
Environment International 188 (2024) 108684

Available online 23 April 2024
0160-4120/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Full length article 

Green space exposure and blood DNA methylation at birth and in childhood 
– A multi-cohort study 

Sofia Aguilar-Lacasaña a,b,c,d,1,*, Irene Fontes Marques e,f,1, Montserrat de Castro a,b,c, 
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j Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK 
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A B S T R A C T   

Green space exposure has been associated with improved mental, physical and general health. However, the 
underlying biological mechanisms remain largely unknown. The aim of this study was to investigate the asso-
ciation between green space exposure and cord and child blood DNA methylation. 

Data from eight European birth cohorts with a total of 2,988 newborns and 1,849 children were used. Two 
indicators of residential green space exposure were assessed: (i) surrounding greenness (satellite-based 
Normalized Difference Vegetation Index (NDVI) in buffers of 100 m and 300 m) and (ii) proximity to green space 
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(having a green space ≥ 5,000 m2 within a distance of 300 m). For these indicators we assessed two exposure 
windows: (i) pregnancy, and (ii) the period from pregnancy to child blood DNA methylation assessment, named 
as cumulative exposure. DNA methylation was measured with the Illumina 450K or EPIC arrays. To identify 
differentially methylated positions (DMPs) we fitted robust linear regression models between pregnancy green 
space exposure and cord blood DNA methylation and between cumulative green space exposure and child blood 
DNA methylation. Two sensitivity analyses were conducted: (i) without adjusting for cellular composition, and 
(ii) adjusting for air pollution. Cohort results were combined through fixed-effect inverse variance weighted 
meta-analyses. Differentially methylated regions (DMRs) were identified from meta-analysed results using the 
Enmix-combp and DMRcate methods. 

There was no statistical evidence of pregnancy or cumulative exposures associating with any DMP (False 
Discovery Rate, FDR, p-value < 0.05). However, surrounding greenness exposure was inversely associated with 
four DMRs (three in cord blood and one in child blood) annotated to ADAMTS2, KCNQ1DN, SLC6A12 and SDK1 
genes. Results did not change substantially in the sensitivity analyses. 

Overall, we found little evidence of the association between green space exposure and blood DNA methylation. 
Although we identified associations between surrounding greenness exposure with four DMRs, these findings 
require replication.   

1. Introduction 

The notion that natural environments provide advantages for human 
beings is not novel, and, indeed an increasing body of evidence has 
established health benefits of these vegetation rich environments, 
commonly referred to as green space (Zare Sakhvidi et al., 2023). Access 
to green spaces has decreased due to the increasing urbanization, with 
more than half of the population, including 1.5 billion children, now 
living in urban areas (Suchitra, 2021; United Nations, 2018). In Euro-
pean cities, it has been estimated that a large number of premature 
deaths could be prevented by increasing exposure to green space (Bar-
boza et al., 2021; Iungman et al., 2023). 

Previous studies found associations of exposure to higher levels of 
residential green space with lower risk of pregnancy complications (Liao 
et al., 2019; Zanini et al., 2020), improved birth outcomes (Hu et al., 
2021; Torres Toda et al., 2022), and enhanced physical and mental 
health during childhood, including better school performance and 
reduced risk of ADHD, stress, anxiety and depression (Zare Sakhvidi 
et al., 2022, 2023). Moreover, a nature-based intervention where par-
ticipants were engaged with wetland nature confirmed some of the 
previous results (Maund et al., 2019). 

Several potential pathways have been proposed to link green space to 
health. Green space can reduce stress, promote social contacts, increase 
physical activity (lower body mass index), mitigate exposure to air 
pollution, noise, and heat, or enrich the microbiome, among others 
(Bowyer et al., 2022; Markevych et al., 2017; Rook, 2013). Green space 
exposure, either directly or through these pathways, may affect the 
epigenome, which is defined as the sum of all modifications to DNA, or 
to DNA-associated RNA and proteins, that permit interpretation of the 
genome to instruct cell identity and function, and thus ultimately gene 
expression (Hemberger et al., 2020). Among all epigenetic marks, DNA 
methylation, the addition of a methyl group to the C5 position of the 
cytosine within a cytosine-guanine (CpG) dinucleotide, has been the 
most widely investigated in epidemiological settings. 

In recent years, a few epigenome-wide association studies (EWASs) 
have assessed the relationship between exposure to green space and 
DNA methylation in adult blood (Jeong et al., 2022; Xu et al., 2021b), 
cord blood (Alfano et al., 2023) and child blood (Lee et al., 2021). 
However, all these studies were limited in sample size. 

Here, we aimed to investigate the association between pregnancy 
green space exposure and cord blood DNA methylation and between 
green space exposure from pregnancy to child blood DNA methylation 
(abbreviated as cumulative exposure from now on) and child blood DNA 
methylation in a multi-cohort study. 

2. Methods 

2.1. Study population 

A total of eight independent European birth and/or child cohorts 
from nine countries that had data on indicators of green space exposure 
and DNA methylation were included in this study: Avon Longitudinal 
Study of Parents and Children (ALSPAC), United Kingdom (Boyd et al., 
2013; Fraser et al., 2013), Etude des Déterminants du développement et 
de la santé de l’Enfant (EDEN), France (Heude et al., 2016), the ENVI-
Ronmental influence ON early AGEing (ENVIRONAGE; 2 subcohorts), 
Belgium (Janssen et al., 2017), the Generation R Study (Generation R), 
the Netherlands (Kooijman et al., 2016), Human Early-Life Exposome 
project (HELIX; including six jointly analyzed subcohorts), France, 
Greece, Lithuania, Norway, Spain and United Kingdom (Maitre et al., 
2018), Infancia y Medio Ambiente (INMA), Spain (Guxens et al., 2012) 
and Piccolipiù cohort (Piccolipiù), Italy (Farchi et al., 2014). Full details 
of these studies are provided in Appendix A: Table S2A-C and Appendix 
B: Supplementary methods. 

For the association of pregnancy green space exposure and cord 
blood DNA methylation, we had data on 2,988 mother-infant pairs from 
seven cohorts (ALSPAC, EDEN, ENVIRONAGE 450K, ENVIRONAGE 
EPIC, Generation R, INMA and Piccolipiù). For the association of cu-
mulative green space exposure and child blood DNA methylation, we 
had data on 1,849 children from three studies (ALSPAC, Generation R 
and HELIX). We restricted the analyses to participants of European 
ancestry as the percentage of non-European individuals with DNA 
methylation data was less than a 10 % in each of the cohorts. Analyses 
were limited to singleton children and for non-twin siblings, only one 
child per mother was included. All cohorts acquired ethics approval 
through local ethics committees and informed consent was obtained for 
all participants prior to data collection (Appendix B: Supplementary 
methods). 

2.2. Indicators of exposure to green space 

The assessment of exposure to green space was conducted following 
a standardised protocol across all cohorts as part of the Lifecycle (Jaddoe 
et al., 2020) and ATHLETE (https://athleteproject.eu/) projects. 
Detailed methods for each cohort are provided in Appendix A: TableS2C 
and Appendix B: Supplementary methods. Briefly, to assess exposure to 
green space, we characterized two aspects of such exposure: (i) resi-
dential surrounding greenness and (ii) residential proximity to green 
space. 

To characterize residential surrounding greenness, we applied the 
satellite-based Normalized Difference Vegetation Index (NDVI), which 
quantifies vegetation by measuring the difference between near-infrared 
(which vegetation strongly reflects) and red light (which vegetation 
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absorbs). NDVI values vary from − 1 to 1, with higher values indicating 
more photosynthetic capacity (Tucker, 1979). This index was estimated 
using LANDSAT data at 30 m x 30 m resolution data captured during the 
greenest period of the year (summer in Northern cohorts and spring in 
Southern cohorts). Negative values in the images, which correspond to 
water and other non-green land cover, were all reclassified to null 
values. We assessed residential surrounding greenness as the average of 
NDVI across buffers of 100 m (NDVI 100 m) and 300 m (NDVI 300 m) 
around the residential addresses of the mother. These buffers were 
chosen i) based in previous evidence of the association between green-
ness within 100 and 300 m buffers and birth outcomes (Nieuwenhuijsen 
et al., 2019; Torres Toda et al., 2022) and ii) to capture data from the 
immediate surroundings of the residence (about 5 or 10 min around the 
house) (WHO Regional Office for Europe, 2016), which is the space 
where individuals are expected to spend the most time. Residential 
surrounding greenness within 500 m buffer was available but excluded 
as it was highly correlated with the 300 m buffer. NDVI indicators were 
estimated for two time periods: for pregnancy and for the period that 
goes from pregnancy to the age of child blood DNA methylation 
assessment (cumulative exposure). To quantify exposure during preg-
nancy, we used the measurement calculated at the residential address 
during the mother’s pregnancy or at the time of birth (i.e. within studies 
this could be measured at any gestational age or at the date of delivery). 
If the mother moved house during pregnancy, we used the average 
weighted by time spent on each address. To estimate the cumulative 
exposure, we first calculated the average greenness at the residential 
addresses in up to four time-periods from pregnancy until age of child 
DNA methylation assessment: pregnancy, infancy (>0 to <= 2 years), 
early childhood (>2 to <= 6 years), and late childhood (>6 to <=10 
years). Then, the means for each time period were averaged to get the 
cumulative exposure (Appendix A: Table S1; Appendix B: Supplemen-
tary methods). A minimum of two time-periods were required (preg-
nancy and at least one postnatal time-period). ALSPAC and Generation R 
had repeated yearly measurements of green space up to the assessment 
of DNA methylation. The HELIX study, which is composed of six Euro-
pean birth cohorts, had different number of measurements from preg-
nancy to childhood depending on the cohort. See Appendix A: Table S1; 
Appendix B: Supplementary methods for more details on how the 
average was calculated in each of the subcohorts. 

In addition, for the pregnancy period, we calculated another indi-
cator, the residential proximity to green space, which was defined as 
having a green space of equal to or larger than 5,000 m2 within a dis-
tance of 300 m from the residential address (yes/no) (The WHO 
Regional Office for Europe, 2017). This indicator was calculated using 
the Europe-wide Urban Atlas (European Environment Agency, 2010). 
Cohorts with less than 10 individuals in one of the categories were 
excluded from this analysis, resulting in 2,318 participants from four 
cohorts (ALSPAC, Generation R, INMA, and Piccolipiù) (Fig. 1). Prox-
imity to green space was not assessed for the period from pregnancy to 
childhood as we did not find a convincing way to estimate a categorical 
variable from repeat measures. 

2.3. DNA methylation measurements 

DNA was extracted from cord blood or child blood as indicated in the 
Appendix B: Supplementary methods. DNA methylation was measured 
using the Illumina Infinium 450K or EPIC array in cord blood and/or 
child blood. Each cohort conducted their own sample processing, quality 
control and normalization of DNA methylation data, as detailed in 
Appendix B: Supplementary methods. To reduce the impact of severe 
outliers in the DNA methylation data, cohorts winsorized the methyl-
ation beta values for 1% of the participants per CpG, 0.5% at the upper 
and lower ends of the distribution (Ghosh & Vogt, 2012). Methylation 
data were expressed as beta values, ranging from 0 (fully unmethylated) 
to 1 (fully methylated). 

2.4. Covariates 

The following variables were considered potential confounders be-
tween green space exposure and blood DNA methylation and added as 
covariates in the models: family socioeconomic position (assessed 
through maternal education), residential area deprivation, and maternal 
age (years). The maternal level of education (high, medium, low) was 
based on the highest ongoing or completed education at the time of 
delivery education. This categorization followed the International 
Standard Classification of Education 97/2011 (ISCED-97/2011) 
(UNESCO Institute for Statistics, 2012). Country specific indices of 
deprivation were used to create the area-level deprivation index (a 
multidimensional evaluation of an area’s socioeconomic average con-
ditions adjusted in thirds; low deprived; medium deprived, high 
deprived) (detailed information in Appendix A: Table S2C). Child’s sex 
and age, the later only in the child blood DNA methylation analyses, 
were also added as covariates in the models to gain precision. 

Due to the strong relationship between tobacco smoke and DNA 
methylation (Joubert et al.,2016), and in addition to the potential role of 
tobacco as a proxy of socio-economic confounders, we decided to adjust 
the models for this variable. Maternal smoking during pregnancy was 
self-reported and categorized in two levels: any maternal smoking dur-
ing pregnancy (No/Yes). 

Blood cellular composition might mediate the effect of green space 
exposure on DNA methylation, because of this, models adjusted and 
unadjusted for cellular composition were run. Cord blood cellular 
composition was estimated using the Gervin and Salas reference panel 
(Gervin et al., 2019), the IDOL algorithm for selection of CpGs (Koestler 
et al., 2016), and the constrained projection-quadratic programming 
algorithm by Houseman for deconvolution of 7 main blood cell types 
(CD8T, CD4T, NK, Bcell, Mono, Gran, nRBC) (Houseman et al., 2012). 
Child blood cellular composition was calculated using the Reinius 
reference panel (Reinius et al., 2012) with the pickCompProbes method 
for CpG selection (minfi R package), and the Houseman algorithm for 
deconvolution of 6 main blood cell types (CD4T, CD8T, NK, Bcell, Mono, 
Gran) (Houseman et al., 2012). 

Given the ongoing controversy whether air pollution is a mediator or 
a confounder of green space exposure (Markevych et al., 2017), we run 
adjusted and unadjusted models for air pollution. The average exposure 
to particulate matter with an aerodynamic diameter < 2.5 μg/m3 

Fig. 1. Analyses scheme.  
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(PM2.5) was used as proxy of air pollution. 
Finally, cohorts had the option to adjust the models for technical 

batch variables or ancestry within Europeans. In particular, Generation 
R and Piccolipiù adjusted the models for batch and HELIX for ancestry 
estimated as the first ten GWAS principal components (see Appendix B: 
Supplementary methods for more details). 

2.5. Cohort-specific epigenome-wide association study (EWAS) 

Six cohorts conducted the EWAS analyses locally following the same, 
prespecified statistical code (ALSPAC, ENVIRONAGE 450K, ENVIRON-
AGE EPIC, Generation R, HELIX and Piccolipiù) while the leading teams 
analysed two of the cohorts (EDEN, INMA) through Data Aggregation 
Through Anonymous Summary-statistics from Harmonised Individual- 
level Databases (DataSHIELD) (Gaye et al., 2014), an innovative feder-
ated platform that allows non-disclosive analysis of individual-level 
data. The INMA cohort was also analysed locally to validate the re-
sults obtained through DataSHIELD, showing consistent findings. Resi-
dential surrounding greenness (NDVI 100 m and NDVI 300 m) was 
standardized by dividing it by its interquartile range (IQR) in order to 
report the change in DNA methylation per IQR change in greenness. 
Robust linear regression models were fitted to evaluate the association 
between exposure to green space and DNA methylation using the limma 
R package (Ritchie et al., 2015) or the dsOmics R package (https://gith 
ub.com/isglobal-brge/dsOmicsClient) in the case of DataSHIELD. 

For the cord blood EWAS, the main models were adjusted for child 
sex, maternal education, neighbourhood SES, maternal age, smoking 
during pregnancy and cord blood cellular composition. For the child 
blood EWAS, models were additionally adjusted for child age and child 
blood cellular composition instead of cord blood cell composition (see 
section on covariates for details). See Appendix A: Table S3 for an 
overview of all models performed. 

Two sensitivity analyses were conducted. First, the regression 
models were additionally adjusted for PM2.5 during pregnancy (for cord 
blood) or cumulative pregnancy and childhood period (for child blood) 
(detailed information in Appendix B: Supplementary methods). Second, 
main models were run without adjusting for cellular composition to 
investigate its effect in the association. 

Finally, we ran additional analyses adjusting for local climate 
(temperature and relative humidity transformed to non-linear terms) in 
two of the cohorts (INMA and Generation R). For the pregnancy ana-
lyses, we used the average temperature and relative humidity during 
pregnancy; For the childhood analyses, we calculated cumulative tem-
perature and relative humidity variables as we did for the exposure to 
greenness (Appendix B: Supplementary methods). 

2.6. Quality control and EWAS meta-analysis 

We performed the quality control of the cohort-specific results for 
each model using the EASIER R package (ISGlobal-BRGE/EASIER: Tools 
for Methylation Data Analysis, 2022) (Appendix A: Table S4A-B). This 
included examining inflation and the distribution of effect estimates, 
standard errors and p-values and creating precision plots by plotting 1 
divided by the median of the effect SE against the square root of the 
sample size for each cohort. We excluded control probes, non-CpG 
probes, probes that mapped to X/Y chromosomes, probes with poor 
base pairing quality (lower than 40 on 0–60 scale), probes with non- 
unique 30 bp 3′-subsequence (with cross-hybridizing problems), Infin-
ium II probes with SNPs of global MAF over 1% affecting the extension 
base, probes with a SNP in the extension base that causes a color channel 
switch from the official annotation (Zhou et al., 2017) and probes that 
have shown to be unreliable in a recent comparison of the Illumina 450K 
and EPIC BeadChips (Fernandez-Jimenez et al., 2019). The percentage 
of probes removed in each cohort ranged between 3.9–11.9% 
(Appendix A: Table S4A-B). 

To identify differentially methylated positions (DMPs), cohort- 

specific EWAS results were combined through fixed-effects inverse 
variance-weight meta-analyses (EASIER R package) at ISGlobal. Shadow 
meta-analyses using the Metal program (Willer et al., 2010) were con-
ducted independently at the Erasmus Medical Center Rotterdam and 
results were compared. ENVIRONAGE EPIC and Piccolipiù were the only 
cohorts that used the Illumina Infinium EPIC array, thus only the EPIC 
array CpG sites overlapping the CpG sites in the 450K array (used in all 
the other cohorts) were meta-analysed. Furthermore, we included only 
those CpG sites present in at least 50% of the cohorts. The final number 
of CpG sites included in each meta-analysis is provided in Appendix A: 
Table S3. 

Results were corrected for multiple testing using the false discovery 
rate (FDR) method (Benjamini, 2010). Genome-wide significance was 
defined at FDR p-value < 0.05 and suggestive significance at nominal p- 
value < 1 × 10–5. Effect sizes represent the percentage DNA methylation 
difference per interquartile range increase in residential surrounding 
greenness indicators (NDVI 100 m, NDVI 300 m) and the percentage 
DNA methylation difference for having residential proximity to a green 
space (green proximity). We calculated the I2 statistic to explore het-
erogeneity across cohorts (Higgins & Thompson, 2002). Quality control 
of the meta-analysed results was also performed by calculating lambda 
and QQ-plots of p-values and volcano plots. Finally, leave-one-out 
analysis, in which we re-ran the main analysis repeatedly with one of 
the cohorts removed each time, was conducted to explore if any of the 
studies was unduly influencing the findings. 

2.7. Differentially methylated regions (DMR) 

Differentially methylated regions (DMRs) were explored using 
DMRcate (Peters et al., 2015) and Enmix-combp (Niu & Taylor, 2023), 
both R packages, on the meta-analysed results. DMRcate identifies 
DMRs from a tunable kernel smoothing process of association signals, 
and Enmix-combp identifies DMRs by combining low p-values of CpGs 
in an adjacent region of CpGs. Both packages use regression coefficients 
and standard deviations as input, in addition to uncorrected p-values for 
DMRcate (lambda = 1000; C = 2) and uncorrected p-values and chro-
mosomal locations of each CpG for Enmix-combp (bin size = 310; seed 
= 0.05). We considered DMRs to be those detected after multiple-testing 
correction with both methods (Siddak p-value for Enmix-combp and 
FDR p-value for DMRcate < 0.05), with a minimum of one CpG in 
common and three consecutive CpGs within the DMR. DMRs were an-
notated using matchGenes in the Bumphunter R package (Jaffe et al., 
2012). Finally, DMRs were explored on the leave-one-out meta-analysed 
results to examine if any of the studies was influencing the findings. 

2.8. Follow-up analyses 

To assess whether methylation levels of DMPs and DMRs were 
associated with the expression levels of nearby genes in child blood, we 
consulted the HELIX Expression Quantitative Trait Methylation (eQTM) 
catalogue (Arenas et al., 2022) (https://helixomics.isglobal.org/). 
Moreover, we checked whether the suggestive DMPs and CpGs within 
the DMRs had previously been associated with exposures or health traits 
using the EWAS catalogue (Battram et al., 2022b) and the EWAS Atlas 
(Li et al., 2019) databases. We also compared the list of suggestive DMPs 
and DMRs with previously reported studies evaluating the association 
between exposure to green space and blood DNA methylation (Alfano 
et al., 2023; Jeong et al., 2022; Lee et al., 2021; Xu et al., 2021b). 

We conducted functional enrichment analyses of the suggestive 
DMPs (p-value < 1x10-5) for Gene Ontology (GO) terms and pathways of 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the mis-
sMethyl method (Phipson et al., 2016) as implemented in EASIER R 
package (ISGlobal-BRGE/EASIER: Tools for Methylation Data Analysis, 
2022). Finally, we used eFORGE version 2.0 to examine enrichment for 
tissue-specific DNaseI hypersensitivity regions (Breeze et al., 2019). 
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3. Results 

3.1. Study population 

We meta-analysed results from seven independent cohorts (N =
2,988) with data on newborn DNA methylation status, and three studies 
with data on DNA methylation in children (N = 1,849). The description 
of the sociodemographic and lifestyle characteristics of the study par-
ticipants and the levels of green space indicators are shown in Table 1; 
Appendix A: TableS2A-B. 

The median age of the mothers ranged from 27 to 35 years, 18.5% to 
46.3% lived in highly deprived areas and most of them did not smoke 
during pregnancy (>70%). In terms of cord blood analyses, the median 
gestational age in the cohorts ranged from 39.9 to 40.5 weeks. For the 
child blood analyses, the median age of the children in the cohorts 
ranged from 6.0 to 8.5 years. 

For the pregnancy period, an increasing trend in the estimated res-
idential surrounding greenness could be observed from the Southern to 
the Northern cohorts. In the Southern cohorts (INMA and Piccolipiù), 
the median NDVI values ranged from 0.2 to 0.3, while in the Northern 
countries the NDVI ranged from 0.4 to 0.6. The correlation coefficients 
between NDVI within a buffer of 100 m and a buffer of 300 m across 
cohorts ranged from 0.69 to 0.86 (Appendix C: Fig. S1). More than 70% 
of the participants had a green space within a distance of 300 m from 
their house. INMA had the lowest proximity to green space and Gener-
ation R had the highest. For the cumulative exposure, the median NDVI 
values varied from 0.4 in ALSPAC (United Kingdom) and Generation R 
(Netherlands) to 0.5 in HELIX, which includes children from France, 
Greece, Lithuania, Norway, Spain and the United Kingdom. The corre-
lation coefficient of the cumulative exposure between the two buffers 
across cohorts ranged from 0.84 to 0.95. The correlation coefficient 
between NDVI during pregnancy and cumulative was very high for both 
buffers (between 0.88 and 0.95 for NDVI 100 m and between 0.88–0.96 
for NDVI 300 m) (Appendix C: Fig. S2). 

3.2. Green space during pregnancy and cord blood DNA methylation 

3.2.1. DMP analyses 
Lambda inflation factors for the main models of the association be-

tween pregnancy green space exposure and cord blood DNA methylation 
ranged from 0.97 to 1.10 (Appendix C: Fig. S3; Fig. S4; Fig. S5). After 
FDR correction, no DMPs were significantly associated with any of the 
green space indicators. At suggestive significance (p-value < 1x10-5), 
eight, eight and three DMPs were associated with NDVI 100 m, NDVI 
300 m and green proximity, respectively (Table 2; Fig. 2; Fig. S6). The 
full results can be found on the HELIX-omics Webpage (https://helix 
omics.isglobal.org/). Almost all (94.7%) of the suggestive hits showed 
low between-study heterogeneity (I2 < 0.5) (Table 2). In the leave-one- 
out analyses, there was no strong evidence that any of the studies unduly 
influenced findings consistently across the suggestive DMPs 
(Appendix C: Fig. S7). Only one suggestive CpG (cg09223940) over-
lapped between NDVI 100 m and NDVI 300 m (Appendix C: Fig. S8). 
Pearson correlation coefficients of the effect estimates of genome-wide 
and suggestive CpGs across the three exposure variables are shown in 
Appendix C: Fig. S9. Coefficients of the association did not change 
substantially in the sensitivity analyses conducted for any of the three 
measures of green space. The median percentage change in the effect 
between the main and the sensitivity results was 5.0% for PM2.5 
adjustment and 8.0% for cellular composition adjustment (Appendix A: 
Table S5). Additional analyses in INMA and Generation R adjusting for 
temperature and relative humidity did not change the results substan-
tially for any of the exposures of green space (Fig. S10). 

3.2.2. DMR analyses 
In cord blood, two and one DMRs were associated with pregnancy 

exposure to NDVI 100 m and NDVI 300 m, respectively. These DMRs 

were annotated to three unique genes (ADAMTS2, KCNQ1DN and 
SL6A12) and included from 3 to 43 CpGs with a width from 124 to 2,533 
bp (Table 3). No DMRs were found for green proximity. Despite 
observing certain fluctuations in the results when excluding each of the 
studies in the leave-one-out analyses, we did not find strong evidence 
that any of the cohorts consistently had an impact on the significant 
DMRs (Appendix A: Table S6). 

3.3. Cumulative green space exposure and child blood DNA methylation 

3.3.1. DMP analyses 
Cumulative residential surrounding greenness exposure was not 

associated with any DMP after FDR correction. At suggestive signifi-
cance, one and five DMPs were identified, for NDVIs 100 m and 300 m, 
respectively (Table 2; Fig. 2; Fig. S6). The full results can be found in 
HELIX-omics webpage and in Zenodo, an EU-open research repository. 
Lambda inflation factors ranged from 0.94 to 0.96 (Appendix C: Fig. 
S11; Fig. S12). None of the suggestive DMPs overlapped between resi-
dential surrounding greenness in buffers of 100 m and 300 m 
(Appendix C: Fig. S13). Pearson correlation coefficients of the effect 
estimates of genome-wide and suggestive DMPs between the NDVI in-
dicators were 0.83 and 0.96, respectively (Appendix C: Fig. S14). Fifty 
percent of the suggestive significant DMPs showed between-study het-
erogeneity (I2 > 0.5) (Table 2). Regarding the leave-one-out analyses, 
none of the studies consistently unduly influenced findings across the 
suggestive DMPs, with less than a 20% change in effect each time that 
we excluded a study (Appendix C: Fig. S15). In the sensitivity analyses, 
the coefficients of the association did not change substantially. The 
median percentage change in the effect between the main and the 
sensitivity results was 8.2% for PM2.5 adjustment and 6.7% for cellular 
composition unadjustment (Appendix A: Table S5). Additional results 
for residential surrounding greenness in Generation R did not change 
substantially after adjustments for temperature and relative humidity 
(Fig. S16). Ultimately, none of the suggestive DMPs for child blood were 
found among suggestive DMPs in cord blood, nor vice versa 
(Appendix C: Fig. S17). 

3.3.2. DMR analyses 
We identified one DMR associated with cumulative NDVI 300 m. 

This DMR was annotated to the SDK1 gene, included a total of seven 
CpGs, and had a length of 1020 kb according to DMRcate method 
(Table 3). 

3.4. Follow-up analyses 

None of the suggestive DMPs or CpGs within the significant DMRs 
identified in child blood were described to eQTMs in child blood 
(Table S7). According to the EWAS Atlas and EWAS Catalogue, 
methylation levels at the suggestive DMPs or CpGs within the significant 
DMRs have previously been related to child age, sex, gestational age, 
preterm birth, autoimmune diseases, respiratory conditions, metabolic 
disorders, maternal BMI and environmental exposures such as air 
pollution or smoking (see Appendix A: Table S8 for detailed 
information). 

Among the 26 unique significant DMPs reported in previous studies 
on the link between green space and DNA methylation, three 
(cg00809988, cg18311871 and cg04720477) were nominally signifi-
cant (p-value < 0.05) and had the same direction in our study (Sup-
plementary Table S9). Furthermore, out of the genes annotated to the 
DMRs found in this study, two (ADAMTS2 and KCNQ1DN) had previ-
ously been reported (Alfano et al., 2023; Jeong et al., 2022) (Fig. 3). 
Whereas more than 70% of the CpGs in the DMR annotated to KCNQ1DN 
(chr11:2,889,602–2,891,495) overlapped with the CpGs in the DMR 
identified before (chr11:2,889,629–2,891,360 (Alfano et al., 2023) and 
chr11:2,889,886–2,891,495 (Jeong et al., 2022)), none of the CpGs 
within the DMR annotated to ADAMTS2 
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Table 1 
Characteristics of the study populations included in the main meta-analyses.     

Green space indicators Maternal characteristics and 
lifestyle 

Sociodemographic Child characteristics Air pollution    

NDVI 100 m NDVI 300 m Green  
proximity  

(Yes) 

Maternal  
age  

(Years) 

Smoking 
during 

pregnancy 
(Yes) 

Maternal  
education  

(Low) 

Neighborhood  
SES (High  
deprivated  

area) 

Gestational  
age (Weeks)/  

Child age  
(Years) 

Sex (Female) PM2.5 (mg/m3) 

Cohort Country N median (IQR) median (IQR) N (%) median (IQR) N (%) N (%) N (%) median (IQR) N (%) median (IQR) 

Association of green space during pregnancy and cord blood DNA methylation (N = 2,988) 
ALSPAC United Kingdom 618 0.4 (0.3–0.4) 0.4 (0.4–0.5) 466 (75.4 %) 27.0 (23.0–31.0) 88 (14.2 %) 38 (6.1 %) 177 (28.6 %) 40.5 (39.5–41.5) 317 (51.3 %) 13.2 (12.8–13.7) 
EDENb France 137 0.5 (0.4–0.6) 0.6 (0.5–0.6) − 29.0 (27.0–33.0) 35 (4.8 %) 7 (5.1 %) 36 (26.3 %) 40.4 (39.4–41.4) 59 (43.1 %) 16.2 (15.0–17.0) 
ENVIRONAGE 450K Belgium 188 0.5 (0.5–0.6) 0.6 (0.5–0.6) − 29.0 (27.0–32.0) 25 (13.3 %) 26 (13.8 %) 65 (34.6 %) 40.0 (39.0–40.6) 90 (47.9 %) 12.9 (11.6–14.3) 
ENVIRONAGE EPICa Belgium 345 0.5 (0.5–0.6) 0.6 (0.5–0.7) − 30.0 (27.0–33.0) 39 (11.3 %) 25 (7.2 %) 87 (25.2 %) 39.9 (39.0–40.6) 177 (51.3 %) 14.8 (12.5–16.2) 
Generation R Netherlands 1171 0.4 (0.3–0.5) 0.4 (0.3–0.5) 981 (83.8 %) 32.0 (30.0–34.0) 276 (23.6 %) 23 (22.0 %) 542 (46.3 %) 40.3 (39.4–41.1) 581 (49.6 %) 20.5 (18.1–22.6) 
INMA Spain 357 0.2 (0.1–0.2) 0.2 (0.2–0.3) 252 (70.6 %) 32.0 (29.0–34.0) 108 (30.3 %) 98 (27.5 %) 66 (18.5 %) 39.9 (39.0–40.9) 176 (49.3 %) 15.1 (14.3–16.1) 
Piccolipiùa Italy 172 0.3 (0.2–0.4) 0.3 (0.3–0.4) 136 (79.1 %) 35.2 (31.6–37.8) 41 (23.8 %) 22 (12.8 %) 55 (32 %) 40.1 (39.0–41.0)d 84 (48.8 %) 12.2 (11.1–12.8)d 

Association of cumulative green space and child blood DNA methylation (6–9 years) (N = 1,849) 
ALSPAC United Kingdom 682 0.4 (0.4–0.5) 0.4 (0.4–0.5) − 27.0 (23.0–31.0) 96 (14.1 %) 42 (6.2 %) 153(22.4 %) 7.4 (7.3–7.5) 349 (52.2 %) 12.8 (12.4–13.1) 
Generation R Netherlands 440 0.4 (0.3–0.5) 0.4 (0.4–0.5) − 32.0 (30.0–34.2) 101 (23.0 %) 137 (31.1 %)c 182 (41.4 %) 6.0 (5.8–6.1) 230 (52.3 %) 18.4 (17.5–19.1) 
HELIX France, Greece, Lithuania,  

Norway, Spain, UK 
727 0.4 (0.2–0.5) 0.5 (0.3–0.6) − 31.3 (28.3–34.1) 127 (1.5 %) 387 (40.4 %) 263 (22.4 %) 8.5 (6.7–9.3) 326 (44.8 %) 15.0 (12.4–17.0) 

All individuals were from European ancestry. We restricted the analyses to 450K array as only two cohorts were measured with EPIC array. Data are presented as median (Inter-quartile range) or count (%). IQR: inter- 
quartile range; NDVI 100 m: mean normalized difference vegetation index (NDVI) within a buffer of 100 m; NDVI 300 m: mean normalized difference vegetation index (NDVI) within a buffer of 300 m; Green proximity: 
have a green space of larger than 5,000 m2 within a distance of 300 m; SES: socio-economic status; PM2.5: Particulate matter with aerodynamic diameter < 2.5 μm. 

a EPIC array. 
b In the cord blood analyses, EDEN was excluded for the green proximity analysis due to < 10 individuals in one of the categories. 
c Two categories of maternal education were combined (low and middle) as < 10 individuals were in the low maternal education level. 
d Based on 105 out of 172 children included in the sensitivity analysis. 
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Table 2 
Differentially methylated positions (DMPs) associated with green space indicators in cord and child blood (p-value < 1x10-05), ordered by P-value.  

Association of green space during pregnancy and cord blood DNA methylation 

Green space 
indicator 

CpG Chr Position (GRCh37/ 
hg19) 

N 
cohorts 

N 
samples 

Coefficienta SE P-value FDR Direction of the 
effectb 

I2 Gene Location in 
gene 

Relation to CpG 
islands 

NDVI 100 m cg26764250 8 104,090,700 7 2,988 0.4187 0.0856 1.02E-06 0.23 +++++++ 0.00 − − OpenSea 
cg21554217 5 138,897,467 7 2,988 0.3147 0.0652 1.43E-06 0.23 +-+++++ 0.46 − − Island 
cg00455747 18 8,659,509 7 2,988 − 0.2154 0.0452 1.91E-06 0.23 − ———— 0.15 − − Island 
cg12062099 1 85,527,597 7 2,988 0.352 0.0742 2.16E-06 0.23 +++++++ 0.00 WDR63 TSS1500 OpenSea 
cg09223940c 14 65,095,871 7 2,988 − 0.1392 0.0302 4.20E-06 0.36 − ———— 0.00 − − OpenSea 
cg22378919 1 119,522,188 6 1,817 − 0.2315 0.0511 5.95E-06 0.42 − —?+- 0.70 TBX15 5′UTR N_Shore 
cg06915343 2 240,029,626 7 2,988 − 0.1865 0.0416 7.59E-06 0.42 − ———— 0.00 HDAC4 Body N_Shore 
cg15002700 12 133,431,021 5 2,471 − 0.1434 0.0321 7.92E-06 0.24 ++-?–? 0.42 CHFR Body S_Shore 

NDVI 300 m cg00009927 16 1,157,223 6 2,816 − 0.2981 0.0589 4.21E-07 0.18 − ———? 0.00 − − S_Shore 
cg25350136 19 44,617,363 7 2,988 − 0.1431 0.0295 1.23E-06 0.25 − ———— 0.00 ZNF225 TSS200 N_Shore 
cg05406334 4 665,518 5 2,471 0.1935 0.0404 1.74E-06 0.25 +++?++? 0.00 − N_Shore 
cg09223940c 14 65,095,871 7 2,988 − 0.1628 0.0349 3.10E-06 0.30 +———— 0.00 − OpenSea 
cg01800735 17 745,664 7 2,988 0.0913 0.0197 3.75E-06 0.30 +++++++ 0.00 NXN Body S_Shore 
cg04674792 15 44,116,616 7 2,988 − 0.2450 0.0533 4.40E-06 0.30 − ———— 0.00 MFAP1 Body N_Shore 
cg21621910 2 102,486,284 7 2,988 − 0.1112 0.0243 4.85E-06 0.30 +———— 0.43 MAP4K4 Body OpenSea 
cg12658552 12 46,323,656 7 2,988 − 0.2399 0.0537 7.95E-06 0.41 − ——+- 0.00 SFRS2IP Body OpenSea 

Green proximity cg21465231 4 186,697,797 4 2,318 − 0.3130 0.0659 2.06E-06 0.71 − — 0.13 SORBS2 5′UTR; 
TSS1500 

OpenSea 

cg26337816 11 132,582,640 4 2,318 − 0.4389 0.0944 3.36E-06 0.71 − — 0.00 OPCML Body OpenSea 
cg21037057 14 57,464,939 2 790 1.6289 0.3669 9.14E-06 0.91 +??+ 0.28 − − OpenSea 

Association of cumulative green space and child blood DNA methylation (6–9 years) 

Green space 
indicator 

CpG Chr Position (GRCh37/ 
hg19) 

N 
cohorts 

N 
samples 

Coefficienta SE P-value FDR Direction of the 
effectb 

I2 Gene Location in 
gene 

Relation to CpG 
Islands 

NDVI 100 m cg03499581 15 78,384,868 3 1,849 − 0.5060 0.0997 3.96E-07 0.17 − – 0.00 SH2D7 TSS200 OpenSea 
NDVI 300 m cg22169990 7 150,786,051 3 1,849 − 0.5444 0.1152 2.31E-06 0.53 − – 0.73 AGAP3 Body S_Shore 

cg09309085 20 40,706,193 3 1,849 − 0.3921 0.0858 4.92E-06 0.53 − – 0.76 PTPRT 3′UTR OpenSea 
cg13976876 1 192,778,160 3 1,849 0.0430 0.0095 5.69E-06 0.53 +++ 0.00 RGS2 TSS200 Island 
cg11909311 5 31,908,512 3 1,849 0.2122 0.0470 6.47E-06 0.53 +++ 0.00 PDZD2 Body OpenSea 
cg03050127 17 59,413,660 3 1,849 − 0.4538 0.1020 8.79E-06 0.53 − -+ 0.73 BCAS3 Body OpenSea 

SE: standard error; P-value: nominal p-value; FDR: False discovery rate; I2: heterogeneity index across cohorts; CpG: cytosine-guanine dinucleotide; Chr: Chromosome; Position refers to Genome Research Consortium 
human genome build 37 (GRCh37)/UCSC human genome 19 (hg19);5′UTR: five prime untraslated region, refers to a part of promoter region on the right side of transcription starts site; 3′UTR: three prime untraslated 
region, refers to a part of promoter region on the left side of transcription starts site (gene transcription starts from left to right); TSS200: 0–200 bp upstream from transcription start site, refers to a part of promoter region; 
TSS1500: 200–1500 bp upstream from transcription start site, refers to a part of promoter region; Island: located in a CpG island; S_Shore: 0–2 kb downstream (3′) of a CpG island; N_Shore: 0–2 kb upstream (5′) of a CpG 
island; OpenSea: the rest of the genome. 

a The regression coefficients represent % of DNA methylation difference per interquartile range increase in residential surrounding greenness indicators (NDVI 100 m, NDVI 300 m) and % of DNA methylation difference 
between categories of residential proximity to green space (Green proximity) in the main model. 

b Order of the included cohorts in the meta-analysis: ALSPAC, EDEN, ENVIRONAGE 450K, ENVIRONAGE EPIC; Generation R, INMA, Piccolipiù (cord blood analysis). For Green proximity 3 cohorts were not included 
(EDEN, ENVIRONAGE 450 K, ENVIRONAGE EPIC) as they did not have green proximity; ALSPAC, Generation R, HELIX (child blood analysis).”?” Means that CpG was not measured in that cohort. 

c Suggestive CpG sites associated with more than one green space indicator. 
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(chr5:178,593,785–178,594,990) overlapped with the DMR identified 
in Alfano’s study (chr5:178,547,863–178,548,373). The genomic 
context of these two DMRs is illustrated in Appendix C: Fig. S18. 

Finally, no functional enrichment of suggestive DMPs was found for 
GO terms or KEGG pathways at FDR correction (Appendix A: Table S10- 
S13). Additionally, there was no enrichment for tissue-specific DNaseI 
hypersensitivity regions. 

4. Discussion 

In this multi-cohort study, we meta-analysed EWAS results from 
seven population-based cohorts across Europe to evaluate the associa-
tion between pregnancy green space exposure and cord blood DNA 
methylation, as well as the EWAS results from three studies to assess the 
association between cumulative pregnancy and childhood green space 
exposure and child blood DNA methylation. 

No genome-wide significant DMPs were found for any measures of 
pregnancy or cumulative exposure to green space. However, we iden-
tified associations between pregnancy residential surrounding greenness 
and three DMRs in cord blood annotated to ADAMTS2, KCNQ1DN and 
SLC6A12. Additionally, we found that cumulative residential sur-
rounding greenness (300 m buffer) was associated with one DMR in 
child blood annotated to SDK1. 

Four previous studies on green space and blood DNA methylation 
have been published to date. One evaluated exposure to greenness and 
blood methylation in 479 women from Australia and identified 

associations with one CpG and 35 DMRs (Xu et al., 2021b). Another 
included 982 women and men from the Switzerland and identified 219 
DMRs (163 and 56 DMRs for NDVI within a buffer of 30 m and 500 m, 
respectively) (Jeong et al., 2022). Regarding children, Lee et al. 
analyzed the association of greenness with candidate CpGs previously 
associated with child intelligence quotient in 59 participants from a 
study from South Korea. From the analyzed CpGs, 25 were significantly 
associated with greenness exposure at age 2 years (Lee et al., 2021). 
Finally, only one study involving 538 newborns of the ENVIRONAGE 
cohort from Belgium, which is also part of this study, assessed associa-
tions between residential green space exposure during pregnancy and 
cord blood DNA methylation (Alfano et al., 2023), identifying one sig-
nificant CpG and 147 DMRs. 

Three of the significant DMPs (cg00809988, cg18311871, and 
cg04720477) found in the aforementioned studies (Lee et al., 2021; Xu 
et al., 2021b) were replicated with the same direction of the effect and 
nominal significance in our study. These CpGs, annotated to ELAV Like 
RNA Binding Protein 2 (ELAVL2), Protein Tyrosine Phosphatase Receptor 
Type N2 (PTPRN2) and 2′,3′-Cyclic Nucleotide 3′- Phosphodiesterase 
(CNP), showed an inverse association with greenness within 100 m or 
300 m buffers. These genes have been observed to play a role in mental 
health (Al-Abdi et al., 2020; Curtis et al., 2011; Mulligan & Bicknell, 
2023). In addition, the genes annotated to two of our DMRs, ADAM 
Metallopeptidase With Thrombospondin Type 1 Motif 2 (ADAMTS2) and 
KCNQ1 Downstream Neighbor (KCNQ1DN), have been identified in pre-
vious studies (Fig. 3) (Alfano et al., 2023; Jeong et al., 2022). Firstly, we 

Fig. 2. Volcano plots showing the effect estimates (betas) on the x-axis and the (− log10) p-values on the y-axis for the associations between green space and blood 
DNA methylation at birth and during childhood. No association passed FDR corrected p-values < 0.05. The black line represents the suggestive p-value (1x10-5) and 
the red line represents FDR (0.05) p-value threshold. (A) NDVI 100 m during pregnancy, (B) NDVI 300 m during pregnancy, (C) Green proximity during pregnancy, 
(D) Cumulative NDVI 100 m, (E) Cumulative NDVI 300 m. The effect estimates represent % of DNA methylation difference per interquartile range increase in 
residential surrounding greenness indicators (NDVI 100 m, NDVI 300 m) and % of DNA methylation difference between categories of residential proximity to green 
space (Green proximity). 
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found that higher exposure to NDVI 100 m during pregnancy was 
associated with lower methylation at a DMR annotated to ADAMTS2. In 
the current study, this DMR contains ten CpGs while the DMR annotated 
to the same gene in Alfano’s study comprises three CpGs, with none of 
them overlapping between the two studies (Alfano et al., 2023). In both 
cases, these DMRs are located in the ADAMTS2 gene body, albeit in two 
different CpG islands. The three CpGs within the DMR from Alfano’s 
paper showed a consistent effect direction in our meta-analysis results. 
While we assessed greenness using NDVI, Alfano’s study examined a 
higher-resolution measure of greenness, enabling the classification of 
green space into three categories based on vegetation heigh: (1) high 
green space (>3m), (2) low green space (<3m), and (3) total green 
space, referring to overall vegetation cover. Although not entirely 
comparable, both studies found associations between greenness and 
DMRs annotated to ADAMTS2. ADAMTS2 encodes an extracellular 
matrix protein that is mainly recognized for its role in cleaving the 
propeptides of collagen I and II (Colige et al., 2005) and also has an 
implication in the control of transforming growth factor (TGF)-beta 
activity (Bekhouche et al., 2016). This gene has been linked with con-
nective tissue disorders (Van Damme et al., 2016) and brain diseases 
(Romay et al., 2019; Ruso-Julve et al., 2019). Furthermore, some of the 
CpGs within the DMR annotated to ADAMTS2 have previously been 
related to autoimmune diseases according to the EWAS catalogue. 

Secondly, we found an inverse association between NDVI 100 m and 
DNA methylation at a DMR located in KCNQ1DN gene. This region 
comprised a total of 43 CpGs, many of which were located upstream of 
the transcription start site (TSS), in the promoter region. The direction of 
effect was consistent with Alfano’s study in cord blood (Alfano et al., 
2023). However, in adults, the effect was in the opposite direction 
(Jeong et al., 2022). Out of the 43 CpG sites within the DMR identified in 
our study, 33 and 36 CpGs overlapped with the CpGs within the DMRs 
identified in cord blood and adult blood, respectively. KCNQ1DN is an 
imprinted gene expressed from the maternal allele (Xin et al., 2000) 
implicated in cell growth inhibition and cell cycle progression in renal 
cell carcinoma (Yang et al., 2019). Its DNA methylation levels, specif-
ically at cg01530101 (included in the DMR), have been previously 
associated with aging (Koch & Wagner, 2011). Furthermore, most of the 
CpGs within the DMR annotated to KCNQ1DN have previously been 
related to age according to the EWAS catalogue. In order to verify that 
the overlap of these two genes with the findings from Alfano’s study was 
not due to the presence of ENVIRONAGE in the cord blood analyses, we 
repeated the analyses excluding this cohort. In the results without 
ENVIRONAGE, the DMR annotated to KCNQ1DN was detected with the 
Enmix-combp method while the DMR annotated to ADAMTS2 was not 
significant with neither of the two methods (Enmix-combp or DMRcate). 
However, results also fluctuated when excluding any of the cohorts of 
the study, showing that the DMR results are highly dependent on the 
cohorts analysed and need to be replicated. 

The other two DMRs identified in our study had not previously been 
linked to green space exposure. The DMR annotated to the Solute carrier 
family 6-member 12 (SLC6A12) gene showed an inverse association with 
NDVI 300 m exposure during pregnancy. SLC6A12 is a member of the 
neurotransmitter transporter family implicated in the cellular uptake of 
betaine and GABA in a sodium-and chloride (NaCl)-dependent process. 
This gene plays a role in kidney, brain and liver tissues, functioning as a 
methyl donor in the latter tissue (Kempson et al., 2014). This DMR was 
located in 5′ UTR of the gene. Finally, the DMR located in Sidderick Cell 
Adhesion molecule 1 (SDK1) was inversely associated with cumulative 
exposure to NDVI 300 m. SDK1 is implicated in the cell junction orga-
nization. CpGs within this region have been associated with age (Mulder 
et al., 2021). 

According to literature, green space can be beneficial for health by 
reducing harm (decrease air pollution, noise and heat), restoring ca-
pacities (decrease stress and increase attention) and increasing physical 
activity and social contacts (Markevych et al., 2017). It has been 
hypothesised that NDVI within a buffer of 100 m may particularly Ta
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influence health by reducing harm, decrease stress and increase atten-
tion, while NDVI within a buffer of 300 m may also influence health by 
promoting physical activity and social contacts, similar to residential 
proximity to a green space (Markevych et al., 2017). Half of the DMRs 
found in this study were associated with NDVI 100 m while the other 
half with NDVI 300 m. Two cord blood CpGs (cg06823681, 
cg14093792) within the DMR annotated to SLC6A12 associated to NDVI 
300 m have been previously linked to pre-pregnancy maternal body 
mass index in cord blood in cell composition unadjusted models. How-
ever, these associations were no longer significant after adjusting for cell 
composition (Sharp et al., 2017). Finally, we did not find any overlap 
between cord blood and child blood suggestive DMPs or DMRs, which 
might reflect different sample sizes and hence different statistical power. 

One of the strengths of our study is the large sample size, which is 
three times greater than the largest previous EWAS of exposure to green 
space (Jeong et al., 2022). Another strength of the study is the avail-
ability of DNA methylation data in cord blood and child blood allowing 
the evaluation of associations with green space exposure in two periods: 
pregnancy and from pregnancy to childhood (cumulative exposure). 
Moreover, we used a standardised protocol for generating identical 
green space exposure variables in each cohort, and the analysis plan and 
methods were pre-specified by the leading team, although each cohort 
performed their own preferred quality control and normalization steps 
of the DNA methylation data. Results were validated through leave-one- 
out and sensitivity analyses. Neither air pollution or cellular composi-
tion seemed to mediate the effects of green space exposure on DNA 
methylation. A potential mediating role of temperature and relative 
humidity in the associations of exposure to green spaces with DNA 
methylation should be investigated in more detail, but initial findings in 
two of our studies did not suggest a major role. Other studies, however, 
have indicated that temperature per se, independent of greenness, is 
associated with DNA methylation (Xu et al., 2021a). Lastly, this is the 
first study using DataSHIELD (Gaye et al., 2014) for genome-wide DNA 
methylation analysis. This infrastructure provides a novel technological 
solution that can circumvent some of the challenges in facilitating the 
access of researchers to individual level data and also makes the analysis 
process more secure. 

The study needs to be interpreted within the context of its 

limitations. First, we were not able to explore longitudinal changes in 
DNA methylation or persistent effects into childhood as the number of 
children for whom we had information on DNA methylation in cord- and 
child-blood was small. Second, whilst NDVI provides a standardised way 
to measure green space across different populations, it cannot differ-
entiate vegetation types, which could be relevant for our analyses. 
Moreover, we did not have data on more sensitive measurements of 
greenness such as Enhanced Vegetation Index (EVI) or other important 
aspects of the green space exposure, such as whether any participants 
accessed the green space close to them and if so, the time spent and 
specific activities undertaken in a green space, quality characteristics of 
the green space or even the emotional responses elicited by these en-
vironments. Third, the study was restricted to white Europeans due to 
the lack of sufficient sample size for other ethnicities, thus we cannot 
generalize findings to other populations (Breeze et al., 2022a,b). Fourth, 
the current study did not examine sex-specific associations due to power 
limitations. Fifth, whilst we tried to adjust for confounders, like most 
EWAS we cannot assume that any of the associations we have found are 
causal, or that our largely null findings are influenced by masking 
confounding. In the same way, we cannot assume that differences in 
DNA methylation will affect health outcomes as epigenetic mechanisms 
are more complex that what can be discerned from DNA methylation 
(Min et al., 2021). In addition to being unable to explore associations 
with other epigenetic mechanisms, this study, in common with other 
EWAS, covers only a small proportion of the epigenome (i.e. ~ 2% of the 
23 million CpGs for the 450K array) (Battram et al., 2022a). Finally, like 
most EWAS, we have explored associations with white blood cell DNA 
methylation in umbilical cord blood as a surrogate indicator of the 
offspring organs (Lin et al., 2017; Lurà et al., 2018) and child blood. 
However, it is crucial to investigate other relevant cells and tissues, such 
as the placenta that controls foetal development and consequently, if 
affected, it can have long term effects on health (Maccani & Marsit, 
2009; Mortillo & Marsit, 2022). 

5. Conclusions 

Overall, we found little robust evidence of the association between 
green space exposure and blood DNA methylation. We did not find 

Fig. 3. Venn diagram showing the overlap of genes annotated to differentially methylated regions (DMR) in this study (Aguilar-Lacasaña et al.,) with previous studies 
(Alfano et al., 2023; Jeong et al., 2022; Xu et al., 2021b). There is overlap in population between the current study and Alfano et al. 
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associations between residential green space exposure and genome-wide 
DNA methylation levels in cord or child blood across 0.4 million CpGs. 
Although we identified associations between pregnancy and cumulative 
exposure to surrounding greenness with four DMRs, further studies are 
needed to validate the findings and provide additional insights in the 
underlying biological pathways. 
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