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ABSTRACT 

 The proliferation of electronic devices emitting radio waves has led to Radio 

Frequency (RF) spectrum congestion. This poses a significant threat to Department of 

Defense (DOD) environments, especially naval communications heavily reliant on satellite 

systems, which are susceptible to electromagnetic interference. The lack of sufficient 

interference identification and characterization capabilities further compounds the 

operational risks faced by naval units. This thesis investigates the utilization of machine 

learning (ML) techniques for interference detection in RF transmissions. With their 

advanced data analysis and pattern-recognition capabilities, ML algorithms can enhance 

interference detection and mitigation. Two architectures, a basic autoencoder and Long 

Short-Term Memory (LSTM) autoencoder, were evaluated for their ability to identify 

anomalous RF data within a dataset. The research methodology involved generating RF 

data with varying Additive White Gaussian Noise (AWGN) levels in a basic transmission 

pathway. The ML models were trained using normal RF data and evaluated on their ability 

to detect and classify signals with and without interference. The results demonstrate that 

both the basic autoencoder and LSTM autoencoder models could effectively identify 

interference. The LSTM autoencoders achieved a success rate of about 99%, indicating 

their potential use as a solution to the capabilities gap for interference identification. 
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1 

I. INTRODUCTION  

The current technological boom in wireless communications has generated a 

demand for speed, uninterrupted connectivity, and bandwidth. The Radio Frequency (RF) 

spectrum has become congested due to the proliferation of electronic devices emitting radio 

frequency waves, including cellphones, smartwatches, wireless audio and video 

transmitters, and Internet of Things (IoT) sensors. This congestion is further intensified by 

the Department of Defense’s (DOD’s) growing utilization of wireless communication 

systems and unmanned vehicle systems, adding to the complexity of the spectrum 

environment. With increasing congestion, the likelihood of interference also rises. While 

interference has traditionally been viewed as a disruption or nuisance in the civilian sector, 

it is considered a significant threat in DOD environments. Radio frequency interference 

(RFI) can lead to latency and overall degradation of communication links, jeopardizing 

critical missions and operations. Recognizing and mitigating these degradations has 

become a priority, as outlined in the DOD Electromagnetic Superiority Strategy  

of 2020 [1]. 

Naval communications, in particular, are susceptible to RFI effects. While 

terrestrial units have various options for satellite communication (SATCOM) and land-

based command and control, naval communications heavily rely on satellite systems. 

However, these legacy SATCOM systems struggle to keep up with the increasing demand 

for bandwidth compared to their terrestrial counterparts. Compounding the issue is the 

limited availability of resources for naval communicators to localize and identify sources 

of interference. Traditional methods for interference identification involve sophisticated 

hardware systems, such as spectrum and frequency monitoring equipment, which are not 

readily accessible throughout the naval fleet. Although PC-based software exists for 

identifying interference, it is primarily used in the preplanning and allocation stages and is 

not operationally responsive when units are actively experiencing interference. An 

emerging solution to this gap in interference identification capabilities lies in the field of 

artificial intelligence (AI), particularly machine learning (ML). ML techniques have 

demonstrated success in anomaly detection in industrial equipment and have a proven track 
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record in handwriting identification, speech recognition, and pattern identification [2], [3], 

[4]. Leveraging ML methods to extract information from large datasets and gain insights 

into RF signals can bridge the gap for naval communicators. By employing ML techniques 

tailored to RF data analysis, naval communicators can enhance their ability to detect and 

identify interference, thereby improving their communications systems’ overall reliability 

and efficiency. 

A. PROBLEM STATEMENT  

This thesis aims to identify alternative methods of detecting the presence of 

interference in RF transmissions that are not currently utilized on naval surface ships. More 

specifically, this research will leverage various ML algorithms to evaluate their ability to 

detect anomalous RF data within an RF data set. Current interference detection capabilities 

exist through expensive hardware systems that are limited in numbers and not readily 

accessible to all naval surface ships. However, since all naval surface ships utilize the RF 

spectrum, having the ability to identify degrading effects can limit the adverse effects of 

these degradations. Current capabilities exist for more high-value units, such as various 

spectrum and signal monitoring equipment. Additionally, web- and PC-based software 

programs such as Real Time Spectrum Operations (RTSO) and Spectrum XXI [5] exist to 

aid operational planners in the deconfliction of the electromagnetic spectrum (EMS) during 

preplanning phases of operational readiness. These systems and software are limited in 

operational environments or unavailable in large quantities to be deployed on more than a 

few units.  

Units lacking spectrum monitoring hardware must rely on external sources with the 

appropriate capability for EMI identification. Without on-site knowledge of interference 

characteristics or sources, naval communication officers and radio operators depend on 

simplistic mitigation efforts. These efforts involve verifying system configuration based 

on Satellite Access Agreements (SAAs), troubleshooting misconfigured or malfunctioning 

hardware, and visually confirming connectivity and message transmission. However, these 

methods introduce significant human error into the EMI identification process. 
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ML can greatly assist human operators in closing their capabilities gap by offering 

advanced data analysis and pattern recognition techniques. ML algorithms can process 

large data volumes, identify patterns, and learn from historical examples to detect complex 

anomalies. Integrating ML capabilities into existing systems enhances processing and 

analysis methods. ML algorithms extract valuable insights, identifying abnormal patterns 

or behaviors that indicate potential threats. These algorithms continually adapt and improve 

by learning from new data, enabling units to proactively detect emerging anomalies. 

Therefore, this research aims to explore the unsupervised autoencoder and Long 

Short-Term Memory (LSTM) autoencoder ML models as feasible methods for RF 

interference identification as an available option to close this capabilities gap. As a proof 

of concept, a simple transmission pathway will transmit a text message, utilizing Software 

Defined Radios (SDR). Intentional interference in the form of Additive White Gaussian 

Noise (AWGN) will be placed in the transmission pathway. These ML networks will then 

be trained, and a resulting model will analyze the transmission’s In-phase and Quadrature 

(I&Q) data and detect any anomalous signals. ML models will be evaluated to deduce 

effectiveness in making correct identification determinations.  

Due to the increased congestion in cellular and wireless communications in the 

civilian sector, several applications of machine learning to detect and classify RFI were 

reviewed for their applicability to this problem set. For example, Henarejos et al. [6] 

designed an RF interference detector based on deep neural network (DNN) autoencoder 

architectures. The researchers focused on interference detection and then interference 

classification. Interference detection utilized the raw I&Q data of RF transmissions and 

statistical analysis to identify anomalous signals. This research demonstrated that the I&Q 

data could be leveraged as significant information from which to identify and distinguish 

signals. Researchers coupled a Digital Video Broadcasting-Satellite 2 (DVB-S2) signal 

with various cellular signals to create the desired interference classes. Utilizing LSTM 

neural networks, researchers successfully classified the DVB-S2 signals by the cellular 

standard it was coupled with, regardless of bandwidth or frequency position. Having a 

baseline knowledge of a DVB-S2 signal without interference, the research demonstrated 
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how LSTM ML models could classify signals based on deviations from the known baseline 

signal parameters.  

Roy [7] demonstrated the ability of recurrent neural networks (RNN) to distinguish 

between “trusted” and “counterfeited” RF transmitters by analyzing the details contained 

within the I&Q data. This research focused on adversarial learning-based approaches, 

particularly generative adversarial nets (GAN), which allow adversaries to gain knowledge 

of the feature space and potentially mislead any employed ML processes. Furthermore, it 

was found that identifiable details are present within the I&Q samples of RF transmissions 

that enable the identification of individual transmitters from each other. These details can 

be extracted as features and utilized as training data for neural networks (NN) or treated as 

raw data points for autoencoders. Coupled with statistical analysis, these techniques offer 

valuable information for interference identification, allowing for improved detection and 

mitigation strategies.  

Hall et al. [8] conducted research on the viability of using synthetically generated 

RF signal data sets as training resources for ML models. They successfully demonstrated 

the creation of an RF signal database, emphasizing the importance of collecting identifying 

characteristics, such as modulation type, to accurately emulate specific operating 

environments. Their research focused on various modulation schemes, including 

Quadrature Phase Shift Keying (QPSK), Binary Phase Shift Keying (BPSK), and Long-

Term-Evolution (LTE) emissions subjected to out-of-band emissions. This work 

highlighted the potential of using synthetic RF signals for ML training purposes, as it offers 

a practical means of generating training data. ML fields such as image classification, 

speech recognition, and handwriting and object recognition already utilize large datasets, 

making synthetic RF signals a valuable addition to the available training resources.  

This research aims to achieve similar results previously demonstrated but with a 

focus on developing deployable models in an operational environment with low-cost 

equipment. Some significant variances exist between the research discussed and this thesis. 

ML will be conducted in Matrix Laboratory (MATLAB) instead of Python and conducted 

natively versus utilizing the transferred learning method. Transfer learning is a machine 

learning technique that utilizes knowledge gained from one task to enhance the 
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performance of a related task, reducing the need for extensive training data and accelerating 

the learning process. By leveraging pre-trained models and their learned features, transfer 

learning can improve generalization and efficiency when utilizing machine learning [9]. 

All generated RF data sets in this thesis will be local, i.e., from a single task and not 

obtained from outside sources. Evaluation metrics will focus on binary classification, 

detecting whether interference is present or not, vice classifying interference based on type. 

Additionally, the interference type used will be AWGN in varying levels instead of signals 

of varying frequency or origin.  

B. RESEARCH QUESTIONS 

The primary question this research seeks to answer is, can U.S. Navy Satellite 

electromagnetic spectrum interference (EMI), identification, and mitigation efforts be 

improved by leveraging ML algorithms hosted locally? Additionally, can trained ML 

models be trained, developed, and deployed utilizing low-cost commercial off-the-shelf 

(COTS) equipment to offer a solution for the current interference identification gap that 

exists? 

Secondary research objectives will focus on identifying what details can be 

extracted from signals identified as anomalous and determining if they provide increased 

interference reporting information that ultimately increases the understanding of the 

electromagnetic spectrum operating environment (EMSOE). 

C. RESEARCH DESIGN 

The scope of this research will focus on the ability of ML algorithms to detect 

anomalous signals generated in a simplified RF communication system in a lab setting. To 

represent the communication link between a naval surface ship and a SATCOM asset, two 

SDRs programmed for QPSK modulation will be used to transmit and receive a message 

of known length and size. The focus will be on determining which ML model successfully 

identifies an anomalous signal from a representative “normal” signal. The interference type 

will be AWGN at various signal-to-noise ratios (SNR). A signal with an SNR of 20 

decibels (dB) will represent a normal signal. The autoencoder and LSTM autoencoder 

architectures will be evaluated in their ability to correctly distinguish signals with varying 
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SNR from the representative normal signal. The signal data set will have SNR ratios from 

5 dB to 20 dB and be characteristic of varying magnitudes of degradation. The evaluation 

metric will include correctly determining a signal with and without interference. A final 

metric will include determining how well either of the trained models can identify 

interference. 

1. Limitations/Assumptions 

To scope the overall research problem appropriately, several assumptions will be 

made in this research. The representative communication pathway has no equipment faults, 

and additional typical factors contributing to degraded satellite communications have been 

eliminated. These external factors are frequency synchronization, polarization, and 

atmospheric weather. The primary criterion for interference identification relies solely on 

the successful transmission of a message. No additional methods for interference 

identification will be used. Contributing limitations to this research include already 

established data sets of RF transmissions that are not available, which led to the use of 

locally generated RF data in a controlled environment. This thesis is a proof of concept for 

ML model training and deployment in a low-cost, minimally computationally intensive 

setting. This enables the potential application to be easily reproduced by an operational 

unit at the tactical edge. 

2. Thesis Outline 

This thesis is organized to first outline how electromagnetic spectrum management 

within the DOD occurs. Focusing on RF users’ responsibilities when utilizing their allotted 

portions of the RF spectrum, relevant DOD policies will be identified, as well as how these 

policies and responsibilities enable Naval operational units to contribute to the 

electromagnetic spectrum superiority Strategy. Emphasis will be placed on the Joint 

Spectrum Interference Reporting (JSIR) process. The discussion will center on how the 

details required by the report can be difficult for units without interference-detecting 

capabilities to provide. There are specific areas where this thesis research can improve the 

overall fidelity of JSIR reports, providing increased detail and valuable information to 
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those collecting the reports. These improvements will ultimately benefit the DOD when 

characterizing the EMSOE.  

Chapter II provides an overview of the fields of AI and how they relate to the ML 

methods used previously for data analysis and anomaly detection. Focusing on two models,  

autoencoders and LSTM autoencoders, details of how the mechanics of these models work 

and can be beneficial in RF data analysis. Then an analysis of an LSTM autoencoder model 

will be discussed, and how this model can leverage the benefits of both models to be useful 

for RF interference detection. This analysis lays the foundation for how ML will be 

leveraged to gain insights from RF data with the goal of contributing to the increased 

fidelity reporting of the JISR process. 

Chapter III will identify what hardware and software were utilized to generate and 

what functions and processes were used to analyze the data. Chapter IV will describe the 

process of how the test data was generated, and pre-processed, and describe the 

development of the LSTM autoencoder and autoencoder models. Chapter V will present 

the results of the research and discuss any information discovered while conducting the 

research. Chapter VI will discuss conclusions and potential future work.  
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II. BACKGROUND 

The following sections will serve as references for relevant points related to this 

thesis research. First, this section will review EMI and how it affects RF communications. 

Then a review of how the Joint forces manage and allocate EMS-allotted frequencies. This 

background section will then focus on how the Navy component manages the EMS and 

what capabilities exist to help naval communicators maintain command and control (C2) 

capabilities for commanders focusing on what shortfalls exist in the USN fleet. Finally, 

select types of artificial intelligence and ML methods that have demonstrated uses in RF-

focused operations will be discussed.  

A. ELECTROMAGNETIC INTERFERENCE 

EMI is “any electromagnetic disturbance that interrupts, obstructs, or otherwise 

degrades or limits the effective performance of electronics or electro-optical  

equipment” [10]. EMI can be intentional or unintentional and can be self-induced or the 

result of adversarial actions. EMI can occur from natural sources such as atmospheric 

effects and space weather. Additionally, EMI can be natural or manmade and originate in 

all domains, land, air, and sea. Some examples of EMI are co-channel interference, 

adjacent channel interference, or signal attenuation and reflection. Co-channel interference 

is what signals from different sources overlap, leading to data corruption and reduced 

signal quality. The presence of stronger signals can cause weaker signals to become 

drowned out and lose connection. Adjacent channel interference occurs when frequency 

bands that are close to each other bleed over to other channels and cause interference. This 

can reduce data rates and transmissions. Signal attenuation is the result of a signal losing 

strength over the length of transmission and can result from a signal traversing through 

material or over long distances. Contributing to signal attenuation is the reflection or 

blockage of a signal off materials or objects. Because interference can originate from an 

abundance of sources, EMI is considered a persistent and recurring threat, set to increase 

as the operating environment becomes more congested with EM-emitting devices. EMI 

resolution ensures the rapid delivery and exchange of information during military 
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operations. Because types of EMI vary widely, the focus will be on EMI to SATCOM 

Systems. 

B. RADIO FREQUENCY COMMUNICATIONS IN THE DEPARTMENT OF 
DEFENSE 

1. Electromagnetic Spectrum 

Electromagnetic radiant energy can be grouped into bands based on wavelengths 

or frequency. The entire range of these bands make up the EMS. NASA describes in [11] 

that gamma waves, microwaves, visible light, and radio waves are bands with similar 

properties and characteristics. These characteristics are measured in Hertz (Hz). Radio 

waves can be broken down into frequency bands ranging from 9 kilohertz (kHz) to 300 

gigahertz (GHz) and are used in various communications and data transfer systems. When 

referring to specific bands of the EMS, various international organizations employ different 

naming conventions. Figure 1 illustrates distinct naming conventions utilized by specific 

international organizations to represent their respective bands within the EMS. 

2. Federal Spectrum Allocation 

The International Telecommunication Union (ITU) regulates the allocation and use 

of various frequency bands. The Federal Communications Commission (FCC) and the 

National Telecommunications and Information Administration (NTIA) divide the 

responsibility of regulating spectrum allocation within the United States. The FCC 

allocates spectrum portions for non-federal use, which include commercial and state 

government uses. The FCC website lists the NTIA as the responsible authority for spectrum 

allocation to federal agencies [12]. 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



11 

 

Figure 1. Frequency Bands and the International Organization Associated. 
Source: [13]. 

3. Current Military Applications of the Spectrum 

The NTIA allocates a portion of the EMS to the DOD. Many systems in the DOD 

utilize the allocated frequencies within their operating environment. This operating 

environment is condensed because it is a shared area occupied by government agencies, 

national governments, and civilian companies that all utilize the RF spectrum. These uses 

include a multitude of systems; terrestrial-based communication systems, radar systems, 

submarines, surface vessels, unmanned aerial vehicles (UAVs), and satellites. Some DOD 

systems operate within the same bands, and in some cases, non-DOD systems, such as 

commercial satellites or state government, are allocated frequencies. As an increased 

number of systems emitting EM transmission increase, so do the chances of co-channel 

interference, blockage, reflection, or adjacent channel interference. This congestion can 

lead to latency, data loss, signal quality degradation, and reduced coverage areas.  

C. SPECTRUM OPERATIONS 

Commanders within a geographic region perform various aspects of spectrum 

operations. Spectrum operations are actions achieved by managing or applying various 

aspects of the EMS. They range from establishing C2 structures to navigation and signature 

management.  
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1. Command and Control 

C2 “encompasses the exercise of authority and direction by a commander over 

assigned and attached forces to accomplish the mission” [14]. Leaders manage available 

resources to ensure that orders and information gets promulgated and that friendly or 

enemy forces are identified. These resources can range from SATCOM assets, C2 aircraft 

such as the E8C Joint Surveillance Target Attack Radar System, to portable radios such as 

the PRC-111 [15]. Degradation in any of the RF systems available to a commander 

decreases their ability to maintain C2, resulting in increased vulnerability to adversaries. 

RF systems compete for limited resources in contested environments; as a result, 

interference and degradation are common. As technology advances and the number of 

systems emitting RF signals increases, the operating environment will likely become more 

congested. 

2. Signature Management 

Signature management is an important area of spectrum operations, as reducing an 

observable electromagnetic signature can aid commanders from giving away positions or 

information regarding assets. Various techniques and processes are applied to signature 

management, such as emission conditions (EMCON) set aboard naval vessels or changing 

properties of transmitted signals to reduce the probability of interception or detection (LPI/

LPD) [15]. 

D. DOD SPECTRUM STRATEGIES AND POLICIES 

The DOD released the electromagnetic spectrum superiority strategy in 2020. The 

goal was to align EMS operations with the National Defense Strategy and National Security 

Strategies to maintain the Dods’ EMS superiority [1]. Within the EMS superiority strategy, 

objectives were established to guide developments within the DOD and ensure that 

“Freedom of Action in the Electromagnetic Spectrum is achieved at the time and place of 

its choosing” [1]. Developing technologies and improvements in the process aim to achieve 

Joint All-Domain Command and Control (JADC2). The strategy placed heavy importance 

on developing technologies, methods, and techniques that enable robust electromagnetic 

battle management capabilities. Identifying that the future battlefield will be rapidly 
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changing and involves many systems that utilize the RF spectrum makes being able to 

characterize, adapt, and change of central importance [1]. 

E. JOINT ELECTROMAGNETIC SPECTRUM MANAGEMENT 
OPERATIONS IN THE ELECTROMAGNETIC OPERATIONAL 
ENVIRONMENT 

Because the EMSOE is expected to get more congested, there is a need to ensure 

that the military has unimpeded access to the EMS so that it is available when needed [16]. 

This need led to the creation of Joint Electromagnetic Spectrum Management Operations 

(JEMSO). In May 2020, the Joint Staff released a doctrine with respect to JEMSO in which 

Joint Publication 3-85 was the consolidation of electromagnetic warfare and 

electromagnetic spectrum management operations under the same umbrella [17]. This 

consolidation emphasized the importance of the electromagnetic spectrum and solidified 

its importance in all aspects of military operations. JP 3-85 establishes command-specific 

policy and guidance for JEMSO.  

Any associated activity needed to control and manage the EMS in joint or 

multinational military operations is the responsibility of the JEMSO, which has two 

primary goals: ensure EMS-dependent systems can operate in the desired environment and 

utilize available resources as efficiently as possible. Successful utilization of the EMS is 

accomplished through the planning and allocating of available resources. Limited 

capabilities exist in resolving EMS conflicts when deployed, so there is a greater focus in 

the planning process to mitigate and minimize potential conflicts [14].  

1. DOD Management of the Electromagnetic Spectrum 

JEMSO are the overarching activities related to the management of the EMS within 

the Joint Forces. The Combatant Commander (CCDR) performs the specific duties and 

responsibilities to accomplish JEMSO by establishing specific guidelines for EMS use and 

a joint frequency management office (JFMO). The JFMO delegates frequency assignments 

and identifies, analyzes, and evaluates potential spectrum use conflicts and electromagnetic 

interference. In addition, the resolution of EMI is a central responsibility. This is 

accomplished through the analysis and collection of reports that detail EMI occurrences in 
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a geographic area of operations. The overall management of the EMS within the DOD 

occurs through the Joint Task Force spectrum management life cycle. This life cycle guides 

joint spectrum managers by detailing steps on information gathering and the development 

of a spectrum management plan. Spectrum management plans are devised through 

deconfliction and interference resolution of systems by balancing RF needs with what 

frequencies are available. Overall, there are 12 steps in the JTF spectrum management life 

cycle [16]. The life cycle encompasses the complete process of providing spectrum 

management support to the Joint Forces Command (JFC). This research focuses on the last 

two areas: resolution and reporting of interference.  

2. Navy Communications Component 

While the Joint Services Component manages the overarching EMS for the services 

within an operational geographic area, the Navy has its own management office. Being 

able to manage the EMS is vital to naval operations. Navy Telecommunication Publication 

6F [18] describes how a significant factor in managing the EMS is the timely and accurate 

identification, reporting, and resolution of EMI. EMI reporting is accomplished through 

the Joint Spectrum Interference Resolution-Online (JISR-O). This reporting, including 

both non-hostile and hostile EMI incidents, will pass through each localized command 

chain of command. As the report makes its way through the chain of command workflow, 

it is reviewed, and resolution recommendations are made.  

3. Joint Spectrum Interference Resolution  

JISR is considered the last resort for EMI deconfliction. Reporting procedures are 

carried out under the Chairmen of the Joint Chiefs of Staff manual (CJCSM) 3320.0E [10]. 

This last resort is mandatory. It is a centrally managed operation with decentralized 

execution. When completing interference reporting procedures, the focal point for 

requesting resolution support is with the JFMO. They will provide guidance for resolving 

any EMI that cannot be locally accomplished. There are three steps in the JSIR process: 
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• identification, verification, characterization, and reporting of EMI events; 

• geolocation, analysis, course of action (COA) development, and 

recommendations for corrective actions; and, 

• implementation, notification to users, and final closure reporting.  

The overall aim of the JSIR process is to understand any EMI events and resolution 

steps taken. As a result, improving the situational awareness of the EMSOE. The JSIR 

process is the reporting procedure manual for all of DOD, focusing on the SATCOM EMI. 

Within the JSIR process, satellite systems include SATCOM, global positioning, and other 

space systems. EMI can affect SATCOM systems either in the uplink, downlink, or within 

the crosslinks of systems. Uplink and downlink EMI are reported in the JSIRO portal and 

help analyze and identify hostile electronic attacks (EA). The JSIR process provides the 

procedures and methods to resolve EMI at the lowest level within an operational unit’s 

command, as well as detailing specific steps to inform a superior in the command 

organization if needed. Informing relevant agencies or responsible superior units is aimed 

at assisting operators in mitigation efforts. Identifying any impact of the DOD’s use of 

EMS will enable decision-makers to have the ability and knowledge on how to effectively 

communicate or operate EMS systems in a denial environment.  

a. Limitations with current expectations 

The JSIR procedures are intended to be simple, with the goal of providing sufficient 

information to aid outside agencies in mitigation efforts. However, there are details of the 

report that may be difficult for an operating unit to provide. The JSIR content includes 

information about the affected system, characteristics of the EMI, as well as resolution 

efforts taken. Since information about the affected system, such as its operating frequency, 

bandwidth, and polarization, is expected to be readily accessible, this thesis does not focus 

on improvements in this reporting area. When characterizing the EMI, the reporting 

operator is first expected to identify if the EMI is a result of solar weather, atmospheric 

conditions, equipment blockage, or equipment misconfiguration or determine if another 

unit is the source of the EMI. If EMI is determined to not be the result of any of these 
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issues, then operators are left to suspect hostile EA. There exist significant gaps in this 

reporting technique. 

Reporting operators are expected to identify characteristic details about the 

experienced EMI. The steps included in EMI characterization and resolution at the local 

level can be found in CJCSM 3320.02E [17] and span over 37 steps in 12 categories. 

Characterizing EMI includes identifying modulation schemes, frequency variances, as well 

as determining if the EMI is continuous, intermittent, random, or varies. While these 

characteristics help outside agencies determine the source and mitigation effort of EMI, the 

ability of the individual unit to determine any of these characteristics with fidelity is 

limited. As discussed previously, some tools and capabilities, such as RTSO, exist within 

the Naval surface community; however, these tools and trained operators are not readily 

available for all units. This capability gap poses a problem as all units are susceptible to 

EMI and are still expected to report EMI experienced. Without access to the available 

resources for identifying and reporting EMI, units must rely on outside sources to provide 

the details needed to complete EMI reporting. This reliance requires communication 

between the two, and in the case of degraded SATCOM capability, it may not be possible. 

This thesis seeks to identify a low-cost process and solution to provide the elements of this 

missing information. 

Individual units can enhance their resolution procedures by understanding the 

features and characteristics of experienced electromagnetic interference (EMI). This 

understanding facilitates the development of more refined and specific resolution 

procedures. For example, if there is no structural blockage or changing of filtering methods 

needed, then changing frequencies just avoids the problem of proper identification and 

resolution. However, if we can identify the features of suspected EA, over all EMS 

planning will benefit.  

This thesis seeks to find available methods and opportunities to enable individual 

warfighters to increase their ability to identify and report EMI. Leveraging ML algorithms 

is a possible solution. ML algorithms are data-centric and can leverage formulas and 

mathematical properties to identify small features in the numerical properties of RF data. 

A technique that utilizes ML with RF is known as RF transmitter fingerprinting [19]. Even 
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individual transmitters utilizing similar frequencies and modulation methods have 

distinguishable features of their individually transmitted signals. These patterns and the 

analysis of these unique patterns can help operators identify sources of EMI. 

F. ARTIFICIAL INTELLIGENCE 

AI is the general ability of computer systems to mimic or emulate human thought 

processes or actions. It is broad and encompasses a variety of techniques. One of the subsets 

of AI is ML which focuses on pattern recognition and decision-making based on data sets 

and related scenarios [20]. Because the range of artificial intelligence-type operations is 

vast, this section will focus on a discrete path of more refined learning techniques. The 

learning techniques that are the focus of this section are subsets of Artificial Neural 

Networks (ANN): LSTM and autoencoders. ANNs are a subset of a larger ML group, 

which itself is a subset of overall AI. 

1. Machine Learning  

ML utilizes various mathematical formulas known as algorithms to identify 

patterns within data to translate and transform these patterns into decision-making 

processes. ML is different from AI because ML algorithms can improve and learn from the 

data sets without being specifically programmed to do so. This algorithmic application of 

pattern recognition is known as “learning.” ML learning is categorized into supervised and 

unsupervised, as seen in Figure 2. An ML model has three major components: data sets, 

features, and the learning algorithm. The data sets are the entire set of representative 

information, such as images, text, and signals. Features are the specific characteristics of 

the data set that can be labeled for learning. Learning algorithms are the mathematical 

operations that are utilized to execute the learning steps of ML processes [21]. Applying 

ML algorithms to data sets helps make better decisions and predictions when patterns may 

not be obvious [22]. As a result, ML can offer efficient alternatives to traditional 

engineering processes when time and costs are a concern, as described by Simeone in [23]. 

When ML algorithms are applied to data sets, these data sets are referred to as input. The 

data resulting from this application is called the output. However, it’s important to note 
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that in addition to the input data set, ML algorithms can also produce outputs in the form 

of predictions, classifications, or other derived information. 

 

Figure 2. ML Techniques. Source: [22]. 

2. ML Techniques 

a. Supervised learning,  

Supervised learning is a learning type of ML where data with known information 

or labels are used to train a model. The results of applying a supervised learning model to 

a data set are observed, and predictions are made based on the response. The idea behind 

supervised learning is that the algorithms are guided along or supervised with correctly 

labeled inputs, and learning is continuous until a desired level of accuracy is achieved. 

Within supervised learning techniques, there are classification techniques and regression 

techniques. Classification techniques are when the output data has a discrete result, such 

as a decision, whereas regression techniques have output data that is continuous. 

Supervised learning techniques are recommended when predictions from known inputs are 

desired, such as echocardiogram interpretation [24]. 

b. Unsupervised Learning 

Unsupervised learning is the other learning type of ML that involves identifying 

patterns within input data sets that are not labeled, previously identified, or that may be 

hidden. Unsupervised learning uses clustering, which groups similar output responses 
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together based on some measure of similarity or shared characteristic. Common 

applications of unsupervised learning are in image recognition, where models are trained 

to identify features within images and used to identify them in separate data sets. 

Unsupervised learning techniques are recommended when a user wants to determine a 

distinguishing pattern within a group of data and use this pattern to group output data into 

distinguishable representations of the data. 

3. ML Model Construction  

a. Artificial Neural Networks 

A subset of machine learning is ANN. There are a variety of neural network types 

and functions, but the basic construct of a NN involves an input layer, a hidden layer, and 

an output layer, as seen in Figure 3. The input layer of an ANN processes the incoming 

data through mathematical operations, resulting in an output. This processing takes place 

in a series of interconnected perceptrons, and the outputs of these perceptrons are then 

passed to the subsequent layer. Baheti describes in [25] how the construct of a NN seeks 

to mimic the interconnectivity of the human brain. Utilizing interconnected nodes or 

neurons in a layered structure. Nodes and neurons within a NN serve as building blocks for 

learning and modeling intricate non-linear relationships between input and output  

data [26]. There are terms that identify specific parts of the neural network. Weight, bias, 

nodes, and features are all terms that identify a function, part, or process associated with  

an NN. 
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Figure 3. Neural Network Layers. Source: [25]. 

(1) Input Layer 

The input layer takes the data being fed into the model, assigns it an individual 

node, x, and passes the complete information to the hidden layer. 

(2) Hidden Layers 

The hidden layer takes output data from the input layer nodes, processes it, and 

sends it to the next layer. As features are fed into the input layer, the weight is determined 

by attributing importance to features that help the model distinguish the data.  

Dasaradh [27] describes a simple mathematical formula of what happens at each input 

layer. At each input, a data value, xi, is multiplied by a weight value, wi. Weights are a 

value that represents how strong an influence a particular input has on the neurons’ output. 

There may be more than one hidden layer in sequence, depending on the complexity of the 
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network. Hidden layers do the leg work of the computations and extract what features exist 

in the data. The first step is to take the input values xi and multiply them by the weight, wi, 

associated with the input. The sum of these products is collected. 

 𝑧𝑧 = ∑(𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖) 1 

After the sum of the product of the inputs and weights, a bias b is added to the 

summation and serves to act as a threshold for the activation function, resulting in z [27].  

 𝑧𝑧 = (𝑥𝑥𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖) + 𝑏𝑏 2 

After the weighted sum is computed and bias is associated, z is then passed through 

the activation function, which is how the hidden layer introduces nonlinearity and 

determines the output of the neuron. The activation function, determined by the task of 

your ML model, takes the weighted sum with bias and produces an output [27].  

 𝑦𝑦 = 𝜎𝜎(𝑧𝑧) 3 

(3) Output Layer 

Output data from the hidden layers, y, enter the output layer and are assigned a 

value. These values make a binary determination or assign the data to a classification 

group. For binary determination types, yes or no are the output nodes. In classification 

models, the output nodes correspond to the number of classifications in the data set. The 

construct of the output layer depends on how the model was built. 

b. Autoencoders 

Autoencoders are a type of unsupervised neural network that does not require 

labeled data at the output layer for training. Instead, an autoencoder learns to reproduce the 

input at its output. The training process of an autoencoder focuses on optimizing the cost 

function, which measures the discrepancy between the output and the system’s input. The 

objective is to minimize this difference until the output replicates the input accurately. As 

seen in Figure 4, an autoencoder consists of two main components: an encoder and a 

decoder. The encoder compresses the input data into a lower-dimensional representation, 
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capturing its essential features. The decoder then reconstructs the input data from this 

compressed representation. In some applications, the encoder and decoder portions of the 

network can be separated and implemented as two distinct systems. By learning to 

reconstruct the input accurately, autoencoders enable dimensionality reduction and feature 

extraction in an unsupervised manner 

 

Figure 4. Basic Autoencoder with Associated Layers. Adapted from [28]. 

(1) Construction of Encoder 

Zavrak and Iskefiyeli derive an encoder formula in [29]. At each node, signified by 

each blue dot in Figure 4, the following function occurs: 

 ℎ = 𝜎𝜎(𝑤𝑤𝑥𝑥ℎ𝑥𝑥 +  𝑏𝑏𝑥𝑥ℎ)       4   
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where σ is the non-linear transformation function, bias is represented by b, and weight is 

represented by W. x is the representative input data vector that is fed into the initial layer 

of the autoencoder. The transformation of the input data is h and becomes the hidden 

representation of that data. 

(2) Construction of Decoder 

In the decoder, the transformation function is applied to the hidden representations, 

resulting in an output variable, z. This is described by Zavrak and Iskefiyeli in [29]. 

  𝑧𝑧 = 𝜎𝜎(𝑤𝑤ℎ𝑥𝑥ℎ +  𝑏𝑏ℎ𝑥𝑥) 5 

(3) Reconstruction Error 

The metric used to determine the effectiveness of the autoencoder in recreating the 

input values is the mean squared error (MSE) [30], r, where the output values are subtracted 

from the input values and averaged over the length of the data set 

  𝑟𝑟 = 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
� (𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1  6 

c. Deep Neural Networks 

Deep neural networks (DNN) are NN with three or more hidden layers associated 

with the model [26].  

d. Long Short-Term Memory  

LSTM is an RNN that specializes in retaining information for long periods. LSTMs 

are made up of memory cells that contain gates that regulate what information is 

remembered over time [31]. Each of these gates interacts with an LSTM cell that 

determines if information about a data set is remembered or forgotten and then what is 

passed to the next cell. In addition, there are input gates, forget gates, and output gates. The 

flow of these gates through the cells of the LSTM pathway is illustrated in Figure 5. LSTMs 

are useful for longer sequences or data with a temporal relationship between their elements. 

This makes it useful in RF signal analysis. 
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Figure 5. Construction of Long Short-Term Memory Gates. Adapted from 
[31]. 

(1) Forget Gate 

Forget gates control whether the information is thrown away or forgotten from the 

cell state. If the information is forgotten, the memory cell is reset to zero, and no 

information is added to the cell state. The formula for the forget is denoted by 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∗ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 7 

where xt is the input of the cell, ht-1 is the hidden information from a previous state. Wt 

signifies the weight of the current state. Bias is denoted by bt  [31]. 

(2) Input Gate 

Input gates perform two functions: first, they determine whether the cell is updated 

with new information, then they update the cell state with the information. Olah [31] 

describes how the input gate determines what values will be used to update the cell. 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∗ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑓𝑓) 8 

𝐶𝐶𝑡𝑡−1 
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 The cell is updated with it in addition to the candidate values 𝐶𝐶𝑡𝑡  Candidate values 

denote values derived from applying a tanh activation function and relate to the amount of 

new information to be stored in the cell. 

 𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 ∗ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶 9 

(3) Output Gate 

The output gate filters the cell state to select the most important elements for 

generating the input to the next cell. Using a sigmoid function, the gate creates a vector 

that is passed through the hyperbolic tangent function to scale the values and only include 

the most relevant information [31].  

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∗ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜 10 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡) 11 

e. LSTM Autoencoders 

The architecture of an LSTM autoencoder model comprises a series of LSTM cells 

grouped into encoder and decoder layers. The encoder layer compresses the input data into 

a lower-dimensional representation, capturing essential information and preserving any 

temporal dependencies. Subsequently, the decoder layer aims to faithfully reconstruct the 

input data from this compressed representation. Figure 6 illustrates the architecture of an 

LSTM autoencoder, highlighting the distinct components of the encoder and decoder 

segments, with each segment featuring an embedded LSTM module.  

The LSTM autoencoder model shows promise in RF signal anomaly detection for 

several reasons. Firstly, using LSTM memory enables the model to capture long-term 

characteristics within RF signals. This capability can be used to identify anomalies within 

complex signals. Additionally, the autoencoder component facilitates dimensionality 

reduction by extracting the most relevant features from the input data. This aspect proves 

highly advantageous in RF signal analysis, which itself is often high-dimensional data. By 

effectively extracting relevant features, the LSTM autoencoder model enhances the 

detection of anomalies and distinguishes them from normal signal patterns. 
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Figure 6. LSTM Autoencoder Hybrid Model Showing Structure for 
Encoding and Decoding Source: [32]. 
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III. RF HARDWARE AND SOFTWARE  

A. INTRODUCTION 

This chapter will describe in detail the specific hardware components utilized in 

this thesis research, as well as the software and software functions utilized to achieve the 

research objectives. The overarching aim was to achieve similar results with hardware and 

software that contrasts the expensive, exquisite, and computationally powerful spectrum 

monitoring equipment that is used in naval communications. SDRs offer flexibility, 

adaptability, and cost-effectiveness in the RF domain. Having the typical RF hardware 

components hosted on the SDR enabled rapid changes and alterations without having to 

manage device compatibility. Mathworks matrix laboratory (MATLAB) software is a 

common programming software suite utilized in various Naval Postgraduate School (NPS) 

space systems academic group classes. MATLAB has various ML capabilities and offers 

interconnectivity with a variety of SDR classes. Simulink is a block diagram-based 

software that enables the creation of a variety of RF pathways and parameters.  

B. HARDWARE 

The hardware selected for this research was driven by its availability as inexpensive 

COTS components. The SDR chosen for data generation and testing was the ADALM-

PLUTO SDR, a low-cost SDR that has cross-functionality with MATLAB. These SDRs 

were programmed directly from Simulink to facilitate data collection. Therefore, the SDRs 

were not run in a standalone configuration; two computers were used to drive each SDR. 

Figure 7 illustrates the test bet setup for this thesis. While the ADALM-PLUTO SDR can 

support a loopback configuration, over-the-air transmissions were desired for this research. 

As a result, separate SDRs were designated as the transmitter and receiver of the RF chain. 

Testing occurred in a controlled environment that sought to limit outside RF interference. 

While not all sources of RF could be completely controlled and eliminated, great lengths 

were taken to maximize the efficiency of both the transmission (TX) and receive (RX) 

SDRs during data generation and testing. Both the TX SDR and RX SDRs were equipped 

with the JCG401 2dBi antenna provided with the systems. 
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Figure 7. RF Test Bed Setup 

1. ADALM-Pluto SDR 

The ADALM-PLUTO SDR is the active learning SDR module from Analog 

Devices frequently used for RF and wireless communications experimentation. Utilizing 

the AD9363 board, it has a single TX channel and single RX channel that offers full duplex 

capability. Figure 8 demonstrates the compact size of the ADALM-PLUTO, which fits in 

the palm of a user’s hand. This small form factor offers versatility, allowing for flexible 

usage. ADALM-PLUTO boards can transmit analog signals from 325 megahertz (MHz) 

to 3800 MHz with a maximum sample rate of 61.44 mega samples per second at 20 MHz 

bandwidth. This offered a wide range of center frequencies to test and evaluate the designed 

communications pathway [33]. 
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Figure 8. Image of the ADALM-PLUTO Software Defined Radio  

2. ADALM-PLUTO Antenna   

The antenna that is provided with the ADALM-PLUTO SDR is a 42mm long 

Global System for Mobile (GSM) antenna. The 2dBi, linearly polarized antenna is capable 

of both transmitting and receiving in the following ranges: 824 to 960 MHz and 1710 to 

2170 MHz. The horizontal and vertical plane radiation patterns of various transmitting 

frequencies are outlined in Figure 9. It has an impedance factor of 50 ohms [34]. 
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Figure 9. Radiation Patterns for JCG401 Antenna. Horizontal Plane (left) 
Vertical Plane (right). Source: [34]. 

3. AD9363 

The AD9363 is an RF transceiver that integrates all RF, digital, and mixed-signal 

blocks within the same device. This integration reduces the need for additional hardware, 

increasing flexibility and versatility during testing. The analog-to-digital conversion 

(ADC) at the transmission side and digital-to-analog conversion (DAC) at the receiver side 

enables the rapid conversion of RF signals to and from digital components prior to passing 

them to the data interface component [35]. These connections, along with the local 

oscillators (LO), are all seen in Figure 10. Because the ADALM-PLUTO contains multiple 

components on the system on a chip (SOC), only the relevant portions that impacted the 

research of both the receiver and transmitter pathways will be highlighted in the following 

Receiver and Transmitter sections. 

a. Receiver 

Figure 10 illustrates the RX path of the larger functional diagram of the AD9363. 

The receiver operates with a direct conversion system that links its Low Noise Amplifier 

(LNA) and I&Q amplifiers. Additionally, this is down-converted to baseband for 

digitization. In this research, the automatic gain controller (AGC) will be enabled by 

utilizing the slow mode within the Simulink software component. The AGC “helps 
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stabilize the received signal amplitude to ensure an optimum loop design” [36], benefitting 

the carrier and symbol synchronizers used in the Simulink software component [36].  

 

Figure 10. Functional Block Diagram of the AD9363 RX Path. Adapted 
from [37]. 

b. Transmitter 

The TX section of the AD9363 provides all system blocks needed for the digital to 

analog-conversion. “Conversion of the signal to baseband analog signals, the I&Q signals 

are filtered to remove sampling artifacts and provide band shaping, and then are passed to 

the up-conversion mixers” [37]. This direct conversion architecture, illustrated in  

Figure 11, enables modulation at high accuracy with low noise degradations [37]. 

 

Figure 11. Functional Block Diagram of the AD9363 TX Path. Adapted 
from [37]. 
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C. SOFTWARE  

This section will discuss the software that was used in the research. The Simulink 

toolbox offered various data collection models compatible with the ADALM-PLUTO SDR 

within MATLAB. MATLAB served as a readily available software that provided ML 

models. The ADALM-PLUTO TX SDR was configured and programmed utilizing the 

‘QPSK Transmitter with ADALM-PLUTO radio model’, and the RX SDR was configured 

utilizing the ‘QPSK Receiver with ADALM-PLUTO radio model’. When utilized together, 

these models provide a complete RF communication system that incorporates the 

ADALM-PLUTO SDR. These models have default settings that were maintained, with the 

adjustments and research-relevant portions identified in the following transmitter and 

receiver sections of this chapter. Both models are available through the MATLAB 

Communications Toolbox [36], [38]. The additional toolboxes that were installed to add 

processing, collection, and simulation capabilities include Statistics and Machine Learning, 

Deep Learning, Signal Processing, Predictive Maintenance, HDL coder, DSP System, and 

Simulink toolboxes. 

1. QPSK Transmitter with ADALM-PLUTO Radio  

The transmission pathway of the RF system utilized the ‘QPSK Transmitter with 

ADALM-PLUTO Radio’ model, with the addition of an Additive White Gaussian Noise 

(AWGN) channel highlighted in blue in Figure 12. This transmitter model incorporated a 

bits generation subsystem, a QPSK modulator block, and a raised cosine transmit filter 

block. The modulation for this model was Quadrature Phase Shift Keying, which has one 

of four possible phase carrier shifts (0, 90, 180, 270 degrees). QPSK allows for a 2-bit per 

symbol modulation technique, maximizing the transmitting bandwidth.[39]. The ADALM-

PLUTO transmitter block assigned generated message, post modulation and filtering, to a 

center frequency prior to its transmission. No additional gain was added to the transmitter 

model. 
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Figure 12. QPSK Transmitter with ADALM-PLUTO Radio Simulink Block 
Diagram. Adapted from [38]. 

The Bits Generation block encoded a “Hello World XXX” message, repeated 100 

times as a frame payload. Each frame contained 100 of the Hello World messages 

combined with a Header. The Header was a 13-bit Barker code that served as a sync to 

better facilitate decoding in the received model. Figure 13 outlines the Simulink block 

diagram showing the frame size as it passes through the diagram.  

 

Figure 13. Bits Generation Block Structure. Source: [38]. 

The AWGN channel allowed for intentional interference as a controlled variable 

for adjusting the SNR in the signal, as seen in Figure 13. The SNR used to generate the 

data sets is shown in Table 2. SNR values ranged from 20 dB down to 5 dB. A data 

collection set was also generated when the RX SDR simulated a collection period, but no 

accompanying TX signal was transmitted. This data set was used as a reference for the 

surrounding noise floor and labeled ‘EMPTY’.  
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Figure 14. Input Parameter View for AWGN Channel Block. 

2. QPSK Receiver with ADALM-PLUTO Radio  

The RX portion of the RF system utilized the ‘QPSK Receiver with ADALM-

PLUTO Radio’ model and added several collection and spectrum monitoring areas in the 

block diagram. The QPSK receiver model has the ADALM-PLUTO receiver block that 

feeds into the QPSK receiver subsystem. The QPSK receiver subsystem demodulates the 

received symbols and outputs the received “Hello World” message to the command line. 

The bit error rate (BER) was calculated in the BER block. The first display of the 

BER block was the overall bit error rate of the transmission. The second line in the display 

was the total number of dropped bits in the transmission. This provides an immediate 

indicator if the model is experiencing greater than expected interference as the value will 

continue to increase. The third display in the BER block is the total number of bits received. 

In Figure 14, a To Workspace block is highlighted blue. This block collected the BER 

values calculated during the simulation and was saved as a `Structure with Time` element. 
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Figure 15. QPSK Receiver with ADALM-PLUTO Radio in Simulink Block 
Diagram. Adapted from [36]. 

a. QPSK Receiver Block 

The QPSK receiver block, shown in Figure 15, includes several processes that 

manage the transmission from the transmitter. The AGC block adaptively changes the gain 

to achieve a constant signal level for the output signal, maintaining the SNR of the 

transmission. The Raised Cosine receive filter had a filter span of 10 symbols and a roll-

off factor of 0.5. The Course Frequency Compensation block compensated for carrier 

frequency offset experienced in the transmission. The maximum frequency offset was 

12500 Hz. The symbol synchronizer resamples the input signal so that symbol decisions 

are made at the optimum sampling instants. The Carrier Synchronizer compensates for the 

residual frequency offset as well as any phase offset that may occur in the transmission. 

The Preamble block detects the 13-bit frame header, and the Frame Synchronizer aligns 

the frame with the known header block. The Data Decoding subsystem finally demodulates 

the signal and decodes the transmission displaying its message in the command line. The 

Complex to Real Image block, highlighted blue in Figure 15, was added to the model to 

collect the real portion of the I&Q data to serve as the data set. The ‘Real2’ workspace 

variable was collected in structure with simulation time format. The complex RF signal 

was split into the real and imaginary portions as they relate to the in-phase (I) and 

Quadrature (Q) portions of the signal. Since the in-phase component, or real value, captures 

the amplitude variations of the signal at a given point in time, it was selected as the portion 
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of the complex signal to utilize. Additionally, the ML models used in MATLAB for this 

thesis could not employ complex data formats for analysis. 

 

Figure 16. Receiver Block Diagram, I&Q Collection Points in Blue, Display 
Blocks in Red. Adapted from [37]. 

The Spectrum display block displayed the received signal in yellow and the filtered 

signal in blue. During the monitoring of transmissions, the Spectrum Scope display and 

After Carrier Synchronizer display, highlighted in red in Figure 15, provided a visual 

confirmation of successful reception. Figure 16 presents a transmission with an SNR of 20 

dB, where the After Carrier Synchronizer displayed the QPSK constellation based on the 

I&Q data. In Figure 17, a transmission with an SNR of 9 is depicted, showing a more 

dispersed and spread QPSK constellation compared to the normal transmission relating to 

a higher ratio of interference compared to the normal signal. 
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Figure 17. Images of Scope (left) and After Carrier Synchronizer (right) 
Showing SNR 20 Datasets QPSK Modulation 

 

Figure 18. Images of Scope (left) and After Carrier Synchronizer (right) 
Showing SNR9 Datasets QPSK Modulation  

As transmissions were received, the display window produced a decoded numbered 

‘Hello world’ message. Figure 19 illustrates the command window displaying a perfectly 

received and decoded transmission. The display window allowed for a visual confirmation 

that the transmission was successful.  
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Figure 19. Transmission Payload Display 

D. CHAPTER SUMMARY 

This chapter reviewed the specific hardware and software that was used in the thesis 

research. The aim was to achieve comparable results using COTS hardware and software, 

contrasting expensive, computationally capable systems that are currently used in spectrum 

monitoring. ADALM-PLUTO SDRs were used for their versatility, flexibility, and 

adaptability for RF signal generation and collection. MATLAB and Simulink provided the 

integration software for the SDR and ML model development. The AD9363 SOC found in 

the ADALM-PLUTO integrated the necessary RF, digital, and conversion blocks that 

enabled the optimum signal generation and collection test bed. The complex RF signal was 

split into real and imaginary parts, with the real portions enabling the appropriate variation 

data used as data for the ML models.  
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IV. DATA GENERATION  

In order to evaluate ML techniques effectively, it is crucial to use a sufficiently 

large dataset. Tasks such as image classification, handwriting prediction, and voice/audio 

datasets benefit from large datasets that exist in repositories from various sources. Since a 

model’s effectiveness is related to the data quality used for training [40], it was necessary 

to establish specific parameters for the data used in this thesis. The data required for this 

research included RF I&Q data modulated with known parameters. Since the amount of 

required data was unknown at the outset, all the necessary data was generated locally. This 

approach provided the most control over quantity but eliminated any external source’s 

responsibility for the quality of the data generated. This chapter will describe the collection 

parameters of the data generated in the RF path and outline the steps taken to preprocess 

the data before feeding it to the ML algorithms. 

A. RF PORTION 

1. RF Transmitter Settings 

Table 1 provides the values and formulas for each block of the Simulink RF model. 

The interpolation factor doubled the frame size resulting in an overall frame length of 

11226 bits. In addition, a Raised Cosine Transmit Filter was applied to the modulated data, 

upsampling the data by 2. 

The data was transmitted through the ADALM-PLUTO SDR on a carrier wave with 

a center frequency of 915 MHz. The front-end sample rate of 200 kHz was identified as 

the ideal sample rate for this setup. Increasing the sample rate resulted in garbled message 

displays, making data generation difficult. The SDRs utilized a USB 2.0 connection with 

the PCs and, during sample rates greater than 200 kHz, became backlogged in transferring 

the data from the SDR to PC, resulting in garbled transmissions. These signal parameters 

were utilized to generate consistent data within the specifications of the SDR for analysis 

with the ML algorithms.Transmitter Settings and Value Derivations 
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Table 1. Transmitter Settings and Value Derivations 

 

2. RF Receiver Settings 

The symbol synchronization block took frames of fixed length and applied a phased 

locked loop to correct any timing inconsistencies in the received signal [41]. The symbol 

synchronizer block utilized a Garder algorithm to output one symbol for every two input 

symbols. An effect of channel timing delays is that the output sample per symbol may reach 

a symbol boundary resulting in inconsistent-sized outputs [41]. These inconsistencies are 

seen in the 11226x1 input converted into a 6175x1 output. Because the expected output is 

5613x1 in a perfectly timed and aligned system, there are extra values or omissions of 

values in the 6175 sample [36]. These must be accounted for and removed, which will be 

discussed later in the Data Preprocessing section.  

Each sample collected was an array 6175x1x1 long. The first dimension, 6175, 

represented the data points collected for each sample time. The second dimension, 1, 

represented the data sets collected in each sample. Since there would only be one channel 

transmitting one set of samples, this dimension remained one no matter the length of the 

simulation. The final dimension, 1, represented the number of sets collected in each sample. 

Since the frames arrived at a sample time of 0.05613 seconds, we could determine how 

long to run the simulation based on the desired number of samples.  

Parameter Formula Value 
Center Frequency Set by user 915,000,000 Hz 

Symbol Rate Set by user 100,000 Hz 
Transmitter Gain Set by user 0 dB 

Sample Rate 𝑀𝑀𝑦𝑦𝑆𝑆𝑏𝑏𝑜𝑜𝑆𝑆 𝑅𝑅𝑡𝑡𝑡𝑡𝑅𝑅 ∗ 𝐼𝐼𝑡𝑡𝑡𝑡𝑅𝑅𝑟𝑟𝐼𝐼𝑜𝑜𝑆𝑆𝑡𝑡𝑡𝑡𝑖𝑖𝑜𝑜𝑡𝑡 200,000 Hz 
Frame Size 𝐻𝐻𝑅𝑅𝑡𝑡𝐻𝐻𝑅𝑅𝑟𝑟 + 𝑃𝑃𝑡𝑡𝑦𝑦𝑆𝑆𝑜𝑜𝑡𝑡𝐻𝐻

𝑆𝑆𝑜𝑜𝑙𝑙2(𝑀𝑀𝑜𝑜𝐻𝐻 𝑂𝑂𝑟𝑟𝐻𝐻𝑅𝑅𝑟𝑟)
 

 
5,613 Bits 

Frame Length Frame Size * Interpolation 11,226 Bits 
Frame Time 𝐹𝐹𝑟𝑟𝑡𝑡𝑆𝑆𝑅𝑅 𝐿𝐿𝑅𝑅𝑡𝑡𝑙𝑙𝑡𝑡ℎ

𝑀𝑀𝑡𝑡𝑆𝑆𝐼𝐼𝑆𝑆𝑅𝑅 𝑅𝑅𝑡𝑡𝑡𝑡𝑅𝑅
 

0.05613 seconds 

Modulation Order QPSK alphabet (0,90,180,270) 4 
Interpolation N/A 2 
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The BER calculation utilized the Data Decoding and Frame Synchronizer blocks. 

These blocks aligned frames by correctly identifying the Barker code and then decoded the 

symbols into the numbered ‘Hello World’ Displays accordingly. 

Table 2 has the various levels of SNR and associated labels used for the data sets. 

Both ML models were unsupervised and did not require labeled datasets. However, an 

evaluation metric utilized labeled datasets for generating a confusion matrix.  

Table 2. SNR Levels for Each Collection Point and Associated Label. 

Signal to Noise Ratio Collected Data Label 

SNR 20 dB ‘Normal’ 
SNR 19 dB ‘Nineteen’ 
SNR 17 dB ‘Seventeen’ 
SNR 15 dB ‘Fifteen’ 
SNR 13 dB ‘Thirteen’ 
SNR 11 dB ‘Eleven’ 
SNR 9 dB ‘Nine’ 
SNR 7 dB ‘Seven’ 
SNR 5 dB ‘Five’ 

No Signal TX ‘EMPTY’ 

 

The command window displayed the decoded ‘Hello world’ transmission. During 

the RF generation portion, SNR 20, SNR 19, SNR 17, and SNR 15 were 100% of the 

transmission displayed, making it difficult for visual confirmation of interference in the 

transmission. While there were some bits that were dropped during the transmission, all 

four of these SNR levels enabled a complete transmission of data with very few error bits. 

Figure 20 displays the indistinguishable SNR 20 and SNR 15 command windows. 

Beginning with SNR 13 and ending with SNR 5, the level to which the ‘Hello world’ 

transmission was legible would decrease, enabling visual indication that there was 

interference present in the signal. Figure 21 illustrates the increasingly scrambled displays 

of SNR 9 and SNR7. 
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Figure 20. Command Window Display of SNR 20 (left) SNR 15 (right) 

 

Figure 21. Command Window Display of SNR 9 (left) and SNR 7 (right) 
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B. DATA PREPROCESSING 

After collecting data in the receiver model, it is essential to preprocess the data for 

utilization in the ML models. The extent of preprocessing required varied depending on 

the type of autoencoder being employed. Although MATLAB software was utilized for 

data collection, processing, and ML model training, the data preparation involved various 

conversions between different data structures or utilizing functions to extract details from 

the data. In the case of the LSTM autoencoder, the data was transformed into compressed 

representations called features. These features represent the entire range of data and serve 

as the input for the ML model. 

On the other hand, the basic autoencoder, also an unsupervised learning technique, 

utilized the raw, unlabeled data as input for the model. Both autoencoder models 

necessitate data partitioning into training and testing sets, but the LSTM autoencoder model 

utilized a validation set to assess the performance during training. The evaluation metrics 

of these ML models will be further discussed in Chapter V. 

1. LSTM Autoencoder 

Preparing data for the LSTM autoencoder involves trimming each dataset to a 

uniform size, accommodating any outlier data, and extracting representative features from 

each dataset. The last step in data preprocessing is partitioning data into separate training, 

validation, and testing sets. The data sets were partitioned into training, testing, and 

validation sets. The partitioned percentages were 80, 10, and 10, respectively.  

a. Removal of NaN 

A visual review of the data sets revealed several cells that contained the term, Not 

a Number, abbreviated ‘NaN.’ NaN was a representative term used when data was not 

calculated or received during a collection. In this case, after the symbol synchronizer 

resampled the data, in any place that did not have data, the synchronizer block inserted a 

‘NaN’ value in the 6175x5001 array. The first step was to search the array for the first 

appearance of a NaN value, then trim the array at the appearance of the first NaN value. 

For all datasets where an actual RF transmission was sent, the last row with a numerical 
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value was row 5613. This aligned with the frame size being 5613 bits in length. Therefore, 

each data set was trimmed to 5613x5001 size. Table 3 lists the data set and the 

corresponding row where the first NaN value was identified. Data set ‘SNR EMPTY’  was 

the outlier, as the first appearance of a NaN value was in row 548. Since the synchronizer 

block did not uniformly insert NaN values as it resampled the data, some samples had a 

NaN value in row 5613, and some did not. In order to solve this, a mean vector for each 

data set was created from all the other values in each column. Then in any location where 

a NaN value occurred, the corresponding mean from the vector was placed to fill in missing 

data. This ensured all 5001 samples had 5613 values, and in any column that needed a NaN 

value replaced, a mathematically derived value was used and not ignored or replaced  

with 0. 

Table 3. SNR Data Sets, Data Dimension for Each Set, and First Row that 
Contained a NaN Value 

Data set # NaN rows found in  
6515x5001 array 

Trimmed 
Dimension 

# of NaN values 
found in row 5613 

SNR 20.mat 563 5613 x 5001 4 
SNR 19.mat 563 5613 x 5001 2 
SNR 17.mat 563 5613 x 5001 7 
SNR 15.mat 563 5613 x 5001 4 
SNR 13.mat 563 5613 x 5001 16 
SNR 11.mat 563 5613 x 5001 32 
SNR 9.mat 563 5613 x 5001 34 
SNR 7.mat 563 5613 x 5001 45 
SNR 5.mat 563 5613 x 5001 47 

SNR EMPTY.mat 548 5613 x 5001 0 

 

As the SNR decreased, resulting in more significant interference, the ability of the 

symbol synchronizer to adequately sample the received signal decreased, resulting in 

greater numbers of NaN values in row 5613. Other than in SNR15 and SNR17 data sets, 

the NaN count in the rest of the data sets increased as the SNR value decreased. The 

EMPTY data set had a much lower count of NaN rows, which indicated that the RX symbol 

synchronizer was inputting values much further into the 6175x5001 array to synchronize a 
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sample from a signal that did not exist. For uniformity, the EMPTY data set had the same 

dimensions, 5613x5001, as the other data sets to maintain continuity. 

b. Feature extraction 

Feature extraction is the process of creating useful information from a set of raw 

data points. This new data set will be heavily condensed yet still representative of the more 

extensive raw data set [42]. Features design varies based on the data type or created from 

standard analysis methods. MATLAB offers a Diagnostic Feature Designer application 

that enables feature design and extraction from a data set. The features extracted were based 

on a time-series domain and were a collection of 13 basic statistical functions derived from 

the data sets. The features were grouped into statistical features, impulsive features, and 

harmonic features. The statistical features were, mean, root mean square, standard 

deviation, shape factor, kurtosis, and skewness. The statistical features provide information 

about the distribution, variability, and any trends present in the data [43]. The impulsive 

features included crest factor, impulse factor, clearance factor, and peak value. Impulsive 

features identify sudden changes in the data, spikes, or outliers [43]. The harmonic features 

included; SNR, total harmonic distortion, and signal to noise to distortion. Harmonic 

features capture periodic or repetitive patterns and are derived from the frequency domain 

representations of the data [44]. 

(1) Diagnostic Feature Designer 

The Diagnostic Feature Designer application in MATLAB enables the visualization 

of raw data so that features can be designed that indicate particular conditions or 

relationships. In order to utilize this application, a table containing two sets of appropriately 

labeled raw data for comparison must be loaded, and various analyses or comparisons can 

be conducted [45].  

To maximize the effectiveness of the features identified using the application, 

features were selected that enabled distinguishing two data points that were not easily 

achievable through human analysis of the raw data. The diagnostic feature designer refers 

to a collection of data points as an ensemble. The statistical functions are applied to the 

ensemble, and histograms are generated. Members reference a single individual data set 
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where a particular function is applied [46]. After the histogram representations are 

generated, the diagnostic feature designer application can help determine the top features 

to apply to the data set by ranking the features in a table. The rankings can be based on 

simple T-score analysis between two data sets or through unsupervised or supervised 

rankings. For this thesis, all 13 features were chosen to provide the highest opportunity to 

distinguish between the two data sets. Histograms are color-coded to identify 

corresponding data sets. Features with the greatest discrimination between the two datasets 

are identified by those whose histograms do not overlap and offer the greatest separation, 

as seen in Figure 22. Those whose histogram representations overlap describe features that 

are similar in characteristics and, therefore, not easily distinguishable to the human eye. 

The histograms could be ranked in order by the variance that existed between the two data 

sets being analyzed in the Diagnostic Feature Designer. It is important to note that when 

comparing various SNR data sets, such as SNR 19 and SNR 17, the histogram separation 

will decrease, and therefore the NN’s ability to distinguish the histogram separations will 

become more important.  

 

Figure 22. Histogram of Raw Data Sets in the Feature Designer Application. 
Least Useful (left) Most Useful (right) 

Figure 23 shows the ranking, from greatest to least, of feature importance between 

the SNR 15 and SNR 20 data sets in both a table view and bar graph ranking. The greater 

the histogram separation, the greater the ranked importance.  
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Figure 23. Feature Rankings Bar Graph View (left) Rank Table (right) 

c. Normalization of data  

After extracting the features from the data sets, the output will be a 14x5001 array 

where each sample has a set of 13 feature input values and a desired output label. The 

features will be the data utilized for model training. The next step in preprocessing the data 

is to ensure that each feature is normalized between the two data sets. This is referred to as 

the normalization of data [47]. Normalization is a technique where all data is formatted to 

a similar scale. Multiple types of normalizing techniques exist. However, the type that is 

utilized for this data set will be scaling the data to a particular range as described in [47]. 

Scaling data involves converting data ranges from their natural variation to a range from 0 

to 1. This scaling is accomplished through Min-Max normalization, where each feature 

data point is subtracted from the minimum value and divided by the mean of the feature 

set [47],[48]. 

 𝑥𝑥′ = (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛)/(𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛) 12
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In equation 12, x’ is the normalized data while x is the feature data point being 

normalized, and the xmax and xmin are the upper and lower ranges of the data. Normalization 

will occur with each feature, so the min and max ranges will be unique to the column 

feature data. Each data set will be normalized using the xmin and xmax values of the normal 

data set to scale all data to the same range. Normalization benefits LSTM autoencoder 

learning as it attributes the same importance to all the features while also ensuring that all 

the data lie within the linear range of the network’s observations. Even though each feature 

histogram was ranked to determine the highest degree of discrimination between the data, 

all available features were selected. Utilizing all 13 features as training data for the model 

results in each feature having equal importance for learning the LSTM autoencoder layers 

and collectively contributing to the model’s learning. 

d. Removal of Infinite Values 

After extracting features from the data, then normalizing the data sets, the last stage 

of preprocessing is required, which involves checking the data and ensuring that all 

columns and rows have numerical values. Errors when deriving means or conducting the 

statistical analysis can arise if non-numerical values are included in the calculations. 

Feature 13, total harmonic distortion, was a repeat offender in having non-numerical results 

in all SNR data sets. Total harmonic distortion refers to the amount of distortion a select 

signal has compared to the fundamental frequency or purely sinusoidal signal. Derived by 

taking the ratio of RMS of the harmonics of the signal being analyzed to the RMS of the 

fundamental frequency. The derivation for calculating THD is found in [44]. 

 𝑇𝑇𝐻𝐻𝑇𝑇 =  �
(𝑉𝑉1+𝑉𝑉2+𝑉𝑉3+𝑉𝑉4….𝑉𝑉𝑛𝑛)

𝑉𝑉𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓
 13 

THD has been used as an indicator of the quality of a system. It usually is combined 

with other qualitative factors that dictate transmission quality. This quality determination 

is outside the scope of the research. When calculating the THD as a feature, some elements 

have a result of infinity or negative infinity. This is due to one of several factors. When 

dividing a number by zero or attempting to take the square root of a negative number. Since 

there are various reasons why infinity or negative infinity are derived when calculating 
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THD, any instance or presence will be removed or replaced using the same methodology 

as NaN value replacement.  

Not all values in the THD feature column were infinite, and different SNR data sets 

had various instances of infinity or negative infinity being present. Figure 24 shows a 

sample of the data from SNR 17 containing a high number of Infinity or negative Infinity 

entries. Overall, each data set was searched, and every instance of infinity was identified. 

Next, the column-wise mean calculation was conducted on all finite values within each 

column. This mean value was used as a replacement value for infinity or negative infinity 

to complete the data for the THD feature column.  

 

Figure 24. Infinity Values in THD Column of SNR17 Data Set. (left) THD 
Mean (center) Infinity Values Replaced (right). 

e. LSTM Autoencoder settings 

When constructing an LSTM autoencoder through MATLAB, various 

hyperparameters can be set to design the model as desired. The function trainNetwork(x) 

is a neural network default function offered through MATLAB. Using the parameters listed 

in Table 4, the function was converted to an LSMT autoencoder model. There were three 

bidirectional LSTM layers; an encoder with 32 cells, followed by another layer of 16 cells, 
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that was followed by a decoder with 32 cells. In between each layer, there is a rectified 

activation function. The activation function adds non-linearity to the output of the LSTM 

layers aiding in the model’s effectiveness in learning the features of the data as it passes 

through the layers [49]. Additionally, setting the optimizer function and learning rate 

parameters enabled the shaping of the neural network into an LSTM autoencoder model.  

Table 4. Parameters of the Layer and Training Options for Neural Network 
Models. 

Layer parameter Value Name/Function 
FeatureDimension 1  

BiLSTM layers 32,16,32 Bidirectional LSTM layers 
Activation function relu1,  relu2,  relu3 Rectified Activation Function 

Training options parameter Value Name/Function 
Optimizer Adam Adaptive moment estimation 

Learning rate 0.001  
Mini Batch size 500  

Epoch 200 The number of complete passes over 
the training set. 

Validation data 500x1 10% of the total data set 
Validation Frequency 50 Every 50 iterations of training data 

were validated. 
Plots ‘training-progress’ Plots mini-batch size and validation 

accuracy.  

 

(1) Training Options  

The optimizer for this LSTM autoencoder model was the Adaptive moment 

estimation (Adam). Adam optimization is a widely used and well-tuned optimizer function 

used in neural network training [50]. The learning rate parameter remained the default 

0.001, as increasing the value would decrease training time but result in a failure of the 

model to converge during training resulting in sub-optimization [51]. The mini-batch size 

represents the subset of the total data fed through the layers in the model. Epoch size refers 

to the total number of passes the model will go through in the partitioned training data set 

and is explained in detail in [51]. Increasing the epoch size would result in a longer training 

time. A training size of 200 was found to produce good results without overfitting.  
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Validating the data was a parameter that was added to the model, which did not 

come as a standard option for the trainNetwork(x) model through MATLAB [52]. 

Validation data was not used to train the model but used while training as a method to 

monitor the model’s performance and prevent any over or underfitting. Validation loss was 

the metric derived during the training, with the optimal goal to have the validation root 

mean square error near the resulting training RMSE [53]. Validation checks occurred at 

every 50 iterations of training.  

Visual monitoring of the model’s training occurred by plotting the training 

progress. A black circle indicated every validation step, and the RMSE of the training data 

was tracked along all epochs and training iterations.  

(2) Layer Construction 

Two separate model configurations were designed using The LSTM autoencoder 

model. The first model had a layer construction of 32-16-32. The second model was 

designed with a much smaller layer construction, 13-6-13. This was to determine if the 

layers with greater node counts were required to identify interference successfully and to 

what extent the 13-6-13 could offer results. The typical layer construction used for both 

LSTM autoencoder models is illustrated in Figure 25. 

 

Figure 25. LSTM Autoencoder Layer Construction  

2. Autoencoder 

The basic autoencoder used in this thesis was also trained utilizing the MATLAB 

trainAutoencoder(x) function. The input data for this model did not require feature 

extraction but did require the removal of the NaN values, and normalization preprocessing 
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steps. The input matrix for each dataset would remain in the 5613x5001 format after 

preprocessing.  

a. Training Parameters 

The hidden layers parameter of the basic autoencoder model played a crucial role 

in how the model learned and was able to recreate the compressed features of the input 

data. With additional neurons, the hidden layer can capture finer details and variations in 

the data, allowing for a more expressive and detailed representation of the input. 

Adjustments were made to the size of the hidden layers to reach a balance between the size 

of hidden layers and recreation accuracy without overfitting. The hidden layer values 

ranged from 4, 13, and 32 neurons in each hidden layer. Table 5 outlines the training 

parameters for the basic autoencoder models and the length of time for training the model.  

Table 5. Training Parameters for Basic Autoencoder Models 

Parameter Model 4 Model 13 Model 32 
Epoch 400 400 400 

Hidden layer size 4 13 32 
Performance metric Mean Square 

Error 
Mean Square 

Error 
Mean Square 

Error 
Training method Scaled 

Conjugate 
Gradient 

Scaled 
Conjugate 
Gradient 

Scaled 
Conjugate 
Gradient 

Encoder transfer 
function 

Logsig Logsig Logsig 

Decoder transfer 
function 

Logsig Logsig Logsig 

Training time 
 

10 min 27 sec 11 min 25 sec 13 min 34 sec 

 

The training method for the basic autoencoder included the scaled conjugate 

gradient (SCG) method, an optimization algorithm now commonly used for training neural 

networks. The SCG optimization was the default training algorithm for the 

trainAutoencoder (x) function in MATLAB, and the reason this algorithm was utilized 

versus the Adam training algorithm used in the LSTM autoencoder. Moller [54] describes 
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how the SCG method incorporates derivative information to estimate step sizes and 

directions, facilitating faster convergence and improved accuracy in model training. 

The encoder and decoder transfer function was the Logistic sigmoid (logsig) 

function, described in [55] as  

    𝑓𝑓(𝑧𝑧) =  1
1+ 𝑒𝑒−𝑧𝑧

     14 

where z is the output from the input layer. The logsig function is useful as an activation 

function by introducing the non-linearity, enabling the network to learn any complex 

relationships between inputs and outputs.  

 When using the trainAutoencoder(x) function, there are a number of default settings 

associated with the training of the algorithm. These default settings will be listed in the 

Appendices. Only the parameters that were altered were identified in Table 6. Figure 26 

illustrates the autoencoder construct, highlighting the hidden layer size and transfer 

functions of the encoder and decoder.  
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Figure 26. Autoencoder Construct with 4 Hidden Layers. 

C. CHAPTER SUMMARY 

This chapter reviewed the data processing methods for preparing the data for use in 

both ML models. The basic autoencoder ML model did not require extensive preparation, 

as the raw data was utilized for training. Steps included normalizing the data, removing 

NaN values, and ensuring all samples were 5613 data points in length, resulting in each 

data set having a 5613 x 5001 size. The LSTM autoencoder model required significant 

preprocessing steps. Features were extracted from each data set and utilized as the input 
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data for the LSTM autoencoder model. 13 features were derived utilizing statistical, 

impulsive, and harmonic characteristics of the data. MATLAB offers the Diagnostic 

Feature Designer application that can graphically represent features as histograms, 

enabling visualization of how each feature impacts the representation of the data set. After 

extracting the features, it was observed that the THD resulted in several infinite 

calculations, which had to be removed to enable statistical analysis of the data. After 

removing the infinite values, NaN values and normalizing the data, the resulting data was 

14x5001 for each data set. Finally, training parameters and layer construction parameters 

were set to prepare both ML models for training according to desired parameters.  
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V. RESULTS 

This chapter presents the results of the data sets as the trained ML models processed 

them. The basic autoencoder evaluation used two comparison metrics: graphs of the MSE 

and then statistical analysis values of the MSE. Each data set’s MSE was graphed according 

to its probability density function (PDF) and cumulative distribution function (CDF). This 

provided a visual interpretation of the data. Statistical analysis of the MSE data sets 

established numerical thresholds that enabled distinguishing the data sets apart.  

Three figures of merit (FOM) evaluated how well the LSTM autoencoder could 

identify interference in a sample set of signals. The first FOM was a single sample from 

each dataset evaluated by establishing values for how much error existed between a 

reconstructed value and the original value for each feature. FOM two was the root mean 

square error (RMSE) of the data sets and how that compared to the RMSE of the ‘Normal’ 

data set. The final FOM was a representative confusion matrix based on the model’s 

success in distinguishing signals with interference from representative normal signals. The 

first two FOMs required human interpretation for confirmation, while the third FOM 

provided an automated identification method. Each section will first review the 

corresponding FOM data, and a discussion on each FOM and its use in answering the 

research questions will follow. 

A. BASIC AUTOENCODER 

The data from the basic autoencoder was evaluated in two parts. First, the MSE 

values derived from the 4,13, and 32 models were graphed according to their PDF and 

CDF. Then MSE values were evaluated based on the four moments of statistical analysis, 

measuring the mean, variance, skewness, and kurtosis. The aim of this evaluation was to 

derive insights from the MSE through numerical comparison. In addition, separations in 

the PDF and CDF indicated that the statistical properties of these graphical representations 

could be exploited, indicating the presence of interference in the signal datasets. 
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1. Probability Density Function Results 

In this evaluation, the PDF of the MSE was graphed to assess the reconstruction 

error of the autoencoder. The PDF represents the probability of an input value falling within 

a specific range of the input and reconstruction error values. It is a fundamental statistical 

tool used to analyze and characterize data distribution by quantifying the likelihood of 

different values occurring [56]. Figures 27 and 28 display the PDF graphs of SNR 20 vs. 

interference data using Model 4. Figures 29 and 30 display the PDF graphs of the same 

signal using Model 13, and Figures 31 and 32 display the PDF graphs using Model 32. 
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a. Model 4 

 

Figure 27. Probability Density Function Graph of SNR 20 and Higher SNR 
Signals. 

 

Figure 28. Probability Density Function Graph of SNR 20 and Lower SNR 
Signals. 
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b. Model 13 

 

Figure 29. Probability Density Function Graph of SNR 20 and Higher SNR 
Signals 

 

Figure 30. Probability Density Function Graph of SNR 20 and Lower SNR 
Signals 
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c. Model 32 

 

Figure 31. Probability Density Function Graph of SNR 20 and Higher SNR 
Signals 

 

Figure 32. Probability Density Function Graph of SNR 20 and Lower SNR 
Signals 
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2. Cumulative Distribution Function Results 

The CDF of the MSE gives the cumulative probability that an input value takes on 

a value less than or equal to a given value. It allows analysis of an entire range of the data 

set and determines the likelihood that an input value will be below a certain threshold. The 

CDF is derived from the PDF and is the integration over a range [57]. For CDF, the data 

sets were placed into two groups to minimize the number of graphs and visualize how 

similar SNR datasets were distributed as compared to the normal data set. Group 1 included 

SNR 19, SNR 17, and SNR 15. Group 2 included SNR 13, SNR 11, SNR 9, SNR 7, and 

SNR 5. Figure 33 and Figure 34 illustrate Model 4 CDF of Group 1 and Group 2.  

Figure 35 and Figure 36 illustrate the CDF of Group 1 and Group 2 for Model 13. Finally, 

Figure 37 and Figure 38 depict the CDF of Group 1 and Group 2 for Model 32. 
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a. Model 4 

 

Figure 33. Model 4 Cumulative Distribution Function of Group 1 vs. SNR 20 

 

Figure 34. Model 4 Cumulative Distribution Function of Group 2 vs. SNR 20. 
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b. Model 13 

 

Figure 35. Model 13 Cumulative Distribution Function of Group 1 vs. SNR 
20 

 

Figure 36. Model 13 Cumulative Distribution Function of Group 2 vs. SNR 
20 
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c. Model 32 

 

Figure 37. Model 32 Cumulative Distribution Function of Group 1 vs. SNR 
20 

 

Figure 38. Model 32 Cumulative Distribution Function of Group 2 vs. SNR 
20 
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3. PDF and CDF Discussion 

Utilizing both the PDF and CDF graphs to visualize the MSE of the datasets 

enabled a visual confirmation of existing differences between the normal data set and the 

data sets with interference.  

For PDF, all three models displayed similar graphs for the two groups. Model 4 and 

Model 13 had similar probability densities for SNR 17 and SNR 19 data sets, peaking 

slightly above 45%. While Model 32 had a peak of 65% for SNR 17 and above 50% for 

SNR 19, indicating that the increased hidden layer size of 32 could extract more 

information from the data set for the ML model. At lower SNR levels, the overall PDF 

probability percentages were much higher, with Model 4 and Model 13 having a 65% and 

60% peak for SNR 5 and SNR 7, respectively. In Model 32, the peaks were much higher, 

topping out at 90% for SNR 5 and 80% for SNR 7.  

Distinguishing between Model 4 and Model 13 overall would be difficult as the 

PDFs of all three models appeared similar. All three models clearly distinguished between 

the normal signal and all interference data sets. Data sets with interference had much higher 

peaks of MSE probability in all three models. Overall utilizing the PDF and CDF enable a 

basic visual indication of interference. The extent to which the variance or difference exists 

would need to be examined using the more in-depth four moments statistical analysis 

approach.  

Overall, utilizing the PDF or CDF to visually confirm the presence of interference 

could prove helpful, as operators only need to plot the output values from a received signal 

fed through any of the three basic autoencoder models. When aiming to automate the 

process, further analysis would need to occur. The four moments of statistical analysis can 

provide this automation capability by establishing numerical thresholds that indicate 

interference. Utilizing these thresholds as indicators of interference reduces the need for 

subjective interpretation of visual graphs.  
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4. Statistical Analysis Results 

The formulas for the four moments of statistical analysis are derived from [58]. N 

is the number of data sets, and σ is the standard deviation. Mean is the average value of the 

dataset and is represented by  

 µ =  1
𝑁𝑁
∑ 𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1    15 

 

variance is measuring the spread of the dataset, determining how far each data point is from 

the mean, and is represented by: 

 𝑉𝑉𝑡𝑡𝑟𝑟(𝑥𝑥𝑁𝑁) = 1
𝑁𝑁−1

∑ (𝑥𝑥𝑗𝑗 − µ)2𝑁𝑁
𝑗𝑗=1  16 

Skewness is a measure of the symmetry of the distribution of the dataset and is derived by: 

 𝑀𝑀𝑆𝑆𝑅𝑅𝑤𝑤(𝑥𝑥𝑁𝑁) = 1
𝑁𝑁
∑ �𝑥𝑥𝑗𝑗−µ

𝜎𝜎
�
3

𝑁𝑁
𝑗𝑗=1  17 

Kurtosis is a value that determines how much the data peaks or how flat the data set is in 

comparison to the normal data distribution. It is derived by: 

 𝐾𝐾𝐾𝐾𝑟𝑟𝑡𝑡(𝑥𝑥𝑁𝑁) =  �1
𝑁𝑁

 ∑ �𝑥𝑥𝑗𝑗−µ
𝜎𝜎
�
4

𝑁𝑁
𝑗𝑗=1  � − 3 18 

 

Tables 6, 7, and 8 display the calculated moments for each data set and the percent 

change of the values compared to the normal data utilizing Models 4, 13, and 32, 

respectively. 
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Table 6. Statistical Moment Values Utilizing Model 4 

Data 
Set Mean % 

Change Variance % 
Change Skewness % 

Change Kurtosis % 
Change 

SNR 20 0.134 0 5.6E-04 0 0.320 0 3.431 0 
SNR 19 0.132 -1.80% 1.1E-04 -80.21% 0.778 143.51% 4.433 29.19% 
SNR 17 0.133 -0.38% 1.0E-04 -81.58% 0.752 135.35% 3.873 12.88% 
SNR 15 0.129 -3.46% 1.0E-04 -81.98% 0.718 124.63% 4.151 20.98% 
SNR 13 0.129 -3.85% 9.5E-05 -83.04% 0.788 146.46% 4.038 17.68% 
SNR 11 0.128 -4.66% 9.3E-05 -83.41% 1.159 262.65% 5.399 57.36% 
SNR 9 0.124 -7.25% 6.8E-05 -87.77% 1.015 217.68% 4.772 39.06% 
SNR 7 0.121 -9.74% 6.5E-05 -88.34% 1.038 224.89% 4.743 38.23% 
SNR 5 0.115 -13.88% 6.3E-05 -88.63% 1.294 304.87% 5.694 65.96% 
SNR 

EMPTY 0.077 -42.82% 2.9E-05 -94.84% 1.713 436.04% 7.622 122.15% 

Statistical moments with greatest percentage variance from normal data set highlighted in blue. 

Table 7. Statistical Moment Values Utilizing Model 13 

Data 
Set Mean % 

Change Variance % 
Change Skewness % 

Change Kurtosis % 
Change 

SNR 20 0.134 0.00% 6.88E-04 0.00% 0.428 0.00% 3.55 0.00% 
SNR 19 0.132 -1.12% 1.51E-04 -77.99% 0.537 25.40% 3.70 4.39% 
SNR 17 0.134 0.02% 1.23E-04 -82.13% 0.890 107.91% 4.35 22.69% 
SNR 15 0.130 -3.02% 1.16E-04 -83.20% 0.610 42.55% 4.08 14.86% 
SNR 13 0.129 -3.76% 1.31E-04 -80.95% 0.924 115.96% 4.72 32.89% 
SNR 11 0.128 -3.98% 1.20E-04 -82.56% 1.254 193.20% 6.16 73.48% 
SNR 9 0.125 -6.32% 9.40E-05 -86.34% 1.227 186.87% 5.27 48.44% 
SNR 7 0.122 -9.06% 8.54E-05 -87.59% 1.168 173.01% 5.43 53.12% 
SNR 5 0.116 -13.17% 7.94E-05 -88.46% 1.461 241.45% 6.33 78.49% 
SNR 

EMPTY 0.078 -41.81% 4.45E-05 -93.53% 1.695 296.27% 7.10 100.19% 

Statistical moments with greatest percentage variance from normal data set highlighted in blue. 

Table 8. Statistical Moment Values Utilizing Model 32 

 Data 
Set Mean % 

Change Variance % 
Change Skewness % 

Change Kurtosis % 
Change 

SNR 20 0.130 0 3.9E-04 0 0.537 0 5.601 0 
SNR 19 0.129 -0.90% 8.0E-05 -79.47% 1.102 105.38% 6.003 7.17% 
SNR 17 0.131 0.90% 7.5E-05 -80.66% 1.212 125.81% 5.430 -3.07% 
SNR 15 0.126 -3.07% 6.0E-05 -84.73% 1.024 90.88% 6.173 10.20% 
SNR 13 0.125 -3.33% 7.7E-05 -80.24% 1.275 137.59% 6.190 10.51% 
SNR 11 0.126 -3.02% 8.3E-05 -78.72% 1.496 178.74% 6.293 12.35% 
SNR 9 0.123 -5.39% 6.6E-05 -83.06% 1.656 208.54% 6.760 20.69% 
SNR 7 0.119 -8.49% 6.1E-05 -84.33% 1.652 207.88% 7.140 27.47% 
SNR 5 0.113 -12.68% 6.0E-05 -84.66% 1.690 214.97% 6.704 19.69% 
SNR 

EMPTY 0.076 -41.16% 3.8E-05 -90.37% 1.885 251.34% 8.194 46.28% 

Statistical moments with greatest percentage variance from normal data set highlighted in blue. 
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5. Statistical Analysis Discussion 

The most significant overall percentage change between the statistical moments and 

the normal data set in all three models came from the variance and skewness values. The 

least indicative values came from the data sets’ mean and kurtosis values. The regular 

percent change was utilized in this analysis versus the absolute value of change, as the 

positivity or negativity of the change also gives insight. Comparing the statistical analysis 

data, the variance in the negative direction aligns with the PDF graphs showing the slight 

shift of the peaks to the left, as compared to the Normal data PDF. Additionally, positive 

skewness, or “right skewed,” is distinguished by a shift of the peaks to the left as compared 

to the mean [59]. The research findings suggest that skewness and variance can be 

effectively utilized as indicators of a signal with interference.  

B. LSTM AUTOENCODER 

Two LSTM autoencoder models were constructed. Both LSTM autoencoders had 

the same configuration as described in Table 9. However, the two ML models varied in 

hyperparameters. There were two layered constructions, a 32-16-32 layer model and a 13-

6-13 layer model. Table 7 includes the layer sizes for the two models and the time each 

model took to train. Both models had similar validation RMSE, which was derived during 

the validation portion of the training. For conciseness, the two models will be referred to 

as the `32-16-32` and the `13-6-13` models, respectively. 

Table 9. Layer Parameters for `32-16-32` and `13-6-13` Models 

Layer Parameter `32-16-32` Layer Parameter `13-6-13` 

BiLSTM layer 1 32 BiLSTM layer 1 13 

BiLSTM layer 2 16 BiLSTM layer 2 6 

BiLSTM layer 3 32 BiLSTM layer 3 13 

Time to train model 6 min 56 sec Time to train model 3 min 13 sec 

Validation RMSE 0.029638 Validation RMSE 0.029687 
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1. First FOM – Single Sample Results 

A single sample was selected from each dataset, and the input values for the 13 

features were plotted against the output value obtained by running the sample through the 

trained LSTM autoencoder models. The error was determined by taking the absolute value 

of the input value minus the “decoded” or output value. The greatest error value was 2, so 

error values closer to 2 signified the greatest variance. Jammed signals would be expected 

to have a larger number of features that showed error versus a normal signal who with little 

to no significant errors. Figure 39 displays SNR 20, SNR 15, and SNR 5 plots for the `13-

6-13` model. Table 10 displays the reconstruction error values of each feature for the 

sample using the ̀ 13-6-13` model, with samples appearing in Figure 39 highlighted in blue. 

Table 11 displays the `32-16-32` model results, with samples appearing in Figure 40 

highlighted in blue.  
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Table 10. Feature Prediction Error Values for the`13-6-13` LSTM Autoencoder Model. 

 

 

 

 

 

 

 

 

Select signals featured in Figure 39 highlighted in light blue, features that had highest value of variance highlighted in dark blue. 

Data set Feature 
1 2 3 4 5 6 7 8 9 10 11 12 13 

SNR 20 0.005 0.009 0.003 0.003 0.001 0.007 0.015 0.016 0.012 0.002 0.001 0.048 0.041 
SNR 19 0.018 0.008 0.016 0.011 0.003 0.074 0.142 0.089 0.130 0.063 0.052 0.137 0.005 
SNR 17 0.146 0.212 0.216 0.206 0.794 0.217 0.221 0.059 0.155 0.374 1.266 0.376 0.168 
SNR 15 0.084 0.072 0.074 0.304 0.031 0.044 0.260 0.347 0.349 0.078 0.154 0.180 0.430 
SNR 13 0.132 0.134 0.093 0.182 0.060 0.177 0.262 0.045 0.102 0.183 0.081 0.605 0.200 
SNR 11 0.392 0.307 0.216 0.210 0.991 0.238 0.145 0.018 0.074 0.599 0.761 0.739 0.239 
SNR 9 0.436 0.284 0.212 0.154 1.126 0.229 0.224 0.124 0.142 0.604 0.735 0.914 0.258 
SNR 7 0.741 0.411 0.366 0.109 1.296 0.351 0.389 0.105 0.627 0.622 0.680 1.122 0.107 
SNR 5 0.740 0.320 0.321 0.116 1.232 0.282 0.832 0.031 0.613 0.476 0.688 1.598 0.056 
EMPTY 2.873 1.479 2.438 1.844 1.027 0.139 5.254 1.076 1.225 0.611 0.311 5.297 0.033 
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Figure 39. Representative Single Sample Plots for SNR 20 (top), SNR 15 
(middle) and SNR 5 (bottom) Using 13-6-13 
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Table 11. Feature Prediction Error Values `32-16-32` LSTM Autoencoder Model. 

 

Data set Feature 
1 2 3 4 5 6 7 8 9 10 11 12 13 

SNR 20 0.006 0.007 0.003 0.014 0.007 0.002 0.038 0.011 0.006 0.008 0.001 0.036 0.024 
SNR 19 0.006 0.009 0.001 0.011 0.056 0.003 0.210 0.166 0.115 0.033 0.002 0.217 0.015 
SNR 17 0.202 0.351 0.370 0.176 1.785 0.093 0.234 0.046 0.094 0.323 1.621 0.397 0.482 
SNR 15 0.018 0.001 0.099 0.014 0.069 0.056 0.224 0.184 0.026 0.131 0.324 0.229 0.439 
SNR 13 0.038 0.012 0.052 0.026 0.028 0.009 0.176 0.015 0.087 0.129 0.009 0.342 0.218 
SNR 11 0.381 0.291 0.475 0.400 1.353 0.156 0.322 0.271 0.415 0.119 1.235 0.861 0.034 
SNR 9 0.416 0.257 0.472 0.569 1.438 0.156 0.443 0.408 0.523 0.197 1.229 1.029 0.001 
SNR 7 0.463 0.170 0.410 0.585 1.493 0.393 0.809 0.528 0.391 0.434 1.295 1.491 0.020 
SNR 5 0.682 0.192 0.484 0.430 1.727 0.442 0.948 0.109 0.211 0.693 1.345 1.556 0.453 
EMPTY 3.002 1.255 2.242 1.859 1.271 0.532 5.151 0.108 0.184 1.884 0.807 5.177 0.089 

Select signals featured in Figure 40 highlighted in light blue, features that had highest value of variance highlighted in dark blue. 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



74 

 

 

 

 
 

 

Figure 40. Representative Single Sample Plots for SNR 20 (top), SNR 15 
(middle), and SNR 5 (bottom) Using ‘32-16-32’ 
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2. First FOM – Single Sample Discussion 

This FOM quantifies the reconstruction error, which measures the dissimilarity 

between input and output data after passing through a trained ML model. By providing 

numerical values, this FOM enables the determination of sample characteristics. Larger 

reconstruction error values indicate more significant deviations from the input values, 

indicating abnormal signal characteristics. These values aid in interpreting individual 

samples and classifying them according to error characteristics. 

Creating a database based on this information could facilitate a detailed analysis of 

how received signals are affected by interference. When deriving feature data from the raw 

data sets, the features were numbered according to the listing of the features in alphabetical 

order. Table 12 groups the features and aligns them with the numbering position used in 

Tables 10 and 11. The Diagnostic Feature Generator’s associated ranking is also listed in 

Table 12.  

It is important to note that the reconstruction values of samples selected for the first 

FOM did not directly correlate to features as the Diagnostic Feature Designer ranked them. 

Many samples had greater error values in features that had an overall lower ranking of 

importance which indicates that the neural network processes classified the features 

differently. Therefore, individual samples cannot represent the entire 5001 sample dataset. 

This FOM provides detailed information on the extent of variance in a single sample when 

compared to a normal sample, offering specific characteristics that cannot be inferred from 

RMSE or the probability of sample anomaly. Utilizing this FOM can contribute to 

generating a characteristic database or accumulating information over time for previously 

identified anomalous signals. 
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Table 12. Feature Rankings and Associated Ranking of Importance. 

Feature 
# Feature Feature Ranking 

1 Clearance Factor 5 
2 Crest Factor 6 
3 Impulse Factor 4 
4 Kurtosis 3 
5 Mean 9 
6 Peak Value 7 
7 Root Mean Square 11 
8 Signal Noise Distortion 2 
9 Signal Noise Ratio 1 
10 Shape Factor 8 
11 Skewness 10 
12 Standard Deviation 12 
13 Total Harmonic Distortion 13 

 

3. Second FOM – Mean Squared Error Results 

The second FOM for evaluating the effectiveness of the trained ML model was to 

calculate the RMSE across the 13 features used for each dataset. A single RMSE value 

would then represent the entire dataset. Tables 13 and 14 outlines the calculated RMSE of 

each data set for each of the ML constructions. 
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Table 13. `13-6-13` Model RMSE Values 

Data set RMSE 
SNR 20 0.08 
SNR 19 0.42 
SNR 17 1.73 
SNR 15 0.78 
SNR 13 0.76 
SNR 11 1.82 
SNR 9 1.99 
SNR 7 2.23 
SNR 5 2.65 

EMPTY 8.91 
 

Table 14. `32-16-32` Model RMSE Values 

Data set RMSE 
SNR 20 0.08 
SNR 19 0.44 
SNR 17 2.62 
SNR 15 0.73 
SNR 13 0.53 
SNR 11 2.52 
SNR 9 2.56 
SNR 7 2.79 
SNR 5 3.06 

EMPTY 8.82 

 

The RMSE values were derived by taking the square root of the output vector 

values of each feature minus the original vector values of each feature in each dataset. The 

output vector values of each feature were created using MATLAB’s predict(x) 

function[60]. The predict function simply applied the input values to the ML model to 

complete the output.   
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4. Second FOM – Mean Squared Error Discussion 

In both models, the RMSE rose as the SNR decreased, signifying that the ML 

models had higher reconstruction error values over the entirety of the data sets as the 

AWGN strength increased. As a result, human operators could utilize the RMSE as a single 

identifier for the amount of variance a received signal has, compared to what would be 

expected, in this case, the values from the SNR 20 dataset. The RMSE value from the 

lowest level of interference, SNR19, resulted in an RMSE over five times greater than the 

normal data set. Such a difference in RMSE could be utilized as a threshold metric to 

classify all signals as interference. This single scalar value does not provide many 

characteristics for the identified signal as required for reporting; however, it does provide 

a method for identifying the presence of interference.  

There were outliers in FOM two for both models. In the SNR 17 data set for both 

models, the RMSE value was significantly higher than the similar SNR data sets. Initially, 

it was believed that the high number of infinity values that were present and replaced in 

the SNR 17 feature data impacted the RMSE of the entire data set. However, as seen in 

Table 15, SNR 19 and SNR 5 also had significant infinite values replaced in their data sets. 

Additionally, there was a significant drop in RMSE between SNR 15 and SNR 13, where 

only two and 917 infinity values were replaced, respectively. Since the THD of each dataset 

can be related to the quality of the transmission system [44], it was determined that the 

quality of the SDR radios and transmission pathways had some impact on the data, but to 

what extent was not determined. Overall replacing the infinite values with the mean did 

not directly relate to the spikes or drops in RMSE values. 
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Table 15. Number of Infinity Values Replaced during Preprocessing 

Data set # replaced 

SNR 20 0 

SNR 19 4143 

SNR 17 3388 

SNR 15 2 

SNR 13 917 

SNR 11 117 

SNR 9 80 

SNR 7 64 

SNR 5 4146 

SNR Empty 0 

 

5. Third FOM Test Accuracy and Confusion Matrices Results 

FOM three had two associated evaluation criteria: test accuracy and a confusion 

matrix. The test accuracy was a calculated percentage representing how well the model 

predicted a signal as having interference or if a signal was a normal signal. The confusion 

matrix was produced by determining the number of accurate predictions made versus the 

number of false predictions made. Each SNR data set with interference was evaluated 

against the ‘Normal’ data set separately. Signals correctly predicted as having interference 

would count as a True Normal or True Abnormal, and incorrect predictions counted as 

False Normal or False Abnormal. Figure 41 illustrates the confusion matrix for SNR 19 

with an RMSE threshold of 0.75 using model 32-16-32, and Figure 42 illustrates the results 

using model 13-6-13. 
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Figure 41. Confusion Matrix for SNR 19 Using a RMSE Threshold of 0.75. 
Model 32-16-32 

 

 

Figure 42. Confusion Matrix for SNR 19 Using a RMSE Threshold of 0.75 
Model 13-6-13 

The testing accuracy percentage was derived by taking a dataset with interference 

and combining it with the `Normal` dataset, deemed a testing set, resulting in 10002 total 

samples. A key value in this evaluation criteria was the threshold value set before 

evaluating the testing set. The threshold value represented how much of the separation 

would represent an abnormal signal in the prediction results of the model. If an output value 

were higher than the set threshold, the output value would result in a predicted abnormal 

signal. RMSE thresholds ranged from 0.05 to 5.0 representing increasing differences as 

prediction indicators. Figure 43 depicts the MATLAB script used to calculate test accuracy. 
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The reconstruction error was plotted for each sample, and anomalies identified with an x 

were evaluated.  

 

 

Figure 43. Graph 3 Testing Accuracy MATLAB Script 

In Figure 43, the ‘helperExtractLabeledData’ embedded function was a modified 

version of functions used in the MATLAB example “Anomaly Detection in Industrial 

Machinery Using Three-Axis Vibration Data” [61]. `helperExtractLabeledData` was used 

to extract all appropriately labeled data from a representative dataset, in this case, the 

combined dataset was labeled ‘data combined.’ All data extracted, in this case, consisted 

of 10002 samples. The 32-16-32 layered model was named ‘net’ in this script, and the 

yHatAll variable was the resulting matrix of values passed through the 32-16-32 layered 

LSTM autoencoder model. The threshold variables were changed, and the values were 

saved as ‘thresh’ in the script of Figure 43. Table 16 and Table 17 contain all calculated 

test accuracy percentage values for each data set, evaluated using each threshold value. 

Figure 44 plots the SNR 19 test accuracy using a threshold value of 0.75 for model  

13-6-13.  
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Table 16. `13-6-13` Testing Accuracy Percentages and Threshold Values 

Data set Threshold values 
0.05 0.10 0.25 0.35 0.50 0.75 1.0 2.0 3.0 5.0 

SNR 19 50.00 50.29 66.69 82.15 95.77 99.77 99.37 56.19 50.45 50.02 
SNR 17 55.90 83.05 99.91 99.91 99.90 99.92 99.93 72.12 50.00 50.00 
SNR 15 50.07 54.94 90.32 98.79 99.87 99.89 99.88 60.33 50.04 50.00 
SNR 13 50.05 54.51 89.52 98.63 99.88 99.70 95.01 60.01 56.94 50.80 
SNR 11 56.9 85.24 99.91 99.91 99.92 99.95 99.96 65.58 50.00 50.00 
SNR 9 59.32 88.91 99.91 99.91 99.92 99.95 99.96 67.15 50.00 50.00 
SNR 7 63.14 92.98 99.91 99.91 99.93 99.95 99.96 67.88 50.00 50.00 
SNR 5 69.89 97.57 99.91 99.92 99.95 99.96 99.98 69.09 50.00 50.00 
Empty 99.91 99.92 99.96 100 100 100 100 67.66 50.08 50.04 

Highest test accuracy values highlighted in blue. 

 

 

Figure 44. Model 13-6-13 Test Accuracy of SNR 19 Using an RMSE 
Threshold of 0.75  

Figure 45 displays the SNR 19 test accuracy results using an RMSE threshold value 

of 0.75 for model 32-16-32. 
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Table 17. `32-16-32` Testing Accuracy Percentages and Threshold Values 

Data set Threshold values 
0.05 0.10 0.25 0.35 0.50 0.75 1.0 2.0 3.0 5.0 

SNR 19 50.00 50.43 71.76 87.04 96.83 99.84 99.30 60.87 50.01 50.02 
SNR 17 73.73 97.56 99.91 99.92 99.93 99.93 99.93 59.69 50.00 50.00 
SNR 15 50.06 55.18 90.75 98.18 99.86 99.87 99.85 64.58 50.04 50.02 
SNR 13 50.00 51.33 80.11 93.03 99.12 96.94 86.03 58.29 57.66 53.61 
SNR 11 72.04 96.95 99.91 99.96 99.96 99.96 99.97 68.65 50.00 50.00 
SNR 9 72.85 97.22 99.91 99.94 99.96 99.96 99.97 68.74 50.00 50.00 
SNR 7 76.75 98.44 99.91 99.95 99.96 99.96 99.97 68.24 50.00 50.00 
SNR 5 81.02 99.24 99.92 99.95 99.96 99.96 99.98 68.94 50.00 50.00 
Empty 99.90 99.92 99.96 99.98 100 100 100 67.82 50.08 50.04 

Highest test accuracy values highlighted in blue. 

 

 

Figure 45. Model 32-16-32 Test Accuracy of SNR 19 Using an RMSE 
Threshold of 0.75  

6. Third FOM Test Accuracy and Confusion Matrices Discussion 

This FOM uses RMSE calculation to detect anomalous signal datasets. It classifies 

a dataset as anomalous or normal by applying a threshold value. Experimental results 

indicate that thresholds of 0.50, 0.75, and 1.0 yield the highest accuracy rates for correct 

classification over all data sets. As the SNR decreases and interference becomes more 

pronounced, higher thresholds result in better rates of successful interference detection.  
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Results in Table 16 and Table 17 have notable points highlighted in blue. In both 

models, the highest rates of interference identification were in the threshold ranges of 0.50 

to 1.0. The lowest accuracy occurred in the SNR 19 data set, using model 13-6-13, with a 

test accuracy of 99.77%. Data set SNR 5 had the highest test accuracy at 99.98% in both 

models. Utilizing the LSTM autoencoder in either model construct provided a useful 

interference identification method with over 99% accuracy in select thresholds. 

C. CHAPTER SUMMARY 

Both the basic autoencoder and LSTM autoencoder proved valuable methods for 

identifying signals with interference compared to those without. The basic autoencoder 

employed the PDF and CDF of the MSE derived from running the data through the ML 

model to visually confirm interference. The peaks in the PDF graphs of signals with 

interference were easily distinguishable, becoming more pronounced as the number of 

hidden layers increased. The CDF curves also provided a clear separation between the data 

sets in each model. Statistical analysis, particularly skewness, and variance, served as 

useful thresholds for an automated identification process. 

The LSTM autoencoder was also successful in identifying interference. By 

extracting features from the data sets and utilizing them as representative data, higher 

fidelity information was obtained during analysis. The three FOM used in the analysis 

provided increasing levels of information, with FOM three accurately predicting the 

presence of interference with a high success rate. The models demonstrated high 

classification success in different SNR categories. FOM two calculated the RMSE of the 

data sets, indicating overall variance compared to the expected values of a normal signal. 

Some outliers were observed, such as the higher RMSE in the SNR 17 data attributed to 

preprocessing issues. FOM one quantified reconstruction error for each of the 13 features, 

providing specific details and characteristics of single signal samples, which could be 

leveraged for developing high-fidelity data on abnormal signals. 
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VI. CONCLUSION 

The DOD has established doctrine and strategy to ensure that operations with a 

contested and increasingly congested EMOE are secured and ensured. The electromagnetic 

superiority strategy dictates that efforts be made to ensure that DOD assets can maintain 

spectrum operations and C2. The U.S. Navy is increasingly vulnerable to the EMI threat 

of a contested and congested EMSO, and with the existing gap in interference identification 

capabilities, it must ensure that interference identification and mitigation become a priority.  

This thesis sought to determine if the data analysis capabilities of ML autoencoders 

could be leveraged to fill the capabilities gap in interference identification and EMI 

characterization. For this research, RF data was generated locally and used to train and 

evaluate the ML models. RF signals with increasing levels of interference were generated, 

collected, and then subjected to various levels of processing for utilization in either of the 

ML models. 

A basic autoencoder model was trained on raw I&Q data collected in the RF 

generation phase, and data sets with interference were run through the trained model. 

Plotting the PDF and CDF of the MSE from the outputs of the basic autoencoders resulted 

in a visual indication of signals with interference and without. Further statistical analysis 

of the MSE outputs resulted in two key features of the signal analysis pointing to potential 

indicator thresholds for interference identification. Utilizing thresholds in skewness and 

variance values provided the potential for setting an autonomous method for identifying 

interference.  

An LSTM autoencoder model’s capability for interference detection was evaluated 

on three FOM. The organization of these FOM provided increasingly detailed information, 

which ultimately offers a viable solution to the primary research question of whether 

leveraging locally hosted ML algorithms can enhance the U.S. Navy’s satellite EMI, 

identification, and mitigation efforts. FOM 3, test accuracy, demonstrated a 99.74% 

success rate of the LSTM autoencoder model in identifying interference in the data sets 

with even the lowest interference levels, peaking at 99.98% in signals with the highest 
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interference levels. FOM 1 provided a method for characterizing the details of a single 

signal and evaluating the variance of a received signal from expected values. This FOM 

could provide a solution to the secondary research question of identifying the details that 

can be extracted from analyzed signals as anomalous. By characterizing interference 

signals based on the variance of features in the output versus input data, a database-building 

process could be created, further enhancing the fidelity of information about an EMSO. 

In this research, the results of the basic autoencoder and LSTM autoencoder both 

provided a useful method for interference identification. Both ML models enabled a visual 

indication utilizing graphical representations of the output data. Additionally, both ML 

models enabled the utilization of numerical thresholds in produced data that could serve in 

a proposed automated interference identification process, where a received signal 

exceeding a threshold of variance would be accurately classified as interference. 

A. FUTURE WORK 

Based on the research findings of this thesis, there are several key areas for future 

work in this area. Evaluating the ML models used in this thesis against various interference 

types is one area of future work. Interference placed within the center frequency of 

transmissions, meaconing detection, and identifying counterfeit transmitters would enable 

the evaluation of ML techniques against other types of EMI. Building ML models with 

increased interference detection capabilities has the potential to improve ML applications 

for DOD problem sets.   

Additionally, investigating the deployment of trained machine learning models on 

various edge devices or low-form factor devices could determine the balance between 

versatility and identification capabilities. This evaluation could leverage cloud computing 

services and various edge devices as a testing platform while also assessing the potential 

for building a cloud database of interference characteristics applicable to different 

EMSOEs. An RF signal database could provide valuable insights for operators by offering 

an expanded reach of important signal data and improving spectrum managers’ capabilities 

to understand various EMOEs better.  
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Various ML techniques’ effectiveness in RF signal data analysis should also be 

explored. Techniques such as transfer learning or Generative Adversarial Networks offer 

distinct advantages. GANs should be explored to subvert the ML interference identification 

techniques identified in this thesis research. This assessment would help develop improved 

neural network models that mimic adversaries’ responses to the interference mitigation 

efforts and attempt to evade detection during RF analysis. Additionally, transfer learning 

techniques offer a reduced learning time; they could serve as a potential use for a cloud 

database of RF signal characteristics to improve an operational unit’s ability to adapt to 

various EMI sources. 
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