1 1985732. 87.5 0.711
8 advancedARIMA_read 1990856. 87.9 0.712
9 advancedARIMA3 2131504. 99.6 0.763
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Innovation residuals

26.

Parameters of Best BSO70 (P/T) Dynamic Regression Model

Series: totalCost
Model: LM w/ ARIMA(®,0,0)(1,0,0)[12] errors
Coefficients:
sarl maintenence lag(readiness, 6)
0.7036 34985.42 -6530.948
s.e. ©0.1089 166743.48 154168.300
27. Residuals of Best BSO70 (P/T) Dynamic Regression Model
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28. BSO70 (S/E) Exponential Models

EOD_70SE_ExponentialFits <- EOD70_SE_Train %>%

model(Add = ETS(totalCost ~ error("A") + trend("A") + season("A")),
HWMult = ETS(totalCost ~ error("M") + trend("A") + season("M")),
Add_Damped = ETS(totalCost ~ error("A") + trend("Ad") + season("A")),
HWMult_Damped = ETS(totalCost ~ error("M") + trend("Ad") + season("M")),
ETSAuto_LIK = ETS(totalCost, opt_crit = "lik", ic = "aicc"),
ETSAuto_AMSE = ETS(totalCost, opt_crit = "amse", ic = "aicc"),
ETSAuto_MSE = ETS(totalCost, opt_crit = "mse", ic = "aicc"),
ETSAuto_MAE = ETS(totalCost, opt_crit = "mae", ic = "aicc"))

forecastEOD_70SE <- EOD_70SE_ExponentialFits %>%
forecast(h=24)

accuracy (forecastEOD_70SE,EOD70_SE) %>%

select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble: 8 x 5

## .model .type MAE MAPE MASE
##  <chr> <chr> <dbl> <dbl> <dbl>
## 1 Add Test 2713753. 117. 0.449
## 2 HWMult Test 2333835. 117. 0.386
## 3 Add_Damped Test 2605055. 119. 0.431
## 4 HWMult_Damped Test 2836411. 145. 0.470
## 5 ETSAuto_AMSE Test 2820412. 177. 0.467
## 6 ETSAuto_LIK Test 3130149. 196. 0.518
## 7 ETSAuto_MAE Test 3130156. 196. 0.518
## 8 ETSAuto_MSE Test 3130156. 196. 0.518

29. Residuals for Best BSO70(S/E) Exponential Model
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30. ACF/PACF Charts for BSO70 (S/E)
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31. BSO70 (S/E) ARIMA Models

EOD7@_SE_ARIMAFits <- EOD7@_SE_Train %>%
model(stepwiseARIMA = ARIMA(totalCost,ic = "aicc", stepwise = TRUE),
autoARIMA = ARIMA(totalCost, ic = "aicc",stepwise = FALSE, approximation = FALSE,),
ARIMA1 = ARIMA(totalCost ~ pdq(1,1,1) +PDQ(1,1,1)),
ARIMA2 = ARIMA(totalCost ~ pdq(1,0,1) + PDQ(©,0,1)),

ARIMA3 = ARIMA(totalCost ~ pdq(1,0,0) + PDQ(@,1,1)),
ARIMA4 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(1,1,0)),
ARIMAS = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(1,1,0)),
ARIMA6 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(@,1,1)),
ARIMA7 = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(©,1,1)),
ARIMA8 = ARIMA(totalCost ~ pdq(1,1,0) + PDQ(©,1,1)),

ARIMA9 = ARIMA(totalCost ~ pdq(1,0,1) + PDQ(©,1,1)),
ARIMA1@ = ARIMA(totalCost ~ pdq(1,1,1)),
ARIMA11 = ARIMA(totalCost ~ pdq(@,1,1)))

ARIMAforecastEOD70_SE <- EOD70_SE_ARIMAFits %>%
forecast(h=24)

accuracy(ARIMAforecastEOD70_SE,EOD78_SE) %>%

select(.model, .type,MAE,MAPE,MASE) %>%
arrange (MAPE)

## # A tibble: 13 x 5

H#i# .model .type MAE MAPE MASE
#i# <chr> <chr> <dbl> <dbl>  <dbl>
## 1 ARIMAS Test 3179989. 119. 0.527
## 2 ARIMA4 Test 3304076. 123. 0.547
## 3 ARIMA6 Test 3029841. 127. 0.502
## 4 ARIMAL Test 3218317. 134. 0.533
## 5 ARIMA9 Test 2829920. 139. 0.469
## 6 ARIMA3 Test 2804719. 139. 0.464
## 7 ARIMAle Test 2521171. 160. 0.417
## 8 autoARIMA Test 2763455. 174. 0.458
## O stepwiseARIMA Test 2763455. 174. 0.458
## 10 ARIMA2 Test 2797522. 176. 0.463
## 11 ARIMA7 Test 4505393. 198. 0.746
## 12 ARIMA8 Test 4505393. 198. 0.746
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32. Parameters for Best BSO70 (S/E) ARIMA Model

Series: totalCost
Model: ARIMA(1,1,0)(1,1,0)[12]

Coefficients:
arl sarl
-0.6393 -0.3749
s.e. 0.1247 0.2063

33. Residuals for Best BSO70 (S/E) ARIMA Model
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EOD76_SE_AdvancedARIMA_Fit <- EOD7@_SE_Train_DR %>%

34. BSO70 (S/E) Dynamic Regression Models

model(advancedARIMA1 = ARIMA(totalCost ~ © + maintenence + readiness),
advancedARIMA2 = ARIMA(totalCost ~ © + maintenence + preparation),
advancedARIMA3 = ARIMA(totalCost ~ © + preparation + readiness),
advancedARIMA_maint = ARIMA(totalCost ~ @ + maintenence),
ARIMA(totalCost ~ ©
ARIMA(totalCost ~ @
ARIMA(totalCost ~ ©
ARIMA(totalCost ~ ©
advancedARIMA_read_lag = ARIMA(totalCost
= ARIMA(totalCost ~
= ARIMA(totalCost ~

advancedARIMA_read =
advancedARIMA_prep =
advancedARIMAL_lag =
advancedARIMA3_lag =

advancedARIMA_miscl
advancedARIMA_miscl

+
+
+
+

readiness),

preparation),

maintenence + lag(readiness,6)),
preparation + lag(readiness,6)),
0 + lag(readiness,6)),

pdq(1,1,08) + readiness),
pdq(1,1,08) + maintenence))

EOD70_SE_AdvancedARIMA_Forecast <- EOD70_SE_AdvancedARIMA_Fit %>%
forecast(new_data = EOD70_SE_Test_DR)

accuracy(EOD70_SE_AdvancedARIMA_Forecast,advancedARIMA_EOD70_SE) %>%

##
##
##
##
##
##
##
HH#
##
##
##
##
##

Innovation residuals

select(.model,MAE,MAPE,MAS
arrange (MAPE)

E) %>%

# A tibble: 10 x 4
.model MAE MAPE MASE
<chr> <dbl> <dbl> <dbl>
1 advancedARIMA1l 3118256. 85.8 0.516
2 advancedARIMA_maint 3032589. 88.0 0.502
3 advancedARIMA2 3048438. 89.3 0.505
4 advancedARIMA_prep 3122652. 90.3 0.517
5 advancedARIMA_read_lag 3127309. 90.4 0.518
6 advancedARIMAL_lag 3090660. 90.7 0.512
7 advancedARIMA3_lag 3140094. 91.7 0.520
8 advancedARIMA_read 3203076. 91.9 0.530
9 advancedARIMA3 3214866. 92.2 0.532
10 advancedARIMA_miscl 2273215. 141. 0.376
35. Residuals for Best BSO70 (S/E) Dynamic Regression Model
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36. Hierarchical Exponential Models

ActualCosts_Hiearcichal_Fit <- ActualCosts_Hiearcichal_Train %>%
model(base = ETS(totalCost)) %>%
reconcile(autoBu = bottom_up(base),

autoTopDown_FProps = top_down(base,method = "forecast_proportions"),
autoTopDown_AProps = top_down(base,method = "average_proportions"),
autoOLS = min_trace(base, method = "ols"),

autoMint = min_trace(base,method = "mint_shrink"))

37.  Accuracy of Aggregated, Hierarchical Exponential Models

## # A tibble: 6 x 7

## .model BSO PILLAR .type mae mase mape
##  <chr> <chr*> <chr*> <chr> <dbl> <dbl> <dbl>
## 1 autoMint <aggregated> <aggregated> Test 5541778. 0.654 65.4
## 2 autoOLS <aggregated> <aggregated> Test 5463207. 0.644 68.9
## 3 autoTopDown_AProps <aggregated> <aggregated> Test 5468214. 0.645 70.7
## 4 autoTopDown_FProps <aggregated> <aggregated> Test 5468214. 0.645 70.7
## 5 base <aggregated> <aggregated> Test 5468214. 0.645 70.7
## 6 autoBu <aggregated> <aggregated> Test 5596913. 0.660 72.2

38. Average Accuracy of Disaggregated, Hierarchical Exponential Models

## # A tibble: 6 x 4

## .model mae mase mape
## <chr> <dbl> <dbl> <dbl>
## 1 autoMint 2334155. ©.763 147.
## 2 autoTopDown_FProps 2418099. ©.784 158.
## 3 autoOLS 2380058. 0.780 162.
## 4 autoTopDown_AProps 2366962. 0.801 167.
## 5 autoBu 2439243, 0.803 175.
## 6 base 2439243, 0.803 175.

39. Graph of Aggregated, Exponential Hierarchical Models
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40. Hierarchical ARIMA Models

ActualCosts_Hiearcichal_Fit <- ActualCosts_Hiearcichal_Train %>%
model (ARIMA1 = ARIMA(totalCost ~ pdq(@,1,1) + PDQ(©,1,1)),
ARIMA2 = ARIMA(totalCost)) %>%

reconcile(ARIMAL_bu = bottom_up(ARIMAL),
ARIMA1_topDown_FProps = top_down(ARIMA1l,method = "forecast_proportions"),
ARIMA1_topDown_AProps = top_down(ARIMA1l,method = "average_proportions"),
ARIMA1_ols = min_trace(ARIMA1, method = "ols"),
ARIMA1_mint = min_trace(ARIMAl,method = "mint_shrink"),
ARIMA2_bu = bottom_up(ARIMA2),
ARIMA2_topDown_FProps = top_down(ARIMA2,method = "forecast_proportions"),
ARIMA2_topDown_AProps = top_down(ARIMA2,method = "average_proportions"),
ARIMA2_ols = min_trace(ARIMA2, method = "ols"),
ARIMA2_mint = min_trace(ARIMA2,method = "mint_shrink"))

ActualCosts_Hiearcichal_Forcast <- ActualCosts_Hiearcichal Fit %>%
forecast(h = 24)

41. Accuracy of Aggregated, Hierarchical ARIMA Models

## # A tibble: 12 x 7

## .model BSO PILLAR .type mae mase mape
## <chr> <chr*> <chr*> <chr> <dbl> <dbl> <dbl>
## 1 ARIMAL <aggregated> <aggregated> Test 3948069. 0.466 33.0
## 2 ARIMA1_topDown_AProps <aggregated> <aggregated> Test 3948069. 0.466 33.0
## 3 ARIMA1_topDown_FProps <aggregated> <aggregated> Test 3948069. 0.466 33.0
## 4 ARIMA1_ols <aggregated> <aggregated> Test 4016441. 0.474 33.3
## 5 ARIMAL_mint <aggregated> <aggregated> Test 4180360. 0.493 34.8
## 6 ARIMA1_bu <aggregated> <aggregated> Test 4344676. 0.512 36.3
## 7 ARIMA2_bu <aggregated> <aggregated> Test 5475270. 0.646 68.0
## 8 ARIMA2_mint <aggregated> <aggregated> Test 5910688. 0.697 71.6
## 9 ARIMA2_ols <aggregated> <aggregated> Test 5949786. 0.702 72.1
## 10 ARIMA2 <aggregated> <aggregated> Test 6365799. ©.751 74.7
## 11 ARIMA2_topDown_AProps <aggregated> <aggregated> Test 6365799. ©.751 74.7
## 12 ARIMA2_topDown_FProps <aggregated> <aggregated> Test 6365799. ©.751 74.7

42.  Average Accuracy of Disaggregated, Hierarchical ARIMA Models

## # A tibble: 5 x 4

## .model mae mase mape
##  <chr> <dbl> <dbl> <dbl>
## 1 ARIMA1_topDown_AProps 1849393. 0.677 83.2
## 2 ARIMA1 2235215. 0.762 102.
## 3 ARIMA1_bu 2235215. 0.762 102.
## 4 ARIMA1l_ols 2233427. 0.763 102.
## 5 ARIMA1_mint 2237251. 0.762 1@3.
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