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General introduction

A diverse plethora of immune cells are involved in combatting tumor cells by orchestrating anti-

tumor immunity in a delicately balanced manner. In-depth insights on the dynamic interactions 

between tumor cells and immune cells enabled the development and implementation of 

immunotherapy which created a paradigm shift in the treatment of patients with cancer. However, 

the majority of the patients does not respond durably and inevitably develops disease recurrence 

for reasons incompletely understood. This introductory chapter will highlight recent advances in the 

field of tumor immunology that are not restricted to the tumor site and are valuable in providing 

alternative therapeutic angles to improve efficacy of immunotherapy. Finally, the aim and outline 

of this thesis will be presented.

Seizing control: the continuous interaction between the immune system and tumor cells

Cancer has long been considered a cell-autonomous disease characterized by a multistep process 

of genetic alterations that results in deficits in normal regulatory pathways of cell proliferation 

and homeostasis. These genetic alterations in cancer cells were thought to be the main drivers 

of progressive transformation into malignant derivatives 1. This reductionist view was challenged 

by observations in mice where the lack of critical effector molecules in T cells, such as interferon-

gamma (IFNγ) or perforin, resulted in increased susceptibility to tumor development 2-6. This 

supported the initial immunosurveillance theory by Burnet and Thomas, which proposed that the 

immune system acts as a tumor-extrinsic suppressor 7-9. Later, it was discovered that immunological 

pressure not only suppresses tumor development but also functions as a dominant and selective 

force in sculpting clonal evolution of tumor cell variants capable of evading immunity 10,11. 

Inverse relationships between the level of immune cell infiltration and tumor clonal diversity and 

corresponding neoantigen load in patient tumors illustrates the strong selection pressure of the 

immune system and signs of immunoediting 12-15. As such, these continuous dynamic interactions 

between tumor cells and immune cells lead to the emergence of tumor cell clones progressively 

equipped with greater capability to evade immunological control. What are the mechanisms by 

which immunoedited tumor cell clones can evade immunological control?

Loss of control: tumor-cell mediated evasion of immunological control

Tumor cells acquire a variety of features to escape from immune attack. Anti-tumor immunity 

requires functional presentation of tumor antigens, preferably neoantigens, in class I and 

II human leukocyte antigens (HLA) for the recognition by T cell receptors and disruption to 

the antigen-presentation machinery in tumors could in turn facilitate immune escape. The 

integration of genomic, transcriptomic and epigenomic data has revealed neoantigen depletion 

during tumor evolution that occurs through mechanisms that span from genomic aberrations in 

the HLA locus (e.g. copy-number loss and loss of heterozygosity) to transcriptional repression 

of neoantigens 16,17. Additionally, deficits in intracellular antigen processing, including TAP1 
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deficiencies, further contribute to impaired functional presentation of tumor antigens 

and immune evasion. Interestingly, these deficits can also give rise to a novel category of 

neoantigens, T cell epitopes associated with impaired peptide processing’ (TEIPP) antigens, 

that can be presented by residual HLA class I molecules and activate cognate CD8+ T cells 18-20. 

Besides impaired tumor antigen presentation, rewiring of tumor cells on the (epi)genetic level, 

altered metabolism and disturbed intracellular signaling pathways influence the composition 

and functional state of the tumor microenvironment (TME) 21. Alongside endothelial cells, 

fibroblasts and tumor cells, the TME is composed of a variety of immune cells. Hijacking the 

behavior of immune cells such as dendritic cells (DCs), tumor-associated macrophages (TAMs), 

neutrophils and regulatory T cells (Tregs) enables tumor cells to orchestrate a suppressive TME 
22,23. How are tumor cells modulating the behavior of immune cells in the TME and thereby 

facilitating tumor progression?

Suppressing immune cells that inhibit tumor growth: DC modulation in the TME

DCs are an important heterogeneous population of antigen presenting cells (APCs) that are 

able to infiltrate tumors and stimulate anti-tumor immunity. As such, BATF3+ conventional DCs 

type 1 (cDC1), that excel in their cross-presentation capacity, were required for the rejection 

of immunogenic tumors and vaccination with tumor-associated antigen (TAA) loaded natural 

cDC1s reduced tumor growth 24,25. Seminal discoveries suggested that APCs may be able to form 

intra-tumoral niches for infiltrating T cells, resembling the T cell zone of secondary lymphoid 

tissues. These niches can give progeny to a more terminally differentiated T cell population 

and maintain anti-tumor immunity while loss of these niches is associated with progression in 

patients with kidney cancer 26. This highlights that compromised DC functionality predisposes 

the tumor site for impaired anti-tumor immunity. For example, the group of Gajewski found 

that reduced chemokine ligand 4 (CCL4) expression in tumors with active β-catenin resulted 

in lower cDC1 infiltration and increased tumor growth 27. Mediators released by the tumor 

cells or other cells in the TME such as VEGF, TGFβ, IL-10, IL-6 and PGE2 can each inhibit DC 

differentiation, maturation and functionality. For example, TAM-derived IL-10 indirectly blunts 

CD8+ T cell responses by restricting IL-12 production by intratumoral cDCs 28.

Promoting immune cells that support tumor growth: Regulatory T cell modulation in the TME

Besides the impairment of tumor-repressing immune cells, tumor cells extend their immune 

evasion mechanisms to the induction and/or recruitment of immunosuppressive cell types 

including TAMs, myeloid-derived suppressor cells (MDSCs) and Tregs. Tregs function as master 

regulators of the immune system and were shown to be crucial to prevent auto-immune 

diseases 29. Shortly after, the involvement of Tregs in antitumor immunity was established by 

the observation that Treg depletion using anti-CD25 antibodies increased tumor rejection 30,31. 

A range of different mechanisms are described by which Tregs can dampen the immune system 

either by directly impairing effector T cells or indirectly via APC modulation 32 (Fig. 1). These 
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mechanisms are abundantly exerted in the TME as Tregs isolated from tumors express high 

levels of genes related to suppressive function and activation 33,34. For example, DC modulation 

through transendocytosis of costimulatory molecules CD80 and CD86 by cytotoxic T-lymphocyte 

antigen 4 (CTLA-4) is a core mechanism of immunoregulation by Tregs at the tumor site 35,36. 

Elegant experiments by the group of Mempel showed that this can blunt protective anti-tumor 

immunity by hampering effector T cell activation caused by destabilized contacts between DCs 

and effector T cells 37. Interestingly, the modulation by Tregs also resulted in destabilization of 

their own contacts with DCs, thereby providing a negative feedback loop to calibrate their own 

function by regulating the level of costimulation they receive. This mechanism hinged on Tregs 

locally encountering antigens in the TME 37,38. The dependence of local antigen stimulation 

aligns with findings that expanding neoantigen-specific Tregs were detected in melanoma 

patients and required continuous TCR signaling to exert their suppression function 39,40. Due 

to the inherent suppressive functions of Tregs in the TME, a high ratio of Tregs to conventional 

T cells is associated with worse prognosis for a variety of cancer types 41. Therefore, targeting 

Tregs is an attractive approach to enhance anti-tumor immunity. Nonetheless, effectively 

targeting Tregs in the clinical context remains a challenge. One extensively researched approach 

to target Tregs is through their depletion. However, depletion of the total Treg population 

using anti-CD25 antibodies (daclizumab and basiliximab) failed to deliver clinical responses 
42,43. A significant challenge in achieving effective depletion of Tregs is that potential targets, 

such as CD25, are shared between Tregs and effector T cells. By developing depleting anti-

CD25 antibodies that preserve IL-2 signaling, the group of Quezada was able to effectively 

deplete Tregs without affecting the effector T cell compartment in preclinical models and are 

currently tested in clinical studies 44. Additionally, there is the risk of autoimmune-related 

toxicities when indiscriminately depleting the entire Treg population 33. For this reason, the 

potential of targeting chemotactic axes (CCR4 and CCR8) or transcription factors (BATF) that are 

specifically expressed on tumor-infiltrating Tregs are currently investigated as these approaches 

may preserve Treg functioning in other tissues 45-49. Recently, CXCR3 has shown to be a critical 

chemokine receptor for the migration, accumulation and suppressive functions of Tregs at 

the tumor site by facilitating interactions with cDC1s, thereby offering a novel therapeutic 

tumor-directed Treg target 50.

Taken together, immune-edited tumor cells exert multiple local mechanisms to evade immune 

recognition and destruction. However, recent observations highlighted that these pertubations 

are not restricted to the tumor site as tumor cells alter the global immune landscape during 

tumor progression (Fig. 2) 51,52. Therefore, to fully understand the immune response to tumor 

cells, the coordinated regulation of anti-tumor immunity spread across multiple tissues should 

be taken into account. What are the mechanisms by which tumor cells impact immunological 

control beyond the tumor site?
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Figure 1: Variable mechanisms of Treg-mediated immunosuppression

Regulatory T cells (Tregs) express the IL-2 receptor subunit-α, also known as CD25, of the high-affinity heterotrimeric 

IL-2 receptor. Tregs are highly dependent on IL-2, and scavenge IL-2 from the environment by expressing CD25, 

thereby reducing the availability of this cytokine for other immune cells, including effector T cells. In addition, 

Tregs produce immunosuppressive cytokines, transforming growth factor-β (TGFβ), IL-10 and IL-35 that suppress 

the activity of effector T cells. Next to producing immunosuppressive cytokines, Tregs are able to convert ATP to 

adenosine by expressing CD39 and CD73 on their cell surface which transmits an immunosuppressive signal to 

both effector T cells and antigen presenting cells (APCs). By expressing cytotoxic T lymphocyte antigen (CTLA-4) on 

their cell surface, Tregs bind to CD80 and CD86 expressed on APCs, thereby suppressing their activity (solid arrow) 

and reducing their activating capacity of effector T cells (dashed arrow). CTLA-4 also directly inhibits effector T cell 

activation by inhibiting costimulation as CTLA-4 binds with higher affinity to CD80 and CD86 than CD28 In addition 

to CTLA-4, Tregs are known to express programmed death 1 (PD-1) to high levels.

A new holistic vantage point in dictating control: tumor immunology beyond the tumor 

microenvironment

Recent observations caused the formation of a new paradigm by highlighting the extension of tumor-

imposed perturbations of the immune system to lymphoid organs including bone marrow, spleen 

and tumor-draining lymph node (TDLN) (Fig. 2). In bone marrow, cancer-imposed dysregulation 

of hematopoiesis resulted in excessive release of immature monocytes and neutrophils which 
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contribute to an immunosuppressive TME 53,54. Also the spleen appeared to be a critical site of 

G-CSF and GM-CSF driven aberrant myelopoiesis at the cost of B- and T cells 55. Next to dysregulated 

hematopoiesis, G-CSF reduced interferon regulatory factor-8 (IRF8) in cDC progenitors in the bone 

marrow, thereby driving reduced cDC1 development and maturation in patients with pancreatic 

and breast cancer 56. These tumor-imposed effects on bone marrow can also extend to the T cell 

compartment as it was found that in patients and mice with intracranial tumors naïve T cells were 

sequestered in the bone marrow through regulation of the S1P1 axis, leading to lymphopenia 57. 

Spearheaded by the groups of Wargo and Zitvogel, the impact of the gut microbiome on sculpting 

systemic anti-tumor immunity is beginning to unfold. Although the molecular mechanisms by 

which microbiomes are affecting systemic immune responses are incompletely understood, the 

gut microbiome is found to either promote or limit the development of multiple types of cancer. As 

such, gut dysbiosis by decreased diversity or composition is associated with cancer progression 58-60. 

A central focus of recent research is the recognition of the TDLN as a vital orchestrator of systemic 

anti-tumor immunity. The tumor influences the structure and functioning of TDLNs connected to 

the tumor through a network of lymphatic vessels transporting fluid, soluble factors and cells. How 

is this affecting immune processes in the TDLN and consequently tumor control?

The central role of the TDLN in effective anti-tumor immunity

A series of sequential events must be initiated, allowed to proceed and expand iteratively for an anti-

tumor immune response to effectively eliminate cancer cells. This series of carefully regulated events 

is summarized as the cancer immunity cycle proposed in 2013 by Chen en Mellman 61,62. Critical steps 

of this cycle occur in the TDLN where tumor-derived antigens are captured and presented by DCs 

which, in the presence of appropriate signals, prime and activate cognate T cells that can subsequently 

infiltrate the TME to kill their target cells. Therefore, the immune contexture in the TDLN, especially the 

antigen presentation capacity, is important in dictating the nature, breadth and strength of anti-tumor 

immunity. CCR7-dependent migration of tumor-antigen loaded CD103+ cDC1s to the TDLN and the 

hand-off of antigen to resident DCs were found to be requisites for driving CD8+ T cell mediated anti-

tumor immunity 63,64. Subsequent studies by the same group highlighted the importance of migrating 

cDC2s to the TDLN in initiating anti-tumor CD4+ T cell immunity 65. Alternatively, altered phenotype and 

suppressed functionality of DCs in the TDLN were described to be associated with tumor progression by 

restricting T cell priming or induction of tolerance 66. Suppressed priming by DCs in the TDLN is described 

to be linked to effects of intratumoral Tregs as well as to Tregs located in the TDLN. Intratumoral Tregs 

constrained cDC2 function and migration to the TDLN which resulted in restricted anti-tumor immunity 

due to suboptimal priming of helper CD4+ T cells 65. Recent findings also highlighted a prominent role 

for TDLN-located Tregs in restraining T cell priming by influencing DC functionality. More specifically, 

elevated IFNγ levels in the TDLN (e.g. mediastinal lymph node) driven by lung commensals increased 

the suppressive capacity of Tregs which resulted in suppressed costimulation and cytokines provided by 

cDC1 and subsequent dysfunctional CD8+ T cell priming 67. The ultimate aim of DC-T cell interactions in 

the TDLN is the priming and activation of tumor-reactive T cells. The TDLN appeared to be enriched for 
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tumor-specific T cells that displayed a progenitor exhausted phenotype (Tpex cells; Box 1) 68,69. Deeper 

analysis on the architectural niche of Tpex cells in the TDLN of HNSCC patients using imaging revealed 

a primary localization in T cell zones 68. Seminal discoveries using TCR sequencing highlighted the clonal 

relationship between Tpex cells in the TDLN and exhausted T cells in the TME suggesting a continuum of 

T cell differentiation from Tpex cells within the TDLN to a more exhausted state upon migration from the 

TDLN to the tumor 68,70,71. Therefore, the TDLN is described to function as a reservoir by maintaining Tpex 

cells over time that seed the tumor to sustain anti-tumor immunity 69,72. Indeed, elegant experiments by 

the group of Grogan showed that, across different types of cancer, intratumoral T cells are replenished by 

T cells from outside the tumor that are non-exhausted and the infiltration of TDLN-derived T cells could 

thereby provide an explanation for the paradoxical observation that tumor-specific T cells in the TME 

do not uniformly display a phenotypic exhaustion program 73. While there is still much to be uncovered, 

these data are progressively revealing the pivotal role played by the TDLN in coordinating systemic 

anti-tumor immunity.

Figure 2: Systemic anti-tumor immunity is coordinated across multiple organs

For effective anti-tumor immunity, antigen-presenting cells (APCs) that migrate from the tumor 

microenvironment (TME) to the tumor-draining lymph node (TDLN) or are resident in the TDLN prime and 

activate T cells with a cognate T cell receptor. Following priming, licensed T cells migrate to the TME to kill 

tumor cells. The process of functional tumor cell killing by T cells is often impaired due to tumor-perturbations 

to the immune system in multiple tissues, including bone marrow, spleen and TDLN.
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Box 1: T cell exhaustion

T cell exhaustion is described as a hypofunctional state driven mainly by chronic TCR 

signaling due to persistent antigen exposure in the context of chronic infections or cancer 

to limit immunopathology or autoreactivity 74,75. In the tumor setting, an exhausted state 

is characterized by reduced cytokine production and functionality, a high expression 

of coinhibitory receptors, including PD-1, CTLA-4, LAG3 and CD39 and enrichment for 

tumor-reactive clones. Persistent stimulation of the TCR activates the transcription factor 

NFAT that, without the cooperation with AP-1 transcription factors, drives the expression 

of transcription factors related to the exhausted state 76,77. The transcription factor TOX 

is predominantly described as an important regulator of exhaustion by epigenetically 

imprinting the dysfunctional program 78-80. A spectrum of T cell exhaustion states exists, 

ranging from progenitor exhausted to terminally exhausted T cells that aligns with reduction 

in effector functions and recall expansion capacity. Progenitor exhausted T cells are 

characterized by an intermediate expression of coinhibitory receptors and expression of 

key transcription factor TCF-1 81. By self-renewal and proliferation, progenitor exhausted T 

cells give rise and maintain a more terminally exhausted T cell, creating a developmental 

hierarchy 82. This progression of a progenitor to the terminally exhaustion state is defined by 

a gradual functional impairment and increase of the expression of coinhibitory receptors, 

loss of TCF-1 and gain of the transcription factor TOX, resulting in a epigenetically fixed 

exhausted state 83. Although described as a hypofunctional state, terminally exhausted T cells 

retain a certain degree of effector functions as they express a broad spectrum of genes and 

proteins associated with effector functions 84,85. Beyond the reduction of effector functions, 

the group of Delgoffe recently demonstrated that hypoxia within the TME can even drive 

the CD39-mediated acquisition of suppressive capacities by exhausted T cells 86.

Restoring control by immunotherapy: inducing durable anti-tumor immunity

Due to the importance of a functional immune system in combatting in tumor progression, the emergence 

of immunotherapy has made substantial impact on the treatment landscape for patients with cancer. 

Immune checkpoint blockade (ICB) has shown unparalleled success and the number of patients eligible 

for this type of immunotherapy continues to increase as this therapy positions itself as first or second 

line therapy for many types of cancer. Expression of checkpoints on T cells are evolutionarily conserved 

to prevent hyperactivation of the immune system and autoimmune diseases. The most-well described 

targets of ICB are programmed cell-death 1 (PD-1) and its ligand PD-L1 and CTLA-4. The mode of action 

is best understood for interference of the PD-1/PD-L1 axis in reviving existing T cell responses 87-91. 

Instead of reviving T cell responses, vaccination strategies, including vaccination with DCs, primarily act 

to optimize the priming potential of APCs 92,93.
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PD-1/PD-L1 biology and therapy

PD-1 was first discovered on T cells by the group of Nobel Prize winner Tasuka Honjo in 1991 and 

described to be involved in activation-induced cell death, hence the name programmed cell-death 1 
94,95. Shortly after, PD-1 was found to be a negative regulator of the immune system as PD-1 knockout 

mice developed arthritis and nephritis 96. The role of PD-1 in controlling the immune system was further 

emphasized when the ligands, PD-L1 and PD-L2, were discovered. Many cell types, including tumor 

cells, were able to bind PD-1 immunoglobulin Fc domain fusion proteins which resulted in impaired 

lymphocyte proliferation and cytokine production 97. Seminal discoveries in the past 30 years has led to 

the central role of antibodies blocking the PD-1/PD-L1 axis in the treatment of patients with multiple 

types of cancer. The prevailing thought underlying this successful therapeutic approach is the revival of 

tumor-infiltrating T cells, more specifically by releasing the brake of PD-1+ T cells, which are restrained 

by PD-L1 expression on tumor cells. 

Given this prevailing thought, higher expression of PD-1 on T cells would reasonably positively 

correlate with the level of reinvigoration. Despite the highest expression of PD-1 on hypofunctional 

terminally exhausted T cells (Box 1), anti-PD-1/PD-L1 therapy is generally thought to be unable in 

functionally recovering terminally exhausted T cells in a durable manner. For example, transferred 

terminally exhausted T cells did not proliferate following anti-PD-1 treatment. Recent studies have 

shown that this unresponsiveness is regulated by robust epigenetic remodeling in exhausted T cells 

that is distinct from the epigenetic program in effector and memory T cells 75,83,98. Instead, Tpex 

cells, expressing TCF-1 and CXCR5 and intermediate levels of PD-1, were found to be responsible 

for the proliferative burst following anti-PD-1/PD-L1 therapy in chronic infection and cancer 99-102. 

Higher levels of TCF-1 protein in CD8+ T cells associated with response to anti-PD1/PD-L1 therapy, 

suggesting that this subset may dictate therapeutic efficacy 101. These data underscore that the 

expression of PD-1 does not strictly correlate with the capacity for T cell reinvigoration.

PD-1 expression is regulated by a multifaceted network of transcription factors induced by TCR 

signaling and various cytokine stimuli, such as IL-2 and type 1 interferons 95. The cytoplasmic tail of 

PD-1 contains two intracellular motifs: the immunoreceptor tyrosine-based inhibitory motif (ITIM) 

and immunoreceptor tyrosine-based switch motif (ITSM) 103. Mutational studies have shown that 

the inhibitory function of PD-1 mainly relies on ITSM which recruits Src homology region 2 domain-

containing phosphatase (SHP-2) 104-106. This recruitment results in downregulation of downstream 

TCR signaling pathways, with PI3K/AKT, mitogen activated protein kinase (MAPK) and mammalian 

target of rapamycin (mTOR) as prominent target pathways 107,108. Although it was thought that 

SHP2 is the sole direct partner of PD-1, PD-1 inhibition retained efficacy in SHP2-deleted T cells, 

suggesting that additional PD-1 partners could be in play in downstream signaling 109. Surprisingly, 

CD28 signaling appeared to be an important intracellular target of anti-PD-1/PD-L1 therapy besides 

direct TCR signaling in suppressing the TCR signalosome 110,111. This discovery points to an important 

role for CD80 (B7-1) and CD86 (B7-2) expression on APCs in dictating anti-PD-1/PD-L1 therapy 
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efficacy. The role of APCs in dictating anti-PD-1/PD-L1 therapy efficacy is further supported by the 

observation that anti-PD-1/PD-L1 therapy remained effective in transplanted tumor models lacking 

PD-L1, thereby suggesting PD-L1 expressed on host cells, specifically myeloid cells, is essential in 

mediating anti-tumor immunity 112-114. The role of PD-L1 on myeloid cells, mainly APCs, is further 

underlined as CD80 was described to be a second binding partner that is able to bind PD-L1 in cis 

which prevent ligation of PD-1 with PD-L1 in trans. Elegant experiments performed by the group 

of Hui showed that these in cis interactions prevent CD80 from binding to CTLA-4 in trans while 

persevering the binding of CD80 to CD28 115. This non-tumor cell centered view could also provide 

an explanation for the observation that some tumors failed to respond to anti-PD-1/PD-L1 therapy 

despite tumor positivity for PD-L1 89. These observations, together with data showing that novel T 

cell clones infiltrate the TME upon treatment, could indicate that anti-PD-1/PD-L1 therapy efficacy 

is determined by systemic immunity and not only restricted to the tumor site 116-118.

Therapeutic vaccination strategies

In addition to disruptions in the effector phase of the immune response, the initial priming phase 

of anti-tumor immunity is frequently impacted by perturbations induced by the tumor. These 

perturbations include compromised DC functionality, leading to a hindered activation of T cells 

by DCs. This initiated the field of therapeutic vaccination that typically boosts the immune system 

to eradicate tumor cells through various methods including injection of ex-vivo  tumor-antigen 

loaded DCs and exogeneous administration of tumor antigens. Although there are other promising 

vaccination strategies developed or used in a clinical setting, the use of ex-vivo  tumor-antigen loaded 

DCs and vaccination with neoantigens will be highlighted in this section to shed light on the impact 

of this treatment modality for cancer patients. For the use of ex-vivo tumor-antigen loaded DCs, DCs 

are directly obtained from blood or ex-vivo cultured from monocytes, exposed to tumor antigens 

and injected back into the patient. Once infiltrated in the lymph node, the DCs prime and activate 

vaccine-specific T cells that subsequently infiltrate the TME 119. This therapeutic approach comes 

with the advantages of quality control and controlled adjuvant/antigen delivery and has shown to 

be able to induce clinical responses in a subset of patients 119-121. As monocyte-derived DCs may 

not be the most optimal APCs to activate CD8+ T cells, novel approaches using naturally occurring 

DC subsets, mainly cDC1s, could offer additional efficacy 122. Although optimizing T cell priming 

capacities of DCs used for vaccination, immunosuppressive mechanisms could still restrain effective 

anti-tumor immunity in patients. Combinations with agents affecting these mechanisms have shown 

promising results as vaccination with DCs was only effective in an established pancreatic cancer 

mouse model when combined with anti-CD40 that modulates the suppressive TME 123. A recently-

described vaccination approach in resectable pancreatic cancer patients using individualized mRNA 

neoantigen vaccines appeared to be able to induce substantial and durable T cell responses in 50% 

of the patients, despite low mutation rates 124. This approach was also described to be feasible and 

able to induce immunological responses in immune inflamed tumors, including melanoma, NSCLC 

and bladder cancer and offers a promising therapeutic vaccination approach 125,126.
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Both blockade of PD-1/PD-L1 and therapeutic vaccination strategies have shown to be able to 

stimulate anti-tumor immunity and induce durable responses in a subset of patients. However, still 

the majority of the patients does not respond at all or only temporarily. What are the mechanisms 

that are underlying therapy resistance?

From restored control to rebound effect: immunotherapy resistance

Resistance to immunotherapy can be explained by a plethora of mechanisms. Often, mechanisms 

that are involved in evasion of immunological control in steady state are also involved in hampering 

efficacy of immunotherapy. When present prior to therapy, these mechanisms can prevent the 

induction of a meaningful immunological or clinical response following immunotherapy and are 

involved in primary resistance. Increased immunological pressure during therapy can also accelerate 

these mechanisms, thereby causing the acquirement of resistance and is often described as 

secondary resistance. Tumor-intrinsic pathways varying from lack of therapeutic target, for example 

PD-L1 on tumor cells, to deficits in antigen-processing and presentation machinery and loss of 

neoantigens through immunoediting are described to be related to therapy resistance 127-129. For 

instance, by comparing pre- and post treatment tumor biopsies, 10% of patients with NSCLC were 

found to develop resistance to anti-PD-1 therapy through loss of neoantigen expression upon 

treatment 130. Other mechanisms involve the upregulation of alternative coinhibitory molecules, 

including TIM3, CD39, TIGIT and LAG3, due to the increased activation state following reinvigoration 

by anti-PD-1/PD-L1 therapy. As such, high gene expression of CD39 and TIM3 in CD8+ T cells was 

associated with non-responsiveness in patients with melanoma treated with anti-PD-1 101. Another 

important resistance mechanism is the preferred activation and attraction of immunosuppressive 

cells, including Tregs. Due to the inherent suppressive functions of Tregs, Tregs have shown to impede 

efficacy of anti-PD-1/PD-L1 therapy as Treg depletion using an optimized anti-CD25 antibodies 

synergized with anti-PD-1/PD-L1 therapy in preclinical murine models 44,131. This synergy could 

be explained by data showing that oxidative-stress induced apoptotic Tregs abolished anti-PD-L1 

efficacy as this subset displayed amplified suppressor capacity via the adenosine and A2a pathway. 

Transfer of apoptotic Tregs in the responsive MC38 model thwarted IFNγ and TNF production 

by CD8+ T cells and translated into anti-PD-L1 resistance on tumor growth and survival 132. On 

the contrary, IFNγ-mediated induction of Treg fragility, a plastic program with loss of suppressive 

functions, was required for anti-PD-1 therapy efficacy indicating, together with the other data, 

the importance of Treg functionality in dictating anti-PD-1/PD-L1 therapy efficacy 133. Potentially 

the interaction of Tregs with cDC1s is important in impeding efficacy as Treg-specific knockout of 

CXCR3, which was found to facilitate this interaction, synergized with anti-PD-1 therapy in impairing 

tumor progression 50. Despite the identification of these resistance mechanisms, efforts to translate 

these findings to biomarkers or novel therapeutic approaches have not shown able to substantially 

increase the subset of patients showing a durable response. To broaden the proportion of patients 

responsive to immunotherapy, a thorough understanding of known tumor-host immunological 

relationships and the discovery of new resistance pathways are imperative.
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Aims and outline of this thesis

Cancer immunotherapy has significantly transformed cancer treatment, yet enduring success is 

confined to a minority of the patients for reasons incompletely understood. A deeper understanding 

of the prerequisites for effective immunotherapy and mechanisms that can thwart this efficacy 

are therefore crucial. For this deeper understanding, the systemic immune landscape beyond the 

tumor site should be considered as anti-tumor immunity is regulated across multiple tissues. By 

combining a wide range of translational preclinical mouse models and the clinical translation of 

the findings using patient-derived materials, the research presented in this thesis will improve this 

understanding and could provide novel therapeutic angles to improve immunotherapy efficacy.

Part A of this thesis focusses on the mode of action (Chapter 2 and 3) and resistance (Chapter 

4) of ICB therapy. The prevailing thought is that efficacy of anti-PD-1/PD-L1 therapy is derived 

from the reinvigoration of T cells within the TME. However, data showed that PD-L1 expression 

on non-tumor cells is important in dictating response and, together with the restricted value of 

PD-L1 on tumor cells as biomarker and data showing infiltration with novel T cell clones following 

anti-PD-1/PD-L1 therapy, indicate that not only the TME is essential in dictating efficacy following 

anti-PD-1/PD-L1 therapy. As the TDLN has shown to have a central role in initiating anti-tumor 

immunity, the effects of anti-PD-1/PD-L1 therapy in the TDLN were studied in Chapter 2. Here, we 

assessed the presence of the PD-1/PD-L1 axis in the TDLN of multiple preclinical murine models 

and how this affected anti-tumor immunity by specifically blocking the axis at this site using a 

unique injection strategy. We then translated these findings to the clinical setting by assessing 

whether the level of PD-1/PD-L1 interactions in the TDLN of melanoma patients is associated with 

disease recurrence. Data presented in Chapter 2 identified the PD-1/PD-L1 axis in the TDLN to 

be critical in dictating anti-PD-L1 therapy efficacy and to associate with recurrence in melanoma 

patients. A better understanding of the cells involved and their spatial localization in the TDLN would 

aid in deciphering how the TDLN is involved in recurrence in melanoma patients. To this end, in 

Chapter 3, we studied immune composition in the TDLN of stage III melanoma patients that either 

developed distant visceral organ metastasis or remained disease free for more than 5 years by using 

multiplexed gene expression analysis, digital spatial profiling and multi-color confocal imaging.

Besides identifying mechanisms related to response following anti-PD-1/PD-L1 therapy, 

identification of mechanisms that perturb this efficacy and are responsible for therapy resistance 

are vital for the design of therapeutic strategies that enhance anti-PD-1/PD-L1 efficacy. Suppression 

of the immune system is an inherent characteristic of Tregs and they appeared to have a dominant 

expression of PD-1 on their cell surface. Therefore, we aimed in Chapter 4 to identify whether anti-

PD-L1 therapy could have detrimental effects by activating Tregs, causing therapy resistance in the 

process. For this research question, we assessed the effect of anti-PD-L1 on Tregs (gene, protein and 

functional level) in therapy-responsive and –resistant tumor models and studied whether this was 

directly mediated via PD-1 on Tregs using bone marrow chimera experiments. We then attempted 
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to identify whether anti-PD-L1 mediated activation of Tregs actively promoted therapy resistance by 

depleting Tregs using anti-CD25 or by using diphtheria toxin in DEREG mice. The clinical relevance 

of these findings was evaluated using patient-derived tumor biopsies prior to and following anti-

PD-1 therapy using published scRNA sequencing data116,134 and peripheral blood of patients with 

lung cancer and mesothelioma.

Next to impaired T cell functionality, tumor-immune co-existence also negatively shapes the myeloid 

compartment of the immune system. Decreased functionality of DCs in tumor-burdened hosts 

sparked the interest of vaccination with exogenously cultured and loaded DCs. In part B of this 

thesis, we focused on combinatorial approaches with DC-based immunotherapy to improve efficacy 

which are reviewed in Chapter 5. As the PD-1/PD-L1 axis may be highly involved on DCs used 

for vaccination and induced T cells, sequential and concurrent combination of anti-PD-L1 with 

DC vaccination was evaluated in Chapter 6. To this end, efficacy of adjuvant anti-PD-1 therapy in 

DC-treated mesothelioma patients was assessed. Effects on systemic immunity in the setting of 

combination therapy were monitored by analyzing immune responses in blood and tumor and 

survival effects in a mesothelioma murine model.

T cell exhaustion could pose an additional hurdle in achieving effective cancer vaccine efficacy. Besides 

continuous TCR signaling, aberrant IL-2 signaling is implicated in driving T cell exhaustion135,136. In the 

effector phase, IL-2 is critical for the expansion and survival of T cells. However, excess IL-2 signaling 

in the priming phase impact the differentiation trajectory, with more effector T cells and exhaustion 

phenotype at the expense of memory formation. Therefore, excess IL-2 signaling could hamper 

vaccine efficacy. In Chapter 7, we combined vaccination strategies with targeting a key downstream 

target of IL2 signaling, JAK3, using a specific inhibitor (PF-06651600) that inhibits STAT5 signaling.

Finally, Chapter 8 provides a general discussion of the data described in this thesis and how this 

can contribute to future research.
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Abstract

PD-1/PD-L1-checkpoint blockade therapy is generally thought to relieve tumor-cell mediated 

suppression in the tumor microenvironment but PD-L1 is also expressed on non-tumor macrophages 

and conventional dendritic cells (cDCs). Here we show in mouse tumor models that tumor-draining 

lymph nodes (TDLNs) are enriched for tumor-specific PD-1+ T cells which closely associate with PD-

L1+ cDCs. TDLN-targeted PD-L1-blockade induces enhanced anti-tumor T cell immunity by seeding 

the tumor site with progenitor-exhausted T cells, resulting in improved tumor control. Moreover, we 

show that abundant PD-1/PD-L1-interactions in TDLNs of nonmetastastic melanoma patients, but 

not those in corresponding tumors, associate with early distant disease recurrence. These findings 

point at a critical role for PD-L1 expression in TDLNs in governing systemic anti-tumor immunity, 

identifying high-risk patient groups amendable to adjuvant PD-1/PD-L1-blockade therapy.
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Introduction

Drugs targeting the PD-1/PD-L1 pathway have revolutionized the treatment of multiple cancer 

types including non-small cell lung cancer, renal cancer and melanoma with a subset of patients 

experiencing durable responses. However, still a majority of patients and cancer types do not, or 

only temporarily respond to these immune checkpoint blocking (ICB) drugs 1,2. PD-1/PD-L1 blocking 

antibodies are believed to act primarily in the tumor microenvironment (TME), by re-invigorating 

exhausted T cells and thereby reviving pre-existing anti-tumor immunity 2. Based on this hypothesis, 

several theories have been proposed to explain the lack of ICB-efficacy in patients, such as a lack of 

PD-L1 expression or T cell infiltration in the TME and upregulation of other co-inhibitory receptors 

or suppressive molecules following ICB therapy 3,4. However, the predictive value of these proposed 

biomarkers remains poor in the majority of tumors, while the relevance of PD-L1-expression at 

other sites remains unknown. Furthermore, results from recent trials evaluating combination 

therapy with anti-PD-(L)1 and other co-inhibitory pathways in the TME have been disappointing 
5-8. Therefore, a more comprehensive interrogation of the molecular and spatial mechanisms of 

anti-PD-1/PD-L1 therapy is needed to further boost immunotherapy efficacy.

Several recent insights exploring the biology of the PD-1 receptor and its corresponding ligand 

PD-L1 offer clues into what drives ICB efficacy. Besides tumor cells, myeloid cells expressing 

PD-L1 have been revealed to be essential for ICB efficacy as anti-PD-L1 antibodies remained 

effective in transplanted tumor cells lacking PD-L1 in a variety of models 9-12. Furthermore, these 

seminal discoveries offer an explanation for the rather unexpected finding that PD-1 primarily 

acts by inhibiting signaling downstream of the CD28 costimulatory receptor following B7-ligation, 

proposedly by myeloid cells 13,14. Where this interaction and therapeutic disruption in case of anti-

PD-1/PD-L1 antibodies takes place, however, is still unknown as current genetic and pharmacologic 

interventions (e.g. with the S1PR-blocking agent FTY720) limit proper spatiotemporal analysis of 

ICB-induced anti-tumor immune responses 9,11,15. Additional insights into these dynamics may 

improve ICB-response prediction and future immunotherapy development.

Recent investigations analyzing T cell receptor (TCR) clonotypes in mouse and patient tumors before 

and after anti-PD-1 therapy suggest the appearance of novel, previously non-existing clonotypes in 

ICB-treated tumors, and a limited expansion capacity of tumor-resident T cells following treatment 
16,17. In contrast to terminally differentiated tumor-resident T cells, T cell factor 1 (TCF-1)-expressing 

progenitor-exhausted T cells have recently been described to generate effector T cell progeny, 

however their exact origins remain unknown 18. These findings, together with an abundance of 

B7-expressing antigen-presenting cells being exposed to draining tumor-antigens prompted us to 

investigate the role of tumor-draining lymph nodes (TDLNs) in efficacy of anti-PD-L1-therapy in 

multiple pre-clinical tumor mouse models. We find that TDLNs harbor significant proportions of 

tumor-specific PD-1+ T cells co-localizing with PD-L1 expressing myeloid cells including conventional 
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dendritic cells (cDCs). Selective targeting of PD-L1 only in the TDLN, reveals that TDLN-localized 

T cells are capable of mounting effective anti-tumor immune responses thereby demonstrating 

that TDLN-resident T cells are able to generate ICB-mediated immunity. Finally, we show the role 

of this PD-1/PD-L1 interaction in the TDLN of stage II melanoma patients, independent of known 

prognostic parameters. TDLNs in patients with early disease recurrence are enriched for PD-1/

PD-L1 interactions which seem to primarily occur between T cells and CD11c+ DCs. In patients 

without disease recurrence there are fewer PD-1/PD-L1 interactions in the TDLN. These results offer 

unexplored insights in the role of TDLNs in generating effective anti-tumor immunity and challenge 

the current dogma that PD-1/PD-L1-blockade occurs primarily at the tumor site.

Material and methods

Mouse models

Female 8- to 12-week-old CBA/J mice and C57BL/6 mice were purchased from Janvier and Envigo, 

respectively, and housed under specific pathogen-free conditions in individually ventilated cages at 

the animal care facility of the Erasmus MC, Rotterdam. All mouse experiments were controlled by the 

animal welfare committee (IvD) of the Erasmus MC and approved by the national central committee 

of animal experiments (CCD) under the permit number AVD101002017867, in accordance with the 

Dutch Acton Animal Experimentation and EU Directive 2010/63/EU.

Mouse tumor cell lines

The AC29 mesothelioma cell line was derived from tumors induced by crocidolite asbestos into 

CBA/J mice and was kindly provided by Prof. Bruce W.S. Robinson (Queen Elizabeth II Medical 

Centre, Nedlands, Australia). The OVA-transfected AE17 cell line was kindly provided by Prof. Delia 

J. Nelson (Curtin University, Perth, Australia). All mesothelioma cell lines were cultured in RPMI1640 

medium containing 25 mmol/L HEPES, Glutamax, 50mg/mL gentamicin (all obtained from Gibco) 

and 5% fetal bovine serum (FBS) (Capricorn Scientific) in a humidified atmosphere and at 5% CO2, in 

air. For culturing AE17-OVA cells, the culture medium was supplemented with 50 mg/mL geneticin 

(Gibco). The MC38, B16F10, KPC3 and lentivirally transduced KPC3-OVA tumor cell lines were 

cultured in IMDM medium (Gibco) containing L-Glutamine, 25 mmol/L HEPES, 50mg/mL gentamicin 

and 8% FBS. Authentication of the cell lines was performed by short tandem microsatellite repeat 

analysis or by antigen-specific T cell recognition. For culture, either culture flasks or CellSTACKs 

(Corning Life Sciences) were used to reach the appropriate tumor cell frequencies for injection.

Melanoma patient cohort

For this study, cutaneous melanoma patients who underwent a sentinel lymph node biopsy (SLNB) 

at the Erasmus Medical Center (MC) Cancer Institute between 2005 and 2016 and had a negative 

SLN (i.e. no metastasis to the TDLN) were identified. From this cohort, two extreme populations 
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of patients were identified: 1) patients with a negative SLN with early (< 48 months) distant 

recurrence (with or without prior locoregional/regional lymph node recurrence); 2) patients with 

a negative SLN without recurrence (> 96 months). In an attempt to avoid confounding influences 

of prior malignant disease on TDLNs, patients who developed (prior) metastatic disease within 

the regional lymph nodes (similar to the SLN basin) within 9 months were excluded.

Histopathological information of the primary melanoma and SLN were retrieved from the 

pathology reports. Patient characteristics and follow-up data were obtained from the medical 

records. This study was approved by the Erasmus MC Ethics Committee (ref. no. MEC-2017-375). 

Human tissues and patient data were used according to “The Code for Proper Secondary Use of 

Human Tissue” and “The Code of Conduct for the Use of Data in Health Research” as stated by 

the Federation of Dutch Medical Scientific Societies.

According to aforementioned criteria, 40 patients were eligible. A pathologist from the Erasmus MC 

Cancer Institute a) assessed the presence of sufficient formalin-fixed paraffin-embedded (FFPE) SLN 

specimen, b) revised a hematoxylin and eosin (H&E) slide for each SLN confirming the absence of 

(micro)metastasis according to previously published protocols 19, c) selected one (of the) SLN(s) per 

patient. Eventually, sufficient and representative SLN material could be retrieved from 15 patients 

in group 1. Consequently, 15 cases from group 2 were randomly identified as well.

The median patient age was 50 years (interquartile range [IQR] 41 – 59), with a male predominance 

of 67% (20 males). Median duration to distant metastasis was 21.0 months (9.0 – 36.0). Further 

clinicopathological features and follow-up of all patients, and per subgroup, are summarized in 

table S1.

In vivo experiments in mouse tumor models

For tumor inoculation, mice were i.p. injected with AC29 (107), AE17-OVA (106) or MC38 (2.55) 

tumor cells in 300 μL PBS. KPC3 (1.05), KPC3-OVA (1.05) or B16F10 (1.05) tumor cells were injected 

s.c. in 200 μL PBS in the flanks of mice that were briefly anesthetized using isoflurane. In case of 

non-TDLN and TDLN characterization, mice with established i.p. tumors (AC29, AE17-OVA and 

MC38) were killed when profoundly ill according to the body condition score, which was around 

day 20. Mice with established s.c. tumors (B16F10, KPC3 and KPC3-OVA) were euthanized when 

tumor size reached 1000-2000 mm3 (measured by 0.52 x length x width x height). For B16F10 and 

KPC3 tumor models, this tumor size was reached around day 20 whereas this size was reached 

at ~ day 45 for the KPC3-OVA model. Mice were randomly assigned to experimental groups.

Anti-PD-L1 treatment. Dependent on treatment arm, mice with established peritoneal 

mesothelioma (AC29 or AE17-OVA) or peritoneal carcinomatosis (colon-carcinoma derived; 

MC38) were treated with either 200 μg isotype (clone 2A3, BioXCell), 2.5 μg anti-PD-L1 antibody 
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(clone MIH5, provided by L. Boon Bioceros) or 200 μg anti-PD-L1 antibody in 50 μL PBS when 

injected intravenously or, in case of intrapleural injection, in 200 μL PBS via injection in the pleural 

cavity of mice that were under short-term anesthesia.

FTY720 administration. To block lymphocyte trafficking, AC29 tumor-bearing mice received either 

vehicle or FTY720 (Sigma-Aldrich) from day 9 onwards via drinking water (2.5 μg/mL) and via daily 

oral gavage (2 μg/g body weight). Retention of lymphocytes in lymphoid organs was assessed on 

day 14 in peripheral blood by flow cytometry.

CEL treatment. In LN-macrophage depletion experiments, mice bearing AC29 mesothelioma tumors 

received 10 μL CEL (Clodrosome) dissolved in 190 μL PBS (5%) or 200 μL PBS i.pl., serving as a 

negative control.

Adoptive-cell transfer of OT-I and OT-II cells. For adoptive cell transfer of OT-I and OT-II cells, OT-I 

and OT-II CD45.1 (Ly5.1) were generated as reported previously (Hope, Front Immunol, 2019). LNs 

and spleens were harvested from 9-11 week-old female OT-I and OT-II CD45.1 transgenic mice after 

which OT-I and OT-II cells were isolated by negative selection, using EasySep magnetic nanoparticles 

(StemCell Technologies), according to manufacturer’s protocol. Subsequently, CD45.1 OT-I and OT-II 

cells were labeled with Far Red Proliferation Dye (Thermo Fisher) according to the manufacturer’s 

instructions, and injected i.v. (2.55-3.05 cells/mouse) into recipient mice.

Blood was collected at defined time points by tail vein incision to evaluate immune responses 

in peripheral blood. Mice were examined every 1-2 days for evidence of illness caused by overt 

tumor growth and euthanized at predefined endpoints or when mice were profoundly ill in case 

of survival analysis.

Preparation of single cell suspensions

Single-cell suspensions were generated from isolated interim blood, non-TDLN, TDLN and tumor 

tissue of mice from each group as previously reported 20. Briefly, blood was collected in EDTA tubes 

(Microvette CB300, Sarstedt) after which the volume was determined. Subsequently, collected 

blood was lysed by erythrocyte lysis using osmotic lysis buffer (8.3% NH4Cl, 1% KHCO3, and 0.04% 

Na2EDTA in Milli-Q). Single-cell suspensions of non-TDLNs, TDLNs and spleens were generated 

by mechanically dispersing the lymph nodes through a 100-μM nylon mesh cell strainer (BD 

Biosciences) followed by osmotic lysis of erythrocytes in case of spleens. Tumors were collected, 

weighed in a microbalance and dissociated using a validated tumor dissociation system (Miltenyi 

Biotec) according to protocol. After dissociation, cell suspensions were filtered through a 100-μM 

nylon mesh cell strainer.
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Flow cytometry

In order to measure cytokine production in lymphoid cells by flow cytometry, cells were restimulated 

for 4 hours at 37 °C using PMA and ionomycin (Sigma-Aldrich) supplemented with GolgiPlug (BD 

Biosciences). For cell surface staining, single cells were stained with antibodies together with anti-

mouse 2.4G2 (anti-CD16/CD32) antibody (Provided by L. Boon, Bioceros; 1:300) for 30 minutes 

at 4°C. After this incubation period, cells were washed with FACS buffer (0.05% NaN3, 2% BSA 

in PBS), followed by a PBS wash and stained for viability using fixable LIVE/DEAD aqua cell stain 

(Thermo Fisher, 1:200) at 4°C for 15 minutes. After two washing steps with FACS buffer, cells were 

either directly measured or, in case of intracellular staining, fixated and permeabilized with Foxp3 

/ Transcription Factor Staining Buffer Set (Thermo Fisher) to stain nuclear factors. Intranuclear 

antibodies were incubated for 60 minutes at 4°C. A fixed number of counting beads (Polysciences 

Inc.) was added to the samples derived from blood prior to acquisition of the data to determine 

the absolute amount of cells.

In order to detect OVA(257-264) specific CD8+ T cells in the AE17-OVA and KPC3-OVA models, PE-

labeled tetramers of H-2Kb major histocompatibility complex class I loaded with OVA(257-264) peptide 

were obtained 21. Tetramer-binding to CD4+ T cells was used to determine the level of background 

signal and to set cutoff limits. To assess the binding of in vivo administered anti-PD-L1, single cell 

suspensions of processed tissues were washed with FACS buffer and incubated with 5% normal 

donkey serum for 30 minutes on 4°C. After washing with FACS buffer, cells were counterstained 

using a donkey anti-rat IgG2A antibody labeled with either a Cy5-fluorochrome or a Alexa Fluor 488 

fluorochrome (Jackson Immunoresearch) for 30 minutes on 4°C. Subsequently, cells were incubated 

for 10 minutes at 4°C with 5% rat serum in FACS buffer after washing with FACS buffer. Data were 

acquired using a LSR II flow cytometer equipped with three lasers and FACSDiva software (v.8.0.2) 

after compensation with UltraComp Compensation beads (Thermo Fisher). Acquired data were 

analyzed by using a licensed version of Flowjo (v.10.4.2). Immune cell subsets were characterized 

using the following set of markers following single cell, alive and CD45+ cell selection: CD8+ T cells 

(CD3+/CD4-/CD8+), CD4+ T-helper cells (CD3+/CD8-/CD4+/FoxP3-), Tregs (CD3+/CD8-/CD4+/FoxP3+/

CD25high). In the myeloid-cell panels, a lineage mix (CD3/CD19/CD335) was included. Subsets were 

characterized as: subcapsular sinus macrophages (Lineage-/Ly6Clow/Ly6G- /CD169+/F480-), medullary 

sinus macrophages (Lineage-/CD11b+/Ly6Clow/Ly6G- /CD169+/F480+), granulocytes (Lineage-/

CD11b+/ /Ly6G+), conventional type 1 dendritic cells (cDC1: lineage-/CD11c+/MHC-II+/CD11b-), cDC2 

(lineage-/CD11c+/MHC-II+/CD11b+). In the experiments performed in figure S3, CD172a and XCR1 

were additionally included to characterize cDC2 and cDC1, respectively.

Multicolor confocal microscopy

TDLNs were embed in Tissue-TEK II optimum cutting temperature medium (Sakura), snap-frozen, 

and stored at -80°C. Tissue sections were cut at 16µm on a cryostat (Cryostar NX70, Thermo Fisher 

Scientific) and rehydrated in in 0.1 M Tris buffer for 30 minutes and blocked with blocking buffer 
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(0.1 M Tris buffer, 0.02% Triton X-100, 1% normal mouse serum, 1%BSA and 5% normal donkey 

serum) for 1 hour. After washing with 0,1 M Tris buffer, sections were stained with a donkey anti-rat 

antibody that would bind to the therapeutic antibody in blocking buffer for 6hours at 4°C followed 

by an incubation with 5% normal rat serum in blocking buffer for 10 minutes. Subsequently, sections 

were stained with directly labeled primary antibodies in Tris blocking buffer for 16 hours at 4°C and 

subsequently stained with streptavidin for 2 hours. After extensive washing with Tris buffer, nuclei 

were counterstained with JOJO-1 Iodide (Thermo Fisher) and tissue sections were mounted in 

Fluoromount-G (Thermo Fischer). Acquisition of whole cross-sections was performed on a Leica TCS 

SP8 confocal microscope with tunable white-light laser, 405 nm violet laser, and Leica PMT and HyD 

hybrid detectors. Acquisition was performed in 3 individual sequential acquisition steps, optimized 

tunable excitation and emission settings were defined experimentally using single stains, timed 

gating with the pulsed white light laser in combination with the HyD detector was applied with 

AF488, AF555, AF555, AF594 and AF647 dyes. Following acquisition, the tiled images were merged 

and compensated using the LAS X Merge and Channel Dye Separation module (using single stains 

under identical acquisition settings), respectively, after which the images were further analyzed 

using Imaris 9.2 (Bitplane). Following the histocytometry work flow as previously described, cellular 

identities were created to investigate co-localization. The channel for CD8+ and CD4+ cells was 

obtained by first creating a mask channel by selecting for CD8+ CD11c- and CD4+ CD11c- voxels, 

respectively. Next, a CD8 “T cell” and CD4 “T cell” expression channel was created by combining the 

CD8+ or CD4+ voxels on the CD8+ CD11c- mask and CD4+ CD11c- mask, respectively, to exclude CD8+ 

CD11c+ DCs and CD4+ CD11c+ DCs from this channel. In addition, channels for CD169+ macrophages 

and CD11c+ DCs that were bound by anti-PD-L1 were created by selecting CD169+ anti-PD-L1+ voxels 

or CD11c+ anti-PD-L1+ voxels, respectively. These channels, together with the CD8+ CD11c- channel, 

were used to create surfaces with Imaris Surface Module (Bitplane) for figure representation. For 

publication and clarity purposes, we applied a gamma correction of 0.7 to the images, except for 

the surfaces.

TIL re-stimulation culture

Frozen single-cell suspensions generated from end-stage AE17-OVA tumors were thawed and 

stained with the CellTrace Far Red Cell Proliferation dye according to manufacturer's protocol. 

After labeling with the proliferation dye, cells were counted in trypane blue with a hemocytometer 

using the Bürker-Türk method. Subsequently, cells were resuspended in 2.0x106 cells/mL culture 

medium consisting of IMDM containing L-Glutamine, Glutamax, 25 mmol/L HEPES, 50 mg/mL 

gentamicin, 50 mmol/L mercaptoethanol (Sigma-Aldrich), 10% FBS, 4 ng/mL IL-2, 4 ng/mL IL-7 

4 ng/ml, 4 ng/mL IL-15 that was supplemented either with either 10 μg/mL isotype, 1 μg/mL 

OVA(257-264) peptide (provided by Anaspec) and 10 μg/mL isotype or with 1 μg/mL OVA(257-264) 

peptide and 10 μg/mL anti-PD-L1. Cells were incubated for three days in a humidified atmosphere 

and at 5% CO2, in air, after which the cells were harvested and stained for extracellular and 

intracellular markers.
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PLA and multiplex staining (cmIHC)

PLA and cmIHC was performed with an automated, validated and accredited staining system (Ventana 

Benchmark Discovery ULTRA, Ventana Medical Systems, Tucsen, AZ, USA). PLA was performed 

on 43 (34 TDLNs and 9 matched tumor samples) samples, in brief following deparaffinization 

and heat-induced antigen retrieval with CC1 (#950-500, Ventana Medical Systems) at 95°C for 

64 minutes the tissue samples were co-incubated with anti-PD-L1 SP263 (#790-4905, Ventana 

Medical Systems) and anti-PD-1 NT105 (#760-4895, Cell Marque) at 37°C for 1 hour. Next, AP 

proximity detection (#253-5080 and #253-6037, Ventana Medical Systems) was performed for 

16 minutes followed by pH buffer (#253-5083, Ventana Medical Systems) and proximity activator 

(#253-5082, Ventana Medical Systems) at 47°C for 12 minutes. Conjugating enzyme NP-HRP (#760-

6038, Ventana Medical Systems) was added for 12 minutes followed by a DISC, amplified using 

TSA-HQ (#760-4519, Ventana Medical Systems) for 12 minutes and detected by using anti-HQ-HRP 

(#760-4820, Ventana Medical Systems) for 12 minutes. Visualization was performed using DAB 

(#760-159, Ventana Medical Systems) followed by hematoxylin II counter stain for 12 minutes and 

then a blue coloring reagent for 8 minutes according to the manufactures instructions (Ventana 

Medical Systems, Tucsen, AZ, USA).

PLA with cmIHC was performed on 6 additional slides, followed after PLA staining (see above) a CC2 

(#950-123, Ventana Medical Systems) 100°C for 8 minutes stripping step was performed. CD68 KP1 

(#790-2931, (#253-5083, Ventana Medical Systems) was incubated at 37°C for 32 minutes followed 

by secondary antibody, mouse omnimap HRP (#760-4310, Ventana Medical Systems) at 37°C for 24 

minutes and visualized with purple (#760-229, Ventana Medical Systems) for 32 minutes. CC2 100°C 

for 8 minutes stripping step was performed and anti-CD8 (#790-4460, Ventana Medical Systems) 

was incubated at 37°C for 32 minutes followed by secondary antibody, rabbit omnimap HRP 

(#760-4311, Ventana Medical Systems) at 37°C for 24 minutes and visualized with Teal (#760-247, 

Ventana Medical Systems) for 32 minutes. CC2 100°C for 8 minutes stripping step was performed 

and anti-CD11c 5D11 (#111M-17, Cell Marque) was incubated at 37°C for 32 minutes followed 

by secondary antibody mouse-NP (#760-4816, Ventana Medical Systems) at 37°C for 32 minutes, 

enzyme conjugation was needed with NP-AP (#760-4827, Ventana Medical Systems) enzyme 37°C 

for 32 minutes visualized with Disc Yellow (#760-239, Ventana Medical Systems) for 44 minutes. 

Hematoxylin II counter stain for 8 minutes and then a blue coloring reagent for 4 minutes according 

to the manufactures instructions (Ventana Medical Systems).

Quantification of PLA and multiplex stainings

Scanned slides were viewed using NDP-viewing software (Hamamatsu) at 40× magnification and 

regions of interest were randomly selected from cortical regions, excluding germinal centers and 

captured and imported into ImageJ software (NIH). For enumeration of contacts, the number of 

contacts were manually counted per 40x high-power field (hpf) and the average of a total of 8 hpfs 

was included into analysis. A similar approach was taken to identify cells of origin in the multiplex 
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staining assay where PD-1/PD-L1-positivity was assessed on CD8+/CD8- and CD11c+/CD68+/

CD11c+CD68+/CD11c-CD68- -expressing cells, respectively. As a more objective and representative 

measure of total contacts, acquired 40x images were automatically quantified using a developed 

macro which includes 2 basic steps; the first step assessing total cell-surface area per hpf with the 

final step determining the percentage of PLA-positivity following color-dissection and thresholding 

(supplementary methods S1). The percentage of PLA-assay positivity was then taken as a percentage 

of total cell-surface area and the average of 15 hpfs was included for analysis.

Statistical analysis

Data are expressed as means with the standard error of the mean (SEM). Comparisons between 

groups with independent samples were performed using the Mann-Whitney U test or independent 

t test whereas the Wilcoxon-signed rank test or paired t test were used to compare paired samples 

(see figure legends). In case of correlations, the Pearson correlation was used to test statistical 

significance. Survival data were plotted as Kaplan-Meier survival curves, using the log-rank test 

to determine statistical significance. P-value of 0.05 and below was considered significant (*), p 

< 0.01(**) and p < 0.001 (***) as highly significant. Data were analyzed using GraphPad Prism 

software (Graphpad, V5.01 and V8.0).

Results

TDLNs are enriched for PD-1+ tumor-specific T cells

To gain insight into the activity of the PD-1/PD-L1-axis in LNs, we analyzed the frequencies and 

phenotype of tumor antigen-specific CD8+ T cells in LNs of ovalbumin (OVA)-expressing AE17 

mesothelioma tumors. AE17-OVA tumor cells were injected intraperitoneally and at late stage 

disease mediastinal LNs that drain tumors in the peritoneal cavity (TDLNs) and inguinal control LNs 

(non-TDLNs) were analyzed. We found higher frequencies of OVA257-264-specific CD8+ T cells in the 

TDLN, compared with a near absence of these cells in a non-TDLN (Fig. 1A, S1A). Tumor-specific CD8+ 

T cells in the TDLN were highly proliferative, expressed PD-1 with higher frequencies and to higher 

levels than those in non-TDLNs (Fig. 1B). In the TDLN, the proportions of PD-1-expressing CD8+ T 

cells strongly correlated with the frequency of tumor-specific CD8+ T cells and could therefore serve 

as a marker for tumor-specificity (Fig. 1C, S1A). Therefore, we enumerated PD-1+ CD4+ and CD8+ 

T cells in several solid tumor models and consistently found higher frequencies of PD-1+ T cells in 

TDLNs compared with non-TDLNs, irrespective of cancer type, mouse genetic background, tumor 

localization or T cell subset, except for the KPC3 pancreatic cancer model (Fig. 1D). This difference 

in PD-1 expression did not appear to result from tumor metastasis to the TDLN, as the frequency 

of CD45- cells was equally low in both TDLNs and non-TDLNs (Fig. S1B). The poorly immunogenic 

KPC3 pancreatic cancer cell line did not induce PD-1+ T cells in the TDLN, suggesting that PD-1 

expression is related to immunogenicity of the tumor. In line with this hypothesis, introduction of 



39

PD-1/PD-L1 checkpoint restrains T cells in TDLN |

the immunogenic OVA-antigen in KPC3 recapitulated the results of the other tumor models (Fig. 

1D). In addition to high PD-1 display, tumor antigen-specific CD8+ T cells in TDLNs expressed other 

co-inhibitory receptors like TIM-3 and TIGIT, resembling T cells from the tumor site (Fig. 1E). In 

contrast to PD-1 expression, other parameters of lymphocyte activation such as proliferation were 

not consistently increased across different models (Fig. S1C), but absolute T cell numbers were 

enhanced (Fig. S1D).

To more comprehensively characterize both CD4+ and CD8+ PD-1+ tumor-specific T cells in TDLNs and 

their dynamics, we infused naïve CD45.1+ OT-I and OT-II cells in AE17-OVA-bearing CD45.2+ mice and 

assessed their frequency and phenotype across tissues over time (Fig. 2A). As expected, CD45.1+ 

cells initially accumulated in secondary lymphoid organs including the TDLN, followed by egress 

and migration in blood to finally infiltrate tumor tissue 6 days post-injection (Fig. 2B). Upon homing 

to TDLNs, CD45.1+ T cells upregulated PD-1 and proliferated, suggesting PD-1 to be associated 

with activation rather than T cell exhaustion (Fig. 2C). Globally, PD-1+ T cells further preferentially 

accumulated in TDLNs over time, where a subgroup of cells expressed effector molecules including 

IL-2, IFNγ and granzyme-B (Fig. 2D). In addition to increased expression of effector molecules, PD-1+ 

CD4+ and CD8+ T cells expressed more CD28, CD44, CD69 and SLAMF6 (Ly108) compared with their 

PD-1- counterparts (Fig. S2) 22. These results show initial activation of early-effector T cells in TDLNs, 

but not in non-TDLN, prior to PD-1 expression and migration to the tumor.

TDLNs contain abundant PD-L1high- expressing myeloid cells including migratory cDC2s

Next, we set out to quantify and characterize the ligands of PD-1 on LN myeloid cells. LNs harbor a 

complex architecture of myeloid cells including CD11b+ dendritic cells (DCs) and macrophages lining 

the subcapsular (CD169+ SSM) and medullary sinuses (F4/80+ MSM), type 1 and 2 conventional 

DCs (cDC1 and cDC2) and granulocytes interspersed between T cells in the paracortex 23-25. TDLN-

residing myeloid cells including SSMs and cDCs but not granulocytes expressed high levels of PD-L1, 

approaching levels found on their intratumoral counterparts (Fig. 3A). Interestingly, TDLN myeloid 

cells lacked or displayed low surface expression of PD-L2, whereas PD-L2 was strongly present on 

all investigated cells in the TME. PD-L1 expression and myeloid cell numbers were consistently 

higher in TDLNs compared with non-TDLNs in the investigated solid tumor models, paralleling 

PD-1 positivity on T cells (Fig. 3B-C). To evaluate which myeloid cells particularly expressed PD-L1 

and therefore could be involved in suppressing PD-1-expressing T cells, we quantified PD-L1 on the 

aforementioned cell types and found especially high levels on cDC2s and both types of macrophages 

(SSM and MSM) in all tested tumor models (Fig. 3D). These findings were corroborated by multicolor 

confocal microscopy of TDLN tissue, where F4/80+ MSMs in the medulla and CD11c+ DCs in the 

LN cortex expressed the highest levels of PD-L1, whereas expression levels were negligible in 

granulocytes (Fig. 3E).
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Figure 1: Tumor-draining lymph node harbor PD-1+ tumor-specific T cells

(A) Dot plots and quantification of CD8+ T cells in non-TDLNs and TDLNs showing percentages of OVA(257-

264)-tetramer+ T cells. (B) Proliferation (Ki67) and PD-1-positivity were determined on ovalbumin (OVA)

(257-264)-tetramer+ CD8+ T cells in non-TDLNs, TDLNs and tumor. Furthermore, PD-1-expression (MFI) was 

assessed on (PD-1+) OVA(257-264)-tetramer+ CD8+ T cells. (C) Tetramer-positivity of PD1+ and PD1- CD8+ T cells 

in the TDLN. In addition, proportions of PD-1+ CD8+ T cells were plotted against proportions of OVA(257-264)-

tetramer+ CD8+ T cells in the TDLN and a Pearson correlation coefficient was calculated (r²). (D) Comparison of 

frequencies of PD-1+ CD8+ (left panel) and CD4+ Foxp3- T-helper (Th) cells (right panel) between TDLNs (circles) 

and non-TDLNs (squares) in different solid tumor models (different colors) transfected with/without OVA, or 

injected orthotopically (i.p.) or subcutaneously (s.c.) in CBA/J (AC29) or C57BL/6 mice (n = 6 to 7 mice per group, 

n = 14 in case of KPC3-OVA). (E) TIM-3, TIGIT and PD-1-single-postitivity and co-expression was assessed on T 

cells in different tissues (SP = single positive, DP = double positive, TP = triple positive). Means and standard error 

of the mean (SEMs) are shown, paired t tests were performed to determine statistical significance.
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Figure 2: T cells are activated in TDLNs prior to migration and activation in the tumor

(A) Experimental design (n = 5 to 6 mice per group per time point). (B) Frequencies of CD45.1+ cells were 

determined in tumor, TDLN, blood and non-TDLN. (C) PD-1 positivity as well as the percentage of cells 

undergoing proliferation of CD8+CD45.1+ cells in the TDLN. (D) Percentages of PD-1+, IL-2+, IFN-γ+ and 

granzyme-B+ were compared for CD8+ T cells and CD4+ T cells in TDLN (circles) and non-TDLN (squares). 

Means and SEMs are shown, paired t tests were used to calculate statistical significance. * = p < 0.05, ** = p 

< 0.01, *** = p < 0.001. TDLN = tumor-draining lymph node, i.v. = intravenous, SEM = standard error of the 

mean, IL-2 = interleukin 2, IFN-γ = interferon-gamma.

DCs can be subdivided into migratory and resident subsets based on differential expression of 

CD11c and MHC-II (Fig. S3A) 26. Based on this distinction, we detected a particularly strong increase 

in migratory cDC2s, especially in TDLNs (Fig. S3B). These cells expressed high levels of PD-L1 in 

addition to CD80 compared with cDC1s (Fig. S3C-D), which is in line with recent findings identifying 

migratory PD-L1+ DCs to predominantly present tumor-derived antigens in the TDLN 27. These data 

indicate increased frequencies of PD-L1+ cells in TDLNs compared with non-TDLNs, especially for 

macrophages and cDC2s.
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◂Figure 3: TDLN-myeloid cells express high levels of PD-L1 compared with non-TDLNs

(A) Expression of PD-L1 and PD-L2 (KPC3-OVA) on myeloid cells in the tumor, TDLN and non-TDLN at late-stage 

disease. (B) PD-L1 expression on subcapsular sinus macrophages (SSMs) was compared between TDLNs and 

non-TDLNs, with PD-L1 expression (MFI) on TDLN-macrophages divided over non-TDLN MFI multiplied x100 

to indicate percentage increase of expression. (C) Absolute myeloid cell numbers in subcutaneous tumor 

models. Means and SEMs are shown and paired t tests were performed. (D) PD-L1 expression on CD169+ 

SSMs, F4/80+ medullary sinus macrophages (MSM), type 1 (cDC1) and 2 conventional dendritic cells (cDC2) 

and Ly6G+ granulocytes from TDLNs. (E) Multicolor confocal microscopy of a representative TDLN section from 

an untreated mouse bearing AC29 tumor. Slides were stained for PD-L1, CD11c (DCs), CD169 (SSM and MSM), 

Ly6G (granulocytes) and F4/80 (MSM and medullary cord macrophages; MCM). A 3-dimensional composite 

image was created after spectral unmixing using single stains (lower left image). * = p < 0.05, ** = p < 0.01, 

*** = p < 0.001. TDLN = tumor-draining lymph node, SEM = standard error of the mean. paired t tests were 

performed to determine statistical significance.

Low-dose intrapleural PD-L1 antibody administration selectively targets TDLNs

In order to study the effect of selectively targeting the PD-1/PD-L1 axis in the TDLN on tumor 

progression we set up a system by which we selectively target TDLNs with therapeutic PD-L1 

antibodies prohibited antibody availability in the tumor environment itself. We examined the option 

to administer ICB antibody via the intrapleural route. This location drains directly to mediastinal 

LNs which are the TDLNs of intraperitoneal tumors from where excess antibody continues to enter 

the blood via the thoracic duct 28. Therapeutic anti-PD-L1 blocking antibodies were administered 

via intravenous (i.v.) or intrapleural (i.pl.) routes and dispersed tissues were counterstained with a 

fluorescently labeled anti-rat IgG2a antibody, thereby obviating the need to alter the therapeutic 

antibody itself potentially influencing drug pharmacokinetics (Fig. 4A). Irrespective of the route of 

administration, we could readily detect in vivo binding of the therapeutic PD-L1 antibody on tumor 

cells and TAMs by flow cytometry within 24 hours post-injection (Fig. 4B). The mediastinal TDLN 

SSMs, MSMs and cDC2s were similarly reached by i.v. as well as i.pl. administration and staining 

patterns paralleled those of direct ex vivo staining with PD-L1 antibodies (Fig. 4C). As expected from 

the previous findings showing decreased PD-L1 expression in non-TDLNs, binding of the PD-L1-

antibody to myeloid cells was decreased in the absence of tumor (Fig. 4D). Interestingly, i.pl. injection 

appeared to especially reach TDLN subcapsular cells (SSMs & CD11b+ cDC2s) more efficiently than 

the i.v. route in tumor-free animals in contrast to tumor-bearing mice in which antibody binding on 

these cells was largely similar between injection routes (Fig. 4D). This was not due to differences 

in PD-L1 expression on cells between treatment arms as PD-L1 expression (assessed in isotype 

treated animals, Fig. S4A) mirrored PD-L1 antibody binding in all the leukocyte subsets interrogated 

irrespective of injection route (Fig. 4E). These data suggest that antibody deposition in TDLNs is 

enhanced in the presence of tumor, possibly via secondary drainage of antibody from permeable 

tumor vasculature to afferent lymphatics, in addition to direct TDLN targeting (Fig. 4F). As we could 

now successfully target TDLNs via i.pl. injections we next examined the extent to which the efficacy 

of ICB depends on TDLNs and therefore titrated the i.pl.-administered anti-PD-L1-antibody dose to 
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a level that allowed selective blockade in the mediastinal TDLN, with no antibody drainage to the 

intraperitoneal tumor nor the circulation (Fig. S4B-C). At a near 100-fold lower anti-PD-L1-dosage 

of 2.5 μg, macrophages and cDCs in the TDLN still bound the antibody, albeit not completely, 

whereas the antibody did not reach non-TDLN nor tumor cells, TAMs or circulating monocytes and 

DCs (Fig. S4B-C).
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◂Figure 4: Systemically administered anti-PD-L1 antibodies bind to PD-L1 expressing cells in the TDLN

(A) Experimental setup (n = 6 to 7 mice per group) and mode of antibody administration. Tumor-bearing 

mice (filled symbols) were treated with 200 µg isotype (grey) intrapleurally (i.pl.) or alternatively with 200 

µg anti-PD-L1 antibody i.pl (blue) or i.v. (turquoise) to target the TDLN directly or indirectly, respectively. 

(B) In vivo antibody expression was quantified on intratumoral cell types, and (C) on cells in the TDLN. 

Histograms showing PD-L1 expression patterns are displayed. (D) Quantification of antibody-binding on cells 

in mediastinal LNs in the absence of tumor (open squares and circles). (E) Mean PD-L1 expression on TDLN 

cells subsets derived from isotype treated animals (stained with the BV711-antibody) was correlated to anti-

PD-L1 antibody binding (detected using the secondary anti-rat FITC-labeled antibody) for both i.pl. (left) and 

i.v. (right) injection routes. A Pearson correlation coefficient (Rho) was determined. (F) A graphical depiction of 

the proposed model showing that anti-PD-L1 antibodies reach TDLNs via intravascular and afferent lymphatics 

in the presence of tumor. Means and SEMs are shown and Mann-Whitney tests were performed indicating 

statistical significance. ns = not significant (p ≥ 0.05), * = p < 0.05, ** = p < 0.01. i.p. = intraperitoneal, i.v. 

= intravenous, TDLN = tumor-draining lymph node, Ab = antibody, SSM = subcapsular sinus macrophages, 

MSM = medullary sinus macrophages, cDC = conventional dendritic cell, SEM = standard error of the mean.

TDLN-specific PD-L1 antibody elicits anti-tumor T cell immunity and tumor control

Using these established doses for local (2.5 µg i.pl.) TDLN targeting and for systemic (200 µg i.pl.) 

overall targeting of PD-L1, we examined the therapeutic effect of this ICB in two syngeneic tumor 

models, AC29 mesothelioma and MC38 colon carcinoma (Fig. 5A, S5A). Systemic targeting of PD-L1 

as well as local TDLN targeting resulted in decreased tumor burden and increased survival (Fig. 5B, 

S5B). These therapeutic effects were quite strong, considering that not all PD-L1 molecules were 

blocked in TDLN at these low doses (Fig. S4B). CD8+ tumor-infiltrating T cells (TILs) simultaneously 

expressing multiple co-inhibitory receptors were increased in MC38 tumor tissue, indicating a more 

exhausted phenotype which is in line with recent findings in the same tumor model 29. Systemically 

administered anti-PD-L1 increased T cell proliferation in blood, whereas both TDLN targeted and 

systemic treatment caused elevated frequencies of CD69+ cells (Fig. 5C). Whereas increased tumor 

infiltration of T cells was markedly induced by systemic anti-PD-L1 treatment, TDLN-targeted 

anti-PD-L1 specifically induced KLRG-1+ effector T cell infiltration in the AC29 tumor model (Fig. 

5C). In addition, while nearly all TILs were TOX-positive, TOX-MFI was significantly decreased in 

both treatment groups. Recent research has shown that tumors may harbor TCF1+ CD8+ T cells 

with a stem-like phenotype, giving rise to distinct populations, including terminally-differentiated 

exhausted T cells 18. Similarly, we could identify a subset of TILs with a stem-like phenotype termed 

TEX
prog, characterized by the surface marker SLAMF6+ (Ly108), being a surrogate marker for TCF-1, 

displaying low Ki67, TIM-3 and CD39 (Fig. 5D-E, Fig. S5D-F) 30. Intratumoral CD8+ and CD4+ TEX
prog 

cells were increased by TDLN-targeted and systemic PD-L1 blockade with decreased levels of 

proliferation indicating preserved stemness following treatment (Fig. 5F).
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◂Figure 5: Specific targeting of PD-L1 in the TDLN by low-dose intrapleural injection of anti-PD-L1 enhances 

clinical responses in the AC29 tumor model and is abrogated by FTY720 treatment

(A) Experimental setup (n = 8 to 15 mice per group) with mice being treated with either LN-local (2.5 µg) 

or systemic anti-PD-L1 antibodies (200 µg) i.pl. and survival was monitored. (B) Kaplan-Meier curve of the 

experiment in A showing tumor survival. Log-rank tests were used to determine statistical significance. In 

addition, abdominal circumferences (being a measure of ascites volume) were measured on t = 21 post 

tumor-cell injection and displayed as violin-plots. (C) Blood was isolated +4 days after first injection with anti-

PD-L1 treatment and characterized by multicolor flow cytometry. Tumor infiltrating lymphocytes (TILs) were 

characterized by multicolor flow cytometry for frequencies as well as for positivity for PD-1, KLRG1 and TOX. 

(D) CD8+ TEX
prog cells in tumor tissue were characterized by positivity for SLAMF6 and further identified in (E) 

for expression of TIM3, Ki67, PD-1, TOX, CD39 and CD69. (F) Frequencies of tumor-infiltrating CD8+ TEX
prog cells 

and their level of proliferation (Ki67+ ). (G) S1P receptor agonist FTY720 administration via drinking water and 

oral gavage at day 9-20 and isotype or anti-PD-L1 treatment (200 μg) i.p. at day 10, 13 and 17 (9 to 10 mice 

per group). (H) Frequencies of CD4+ Th cells and CD8+ T cells of CD45+ T cells and PD-1 positivity on CD8+ T 

cells were determined of TILs. (I) Frequency of CD4+ and CD8+ TEX
prog cells was determined for total CD4+ and 

CD8+ TILs, respectively. Means and SEMs are shown and Mann-Whitney tests were performed indicating 

statistical significance. ns = not significant (p ≥ 0.05), * = p < 0.05, ** = p < 0.01. i.p. = intraperitoneal, i.pl. = 

intrapleural, TEX
prog = progenitor-exhausted T cells, SEM = standard error of the mean.

FTY720 abrogates systemic and TDLN-specific anti-PD-L1 immunotherapy efficacy

In order to confirm the role of the T cells activated in TDLN following PD-L1 treatment, we 

administered the S1P receptor agonist FTY720, which abrogates T cell egress from lymphoid organs 
31 during anti-PD-L1 treatment. Retention of T cells in lymphoid organs was confirmed by decreased 

frequencies of T cells but not NK cells in peripheral blood (Figure S6A). FTY720-administration 

abrogated anti-PD-L1 treatment efficacy and prevented influx of CD4+ Th- and CD8+ TILs but retained 

T cells exhibiting increased PD-1 expression (Figure 5G-H). In addition, FTY720 administration 

neutralized both spontaneous and additional anti-PD-L1 mediated induction of tumor CD4+ and 

CD8+ TEX
prog cells following local- and systemically administered anti-PD-L1 treatment (Fig. 5I, S6B). 

These results indicate that PD-L1 blockade not solely relies on re-invigoration of TME-localized T 

cells but in fact amplifies priming and activation of T cells, including TEX
prog, from the TDLN.

PD-L1 antibody blockade amplifies TEX
prog induction in TDLNs

To investigate the functional consequences of blocking the PD-1/PD-L1 axis in TDLNs on 

tumor-infiltrating T cells, we repeated the aforementioned experiment in the aggressive AE17 

mesothelioma expressing the OVA model antigen allowing interrogation of tumor-specific T cells 

(Fig. S7A). CD45.1+ T cell proliferation was enhanced in TDLNs compared with non-TDLN following 

anti-PD-L1 treatment (Fig. S7B). CD45.1+ T cells were proliferating more and were more frequently 

present in TDLN compared with tumor early following systemic anti-PD-L1 while no significant 

differences between isotype-treated animals were found (Fig. S7C). Anti-PD-L1 treatment markedly 

increased endogenous CD45.1- TEX
prog cells, starting in the TDLN after 24hrs, followed by blood and 

tumor on 72 and 144hrs, respectively (Fig. S7D). In an efficacy experiment, repeated dosing of 
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anti-PD-L1 locally in the TDLN and systemically resulted in decreased AE17-OVA-tumor burden (Fig. 

6A-B), without overt increase in (tumor-specific) TILs (Fig. 6C). To assess the replicative potential and 

phenotype of TILs following anti-PD-L1 therapy, we developed an ex vivo T cell stimulation assay in 

which CD8+ TILs were stimulated with cognate antigen in the presence of their original TME with 

or without blocking PD-L1 antibodies (Fig. 6D). Stimulation with SIINFEKL-peptide led to increased 

CD8+ T cell activation in this assay, with profound upregulation of PD-1 following the addition of 

anti-PD-L1 in vitro (Fig. 6D). This induced activation system selectively triggered CD8+ TILs and not 

CD4+ TILs due to the lack of MHC-II binding OVA peptide. PD-L1 blockade in tumor cell cultures of 

mice treated with LN-targeted therapeutic ICB induced TIL activity to much higher extent than non-

treated mice, as measured by increased cell frequencies, proliferation and decrease in PD-1 levels 

(Fig. 6E). These findings demonstrate that PD-L1 blockade in the TDLN alleviates the suppressive 

impact on intranodal tumor-specific T cells, resulting in trafficking to the tumor site where they 

display a much improved responsiveness to OVA tumor antigen.

Response to PD-L1-blockade occurs independent from TDLN macrophages

In order to investigate which PD-L1-expressing cells in the TDLN were most likely responsible for 

inhibiting T cell responses we made use of low dose i.pl. administrated clodronate encapsulated 

liposomes (CEL), which specifically deplete LN macrophages upon phagocytosis 32. SSMs and MSMs, 

but not cDC2, were effectively depleted from the TDLN within 48 hours at a dose of 5% CEL, whereas 

macrophages in non-TDLNs and in the intraperitoneal tumor remained essentially unaltered (Fig. 

7A-B). Importantly, repeated TDLN-localized CEL administration failed to abrogate anti-PD-L1 

efficacy (Fig. 7C-D), demonstrating a negligible contribution of macrophages to anti-PD-L1 therapy 

in this model, which is in line with recently published data in genetically-modified models 29. We 

then examined TDLNs using multicolor confocal microscopy to visualize co-localization of anti-PD-

L1-expressed cDC2s with CD8+ T cells. CD8+ T cells did not co-localize with SSMs and MSMs in TDLNs, 

but we frequently found clusters of PD-L1 positive DCs and CD8+ T cells (Fig. 7E). Together our data 

indicate an active role for TDLN in reinvigoration of tumor-specific T cells by ICB, most likely via 

PD-L1 expressing cDC(2)s, but not macrophages.
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Figure 6: Specific targeting of PD-L1 in the TDLN elicits durable anti-tumor immune responses capable of 

re-invigoration in vitro

(A) Experimental design (n = 7 to 9 mice per group). (B) Tumor weights of the different treatment groups. 

(C) Frequencies of total CD8+ T cells and OVA(257-264)-specific CD8+ T cells in tumors as percentages of 

total alive CD45+ leukocytes or CD8+ T cells, respectively. (D) Design and validation of the in vitro culture 

system mimicking the tumor-microenvironment. Means and SEMs are depicted with paired t tests used for 

statistical analysis. (E) Tumor single cell suspensions from isotype (gray), anti-PD-L1 LN-specifically (pink) and 

anti-PD-L1 systemically (purple) treated mice were cultured as described in D. Means and SEMs are shown, 

Mann-Whitney tests were used to evaluate statistical significance For E, treatment arms were normalized 

to isotype treated animals and baseline and post-3 day culture values for the several conditions are shown.
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Figure 7: TDLN-local anti-PD-L1 treatment efficacy occurs independent of macrophages

(A-B) CBA/J (non-tumor bearing; A, and tumor-bearing; B) mice were treated with a range of clodronate-

encapsulated liposomes (CEL) concentrations in PBS and myeloid cell subsets were analyzed 48 hours later. In 

red is the dose established for subsequent experiments (n = 3 to 4 mice per group). (C) Experimental setup (n 

= 7 to 8 mice per group). (D) KM-curve of the survival of the experiment described in C. As isotype/5%CEL and 

anti-PD-L1/combination treatment showed significant overlap, these groups were pooled and Log-rank tests 

were performed. (E) TDLN tissue 24 hours following systemic (200 μg) anti-PD-L1 antibody treatment allowing 

for visualizing of antibody binding to different myeloid cell subsets in the TDLN was assessed using 6-color 

confocal microscopy. I.pl. = intrapleural, anti-PD-L1 = anti-PD-L1 antibody. Ns = not significant (p ≥0.05), * 

= p < 0.05,** = p < 0.01. i.p.= intraperitoneal, i.pl.= intrapleural, i.v.= intravenous, SSM = subcapsular sinus 

macrophages, MSM = medullary sinus macrophage, cDC = conventional dendritic cell, Mac = macrophage, 

TAM = tumor-associated macrophage, TDLN = tumor-draining lymph node, CEL = clodronate encapsulated 

liposome, SEM = standard error of the mean.
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PD-1/PD-L1 interactions in TDLN but not in tumor TME correlate with prognosis in melanoma 

patients

As all the aforementioned data were derived from pre-clinical solid tumor models, it remained 

unclear whether PD-1/PD-L1 interaction takes place in patient TDLNs. Melanoma is a disease 

with a highly variable prognosis depending on the presence of distant and LN metastasis (stage 

III-IV), and in case of absence of distant metastasis (stage I-II); tumor characteristics including 

thickness (Breslow’s-depth), tumor histology and presence of ulceration 33,34. The melanoma setting 

is particularly suited for TDLN-characterization as these tissues are generally extracted for staging 

purposes with the aim of identifying patients that may benefit from adjuvant systemic (immuno-)

therapy 35. To identify whether melanoma TDLNs feature PD-1/PD-L1-axis activity in the absence of 

LN-metastasis, we stained for PD-1/PD-L1-interactions in TDLNs of systemic treatment-naive stage II 

melanoma using a proximity ligation assay (PLA, Fig 8A). We studied PD-1/PD-L1-positivity in TDLNs 

of stage II patients remaining disease free following surgery (n = 19) and patients with early distant 

disease recurrence (n = 15) (Table S1). As expected, known prognostic factors from the primary 

tumor such as Breslow’s-depth, presence of ulceration and nodular histology were overrepresented 

in the short-RFS cohort compared with patients remaining long-term free of disease 33,36. We 

detected a significantly higher PD-1/PD-L1-interaction density in patients with a short recurrence-

free survival (RFS; < 48 months) compared with patients remaining disease free for more than 96 

months (Fig. 8B), reflecting possible ineffective anti-tumor immune surveillance. Similar results 

were obtained when contacts were numerically quantified or alternatively calculated as percentage 

of total cell-surface area using automated software analysis (Methods S1). Interestingly, short RFS 

was associated with increased PD-1/PD-L1-contact density irrespective of the aforementioned 

prognostic factors, indicating that this process of PD-L1-mediated immune suppression arises 

independently of these primary tumor characteristics (Fig. 8C). To gain insight into which cells were 

involved in PD-1/PD-L1-interaction, we combined the PLA with multicolor immunofluorescence 

staining for CD8, CD11c and CD68. Using this method, we observed high PD-1/PD-L1-signalling 

in germinal centers largely devoid of CD8+ T cells which is in line with previous data (containing 

primarily B cells and follicular T helper cells, excluded from analysis in 8A-C 37). Also numerous 

interactions elsewhere in the LN-cortex were present (Fig. 8D). Similar to the murine data, these 

contacts were particularly established by CD8+ (and to a lesser degree CD8-) T cells and CD11c+ 

DCs whereas CD68+ macrophages barely associated with T cells (Fig. 8E). To investigate whether 

PD-1/PD-L1-interactions occur in melanoma tumors to a similar extend as in TDLNs, we performed 

PLA on matched primary tumor tissue of a subset of patients from whom material was available. 

Intriguingly, PD-1/PD-L1 interactions in tumor tissue of melanoma patients (n = 9) were scarce 

compared with the TDLN with the extent of the remainder of interactions not correlating with 

RFS (Fig. 8F). PD-L1 alone, however, was expressed in tumor tissue showing that the lack of PLA-

positivity did not result from absence of PD-L1-expression (Fig. 8G). These findings support our 

initial findings in mice and highlight a previously unidentified role for PD-1/PD-L1-interactions in 

human TDLNs, possibly identifying high risk patient groups for adjuvant immunotherapy.
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◂Figure 8: Stage II melanoma TDLNs harbor frequent PD-1/PD-L1 interactions which associates with early 

distant recurrence following surgery, and not in primary tumor tissue

(A) 40X magnified exemplary image of a stage II melanoma TDLN (sentinel node) displaying several PD-1/PD-

L1-contacts stained using PLA. (B) Quantification of the average number of contacts, in patients with an early 

(< 48 months) recurrence of disease following surgery (n = 15) and no recurrence after 96 months (n = 19) 

either via manual (left) and automated (right) quantification analysis. Statistical significance was determined 

using Mann-Whitney tests and means plus SEMs ware depicted. (C) Using the outcome measure project 

in right panel B, patient tumors were divided according to Breslow’s-depth (tumor-thickness), presence of 

tumor ulceration and histological subtype. (D-E) Multiplexed images from 6 patient TDLNs high in PD-1/PD-L1 

contacts (5 short, 1 long RFS) were constructed combining the PLA with CD8 (green), CD11c (yellow) and CD68 

(red), followed by counterstaining with hematoxylin (blue). 40X magnification images were acquired from 

cortical LN-regions showing germinal centers (1.) and surrounding area (2.) rich in PD-1/PD-L1-positivity. The 

latter images were used to identify the cells of origin establishing the contacts in E. (F) PD-1/PD-L1 interactions 

in primary tissue of stage II melanoma patients were stained using PLA (n = 9). The average number of contacts 

was enumerated from patients with an early recurrence (n = 5) and no recurrence after 96 months (n = 4). 

(G) A 20X magnified exemplary image of primary tumor tissue of stage II melanoma patients displaying PD-L1 

expression (clone SP263; left) and PD-1/PD-L1 interactions using PLA (right). Means and SEMs are shown, 

Mann-Whitney tests were used to calculate statistical significance. TDLN = tumor-draining lymph node, RFS 

= recurrence-free survival, PLA = Proximity Ligation Assay, SupSM = Superficial spreading melanoma, NM = 

nodular melanoma, SEM = standard error of the mean.

Discussion

Our data formally establish a role for TDLNs in generating primary anti-tumor immune responses 

following anti-PD-L1 ICBs, a checkpoint that is generally regarded to act primarily at the TME 2. 

These data could offer an explanation for the apparent clinical incongruences in which tumor 

PD-L1 negative tumors may still respond to anti-PD-1 blockade which has resulted in (chemo-)

immunotherapy being first-line treatment in several metastatic cancer irrespective of PD-L1-

positivity 35,38,39. Although multiple mechanisms will likely define response to ICB therapy, alleviating 

immune suppression in the TDLN could propel systemic anti-tumor T cell immunity to effectively 

control distant tumor sites. Our data reveal a critical role of PD-L1 on cDCs in the TDLN, without 

negating the involvement of this inhibitory ligand in the TME.

Our data show that PD-1 expression on T cells in the TDLN seems to correlate with antigenicity of the 

tumor, which might explain the conflicting results from others showing a minor dependency on T 

cells from the TDLN 40. Tumor-mutational burden has been identified as a predictive marker for ICB-

efficacy in patients and our data strengthen the role of TDLNs as possible mediators of ICB-responses 

as these potentially immunogenic tumor-antigens are likely to drain or be transported to TDLNs 

for further T cell induction 41. Others have previously hinted towards a role for LNs in generating 

anti-tumor immunity following PD-1/PD-L1 ICB in patients by describing several dysfunctional T 
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cell subsets arising following treatment 17,42. Our data formally establish these notions and directly 

complement recent findings on TIL-clonality in patients treated with anti-PD-1 therapy, in which 

an extratumoral source of immunotherapy-elicited T cells was suggested 16.

TDLNs could therefore be pivotal in generating effective anti-tumor T cell responses following 

liberation by anti-PD-1/PD-L1 antibodies, as has been previously shown to be the case for other 

cancer immunotherapies 43. Surgical removal of the TDLN in mouse tumor models revealed a 

contribution of TDLNs to ICB efficacy but as LNs are known to amplify direct anti-tumor effects 

of immunotherapy, formal assessment of their role in ICB therapy is lacking 15,43,44. The role 

of TDLNs as main hubs in providing anti-tumor T cell immunity following ICB furthermore fits 

with recent insights into PD-1/PD-L1 biology showing that PD-1 inhibits CD28-B7 mediated 

T- co-stimulation, a process that takes place in a B7-rich environment such as LNs, and is less 

likely in the immune-suppressive tumor-microenvironment 13,14. Furthermore, anti-tumor T cells 

in TDLN are less exhausted compared with TIL and thus may have a proliferative advantage 

with ICB 45.

Our tumor models evaluate the role of TDLN in a relatively early stage, at a time that T cell 

priming following tumor cell inoculation might still be occurring. The aggressiveness of the 

model prohibits treatment in later phases. TILs were not significantly decreased following 

FTY720-treatment on day 9, which suggests that initial priming has largely occurred in the 

preceding time window (Fig. 5H). Importantly, we do not exclude a role for PD-L1 blockade 

in the TME, but have technically not been able to selectively administer antibody to the 

i.pl. or s.c. located tumors in order to directly compare the importance of TDLN and TME 

to PD-L1 treatment efficacy. The exact contribution of TDLN versus TME during PD-1/PD-L1 

checkpoint blockade therapy remains to be elucidated, however our data clearly unraveled 

the involvement of lymph nodes.

We identify PD-L1+ cDCs, most likely cDC2s, as main targets of anti-PD-L1 antibodies in the 

TDLN, and not macrophages. Recently, Oh et al. showed that DC-specific genetic PD-L1-ablation 

phenocopied the effects of complete PD-L1-knock-out mice in bearing MC38 tumors, whereas 

macrophage-direct PD-L1-elimination did not 29. However, as PD-L1 was ablated systemically via 

the CD11c promotor, analyses into the site and preferred mechanism of PD-L1-PD-1-blockade 

mediated anti-tumor rejection remained elusive. Classically, a division of labor has been 

proposed with cDC2s predominantly inducing CD4+ T cell activation and cDC1s priming CD8+ 

T cells 46. We show however that cDC2s are significantly more PD-L1-positive and frequent in 

TDLNs compared with cDC1s and co-localize with CD8+ T cells in the TDLN cortex, challenging 

the current dogma. In agreement with our findings are recent publications by different groups 

showing cDC2s to be efficient CD8+ T cell stimulators in the context of solid cancer and viral 

infection, in addition to their well-described role in activating CD4+ T cells 47,48. Moreover, 
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comprehensive analysis of tumor- and TDLN-DCs by Maier et al. shows that both cDC1s and 

cDC2s adopt a regulatory phenotype upon apoptotic tumor-cell ingestion and upregulate PD-

L1 thereby preventing proper T cell induction 27. These combined findings provide a rationale 

for manipulating cDC2s for the benefit of cancer immunotherapy.

Our analysis of PD-1/PD-L1-axis activity in non-metastatic TDLNs of melanoma patients 

complements our findings in murine solid tumor models by identifying a subset of patients with 

high PD-1/PD-L1 interaction density which was associated with early disease relapse following 

surgery. Although these early stage (II) patients generally have a favorable prognosis following 

primary resection, a minor subset eventually presents with distant recurrences bearing a poor 

prognosis 36,49. It is tentative to speculate that PD-L1-mediated suppression of anti-tumor T cell 

responses in the TDLNs of these patients is involved in the development or progression of distant 

metastasis, and future research will likely shed more light on the validity of this hypothesis. An 

ancillary observation supporting this hypothesis is the fact that the two patients who received 

primary anti-PD-1 antibodies at disease recurrence resulting in durable complete responses were 

the second and third-highest expressers of PD-1/PD-L1 in the TDLN (Fig. S8). Although the TDLNs 

bearing these high-density contacts were excised at primary disease presentation, it is likely that 

distant micrometastases bearing a similar genetic and TME-makeup would be susceptible to later 

anti-PD1 ICB therapy.

Perhaps unexpectedly, we found PD-1/PD-L1-interactions to occur sporadically in primary melanoma 

tumors compared with corresponding TDLNs. Moreover, PD-L1 expression in melanoma tumors 

has been variably linked to favorable prognosis while its predictive value is limited 50-52. Our data 

suggest that PD-1/PD-L1-axis activity in TDLNs rather than the tumor itself could be a primary target 

for PD-1/PD-L1 checkpoint blocking antibodies, thereby amplifying anti-tumor T cell induction. As 

PD-1 ICB is currently being administered adjuvant to surgery in stage IIIB-C disease, it will be of 

interest to assess the validity of PD-1/PD-L1 expression in the TDLN of these patients. A different 

approach currently being investigated is the neo-adjuvant administration of anti-PD-1 which shows 

early encouraging results 53. This is in line with our hypothesis claiming that targeting the PD-1/PD-

L1 checkpoint when the TDLN is still in situ could harness effective anti-tumor immunity. Further 

evidence supporting this notion comes from neo-adjuvant and metastatic PD-1-blockade studies 

showing increased proliferation of activated CD8+ PD-1+/HLA-DR+ T cells in peripheral blood early 

after start of ICB treatment, followed by increased T cell infiltrates in the tumor 53,54.

In summary, our findings implicate TDLNs as key orchestrators of anti-tumor T cell immune 

responses which can be induced following blockade of PD-L1 in the TDLN. These data challenge 

the current dogma that PD-1/PD-L1-checkpoint act primarily at the effector (tumor) site and offers 

additional avenues for biomarker and combination-immunotherapy discovery.
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Figure S1. (A) Similar to Fig.1A, TDLNs and non-TDLNs from end-stage disease KPC3-OVA-bearing mice 

were harvested and stained for PD-1-positivity and OVA(257-264)-reactive CD8+ T cells using tetramers. 

Medians and SEM are shown and a Wilcoxon matched-pairs signed rank test was used to calculate statistical 

significance. In addition, total PD-1+ CD8+ T cells were plotted against OVA(257-264)-tetramer+ CD8+ T cells 

in the TDLN and a correlation was made and a Pearson correlation coefficient was calculated (r²). (B) Graphs 

showing CD45- cell frequencies in TDLN and non-TDLN. (C) CD8+ and CD4+ Th-cell proliferation was assessed in 

TDLNs (squares) versus non-TDLNs (circles) by intra-nuclear Ki67-staining using flow cytometry. (D) Absolute 

lymphocyte cell numbers were quantified in subcutaneous tumor models allowing for ipsi- (tumor draining) 

and contralateral (non-tumor draining) LN extraction and evaluation. Means and SEMs are shown and paired 

t-tests were performed. Means and SEMs are shown, including p-values determined by ratio paired t tests. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. SSM = subcapsular sinus macrophages, Treg = Regulatory T cell, 

SEM = standard error of the mean.
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Figure S2. Levels of IL-2, IFN-γ, granzyme-B, CD45.1, TIM-3, CD28, CD44, CD69 and SLAMF6 were determined 

for PD-1- and PD-1+ CD4+ and CD8+ T cells isolated from TDLN 17 days after AE17-OVA tumor inoculation. 

Means and SEMs are shown, paired t tests were used to calculate statistical significance. * = p < 0.05, ** = 

p < 0.01, *** = p < 0.001.
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Figure S3. (A) Gating strategy of resident and migratory conventional dendritic cell type 1 and 2 (cDC1s and 
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(B) Frequencies of migratory and resident cDC1s (red) and cDC2s (blue) of alive were determined in TDLN 

(circles) and non-TDLNs (squares). (C) Histograms showing level of expression of XCR1, CD172a, MHC class 

II, CD11b, PD-L1, PD-L12, CD40, CD62, CD80 and CCR7 on resident (open) and migratory (closed) cDC1s (red) 

and cDCs (blue) in the TDLN. (D) Histograms demonstrating frequencies of CD40, CD64, CCR7 and MFI for 

PD-L1 for resident (open) and migratory (closed) cDC1s (red) and cDC2s (blue). Means and SEMs are shown, 

paired t tests were used to calculate statistical significance. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. TDLN 
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◂Figure S4. (A) Representative graph showing PD-L1 expression as assessed by the ex vivo anti-PD-L1 BV711 

antibody. PD-L1-expression (used in Fig. 4E, y-axis) could be assessed in isotype-treated mice whereas binding 

was limited due to in vivo PD-L1 binding of the therapeutic antibody (B) In order to specifically target the TDLN 

while leaving other sites unaffected, a method was developed whereby low-dose anti-PD-L1 was injected 

i.pl., whereby only TDLN-resident cells were targeted (SSM and cDC2 are shown) but cells in the tumor were 

not (in red the selected dose used in subsequent experiments). Wildtype AC29-tumor bearing mice (+10 

days post-tumor cell injection) were treated with increasing doses of anti-PD-L1 antibodies administered 

intrapleurally or with PBS as a control. 24 hours later, tissues were harvested and cells were counterstained 

as illustrated in Fig. 4A. Indicated in red (2.5 µg) is the selected dose in subsequent experiments, dotted lines 

indicate background staining level. (C) Representative FACS plots of A. Means and SEM are indicated. cDC2 = 

conventional type 2 dendritic cells, TDLN = tumor-draining lymph node, SSM = subcapsular sinus macrophage.

Figure S5. (A) C57/Bl6 mice were inoculated with 2.5x106 MC38 tumor cells i.p. and treated with either 

isotype, 2.5 μg of anti-PD-L1 (local) or 200 μg of anti-PD-L1 (systemic) i.pl. at day 8, 11 and 15. Mice were 

euthanized 19 days following tumor injection (4 days after the last treatment) and (B) tumors weights were 

quantified. (C) Tumors were enzymatically digested and stained for flow cytometry to assess CD4+ and CD8+ 

TIL-phenotype. In addition to sole expression of individual co-inhibitory checkpoints on CD8+ T cells, mean 

co-expression of receptors was evaluated with SP indicating receptor single positivity. DP = double positive, 

TP = triple positive and QP = quadruple positive for the investigated checkpoints. Inside the circle, statistical 

significance is indicated for QP-cells between the different treatment groups. (D) Phenotype of SLAMF6+CD8+ 

T cells was compared with SLAMF6-CD8+T cells and CD3- lymphocytes in tumor tissue of AC29 tumor-bearing 

mice isolated 20 days after tumor inoculation. (E) Expression level of TCF-1 was determined in SLAMF6+CD8+ 

T cells versus SLAMF6-CD8+T cells. (F) Representative dotplots showing expression of TCF1 and SLAMF6 (left 

plot) and TCF1 and CD39 (right plot) in CD8+ TILs. Means and SEMs are shown and Mann-Whitney tests were 

performed in case of tumor analysis, whereas unpaired t tests were used for interim blood analyses. Ns = not 

significant (p ≥ 0.05), * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. anti-PD-L1 = anti-PD-L1 

antibody i.p. = intraperitoneal, i.pl.= intrapleural, i.v.= intravenous, TDLN = tumor-draining lymph node, Th 

cells = T-helper cells.▸
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Figure S6. (A) Comparison of frequencies of CD8+ T cells, CD4+ Th-cells and NK cells in peripheral blood of 

AC29 tumor-bearing mice isolated at day 14 (4 days after first anti-PD-L1 treatment (200μg i.p.) and 5 days 

after start FTY720). (B) AC29 tumor-bearing mice received S1P receptor agonist FTY720 via drinking water 

and oral gavage at day 9-20 and isotype or TDLN-local anti-PD-L1 treatment (2.5 μg) i.p. at day 10, 13 and 17. 

Mice were sacrificed at day 20 followed by tumor isolation, enzymatic digestion and staining of tumor tissue 

for flow cytometry. Tumor weight was determined after isolation. Frequency of CD4+ and CD8+ TEX
prog cells was 

determined for total CD4/8+ TILs. Means and SEMs are shown. Mann-Whitney tests were performed. ns = 

not significant (p ≥ 0.05), * = p < 0.05, *** = p < 0.001, i.pl. = intrapleural, SEM = standard error of the mean.
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Figure S7. (A) Wildtype CD45.2+ congenic mice injected i.p. with AE17-OVA tumor cells received cell-trace 

labeled CD45.1+ OT-I and OT-II cells i.v. at day 11 followed by i.p. injection of isotype or anti-PD-L1 therapy 

(200 μg) at day 11 and mice were sacrificed (n = 5 to 6 mice per group per time point) at day 12, 14 and 17. 

(B) Percentage of proliferated CD45.1+ cells of the CD45.1+ CD8+ T cell population in and CD45.1+ CD4+ T cell 

population in TDLN and non-TDLN. (C) Graphs showing frequencies of CD45.1+ cells of CD8+ and CD4+ T cells 

and percentage of proliferated CD45.1+ CD4/8+ T cells isolated from TDLN and tumor (dotted line) at indicated 

time points in anti-PD-L1 treated animals. (D) Endogenous (CD45.1-) TEX
prog CD4+ (above) and CD8+ (below) cells 

in TDLN, blood and tumor 24, 72 and 144 hours post a one-time systemically administered dose of anti-PD-L1 

(200 µg) visualized through time (left ) or per tissue (right). * = p < 0.01, TEX
prog = progenitor-exhausted T cells. 

i.v. = intravenous, i.p. = intraperitoneal, i.pl. = intrapleural, TDLN = tumor-draining lymph node.
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(-containing) immunotherapy are highlighted from the graph in Fig. 8A.

Table S1. Clinicopathological descriptives of all samples, and per subgroup (recurrence < 48 months vs. no 

recurrence > 96 months), n (%) or median (IQR).

Characteristics All patients 

(n=30)

Recurrence 

<48mo (n=16)

No recurrence 

>96mo (n=15)

P value

Patient characteristics

Age 50 (41 – 59) 55 (49 – 63) 43 (35 – 52) 0.006

Sex 0.005

Male 20 (67) 14 (93) 6 (40)

Female 10 (33) 1 (7) 9 (60)

Tumor characteristics

Breslow, mm 2.4 (1.8 – 4.9) 3.7 (2.3 – 6.0) 2.0 (1.3 – 2.6) 0.002

Ulceration 0.003

Absent 17 (68) 6 (43) 11 (100)

Present 8 (32) 8 (57) 0

Unknown 5 1 4

Histology 0.001

SSM 18 (67) 6 (40) 12 (100)

NM

Other

8 (30)

1 (4)

8 (53)

1 (7)

0

0

Unknown 3 0 3
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Table S1. Continued

Characteristics All patients 

(n=30)

Recurrence 

<48mo (n=16)

No recurrence 

>96mo (n=15)

P value

Patient characteristics

Location 0.324

Arm 6 (20) 3 (20) 3 (20)

Leg 7 (23) 2 (13) 5 (33)

Trunk

Head & Neck

16 (53)

1 (3)

10 (67)

0

6 (40)

1 (7)

SLN surgical removal

No. of SNs 1.0 (1.0 – 2.0) 1.0 (1.0 – 2.0) 1.0 (1.0 – 2.0) 0.233

SN Region 0.245

Axillar 20 (67) 12 (80) 8 (53)

Inguinal-iliac

Cervical

9 (30)

1 (3)

3 (20)

0

6 (40)

1 (7)

Outcome

Time to distant metastasis, months 21 (9-36) N/A -

Status* [median time to status, months] -

NED N/A 15 (100) 

[108.0]

CR

AWD

2 (13) [21.0]

2 (13) [57.5]

N/A

N/A

DOD 11 (73) [25.0] N/A

Site(s) of first distant recurrence N/A -

One metastatic organ

Lung only 4 (27)

Brain only

Other

Multiple metastatic organs

2 (13)

1 (7)

8 (53)

* No evidence of disease (NED), Complete response (CR), Alive with disease (AWD), Dead of disease (DOD)

Methods S1. Automatic quantification of PLA on melanoma sentinel lymph nodes using ImageJ 

software and corresponding macros. PLA = proximity ligation assay

The following macro scripts were designed and used to quantify PD-1/PD-L1 interaction density at 

TDLN slides of at 40X magnification. A total of 15 images per TDLN were randomly selected from 

the LN cortex, excluding images containing germinal centers. These images were then loaded into 

ImageJ software (ImageJ, V1.52, Fuji platform) and the macros below were run, with the results 

from 2, being taken as a percentage of 1, establishing the percentage of cell surface area positive 

for PD-1/PD-L1.
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Macro 1 

run(“Color Threshold...”); 

// Color Thresholder 2.0.0-rc-69/1.52s 

// Autogenerated macro, single images only! 

min=newArray(3); 

max=newArray(3); 

filter=newArray(3); 

a=getTitle(); 

run(“HSB Stack”); 

run(“Convert Stack to Images”); 

selectWindow(“Hue”); 

rename(“0”); 

selectWindow(“Saturation”); 

rename(“1”); 

selectWindow(“Brightness”); 

rename(“2”); 

min[0]=0; 

max[0]=255; 

filter[0]=”pass”; 

min[1]=0; 

max[1]=255; 

filter[1]=”pass”; 

min[2]=205; 

max[2]=255; 

filter[2]=”stop”; 

for (i=0;i<3;i++){ 

  selectWindow(“”+i); 

  setThreshold(min[i], max[i]); 

  run(“Convert to Mask”); 

  if (filter[i]==”stop”)  run(“Invert”); 

} 

imageCalculator(“AND create”, “0”,”1”); 

imageCalculator(“AND create”, “Result of 0”,”2”); 

for (i=0;i<3;i++){ 

  selectWindow(“”+i); 

  close(); 

} 

selectWindow(“Result of 0”); 

close(); 
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selectWindow(“Result of Result of 0”); 

rename(a); 

// Colour Thresholding------------- 

run(“Measure”); 

Macro 2 

rename(“test.jpg”); 

run(“Split Channels”); 

selectWindow(“test.jpg (blue)”); 

setAutoThreshold(“Default”); 

//run(“Threshold...”); 

setThreshold(0, 195); 

setThreshold(0, 108); 

run(“Measure”); 
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Immune checkpoint blockade (ICB) using anti-PD-1/PD-L1 and anti-CTLA-4 antibodies significantly 

enhances survival in metastatic melanoma patients and has recently been shown to prolong 

relapse-free survival in stage III and high-risk stage II melanoma patients 1-3. However, a significant 

proportion of patients does not respond to ICB prior to or following surgery for reasons incompletely 

understood. We and others recently identified tumor-draining lymph nodes (TDLNs) to be critically 

involved in anti-PD-L1 treatment efficacy in preclinical tumor models 4,5. Furthermore, we found 

that abundant PD-1 and PD-L1 interactions in TDLNs of patients with non-metastatic melanoma at 

presentation were associated with distant disease recurrence suggesting that immune suppression 

in TDLNs might prevent a durable and effective systemic anti-tumor immune response. However, 

it remains incompletely understood which cells and pathways - including their spatial tissue 

localization - within TDLNs promote disease recurrence in melanoma. Here, we address these issues 

by analyzing the immune composition in TDLNs of stage III melanoma patients using multiplexed 

gene expression analysis, digital spatial profiling (DSP) and multi-color confocal imaging.

We selected 20 stage III melanoma patients who underwent surgical resection of the primary tumor 

and the TDLN (sentinel lymph node procedure), consisting of 10 patients with distant visceral organ 

metastasis within 24 months after surgery (Recurrence group) and 10 patients who were disease-

free after a minimal follow-up of 5 years (No Recurrence group) (Fig. S1A, Table S1A). We performed 

Nanostring whole-slide gene expression analysis (n = 730 genes) of TDLNs following microscopic 

excision of metastases to exclude tumor-infiltrating leukocytes. Differential gene expression analysis 

identified a total of 94 differentially expressed genes, of which 74 were upregulated in the No 

Recurrence group (Fig. S1B). Genes upregulated in patients without recurrence were associated 

with lymphocyte activation (Fig. S1C-D), suggesting that increased T cell activation in TDLNs could 

be involved in anti-tumor immune control. In contrast, a type II interferon response signature 

was upregulated in patients with recurrence, which has previously been associated with immune 

suppression in TDLNs and ICB-resistance in preclinical models 6,7 (Fig. S1C-D).

As lymph nodes are functionally and architecturally heterogeneous, site-specific immune processes 

are obscured by bulk tissue analyses. Therefore, we performed digital spatial profiling (DSP) 

on TDLNs from a subset of the patients (Fig. S1A, Table S1B), all with macrometastasis in the 

TDLN, according to the Rotterdam criteria 8. Breslow depths and the presence of ulceration were 

comparable. A targeted 58-protein immunology-oncology marker panel was quantified within 

regions of interest (ROIs) within the TDLN at the invasive tumor margin (‘proximal’, n = 3 per 

patient) or at unaffected (‘distant’, n = 2 per patient) areas. These ROIs were selected based on 

CD11c, CD3 and S100B immunofluorescence signals (Fig. S1E-F). Principal component analysis 

revealed significant clustering of proximal and distant ROIs irrespective of patient outcome (Fig. 

S1G), suggesting distinct immune activity occurring throughout different regions of the TDLN. Most 

variation in protein expression between patient groups, however, occurred in distant interfollicular 

areas of the TDLN (Fig. S1G-H). Notably, patients with disease recurrence demonstrated increased 
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expression of key effector T cell suppressive proteins including CTLA-4, IDO1, PD-L1 and FOXP3 

(Fig. S1I-J). Collectively, these data suggest that disease recurrence is associated with immune 

suppression distant from tumor metastases within the TDLN of melanoma patients.

To evaluate whether the upregulated lymphocyte activation gene signature detected by whole-slide 

bulk analysis (Fig. S1C) is related to decreased immune suppression, specifically in distant ROIs, 

we correlated both bulk and spatial measurements from the same patients (Fig. S1K). Whereas 

several myeloid cell markers (e.g. CD68, CD14, CD11c) and the immune-stimulatory protein STING 

were strongly associated with lymphocyte activation, immune-suppressive proteins increased in 

distant ROIs from patients with recurrence (e.g. CTLA-4, PD-L1, IDO1) were inversely correlated with 

the lymphocyte activation gene module from our bulk analysis (Fig. S1K). Notably, we observed 

significant downregulation of these inhibitory proteins in the distant regions of patients without 

recurrence (Fig. S1L). To confirm these findings and identify the cellular origins of these TDLN 

immune-suppressive molecules, we performed multi-color confocal imaging focused on IDO1 or PD-

L1 expression on different immune cells from our DSP ROIs and used machine learning to quantify 

cell type-specific expression. We observed increased frequencies of IDO1+ and PD-L1+ cells in distant 

regions of TDLNs from patients with recurrence, involving different types of immune cells (Fig. 

S1M-N). PD-L1+ DCs in TDLNs have been found to limit anti-tumor immunity 4,9. We found PD-L1+ 

DCs to be significantly increased in distant areas of TLDNs from patients developing distant disease 

recurrence (Fig. S1N-P). Importantly, these cells frequently interacted with CD8+ T cells (Fig. S1Q), 

confirming anti-tumor immune suppression occurring in regions of the melanoma TDLN that are 

spatially distant from the tumor itself.

We hypothesized that differences in immune contexture of TDLNs would underlie the presence of 

effective anti-tumor immunity and hence influence the risk of developing distant disease recurrence 

in melanoma. Our experiments indicate that disease recurrence is not dictated by an immune 

response in perimetastatic regions of the TDLN, but is rather driven by lymphocyte activation or 

suppression in distant areas of the TDLN. These data confirm and complement recent findings 

by Reticker-Flynn et al. demonstrating that murine melanoma cells shape the TDLN immune 

environment resulting in not only local TDLN immune suppression but also promoting distant 

organ metastasis7. Intriguingly, they could detect a type II interferon signature driving increased 

suppression of T cells in TDLNs through upregulation of PD-L1, which is strikingly analogous to our 

findings in melanoma patient tissues. Although we could not analyze distant visceral organ metastasis 

material in our melanoma patient cohort, our data support increased immune suppression within 

the TDLN - specifically in regions segregated from the metastatic part of the node- as a potential 

mediator of failed systemic anti-tumor immunity. Together, these observations suggest that the 

interaction between the primary tumor and the TDLN determines systemic anti-tumor immunity 

and risk of distant metastasis formation, thus impacting patient survival.
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◂Figure 1: Stage III melanoma patients with distant metastasis show increased immune suppression within 

the tumor-draining lymph node in areas segregated from the metastatic site

(A) Experimental set-up of NanoString whole-slide targeted gene expression profiling (PanCancer Immune 

Profiling panel, n = 730 genes) of TDLNs (metastases were removed) from patients that either developed 

recurrence (R) (RFS < 24 months, n = 10) or remained long-term disease-free (no recurrence, NR) (RFS > 60 

months, n = 10). (B) Volcano plot showing differentially expressed genes (P < 0.05) in TDLNs from patients 

with or without recurrence. (C) Pathway enrichment analysis of differentially expressed genes from panel B. 

(D) Normalized expression levels of selected genes, displayed as mean +/- SEM. (E) Experimental setup for 

Nanostring digital spatial profiling (DSP) analysis of TDLNs from patients that either developed recurrence 

(R) (RFS < 24 months, n = 5) or remained long-term disease-free (no recurrence, NR) (RFS > 60 months, n 

= 5). Regions of interest (ROIs) were selected using morphological markers CD11c, CD3, S100B and DAPI. 

For each patient, regions proximal to metastasis (n = 3) and distant to metastasis (n = 2) were selected. 

(F) Representative image of TDLN tissue used for DSP analysis stained with morphological markers CD11c 

(green), CD3 (magenta), S100B (yellow) and DAPI (blue) to select ROIs. (G) Principal Component Analysis 

of normalized protein expression levels (n = 58 markers) measured by DSP. Larger circles denote median 

expression values of the four indicated ROI groups. (H) Heatmap of median normalized protein expression 

levels measured by DSP clustered hierarchically. Numbers indicate different clusters identified. (I) Volcano 

plot of differentially expressed proteins measured by DSP (P < 0.10 or P < 0.05 thresholds are indicated). (J) 

Median expression levels of selected proteins from proximal and distant ROIs, displayed as mean +/- SEM. 

(K) Pearson’s R correlation plot of gene expression values of ‘lymphocyte activation’ genes (whole-slide 

gene expression profiling, panel C, n = 18 genes) with protein expression data (DSP) of matched patients 

(Recurrence, R, n = 4; no recurrence, NR, n = 2). (L) Scaled (z-score) expression levels of proteins negatively 

correlated with ‘lymphocyte activation’ genes (panel K, Pearson’s R≤-0.6, n = 6). Individual dots represent 

expression of one protein of one patient within the associated group. (M-N) TDLN tissue was stained for 

IDO1, CD3, CD11c, S100B and CD68 (panel M) or for PD-L1, CD8, CD11c, S100B and CD68 (panel N) and 

visualized using confocal imaging (Recurrence, R, n = 5; no recurrence, NR, n = 4 or 5). The number of cells 

expressing each marker was quantified and visualized as a percentage of total nuclei inside an ROI, matched 

with its original location in the DSP analysis. Statistical significance was determined on the total number of 

IDO1 (panel M) or PD-L1 (panel N) expressing cells. (O-P) Percentage of CD11c+ IDO1+ (panel O) or CD11c+ 

PD-L1+ (panel P) cells compared with total nuclei quantified inside an ROI. Shown are mean +/- SEM. (Q) 

Representative TDLN section of a patient with recurrent disease showing co-localization of PD-L1+ CD11c+ cells 

(green, blue) and CD8+ T cells (yellow) within a distant ROI. Linear Mixed Model (LMM) tests as implemented 

by nSolver Analysis Software (v4.0) and the Advanced Analysis module (v2.0) (Nanostring Technologies) were 

used to determine statistical significance in panels B-D and I-J). Statistical significance in panels L and M-P 

was determined using a Mann Whitney U test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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Supplementary data

Table 1A. Whole-slide gene expression analysis: baseline patient & tumor characteristics; n (%) or median 

(interquartile range)

Characteristics All patients 

(n=20)

Recurrence 

<24mo (n=10)

No recurrence 

>60mo (n=10)

P value

Patient characteristics

Age 54 (46-63) 49 (45-62) 54 (47 – 66) 0.920

Sex 0.739

Male 9 (45) 4 (40) 5 (50)

Female 11 (55) 6 (60) 5 (50)

Tumor characteristics

Breslow, mm 3.80 (2.53-4.83) 4.10 (3.07-5.50) 2.60 (1.38-4.38) 0.851

Location 0.436

Leg 7 (35) 5 (50) 2 (20)

Trunk 12 (60) 4 (40) 8 (80)

Head & Neck 1 (5) 1 (10) 0 (0)

Histology 0.912

SSM 6 (30) 4 (40) 2 (20)

NM 12 (60) 4 (40) 8 (80)

ALM 2 (10) 2 (20) 0 (0)

Ulceration 0.739

Absent 9 (45) 4 (40) 5 (50)

Present 11 (55) 6 (60) 5 (50)

BRAF status 0.280

Negative 17 (85) 7 (70) 10 (100)

Positive 2 (10) 2 (20) 0 (0)

Unknown 1 (5) 1 (10) 0 (0)

No of positive SNs 1.00 (1.00-2.00) 1.00 (1.00-2.00) 1.50 (1.00-2.25) 0.280

Tumor burden, mm 1.30 (0.73-2.00) 2.00 (1.43-5.85) 0.76 (0.38-1.10) 0.000

Rotterdam criteria 0.002

<0.1mm 1 (5) 0 (0) 1 (10)

≥0.1mm ≤ 1.0 mm 7 (35) 0 (0) 7 (70)

>1.0 mm 12 (60) 10 (100) 2 (20)

DEWAR 0.853

Subcap 5 (25) 2 (20) 3 (30)

Combined 8 (40) 5 (50) 3 (30)

Parenchymal 3 (15) 1 (10) 2 (20)

Multifocal 2 (10) 0 (0) 2 (20)
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Table 1A. Continued

Characteristics All patients 

(n=20)

Recurrence 

<24mo (n=10)

No recurrence 

>60mo (n=10)

P value

Extensive 2 (10) 2 (20) 0

Time

Time from primary excision to SN 

(months)

2 (1-2) 1.5 (1-2) 2 (1-3) 0.481

Time from SN procedure to first 

Metastatic recurrence (months)

12 (7-16) 12 (7-16) >64 X

Abbreviations: SN, sentinel node

Table 1B. Digital spatial profiling (DSP) analysis: clinicopathological features of all samples, and per subgroup 

(recurrence <24 months vs. no recurrence >60 months), n (%) or median (IQR).

Characteristics All patients 

(n=10)

Recurrence 

<24mo (n=5)

No recurrence 

>60mo (n=5)

P value

Patient characteristics

Age 54 (31-66) 61 (47-64) 60 (43-62) 0.691

Sex >0.999

Male 4 (40) 2 (40) 2 (40)

Female 6 (60) 3 (60) 3 (60)

Tumor characteristics

Breslow, mm 3.2 (2.4-4.1) 3.1 (2.5 – 4.2) 3.2 (2.3-3.8) >0.999

Tumor Burden. mm 6.8 (2.0 – 7) 6.8 (2.0-7) 6.0 (2.0-7.0) >0.999

Ulceration 0.665

Absent 2 (20) 1 (20) 1 (20)

Present 8 (80) 4 (80) 4 (80)

Unknown

Histology 0.879

SSM 5 (50) 4 (80) 1 (20)

NM

Other

4 (40)

0 (0)

1 (20)

0 (0)

3 (60)

0 (0)

Unknown 1 (10) 0 (0) 1 (20)

Location >0.999

Arm 1 (10) 1 (20) 0 (0)

Leg 3 (30) 1 (20) 2 (40)

Trunk

Head & Neck

5 (50)

1 (10)

2 (40)

1 (20)

3 (60)

0 (0)

SLN surgical removal
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Table 1B. Continued

Characteristics All patients 

(n=10)

Recurrence 

<24mo (n=5)

No recurrence 

>60mo (n=5)

P value

SN Region 0.822

Axillar 3 (60) 3 (60)

Inguinal-iliac

Cervical

1 (20)

1 (20)

2 (40)

0 (0)

Outcome

Time to distant metastasis, months 12 (7 – 16) N/A -

Status* [median time to status, months] -

NED 5 (50) 0 (0) 5 (100)

DOD 5 (50) 5 (100) 0 (0)

Site(s) of first distant recurrence -

Multiple metastatic organs 5 (100) 0 (0)

Lymph node

Lung

Bone

Liver

Other

4 (80)

5 (100)

1 (20)

2 (40)

1 (20)

-

-

-

-

-

Abbreviations: SSM, superficial spreading melanoma; NM, nodular melanoma, NED, no evidence of disease; 

DOD, dead of disease

Methods

Patient selection

From patients who underwent a sentinel lymph node procedure at the Erasmus MC Cancer Institute 

between 2005 and 2017, individuals with nodal metastasis (i.e. positive tumor-draining lymph nodes 

(TDLN)) were identified. For comparative purposes, we selected patients that either presented with 

early (< 24 months) distant disease recurrence or that did not develop disease recurrence for at 

least 60 months following sentinel lymph node procedure. In an attempt to avoid including a false 

negative TDLN, we only included patients with a negative TDLN who developed (prior) metastatic 

disease within the regional lymph nodes (similar to the TDLN basin) after ≥ 9 months.

Ethics approval

This study was approved by the Erasmus MC Ethics Committee (MEC-2017-375). All patients 

provided written informed consent and human tissues and patient data were used according to 

‘The Code for Proper Secondary Use of Human Tissue’ and ‘The Code of Conduct for the Use of Data 

in Health Research’ as stated by the Federation of Dutch Medical Scientific Societies.
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Tissue samples

Formalin-fixed paraffin-embedded (FFPE) lymph node samples were retrieved from the Erasmus MC 

Pathology department. The study was designed as a case-control study, each group consisted of ten 

samples of lymph nodes. Hematoxylin-Eosin (H&E) stained 5µm sections from each sample were 

evaluated by an experienced pathologist. For targeted gene expression profiling, tumor infiltrated 

areas were excluded from RNA isolation. For Digital Spatial Profiling, five lymph nodes were selected 

for each patient group.

RNA isolation and quality control

Depending on the size of the lymph nodes, 10-15 sections of 10µm FFPE samples were used to 

isolate RNA. Sections were deparaffinized using Xylene, after which they were washed using series 

dilutions of ethanol and finally washed with water. The total RNA was isolated using the RNeasy 

Plus Micro Kit (Qiagen) according to the manufacturer's protocol. RNA quality and quantity was 

determined using the Agilent 2100 Bio-analyzer (Agilent, CA, USA), after which the concentration 

was adjusted for use in NanoString technology.

Targeted gene expression profiling using NanoString® Technology

The PanCancer Immune Profiling panel of NanoString® technology was used to profile the samples. 

The panel consists of 730 immune-related genes and 40 housekeeping (HK) genes. A total of 300 

ng/ 5µl of good quality RNA (≥300 bp fractions) were hybridized for 17 hours at 65°C overnight. 

The nCounter FLEX platform was used to wash away the excess of unhybridized probes following 

the manufacturer’s recommendations. Genes were counted by scanning 490 Fields-Of-View (FOV). 

Gene expression values were normalized using nSolver® software (version 4.0) and differential 

expression analysis was performed using the the Advanced Analysis module (version 2.0) of 

NanoString (NanoString, Seattle, WA, USA).

Nanostring GeoMX Digital Spatial Profiling (DSP)

TDLN slides were stained and analysed on the Nanostring GeoMx® Digital Spatial Profiling (DSP) 

platform. Regions of interest were selected using morphological markers CD11c, CD3 and S100B. 

Regions were selected either peritumorally (proximal, n = 3) or distant of the metastasis (distant, n = 

2) and assessed by an experienced pathologist. The protein panel consisted of Nanostring modules 

'Immuno-Oncology (IO) Drug Targeting', 'Immune Cell Activation Status' and 'Immune Cell Typing' 

(n= 58 markers). Slides were processed as per manufacturer's instructions. Antibody barcodes 

were counted on the nCounter® platform as per manufacturer's instructions and External RNA 

Controls Consortium (ERCC) QC were performed in the DSP analysis suite prior to outputting data 

for bioinformatic analysis. Data was normalized using S6 and GAPDH as positive controls, as well 

region size and nuclei count. Differential expression analysis was performed using a Linear Mixed 

Model test as implemented by nSolver® (version 4.0) and the Advanced Analysis module (version 

2.0) of NanoString (NanoString, Seattle, WA, USA).
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Bioinformatic Analysis and Visualisation

Volcanoplots were generated using ‘EnhancedVolcano’(v1.10.0) 10 in R (v4.1.2). Pathways 

enrichment analysis was performed using the online tool Metascape(v3.5) 11 against a custom 

background consisting of all genes included in the Nanostring® PanCancer Immune Profiling panel. 

The Principal Component Analysis was performed using the package ‘ggfortify’(v4.14) 12. Heatmaps 

were generating using web-based tool Morpheus 13 and clustered hierarchically using the Pearson’s 

minus One correlation setting.

Correlation of Nanostring and DSP data

Expression of genes belonging to the ‘Lymphocyte activation’ pathway (n = 18 genes) were 

correlated with protein-expression of patients of whom we had matching gene- and protein-

expression data (Recurrence: n = 4; No-Recurrence: n = 2) using Pearson’s R calculated by the 

‘Hmisc’ R package (v4.6-0) 14. Z-scores were calculated for proteins negatively correlated with the 

‘lymphocyte activation’ signature (R ≤ -0.6) and visualised using Prism GraphPad®.

Automated Multiplex Immunofluorescent Staining and celltype quantification

5-plex staining with 2 different panels was done by automated multiplex IF using the Ventana 

Benchmark Discovery (Ventana Medical Systems Inc.). In brief for Panel 1, following deparaffinization 

and heat-induced antigen retrieval with CC1 (#950-500, Ventana) for 32 minutes at 97°C, the tissue 

samples were incubated firstly with CD8 for 32 minutes at 37˚C followed by detection with omnimap 

anti-rabbit HRP (#760-4311, Ventana) for 16 minutes followed by visualization with R6G (#760-244, 

Ventana) for 4 minutes. Antibody denature step was performed using CC2 (#950-123, Ventana) for 

20 minutes at 100˚C. Secondly, CD11c was incubated for 60 minutes at 37˚C followed by detection 

with omnimap anti-mouse HRP (#760-4310, Ventana) for 16 minutes followed by visualization 

with DCC for 8 minutes (#760-240, Ventana). Antibody denature step was performed using CC2 

(#950-123, Ventana) for 20 minutes at 100˚C. Thirdly, S100 was incubated for 32 minutes at 37 ˚C 

followed by detection with omnimap anti-rabbit HRP (#760-4311, Ventana) for 16 minutes followed 

by visualization with Red610 for 8 minutes (#760-235, Ventana). Antibody denature step was 

performed using CC2 (#950-123, Ventana) for 20 minutes at 100˚C. Fourthly, CD68 was incubated 

for 60 minutes at 37˚C followed by detection with omnimap anti-mouse HRP (#760-4310, Ventana) 

for 16 minutes followed by visualization with Cy5 for 8 minutes (#760-238, Ventana). Antibody 

denature step was performed using CC2 (#950-123, Ventana) for 8 minutes at 100˚C. Lastly, PDL1 

SP263 was incubated for 60 minutes at 37˚C followed by detection with omnimap anti-rabbit HRP 

(#760-4311, Ventana) followed by visualization with FAM (#760-243, Ventana) for 4 minutes.

In brief for Panel 2, following deparaffinization and heat-induced antigen retrieval with CC1 (#950-

500, Ventana) for 32 minutes at 97°C the tissue samples were incubated firstly with CD11c was 

incubated for 60 minutes at 37˚C followed by detection with omnimap anti-mouse HRP (#760-4310, 

Ventana) for 16 minutes followed by visualization with DCC for 8 minutes (#760-240, Ventana). 
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Antibody denature step was performed using CC2 (#950-123, Ventana) for 20 minutes at 100˚C. 

Secondly, IDO1 was incubated for 32 minutes at 37˚C followed by detection with omnimap anti-

rabbit HRP (#760-4311, Ventana) followed by visualization with R6G (#760-244, Ventana) for 4 

minutes. Antibody denature step was performed using CC2 (#950-123, Ventana) for 20 minutes at 

100˚C. Thirdly, S100 was incubated for 32 minutes at 37 ˚C followed by detection with omnimap 

anti-rabbit HRP (#760-4311, Ventana) for 16 minutes followed by visualization with Red610 for 

8 minutes (#760-235, Ventana). Antibody denature step was performed using CC2 (#950-123, 

Ventana) for 20 minutes at 100˚C. Fourthly, CD68 was incubated for 60 minutes at 37˚C followed 

by detection with omnimap anti-mouse HRP (#760-4310, Ventana) for 16 minutes followed by 

visualization with Cy5 for 8 minutes (#760-238, Ventana). Antibody denature step was performed 

using CC2 (#950-123, Ventana) for 8 minutes at 100˚C. Lastly, CD3 was incubated for 32 minutes 

at 37˚C followed by detection with omnimap anti-rabbit HRP (#760-4311, Ventana) followed by 

visualization with FAM (#760-243, Ventana) for 4 minutes. Slides were incubated in PBS with DAPI 

for 15 minutes and covered with anti-fading medium (DAKO, S3023).

Images were acquired using a Zeiss Axio Imager II Fluorescence microscope. For the quantification of 

cells, QuPath version 0.3.2 was used15. Cell detection was performed using the built-in cell detection 

tool. Cells were classified positive or negative for each marker independently based on a single 

intensity threshold. A single combined classifier was created using the composite object classifier 

tool and applied to all cells in the ROIs. Quintuple positive cells were excluded from analysis.
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Abstract

Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most 

patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially 

successful, this is often short-lived due to the development of resistance to ICB. The mechanisms 

underlying primary or secondary ICB resistance are incompletely understood. Here, we identified 

preferential activation and enhanced suppressive capacity of regulatory T cells (Tregs) in anti-

PD-L1 therapy resistant solid-tumor bearing mice. Treg depletion reversed resistance to anti-

PD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating 

Tregs in human skin cancer patients, and in patients with non-small cell lung cancer, upregulated 

a suppressive transcriptional gene program after ICB treatment, which correlated with lack of 

treatment response. Anti-PD-1/PD-L1 induced PD-1+ Treg activation was also seen in peripheral 

blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these 

data reveal that treatment with anti-PD-1 and anti-PD-L1 unleashes the immunosuppressive role of 

Tregs, resulting in therapy resistance, suggesting that Treg targeting is an important adjunct strategy 

to enhance therapeutic efficacy.
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Introduction

Immune checkpoint blockade (ICB) using inhibitors to programmed cell death protein 1 or 

programmed death-ligand 1 (anti-PD-1/PD-L1) has revolutionized cancer therapy by unleashing T 

cell mediated anti-tumor immunity, resulting in clinical responses in multiple cancer types, including 

melanoma and non-small cell lung cancer (NSCLC) 1. However, most patients with certain tumor 

types, including mesothelioma and small cell lung cancer (SCLC), do not experience durable clinical 

benefit from anti-PD-1/PD-L1 therapy for reasons largely unknown 2-4. Therefore, identification of 

the mechanisms responsible for therapy resistance remains essential to further boost efficacy of 

ICB therapy.

Regulatory T cells (Tregs) represent a major barrier to successful anti-tumor immunity as they 

are potent suppressors of effector T cells in the tumor microenvironment (TME) and lymphoid 

organs 5. Accordingly, the high abundance of Tregs relative to effector T cells in the TME is 

associated with poor prognostic outcomes in multiple solid cancers 6,7. In contrast, the absence 

of Tregs or genetic/pharmacological depletion of Tregs results in improved anti-tumor immunity 

and delayed tumor growth in multiple murine models 8-10. Tregs exert these immunosuppressive 

effects through multiple contact-dependent and soluble signaling mechanisms. These mechanisms 

include the scavenging of interkleukin-2 (IL-2) through constitutive expression of the high affinity 

IL-2 receptor, containing the CD25 subunit; secretion of immunosuppressive molecules such as 

IL-10; and expression of inhibitory cell surface receptors like cytotoxic T lymphocyte associated 

protein 4 (CTLA-4) that impair effective costimulation of effector T cells by antigen-presenting cells 

(APCs) 5,11,12. Besides CTLA-4, Tregs express high levels of PD-1, but the functional consequence of 

anti-PD-1/PD-L1 therapy in this context remains incompletely understood 13-15. Recently, increased 

PD-1 expression in tumor-infiltrating Tregs compared with CD8+ T cells before anti-PD-1 treatment 

accurately predicted resistance to anti-PD-1/PD-L1 therapy and correlated with hyperprogressive 

disease (HPD) in patients with gastric cancer 16,17. However, whether anti-PD-1/PD-L1 treatment-

mediated activation of Tregs occurs beyond the rare phenomenon and is involved in therapy 

resistance remains largely unknown. Therefore, identifying the role and site of action of anti-PD-1/

PD-L1 treatment on Tregs in the context of anti-PD-1/PD-L1 resistance could guide identification of 

targets aimed at rewiring Tregs and thus improve anti-PD-1/PD-L1 therapy efficacy.

In the present study, we found that anti-PD-L1 treatment preferentially activated Tregs in therapy-

resistant tumor models but not effector T cells in both the TME and secondary lymphoid organs. 

Anti-PD-L1 increased the suppressive capacity of Tregs, whereas Treg depletion, in turn, sensitized 

both primary and secondary resistant tumor models to anti-PD-L1 treatment. Analysis of single-cell 

RNA sequencing (scRNA seq) data of Tregs isolated from tumor biopsies before and after anti-PD-1 

treatment revealed elevated expression of immune suppressive genes after anti-PD-1 treatment, 

specifically in nonresponding patients. Importantly, PD-1+ Tregs in peripheral blood of SCLC, NSCLC 
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and mesothelioma patients showed increased proliferation after anti-PD-1/PD-L1 treatment, 

specifically in nonresponding patients. These results indicate that Tregs are not mere bystanders 

but can be activated by anti-PD-1/PD-L1 treatment which associates with therapy resistance. This 

offers insights in the mechanisms underlying anti-PD-1/PD-L1 resistance and provides avenues for 

anti-PD-1/PD-L1 ICB biomarker and combination immunotherapy discovery.

Material and methods

Study design

The objective of this study was to investigate the effect of ICB using anti-PD-1/PD-L1 on Tregs and 

the association with treatment resistance. In order to investigate this, we used various mouse 

solid tumor models treated with ICB alone or in combination with Treg depleting agents anti-

CD25 and DT in case of DEREG mice. Impact on tumor outgrowth was measured together with in 

vitro suppression assays, flow cytometry profiling of TME, and RNA sequencing. Patient-derived 

peripheral blood mononuclear cells (PBMCs) on ICB treatment were analyzed by flow cytometry, 

and publicly available scRNA sequencing data were reanalyzed from site-matched tumor biopsies 

for clinical relevance. The sample size and number of biological replicates are indicated in each of 

the figure legends. No data were excluded from the study. In all in vivo experiments shown in the 

study, animals were randomized and assigned to experimental groups on the basis of sex and age. 

Tumor measurements were performed by a researcher blinded to each animal’s treatment group. 

Sampling replicates are indicated in figure legends. Data collection in all mouse experiments was 

performed until the humane or experimental end point was reached, predetermined and approved 

by the national central committee of animal experiments (CCD). Data was reported according to 

Animal Research: Reporting of In Vivo Experiment (ARRIVE) guidelines.

Mouse models

In general, female 8- to 12-week-old C57BL/6 mice were purchased from Envigo. For the RNA 

sequencing experiment and the in vitro suppression assay, 10- to 12-week old female and male 

FoxP3RFP reporter mice were used which were obtained by in-house breeding of GATIR mice (Gata3 

knock-in reporter mice) 18 and FoxP3RFP mice 19. Female and male DEREG mice were purchased from 

Jackson Laboratory (catalog no. 032050), bred in house (IRC VIB, Ghent, Belgium) and used for 

experiments at 7 to 14 weeks of age. For the bone marrow chimera experiments, donor female 

and male 8 week-old PD-1KO were purchased from Jackson Laboratory (catalog no. 028276), bred 

in house (Center for Inflammation Research (IRC) of the Flemish Institute of Biotechnology (VIB), 

Ghent, Belgium) and used in experiment at 14 weeks of age. In experiments where both female 

and male mice were used, the experimental treatment groups were sex-balanced. For the mixed 

chimera experiments, bone marrow from donors was sex matched with the recipients. All mice 

were housed under specific pathogen-free conditions in individually ventilated cages at the animal 
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care facility of the Erasmus MC, Rotterdam, The Netherlands or at the animal facility at the IRC, 

Ghent University, Belgium. All mouse experiments were controlled by the animal welfare committee 

(IvD) of the Erasmus MC and approved by the CCD under the permit number AVD101002017867. 

Experiments performed at the IRC, Belgium were approved under national license LA1400019.

Mouse tumor cell lines

The OVA-transfected AE17 tumor cell line was kindly provided by D. J. Nelson (Curtin University, 

Perth, Australia). The AC29 mesothelioma cell line was derived from tumors induced by crocidolite 

asbestos into CBA/J mice and was kindly provided by B. W. S. Robinson (Queen Elizabeth II Medical 

Centre, Nedlands, Australia). The AE17-OVA and AC29 cell lines were cultured in RPMI-1640 

medium containing HEPES (25 mmol/liter), Glutamax, gentamicin (50 mg/ml; all obtained from 

Gibco), geneticin (50 mg/ml Gibco) and either 5% fetal bovine serum (FBS) (Capricorn Scientific) 

for AC29 tumor cells or 10% FBS for AE17-OVA tumor cells in a humidified atmosphere and at 5% 

CO2 air. The MC38 and B16F10 tumor cell lines were cultured in IMDM medium (Gibco) containing 

L-Glutamine, HEPES (25 mmol/liter), gentamicin (50 mg/ml) and 8% FBS. Authentication of the 

cell lines was performed by short tandem microsatellite repeat analysis or by antigen-specific T 

cell recognition.

SCLC, NSCLC and mesothelioma patient cohorts

Patients with advanced malignant pleural mesothelioma, stage IV SCLC and stage IV NSCLC in this 

study were enrolled in the MULTOMAB study (Netherlands Trial Registry: NTR7015; local ethics 

board study number MEC16–011). The study was approved by the institutional review board of 

the Netherlands Cancer Institute and in accordance with the Declaration of Helsinki. All patients 

provided written informed consent before enrolment. In case of NSCLC, adenocarcinoma patients 

harboring an actionable driver mutation (EGFR, no NTRK, ROS, RET, MET of BRAF were present 

in this study) were excluded as these respond differently to anti-PD-1 therapy 20,21. Mutations in 

the KRAS oncogene were permitted. In summary, 21 stage patients with IV NSCLC and 15 patients 

with mesothelioma were treated with either nivolumab (240 mg flat dose every 2 weeks) or 

pembrolizumab (200 mg every 2 weeks). Response to PD-(L)1 inhibitors was evaluated according 

to Response Evaluation Criteria in Solid Tumors (RECIST) criteria (version 1.1) and modified RECIST-

criteria were used for pleural malignant mesothelioma 22. All patients received at least one CT 

scan every 6 weeks in total to assess true disease progression and pseudoprogression followed 

by response or ongoing response. For NSCLC, responders were defined as having a radiological 

response (partial response (PR) according to RECIST) after 6 weeks whereas for mesothelioma, 

patients with either radiological response after 6 weeks or stable disease for longer than 12 

months were classified as a responder. Clinical and pathological characteristics of all patients are 

summarized in supplementary table 1.
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In vivo tumor inoculation

For tumor inoculation, mice were intraperitoneally (i.p.) injected with AE17-OVA (3x105) or AC29 

(10x106) in 300 μl of phosphate-buffered saline (PBS) or subcutaneously with MC38 (5x105) or 

B16F10 (1x105) tumor cells in 200 μl of PBS. Subsequently, mice were randomly assigned to 

experimental groups. Mice with established intraperitoneal tumors were euthanized at indicated 

time points for immune cell profiling or when profoundly ill according to the body condition score 

for therapy efficacy experiments. For subcutaneous tumors, mice were euthanized at indicated time 

points for immune cell profiling or when the tumor reached a volume of 1500 mm3 for therapy 

efficacy experiments.

In vivo treatments

Anti-PD-L1 treatment. Mice with established mesothelioma (AE17-OVA) were treated with either 

200 µg isotype (clone 2A3, BioXCell) or 200 ug anti-PD-L1 (clone MIH5) in 300 µl PBS i.p. at indicated 

time points. For mice with established subcutaneous MC38 tumors (colon-carcinoma derived), mice 

were treated with isotype (clone MPC-11, BioXCell) or 200 ug anti-PD-L1 (clone 10F.9G2, BioXCell) 

in 100 µl PBS i.p. at day 5, 8 and 11.

DT treatment. Tregs were depleted in DEREG mice using i.p. injections of 1 µg of DT (Enzo Life 

Sciences; BML-G135-0001) at days 8, 9 and 12.

Anti-CD25 treatment. Tregs were depleted using i.p. injections of 200 µg anti-CD25-mIgG2a PC-

61.5.3 (AE17-OVA: Absolute Antibody; MC38: isotype switched PC-61 hybridoma by CRISPR/HDR 

engineering 23 at days 7 and 9 for the AE17-OVA model and at days 5 and 7 for MC38 model. As a 

control, mice were treated with isotype (AE17-OVA: Anti-hapten 4-hydroxy-3-nitrophenyl acetyl 

(NP) clone B1-8 (Absolute Antibody); MC38: clone C1.18.4 (BioXCell)).

Preparation of single cell suspensions from mouse tissues

Single-cell suspensions were generated from isolated blood, spleen, non-TDLN, TDLN, bone marrow, 

and tumor tissue of mice from each group as previously reported 24. Briefly, blood was collected in 

EDTA tubes (Microvette CB300, Sarstedt) after which the volume was determined. Subsequently, 

collected blood was lysed by erythrocyte lysis using osmotic lysis buffer (8.3% NH4Cl, 1% KHCO3, and 

0.04% Na2EDTA in Milli-Q). Single-cell suspensions of non-TDLNs, TDLNs, bone marrow, and spleens 

were generated by mechanically dispersing the lymph nodes through a 100-μM nylon mesh cell 

strainer (BD Biosciences) followed by osmotic lysis of erythrocytes in case of spleens. Tumors were 

collected, weighed in a microbalance, and dissociated using a validated tumor dissociation system 

(Miltenyi Biotec) according to protocol. After dissociation, cell suspensions were filtered through 

a 100-μm nylon mesh cell strainer.
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In vitro suppression assay

For in vitro suppression assay with tumor-derived Tregs, AE17-OVA bearing mice were treated with 

isotype or anti-PD-L1 at days 10 and 14. At day 17, mice were sacrificed and CD4+RFP+ cells were 

sorted from AE17-OVA tumors. Splenic CD4+CD25+RFP+ cells were sorted at day 13, 3 days after 

treatment with either isotype or anti-PD-L1 at day 10. Splenic naïve CD8+ T cells from wildtype 

mice (responder cells, Tresp) were isolated using negative magnetic labeling (Miltenyi) and were 

labeled with CellTrace Far Red Cell Proliferation dye (Thermo Fisher Scientific). For APCs, wild-type 

splenocytes were T cell depleted (CD90.2 microbeads; Miltenyi Biotec) and treated with mitomycin-c 

(Sigma-Aldrich) to prevent the proliferation of APCs, which could influence the readout of the assay. 

Responder cells (1x104), APCs (16.7x103) and titrated numbers of Tregs were activated with 0.5 ug/

ml anti-CD3 (BD Biosciences) in a 96-well round bottom plate with 200 µl IMDM supplemented 

with gentamycin (50 mg/ml), 50 mM β-ME and 10% FBS for 3 days. Suppression was calculated 

as previously described 25. Briefly, cells were acquired by BD Symphony, and the division index of 

responder cells was analyzed using FlowJo based on the division of CellTrace FarRed. Suppression 

was then calculated with the formula % Suppression = (1-DITregs/DICtrl) × 100% (DITregs stands for 

the division index of responder cells with Tregs, and DICtrl stands for the division index of responder 

cells activated without Tregs).

RNA sequencing

RNA was isolated from sorted tumor-derived Tregs. Tumor-derived Tregs were isolated from AE17-

OVA tumor bearing FoxP3RFP mice treated with isotype or with anti-PD-L1 3 days after treatment 

at day 10. For the isolation of Tregs, tumor samples were stained with antibodies listed in table S3 

and subsequently sorted using a FACSAria III sorter with a purity ≥ 98% (number of sorted PD-1+/- 

Tregs ranged between 900 and 7000 cells). RNA was isolated using the RNeasy Micro kit (Qiagen) 

according to the manufacturer’s instruction. Library preparation was based on the Smart-seq2 

protocol 26. Samples were sequenced in accordance to the Illumina TruSeq Rapid v2 protocol on an 

Illumina HiSeq2500 to obtain 50-bp single-end reads. Reads were aligned to the mm10 (GRCm38) 

mouse genome using HISAT2 27. To identify DEGs, DESeq2 was used as implemented in HOMER 28,29 

and read alignment was performed to the murine genome mm10 (GRCm38). Sample scaling and 

statistical analysis were performed using the R package DESeq2. DEGs were determined by >1.0 

absolute log2 fold change and an adjusted P-value < 0.05. Standard reads per kilobase per million 

(RPKM) values were used as an absolute measure of gene expression. Genes with an RPKM <1 in 

50% of replicates in one condition were excluded. To assess sample quality, principal components 

analysis was conducted on using log-transformed RPKM values using the prcomp function from 

the ggfortify (0.4.11) package in R (executed from R Studio v1.1.383). K-means clustering was 

performed using Past3 software. Heatmaps were produced using web-based tool Morpheus 

(https://software.broadinstitute.org/morpheus). Pathway enrichment was performed using web-

based tool Metascape 30.
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Bone marrow chimeras

CD45.1.2 host mice were administered a single total body gamma radiation 8 Gy. Donor CD45.1 

wild-type mice and CD45.2 PD-1KO mice were euthanized by cervical dislocation, and femurs were 

harvested and collected in RPMI. Bone marrow cells were isolated in a sterile environment by 

flushing the femur with a 20 G needle using PBS and 2% FBS. Red blood cells were lysed using RBC 

lysis buffer (eBioscience; 00-4333-57) and washed using PBS. Harvested cells were filtered through 

a 40-µm cell filter and counted. Donor mixes were prepared by mixing CD45.1 and CD45.2 cells in a 

1:1 ratio in sterile PBS. From both CD45.1 and CD45.2 bone marrow cells, 3.0x106 were transplanted 

via the tail vein in a total volume of 100 µl. After 8 weeks of reconstitution, transplanted hosts were 

bled via the tail vein to confirm chimerism and assess circulating lymphocyte populations. On the 

same day, host mice were i.p. injected with AE17-OVA tumor cells. Host mice were treated with 

either isotype or anti-PD-L1 10 days post tumor inoculation and sacrificed at day 13, and bone 

marrow, spleen, blood, non-TDLN, TDLN and tumor were harvested for characterization of Tregs.

Reanalysis of scRNA sequencing data

scRNAseq data analysis. Publicly available scRNAseq data were analyzed using the Seurat (4.0.0) 

package. Predefined Treg clusters were isolated and processed for downstream analysis. We 

excluded cells in which fewer than 500 genes were detected and those that had a mitochondrial 

DNA content greater than 10%. Next, we used a zero-inflated negative binomial model implemented 

by the DESingle package (v1.10.0) in R to identify DEGs 31. Genes with an absolute log2 fold change 

> 0.5 and an adjusted P-value [false discovery rate (FDR)] < 0.05 were deemed significantly 

differentially expressed.

scRNAseq data visualization. Violin plots were generated using log-normalized counts with a scaling 

factor of 10.000 using the Seurat package. Unweighted pathway enrichment analysis was performed 

using web-based tool Metascape 30. Weighted pathway enrichment analysis was performed via 

GSEA using the ClusterProfiler (v3.18.1) package in R. Genes with an absolute log2 fold change > 0.5 

were included in the analysis. Genesets included in ‘biological process’ were selected from MsigDB 

(http://software.broadinstitute.org/gsea/msigdb). GSEA was ran with a minimum geneset size of 10 

and nPermSimple = 100.000. GSEA plots were superimposed in Adobe Illustrator and plotted with 

the normalized enrichment score (NES) and P-value. Heatmaps were created using the R package 

Pheatmap (v1.0.12) using the normalized mean expression per cell as calculated by DESingle.

Patient-derived peripheral blood processing

Peripheral blood was collected at day 1 of cycle 1 (before start of therapy; baseline) and at day 1 

of cycle 2. About 50 mL of blood was collected in EDTA tubes, and PBMCs were isolated by density 

gradient centrifugation using Ficoll-hypaque (GE Healthcare). Cells were cryopreserved in 10% 

dimethylsulfoxide (Sigma-Aldrich), 40% FCS, and RPMI for later reconstitution and analysis.
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Flow cytometry

Murine samples. For cell surface staining, single cells were stained with antibodies for 30 minutes 

at 4°C . After this incubation period, cells were washed with fluorescence-activated cell sorting 

(FACS) buffer (0.05% NaN3, 2% bovine serum albumin in PBS), followed by a PBS wash, and 

stained for viability using fixable LIVE/DEAD aqua cell stain (Thermo Fisher, 1:200) at 4°C for 15 

min. After two washing steps with PBS and FACS buffer, cells were fixated and permeabilized with 

Foxp3 / Transcription Factor Staining Buffer Set (Thermo Fisher Scientific) to stain nuclear factors. 

Intranuclear antibodies were incubated for 60 min at 4°C. A fixed number of counting beads 

(Polysciences Inc.) was added to the samples derived from blood before acquisition of the data to 

determine the absolute number of cells. Data were acquired using a FACSymphony flow cytometer 

equipped with four lasers and FACSDiva software (v.8.0.2) after compensation with UltraComp 

Compensation beads (Thermo Fisher Scientific). Acquired data were analyzed by using a licensed 

version of Flowjo (v.10.4.2). 

Human samples. To assess PD-1 expression in peripheral blood isolated from ICB-treated patients 

by flow cytometry, cells were preincubated with either nivolumab or pembrolizumab (depending 

on in vivo treatment) for 20 min at 4°C 32. Subsequently, cells were stained with a biotinylated anti-

IgG4 antibody (Sigma-Aldrich, 1:100) that specifically binds to nivolumab and pembrolizumab. Last, 

cells were incubated with streptavidin that specifically binds to the anti-IgG4 antibody. Extracellular 

staining with other antibodies of interest, fixation and permeabilization, and subsequent 

intracellular staining was according to the protocol for murine samples. Data were acquired using 

a FACSymphony flow cytometer equipped with four lasers and FACSDiva software (v.8.0.2) after 

compensation with UltraComp Compensation beads (Thermo Fisher Scientific). Acquired data were 

analyzed by using a licensed version of Flowjo (v.10.4.2).

Statistical analysis

Data are expressed as means with the SEM. Comparisons between two groups with independent 

samples were performed using unpaired t test whereas the paired t test were used to compare 

paired samples (see figure legends). In case of multiple comparisons, one-way or two-way analysis 

of variance (ANOVA) was used with Sidak’s post-test or Tukey’s post-test, respectively. Survival 

data were plotted as Kaplan-Meier survival curves using the log-rank test to determine statistical 

significance. A P-value of 0.05 and below was considered significant (*), p < 0.01(**) and p < 

0.001 (***) were considered highly significant. Statistical approaches were verified per figure. All 

DEG analyses were Benjamini Hochberg-corrected for false discovery rate (FDR < 0.05). Data were 

analyzed using GraphPad Prism software (Graphpad, V5.01 and V8.0).
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Results

Anti-PD-L1 therapy induces preferential activation and proliferation of Tregs in treatment-

resistant murine tumor models

To gain insight into the mechanisms responsible for ICB resistance, we studied the intraperitoneal 

AE17-OVA mesothelioma tumor model which is refractory to anti-PD-L1 therapy, because anti-PD-L1 

treatment did not prolong survival, even when initiated early at day 5 (Fig. 1A-B). T cell phenotype 

and activation status were measured in tumor-draining lymph nodes (mediastinal lymph node; 

TDLN), non-TDLN (inguinal LN), spleen, blood, and tumor at several time points before and after 

anti-PD-L1 treatment (Fig. 1C). CD8+ T cells were only marginally activated after treatment in these 

tissues with minor temporal upregulation of co-stimulatory (e.g. 4-1BB, CD25, ICOS and OX40) and 

coinhibitory markers (e.g. CD39, NKG2A, PD-1, LAG3, TIGIT and CTLA-4) (Fig. 1D, Fig. S1 and Fig. 

S2A). The same pattern was observed for the proliferation marker Ki67, which did not increase 

after anti-PD-L1 treatment in total CD8+ T cells or ovalbumin (OVA)-specific CD8+ T cells (Fig. S2B). 

CD4+ T cells, however, displayed a more activated phenotype after treatment, including sustained 

expression of Ki67 and the exhaustion-program driver TOX. When discriminating between CD4+ 

T-helper cells (CD4+ Th) and Tregs based on FoxP3 expression (Fig. S2C-D), the observed effect could 

largely be assigned to anti-PD-L1-induced activation of Tregs with induction of CTLA-4, Ki67, PD-1 

and TOX 3 days after treatment (day 13). Proliferation was more profoundly induced in Tregs after 

anti-PD-L1 treatment compared with CD8+ T cells in the AE17-OVA model, whereas the opposite was 

observed in the anti-PD-L1-responsive MC38 tumor model (Fig. 1E-F). Inclusion of a second therapy-

responsive model (mesothelioma; AC29) and therapy-resistant model (melanoma; B16F10) showed 

the same pattern with stronger induced proliferation in CD8+ T cells or Tregs in the responsive 

and resistant tumor models, respectively (Fig. 1G). Because checkpoint blockade may also impact 

immunity via myeloid cells, we examined alterations in these subsets after anti-PD-L1 treatment 33. 

Anti-PD-L1 treatment appeared to have effects on myeloid cells that were less substantial compared 

with Tregs (Fig. S3). Together, these results indicate that anti-PD-L1 could activate Tregs in the setting 

of primary therapy unresponsiveness.
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◂Figure 1: Anti-PD-L1 treatment specifically induces rapid activation of Tregs with marginal activation of 

CD8+ T cells and CD4+ Th cells in a therapy-resistant mesothelioma murine model

(A-B) Experimental setup (n = 3 to 7 mice per group) with mice being treated with systemic isotype or anti-

PD-L1 antibodies i.p. starting from day 5, day 10 or day 15 onwards and monitored for survival. Log rank 

tests were used to determine statistical significance. (C) Experimental setup (n = 5 or 6 mice per group) with 

mice being treated with systemic isotype or anti-PD-L1 antibodies i.p. at day 10 and euthanized at different 

time points before and after isotype and anti-PD-L1 treatment. (D) Protein expression of costimulatory, 

coinhibitory and transcription factors were compared between isotype- and anti-PD-L1-treated mice at each 

indicated time point (days post tumor inoculation) by flow cytometry and displayed in heatmaps. Differences 

in percentage positive compared with day 0 (tumor-free mice) for each individual marker were displayed for 

spleen. (E-F) Representative histograms and quantification displaying Ki67 expression in spleen and tumor for 

CD4+ Th cells (orange), CD8+ T cells (blue) and Tregs (green) of isotype- (-) and anti-PD-L1- (+) treated AE17-

OVA tumor bearing mice (d13) (E) and MC38 tumor bearing mice (d9) (F). (G) Bar graphs displaying differences 

in Ki67 expression in treated mice versus untreated mice for the AC29 mesothelioma (n = 7) and MC38 

colon adenocarcinoma (n = 5 to 7; responsive models) and the AE17-OVA mesothelioma (n = 6) and B16F10 

melanoma model (n = 8; resistant models) in peripheral blood at day 13, 3 days after treatment. Means and 

SEMs are shown and unpaired t tests were performed, indicating statistical significance. * = p < 0.05, ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001. i.p. = intraperitoneal, TDLN = tumor-draining lymph node.

Anti-PD-L1 therapy amplifies the immunosuppressive phenotype and activity of Tregs

To comprehensively examine the effect of anti-PD-L1 treatment on Treg phenotype, we 

investigated a wide variety of markers associated with the immunosuppressive function of 

Tregs in TDLN, non-TDLN, spleen, blood and tumor material 3 days after anti-PD-L1 treatment. 

In spleen, expression levels of key molecules associated with suppressive capacity of Tregs 

(ICOS, CTLA-4, CD39 and PD-1) were significantly elevated in anti-PD-L1 treated mice compared 

with those given isotype treatment (Fig. 2A). This coincided with a tended increase in absolute 

Treg numbers, whereas this was not observed for CD4+ Th cells or CD8+ T cells (Fig. S4A). The 

pattern of enhanced expression of key suppressive molecules was also apparent in TDLN, non-

TDLN, blood and tumor, despite already higher basal expression levels on intratumoral Tregs 

(Fig. S4B). We further assessed the effects of anti-PD-L1 treatment on tumor-derived Tregs in 

an unbiased manner by performing RNA sequencing. Pathway analysis of genes differentially 

expressed in anti-PD-L1-treated PD-1+ Tregs versus isotype-treated PD-1+ Tregs revealed 

enrichment for genes involved in T cell activation and apoptosis whereas these pathways 

were not enriched in PD-1- Tregs or CD4+ Th cells (Fig. 2B, S5A). More specifically, anti-PD-L1-

treated PD-1+ Tregs showed enhanced expression of key signature genes related to suppressive 

function such as Il10, Tigit and Icos but also Fgl2, Tsc1 and Ets1, which were previously reported 

to mediate Treg suppressive activity 34-38 (Fig. 2C, S5B). The up-regulation of genes related to 

suppressive function was less robust in PD-1- Tregs and CD4+ Th cells, indicating a greater effect 

on the PD-1+ subpopulation (Fig. S5C). In addition, anti-PD-L1 treatment induced a proapoptotic 

gene signature specifically in PD-1+ Tregs as anti-apoptotic genes, including Bcl2, were down-

regulated whereas proapoptotic genes, such as Bcl2l11 (encoding for BIM), were up-regulated 
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(Fig. 2C, S5B). The decreased Bcl2/BIM ratio was confirmed at the protein level and coincided 

with increased expression of activated caspase 3 (Fig. S5D). Ki67 expression was higher in Bcl2- 

Tregs compared with their Bcl2+ counterparts (Fig. S5E). These data are in line with a recent 

report showing apoptotic Tregs to be superior in mediating immunosuppression compared 

with nonapoptotic Tregs 39. Therefore, these data indicate that Tregs, in particular PD-1+ Tregs, 

acquire a more immunosuppressive transcriptional signature after treatment.

Next, we examined whether anti-PD-L1-treated Tregs were also functionally more suppressive. 

To this end, we isolated Tregs from tumors and spleens by flow sorting from tumor-bearing 

FoxP3RFP reporter mice treated with either isotype or anti-PD-L1. Tregs were subsequently 

cultured with naïve prelabeled responder CD8+ T cells in the presence of anti-CD3 monoclonal 

antibody and mitomycin-treated APCs (Fig. 2D, S5F). Whereas CD8+ T cells proliferated 

vigorously in the absence of Tregs, this proliferation was reduced by addition of isotype-

treated Tregs. Anti-PD-L1 treatment resulted in tumor-derived Tregs with significantly more 

potent suppressive function than after isotype treatment (Fig. 2D). This anti-PD-L1-induced 

suppression was more marked in tumor-derived Tregs compared with spleen-derived Tregs 

(Fig. S5F). Together, these data show that anti-PD-L1 treatment increases the suppressive 

capacity of Tregs in vivo.

PD-1 exerts an important function in modulating Treg phenotype after checkpoint blockade

To pinpoint whether the effect of anti-PD-L1 treatment is directly mediated via PD-1 expressed 

on Tregs, we performed a bone marrow chimera experiment, in which sub-lethally irradiated 

C57BL/6-CD45.1.2 recipient mice were reconstituted with a 1:1 mix of PD-1WT CD45.1 and 

PD-1KO CD45.2 donor bone marrow cells, allowing for donor reconstitution to be tracked and 

quantified using allele-specific CD45 antibodies. After reconstitution, recipient mice were 

inoculated with AE17-OVA tumor cells and treated with either isotype or anti-PD-L1 (Fig. 3A-

B). This setup allowed us to assess within the same animal whether anti-PD-L1 treatment 

enhanced Treg proliferation by direct PD-1 uncoupling in Tregs or via Treg-independent effects 

of anti-PD-L1 treatment. In accordance with our previous observations, basal levels of Ki67 

expression were elevated in PD-1KO Tregs as compared with PD-1wt Tregs in isotype treated 

animals (Fig. 3B-C). Anti-PD-L1 treatment significantly increased Treg proliferation in PD-1WT 

Tregs (up to 2- to 3 fold) and this appeared to be less in PD-1KO Tregs (1- to 1.5 fold), pointing 

to an important cell intrinsic role for PD-1 on Tregs in modulating Treg phenotype.
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◂Figure 2: Anti-PD-L1 treatment enhances suppressive phenotype and capacity of Tregs

(A) Experimental setup (n = 3 to 6 mice per group) of AE17-OVA bearing mice treated with isotype or anti-PD-L1 

antibodies i.p. at day 10 and sacrificed at day 13 (left). Expression of markers associated with suppressive 

capacity of Tregs were assessed by flow cytometry and compared between isotype- and anti-PD-L1-treated 

mice in spleen (right). (B) Venn diagrams depicting overlap of genes (PD1+ Tregs, PD1- Tregs and CD4 T helper 

cells) and pathways analysis (PD1+ Tregs) down-regulated (blue) or up-regulated (red) of DEGs in anti-PD-L1 

versus isotype treatment (n = 2 to 3 mice). Number in corners indicate the number of DEGs. (C) Heatmaps 

displaying DEGs in anti-PD-L1-treated versus isotype-treated PD-1+ Tregs (shown as z scores of RPKM levels 

with row min-max based on all three T cell subsets) associated with suppressive function and apoptosis. (D) 

Experimental setup of AE17-OVA-bearing FoxP3RFP reporter mice treated with either isotype or anti-PD-L1 

antibodies i.p. at days 10 and 14 and euthanized at day 17. RFP+CD4+ T cells were sorted from tumors and 

cultured for 3 days with labeled naive CD8+ T cells, mitomycin-irradiated T cell depleted splenocytes (APCs) 

and soluble anti-CD3 for 3 days. Proliferation of naive CD8+ T cells was assessed with different Treg:Tresp ratios 

with Tregs from either isotype or anti-PD-L1-treated mice (n = 8 to 12) and depicted in histograms. Percent 

suppression was calculated as described in Materials and Methods. Means and SEMs are shown and unpaired 

t tests were performed, indicating statistical significance. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** 

= p < 0.0001. i.p. = intraperitoneal, APCs = antigen-presenting cells, DEGs = differentially expressed genes.

Systemic depletion of Tregs reverts anti-PD-L1 resistance and improves immunotherapy 

efficacy

Although anti-PD-L1 treatment induced a more activated and immune suppressive phenotype 

of Tregs in the therapy-resistant AE17-OVA murine tumor model, it remained unclear whether 

this actively promoted therapy resistance. To this end, we treated FoxP3DTR mice with diphtheria 

toxin (DT) to deplete Tregs, followed by isotype or anti-PD-L1 treatment (Fig. 4A). DT treatment 

alone resulted in decreased tumor burden. When Treg depletion was combined with anti-PD-L1 

treatment, tumor burden was further reduced to near absence that was accompanied by an 

overt increase in memory tumor-infiltrating lymphocytes (TILs), demonstrating that Tregs are 

involved in therapy resistance (Fig. 4B). As a more translational approach, we then systemically 

depleted Tregs using an Fc-optimized anti-CD25 antibody in the therapy-resistant AE17-OVA 

tumor model8,23 (Fig. 4C). First, we could confirm that anti-CD25 treatment effectively decreased 

Tregs at multiple sites including secondary lymphoid organs and especially tumors rapidly after 

treatment, resulting in enhanced CD8+ T cell/Treg ratios (Fig. 4D, S6A-B). Second, anti-CD25 

treatment before anti-PD-L1 treatment led to a synergistic induction of CD8+ and CD4+ Th-cell 

proliferation and activation in peripheral blood after immunotherapy, which was also observed 

in the therapy-resistant B16F10 tumor model (Fig. 4E-G, S6C). Last, Treg depletion sensitized 

AE17-OVA tumors for anti-PD-L1 treatment as observed by prolonged survival and decreased 

tumor weight (day 17), although all mice eventually succumbed due to progressive tumor 

growth (Fig. 4H). A similar effect was induced in the B16F10 model, with half of the mice 

showing prolonged survival and delayed tumor growth (Fig. 4I, S6D). Although MC38-bearing 

mice were initially responsive to anti-PD-L1 treatment with reduced tumor growth (Fig. 4J, 

inset), mice eventually relapsed because of acquired resistance and did not show prolonged 
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survival. Combination treatment, however, induced long-term survival in most of the mice 

(Fig. 4J). Whether anti-PD-L1 treatment exacerbates Treg induced immunosuppression in this 

model as compared with the primary resistant models remains to be investigated. These data 

show that Tregs are involved in both primary and secondary therapy resistance to anti-PD-L1 

treatment in preclinical solid mouse tumor models.
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Figure 3: PD-1 exerts an important function in mediating checkpoint-blockade induced effects on Tregs

(A) Experimental design with sublethally irradiated CD45.1.2 recipient mice being reconstituted with CD45.1 

PD-1WT and (purple) CD45.2 PD-1KO (green) bone marrow cells followed by AE17-OVA inoculation and 

treatment with either isotype (n = 5) or anti-PD-L1 (n = 6). Mice were euthanized at day 13 and proliferation of 

PD-1WT and PD-1KO Tregs was evaluated in multiple tissues. (B) Proportions of CD45.1/CD45.2 Treg populations 

and their level of proliferation, as depicted in histograms of intracellular Ki67 levels, at day 13 in spleen (3 

days after treatment). (C) Percentage of Tregs (PD-1WT and PD-1KO) positive for Ki67 after isotype or anti-PD-L1 

treatment in multiple tissues at day 13. Means and SEMs are shown and unpaired t tests were performed, 

indicating statistical significance. *= p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. TDLN = 

tumor-draining lymph node, non-TDLN = non-tumor draining lymph node, SEM = standard error of the mean.

Treg activation in patient tumor biopsies and peripheral blood after ICB treatment is associated 

with poor treatment response

Although we observed robust treatment-induced augmentation of Treg effector functions in 

preclinical murine models, effects of anti-PD-1/PD-L1 treatment on Tregs in a clinical setting and 

its association with treatment response remain unclear. We therefore assessed the effects of anti-

PD-1 treatment on tumor-infiltrating Tregs in publicly available scRNA-seq data from site-matched 

tumor biopsies of responding and nonresponding patients with nonmelanoma skin cancer (BCC) 

or NSCLC before and after anti-PD-1 treatment (Fig. 5A) 40,41. Phenotypically similar Tregs were 

extracted from these datasets and gene expression was compared before and after treatment in 

both responders and nonresponders (Table S1, Fig. S7A-B). Nonresponding patients with BCC and 
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NSCLC shared 64 up-regulated genes in Tregs after treatment as compared with before treatment, 

including PDCD1 encoding PD-1, while little to no overlap was seen for responding patients after 

treatment or in pretreatment comparisons (Fig. 5B, S7C-F). Pathway enrichment analysis of the 

differentially expressed genes (DEGs) up-regulated after treatment revealed genes significantly 

associated with (the regulation of) cell activation and apoptosis, specifically in nonresponding 

patients with BCC and NSCLC (Fig. 5C). In agreement, gene set enrichment analysis (GSEA) showed 

significant enrichment of genes involved in the ‘Negative regulation of α/β T-cell activation’ pathway 

among genes up-regulated after treatment only in nonresponders (Fig. 5C-D). When comparing 

Treg transcriptomes after treatment between responding and nonresponding patients with BCC 

and NSCLC, we observed a shared signature of treatment-induced genes involved in cell activation 

and enhanced suppressive capacity of Tregs (Fig. 5E-H). These included genes related to Treg-

mediated suppression (e.g. PDCD1, CTLA4, HAVCR2, and CD38), T cell receptor signaling (e.g. 

JUN/FOS, LAT) and the cell cycle (MKI67), which were expressed at higher average levels and at 

greater frequencies in Tregs from nonresponders (Fig. 5H-I). Only few genes were up-regulated 

in responders after treatment, showing no overlap between both tumor types and no functional 

links with Treg activation or suppressive capacity (Fig. S7G-H). Together, these data suggest that 

anti-PD-1 treatment induces an immunosuppressive activation program specifically in Tregs from 

nonresponding patients.

To assess whether differences in the Treg phenotype at baseline could be linked to therapy 

resistance, we compared nonresponding and responding patients before treatment for both 

tumor types. BCC and NSCLC Tregs showed fewer overlapping gene expression signatures before 

treatment as compared with after treatment (80 DEGs versus 776 DEGs respectively, see Fig. 

5E, S8A-D), suggesting that shared therapy resistance mechanisms could be acquired during 

treatment or are more tumor-specific at baseline. Pathway enrichment analysis of the (largely 

unique) pretreatment DEGs from both tumor types did indicate a more activated Treg phenotype 

specifically in nonresponding patients with BCC and NSCLC (Fig. S8B). These data suggest that Tregs 

are already more activated at baseline in patients that subsequently experience therapy resistance 

after anti-PD-1 treatment.
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◂Figure 4: Anti-PD-L1 therapy resistance is reverted by Treg depletion by improving anti-tumor immunity 

and survival

(A) Experimental design where wild-type or DEREG mice (n = 7 to 16 mice per group) were treated with DT 

followed by either isotype or anti-PD-L1 treatment at days 10, 13 and 17. Mice were euthanized at day 20. 

(B) Bar graphs displaying tumor weights (left) and the percentage of memory CD8+ T cells infiltrating the 

tumor (right) for the different treatment groups at day 17. (C) Experimental design during which mice bearing 

AE17-OVA tumors (n = 8 to 10 mice per group) were treated with isotype or anti-CD25 mIgG2a Treg-depleting 

antibody at days 7 and 9 followed by anti-PD-L1 treatment at day 10. (D) Mice were euthanized at day 13 

to assess Treg cell frequencies in TDLNs, non-TDLNs, spleens, blood, and tumors. (E) Immunotherapeutic 

protocol of anti-PD-L1 treatment at days 10, 13 and 17 in the presence of Treg depleting antibody at days 7 

and 9. Peripheral blood was isolated from the tail vein at days 13 and 17 and mice were monitored for survival. 

(F) Representative flow cytometry plots displaying level of proliferation (Ki67) for different treatment groups 

inCD4+ Th cells and CD8+ T cells in peripheral blood at day 17. (G) Quantification of level of proliferation (Ki67), 

PD-1 expression and expression of TNFα and IFNγ at days 13 and 17 for both CD4+ Th cells and CD8+ T cells 

in peripheral blood. (H) Kaplan-Meier curves of the experiment in E showing tumor survival and bargraphs 

displaying tumor weights at day 17 (n = 7 mice per group). (I) Kaplan-Meier curves of checkpoint-resistant 

B16F10-bearing mice treated with the same protocol as AE17-OVA bearing mice in E. (J) Kaplan-Meier curves 

of checkpoint-sensitive MC38-bearing mice treated with anti-CD25 mIgG2a at days 5 and 7 and anti-PD-L1 

treatment at days 5, 8 and 11 (n = 8 to 10 mice per group). Log rank tests were used to determine statistical 

significance. Chi-square test was performed to assess the association of treatment and survival at day 61. 

Tumors were measured for 14 days after inoculation in mice treated with isotype and anti-PD-L1. Means 

and SEMs are shown and for comparisons between two groups, unpaired t test was used. For comparisons 

between multiple groups, one-way (G and H) or two-way (B) ANOVA was used with multiple-comparison 

tests.*= p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. TDLN = tumor-draining lymph node, non-

TDLN = non-tumor draining lymph node, SEM = standard error of the mean.

To further explore whether ICB-induced Treg activation and proliferation is related to clinical 

therapy efficacy, we characterized Tregs in paired pre- and posttreatment peripheral blood 

samples of three independent cohorts: anti-PD-L1-resistant stage IV SCLC patients, patients 

with mesothelioma, and patients with stage IV NSCLC (Table S2). Advanced SCLC tumors bear 

among the highest tumor mutational burdens but are considered largely refractory to anti-

PD-(L)1 monotherapy, with only limited additional benefit when combined with first-line 

combination chemotherapy 42,43. For all three tumor types, we observed a greater increase 

in proliferation after anti-PD-1/PD-L1-containing treatment in PD-1+ Tregs but not in PD-1- 

Tregs, suggesting a direct effect of treatment via PD-1 on Tregs (Fig. 6A). Because we could 

dissect responding (R), including complete responses and partial responses, and nonresponding 

patients (NR) for NSCLC and mesothelioma, we examined whether the impact of anti-PD-1/PD-

L1 treatment in PD-1+ Tregs correlated with response to treatment in these patient cohorts. We 

detected significantly enhanced levels of proliferation after treatment in PD-1+ Tregs, but not 

in PD-1- Tregs in nonresponding patients with NSCLC and mesothelioma (Fig. 6B-C, S9A-B). This 

effect appeared to be enriched in nonresponding patients because PD-1+ Tregs proliferated less 

robustly in patients with clinical response to anti-PD-1/PD-L1 treatment. No clear correlations 
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with response were found in the PD-1+ and PD-1- effector CD4+ and CD8+ T cell populations (Fig. 

S9C-H). These data indicate that anti-PD-1/PD-L1 treatment affects PD-1+ Treg proliferation 

in patients with cancer and that this associates with resistance to anti-PD-1/PD-L1 therapy.
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◂Figure 5: Tregs in the TME of anti-PD-1 resistant patients with cancer up-regulate a transcriptional program 

linked to enhanced immunosuppression after treatment

(A) Predefined Treg clusters were isolated from published BCC and NSCLC tumor scRNA seq datasets in which 

biopsies were taken before (pre) and after (post) treatment with anti-PD1 therapy (pembrolizumab). Patients 

were classified as either responders or nonresponders based on RECIST v1.1. (B) Venn diagrams displaying 

overlap in genes up-regulated after treatment (as compared with pretreatment samples) from comparisons 

of Tregs in either nonresponder (left) or responder (right) BCC and NSCLC patients. Genes of interest in the 

overlap are highlighted. (C) Pathway enrichment analysis displaying overlap in biological pathways associated 

(P < 0.05) with significantly up-regulated genes after versus before treatment in BCC and NSCLC Tregs (input 

genes are shown in panel B), separated by therapy response (NR = non-responder, R = responder). Strength 

of association is visualized by a Z-score of the -Log10 transformed P-values. (D) GSEA plots (including genes 

with an absolute log2 fold change > 0.5) comparing Treg transcriptomes before versus after treatment of 

nonresponders (top) and responders (bottom) from BCC and NSCLC for the ‘Negative Regulation of alpha/

beta T-cell activation’ pathway (GO:0046636). (E) Donut plot of up- and down-regulated genes comparing 

responder with nonresponder patients after treatment. The arrows indicate the number of up-regulated 

genes per indicated patient group. Venn diagrams display the overlap in up-regulated genes between the 

BCC and NSCLC datasets of responders and nonresponders. (F) Pathway enrichment analysis of genes up-

regulated in nonresponders compared with responders after treatment that are shared between the BCC 

and NSCLC datasets. The association strength of pathways is displayed by -log10 transformed P-values. (G) 

Hierarchically clustered heatmap displaying scaled expression levels of genes included in the ‘Cell Activation’ 

pathway (GO:0001775). (H) Hierarchically clustered heatmaps showing scaled expression levels for selected 

genes relevant for the indicated biological functions. (I) Percentage of positive cells (i.e. displaying a transcript 

count > 0) for selected genes. (B and C and E to I) Adjusted P-value (FDR) < 0.05 and absolute log2 fold change 

> 0.5 BCC = basal cell carcinoma; DEG = Differentially Expressed Genes, GSEA = Gene Set Enrichment Analysis; 

NSCLC = non-small cell lung cancer.
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Figure 6: Increased proliferation of PD-1+ Tregs in peripheral blood after anti-PD-1/PD-L1 treatment is 

associated with treatment resistance

(A) Level of proliferation (Ki67) was assessed in PD-1+ and PD-1- Tregs at baseline (V1) and 2 weeks after start 

of anti-PD-1/PD-L1 treatment (V2) in peripheral blood of patients with SCLC, NSCLC, and mesothelioma. 

Increased proliferation after treatment start was determined in PD-1+ and PD-1- Treg cells and expressed as fold 

change in nonresponding (NR) and responding (R) NSCLC patients (B) and mesothelioma patients (C). Means 

and SEMs are shown and paired t tests were performed indicating statistical significance. * = p < 0.05, ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001. SCLC = small-cell lung cancer, NSCLC = non-small-cell lung cancer.

Discussion

In this study, we show that Tregs are not just exerting their known immunosuppressive role in 

cancer as a default characteristic but that this suppression is itself regulated by cell-intrinsic PD-1 

engagement. Clinical use of anti-PD-1/PD-L1 unleashes this form of regulation, leading to enhanced 

Tregs immunosuppression and underlying therapy resistance. The data underline the importance 

of rational combination immunotherapy designs to specifically induce effector antitumor T cell 

populations without concomitant immune suppression through ICB-activated Tregs.

Recently, Kamada et al. reported that increased Treg activity after anti-PD-1 treatment in patients 

with gastric cancer was associated with HPD 17. In addition, Kumagai et al. demonstrated that 

the balance of PD-1 expression on CD8+ T cells and Tregs before treatment in the TME predicted 

immunotherapy efficacy in NSCLC and gastric cancer. We elaborated on these findings, showing 

that the undesirable effect of anti-PD-1/PD-L1 treatment on Tregs could be more widespread, as 
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evidenced by a significant subset of nonresponding patients showing increased Treg proliferation 

after anti-PD-1/PD-L1 treatment. A small subset of responding patients displayed increased PD-1+ 

Treg proliferation, not necessarily in parallel with increased effector T cell proliferation, suggesting 

that alternative mechanisms underlying anti-PD-1/PD-L1-response are at play, as documented by 

others 44.

In addition to enhanced expression of genes related to immunosuppression by Tregs after treatment, 

we show that Tregs also acquire a more proapoptotic gene expression program. These data confirm 

earlier findings in a graft-versus-host disease model demonstrating superior immunosuppressive 

activity after PD-1 blockade by apoptotic Tregs compared with their nonapoptotic counterparts 39. 

Apoptotic Tregs abolished anti-PD-L1 efficacy in various tumor models 39,45. However, data obtained 

in claudin-low murine breast cancer, commonly linked to triple-negative breast cancer, suggest that 

anti-PD-1 treatment can promote the survival of Tregs 46. Factors such as timing, tumor model and 

antibody used could account for this discrepancy. Future efforts should confirm whether, upon 

excess stimulation, Tregs indeed benefit from an apoptotic phenotype and whether reverting Treg 

apoptosis could improve efficacy of anti-PD-1/PD-L1 therapy.

Our data indicate that PD-1 exerts an important function in directly modulating Treg phenotype 

after anti-PD-L1 treatment. These findings align with recent data showing PD-1-deficient Tregs to 

be superior immunosuppressors compared with their wildtype counterparts 17,47-49. The direct effect 

mitigated via PD-1 expressed on Tregs appeared not to be exclusive, and it is tempting to speculate 

that besides direct effects, also indirect effects mediated via mechanisms such as the modulation 

of APCs are also at play. Future research in anti-PD-1/PD-L1-resistant tumor-bearing mice and in 

models with a Treg-specific PD-1 deficiency could shed further light on this hypothesis. However, 

because genetic deletion of PD-1 on Tregs will likely mimic anti-PD-1/PD-L1 antibody-mediated Treg 

activation, therapeutic efficacy may already be compromised.

How PD-1 blockade could affect downstream receptor signaling in Tregs remains incompletely 

understood. In line with its impact on effector T cells, PD-1 signaling in Tregs decreased 

phosphatidylinositol 3-kinase (PI3K)-AKT signaling whereas antibody-mediated blockade or genetic 

ablation enhanced suppressive capacity in a murine tumor model 16. These data are in sharp contrast 

with data derived from an autoimmune encephalomyelitis model where PD-1 deficiency in Tregs 

resulted in diminished PI3K-AKT signaling, whereas an AKT activator reduced suppressive activity 48. 

These contrasting effects of PD-1 signaling in Tregs may be explained by different disease settings or 

specific rewiring of Tregs depending on the metabolic milieu. For example, lactic acid in the TME is 

important for Treg immune suppressive function and the resultant efficacy of anti-CTLA-4 therapy 
50-53. Therefore, context-specific adjustments in Tregs may profoundly influence the net effect of 

PD-1 signaling on Tregs.
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Our temporal analysis across multiple organs indicates that anti-PD-1/PD-L1-mediated effects on 

Tregs are systemically mediated. Others have previously indicated the importance of peripheral 

lymphoid tissues in generating effective anti-PD-1/PD-L1 efficacy and we have recently demonstrated 

a critical role for TDLNs in generating progenitor exhausted T cells after ICB that subsequently 

seed the tumor 54-56. Tregs in the TDLN have already been shown to mediate a role in anti-tumor 

immunity by restraining tumor invasion in patients with breast cancer whereas Tregs in tumors 

were dysfunctional 57. In the context of anti-PD-1/PD-L1 resistance, durable therapy resistance may 

therefore not only depend on anti-PD-1/PD-L1 mediated activation of Tregs in the TME but also 

on activation of Tregs peripheral lymphoid tissues, including the TDLN, that are recruited to the 

tumor. Selective PD-L1 blockade or Treg depletion in TDLNs could provide clues to the location and 

mechanisms of Treg mediated T cell suppression.

To date, clinical efficacy of manipulation of Treg number or function by CD25-directed antibodies 

is restricted. Development of novel CD25-depleting antibodies that preserves CD25 signaling in 

the effector T cell compartment offers opportunities 58. In addition, the discovery and clinical 

investigation of targets increased by checkpoint blockade, such as TIGIT, or recently identified 

Tregs targets, including endoglin, MCT1 and BATF, could offer avenues in attenuating ICB-mediated 

Treg activation 59-61. However, not all nonresponding patients showed increased Treg activity after 

treatment, indicating that other resistance mechanisms are in play and that careful selection of 

eligible patients is essential.

Although we were able to show activation of Tregs upon anti-PD-L1 treatment in mouse models 

of primary and acquired resistance to therapy, we did not selectively ablate PD-1 on Tregs to 

determine a direct causal relation of this inhibitory molecule with therapy resistance. Furthermore, 

the responses of Tregs in patients with cancer under treatment were measured retrospectively and 

would ideally be taken from cancer lesions instead of peripheral blood.

In summary, our findings implicate anti-PD-1/PD-L1-mediated activation of Tregs as an important 

mediator of therapy resistance. These data offer avenues for further research into the underlying 

mechanisms, identification of biomarkers and treatment-induced Treg-specific targets that could 

reverse anti-PD-1/PD-L1 resistance.
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Figure S1: Comparison of CD8+ T cell and CD4+ T cell (CD4+ Th- and Treg) phenotype at different time points 

prior to or following checkpoint blockade, related to Figure 1

Protein expression (percentage positive) of co-stimulatory, co-inhibitory and transcription factors were 

compared between isotype-treated (grey) and anti-PD-L1-treated (blue) mice at each indicated time point 

(days post tumor inoculation) by flow cytometry, alternative to heatmaps illustrated in Figure 1D.
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◂Figure S2: Temporal analysis of T cells in anti-PD-L1-treated AE17-OVA model in TDLN, non-TDLN, blood 

and tumor, related to Figure 1

(A) Similar to Figure 1D, TDLNs, non-TDLNs, blood and tumors were harvested at different time points prior 

to and post anti-PD-L1 treatment i.p. at day 10. Heatmaps display the difference in percentage positive at 

the different time points compared with day 0 for all markers that were assessed by flow cytometry. (B) Ki67 

protein expression was assessed for total CD8+ T cells and OVA-specific CD8+ T cells (stained by a SIINFKEL 

tetramer) at the different time points in spleen and tumor. (C) Treg related markers were assessed by flow 

cytometry for FoxP3 negative (blue), intermediate (green) and high (orange) subpopulations. (D) Treg related 

markers were assessed by flow cytometry for FoxP3- (orange), FoxP3+CD25- (blue) and FoxP3+CD25+ (green) 

CD4 T cell subsets. TDLN = tumor-draining lymph node, i.p. = intraperitoneal.
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Figure S3: Evaluation of the effect of anti-PD-L1 treatment on myeloid cells in AE17-OVA bearing mice

(A) Gating strategy for the characterization of cDC1s, cDC2s, MDSCs and inflammatory MQs. (B) Bargraphs 

displaying the percentage of alive of the different cell types isolated from tumor material at day 13 (yellow) 

and 17 (green) following isotype or anti-PD-L1 treatment at day 10 (n = 4 to 6 mice per group). (C) Percentage 

CD206 positivity on TAMs (D) MFI of CD80 (left) and MHCII (right) on cDC1s (pink), cDC2s (purple) and TAMs 

(blue). Means and SEMs are shown and unpaired t tests were performed indicating statistical significance. * 

= p < 0.05, ** = p < 0.01. cDC = conventional dendritic cell, MDSC = myeloid-derived suppressor cell, MQ = 

macrophage, TAM = Tumor-associated macrophage, MFI = mean fluorescence intensity.
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Figure S4: Comparison of Treg phenotype in non-TDLN, blood, TDLN and tumor of isotype- and anti-PD-L1 

treated mice bearing AE17-OVA tumors, related to Figure 2

(A) Absolute counts of CD4+ Th cells (orange), CD8+ T cells (blue) and Tregs (green) in spleens at day 13, 3 days 

following isotype or anti-PD-L1 treatment. (B) Similar to Figure 2A, non-TDLNs, blood, TDLNs and tumors were 

isolated from AE17-OVA bearing mice 3 days post isotype or anti-PD-L1 treatment i.p. (d13) and Tregs were 

stained for markers associated with suppressive activity by flow cytometry. Means and SEMs are shown and 

unpaired t tests were performed indicating statistical significance. * = p < 0.05, ** = p

< 0.01, *** = p < 0.001, **** = p < 0.0001. i.p = intraperitoneal, TDLN = tumor-draining lymph node, SEM = 

standard error of the mean.
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◂Figure S5: Effects of anti-PD-L1 treatment on Treg gene expression and function in the AE17-OVA model, 

related to Figure 2

(A-C) Tregs and CD4+ Th cells were purified based on CD4, CD25, PD-1 and RFP expression from tumors of 

FoxP3RFP mice on day 13, 3 days following treatment with either isotype or anti-PD-L1. (A) Similar to Figure 2B, 

pathway analysis was performed on downregulated (blue) and upregulated (red) DEGs in CD4+ Th cells and 

PD-1- Tregs. (B) Related to Figure 2C, RPKM values of genes differentially expressed in PD-1+ Tregs related to 

suppressive function and apoptosis (shown as z-scores of RPKM levels with row min-max based on all three 

T cell subsets). (C) Gene expression of DEGs in CD4+ Th cells and PD-1- Tregs and displayed in heatmaps. (D) 

Expression of activated caspase 3 and Bcl2/BIM ratio in Tregs isolated from tumors at day 13, 3 days following 

treatment with isotype or anti-PD-L1. (E) Ki67 expression in Bcl2+ and Bcl2- Tregs in tumor (F) Similar to Figure 

2D, CD25+RFP+CD4+ T cells were sorted from spleens and cultured for three days with labeled naive CD8+ T 

cells, mitomycin-irradiated T cell depleted splenocytes (APCs) and soluble anti-CD3 for 3 days. Proliferation 

of naive CD8+ T cells was assessed with different Treg:Tresp  ratios with Tregs from either isotype or anti-PD-L1 

treated mice. Percent suppression was calculated as described in the method section. Means and SEMs are 

shown and unpaired t tests were performed indicating statistical significance. * = p < 0.05, ** = p < 0.01. DEG 

= differentially expressed genes, RPKM = reads per kilobase million, APC = antigen presenting cell.
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Figure S6: Evaluation of the effects Treg depletion using anti-CD25 in combination with anti-PD-L1 in the 

AE17-OVA and B16F10 tumor model, related to Figure 4

(A-B) AE17-OVA bearing mice were treated with anti-CD25 mIgG2a at day 7 and 9 followed by anti-PD-L1 

treatment at day 10. Mice were sacrificed at day 13 and TDLNs, non-TDLNs, spleens blood and tumors were 

harvested to assess the CD8/Treg ratio (A) and absolute Treg counts (B). (C-D) Mice bearing B16F10 tumors 

were treated with anti-CD25 mIgG2a at day 7 and 9 followed by anti-PD-L1 treatment at day 10, 13 and 17 

and monitored for survival. (C) Peripheral blood was isolated at day 13 and 17 to assess the treatment effect 

on effector T cell proliferation (Ki67) and PD-1 expression. (D) Tumors were measured three times a week 

and displayed in growth curves. Mice were sacrificed when reaching a volume of >800 mm3 (length x width 

x height x 0,52) or when severely ill. Means and SEMs are shown and unpaired t tests or one-way analysis 

of variance (ANOVA) were performed indicating statistical significance. * = p < 0.05, ** = p < 0.01, *** = p 

< 0.001, **** = p < 0.0001. i.p = intraperitoneal, TDLN = tumor-draining lymph node, SEM = standard error 

of the mean.
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Figure S7: Transcriptional changes before and after anti-PD-1 therapy in BCC and NSCLC patients, related 

to Figure 5

(A) Violin plots showing the expression levels of Treg marker genes for the BCC and NSCLC datasets. (B) 

Percentage of cells expressing Treg marker genes of total Tregs for both the BCC and NSCLC datasets. (C) 

Venn diagram displaying overlap of genes upregulated pre-treatment (as compared with post-treatment 

samples) in non-responders of the BCC and NSCLC datasets. (D) Venn diagram displaying overlap of genes 

upregulated pre-treatment (as compared with post-treatment samples) in responders of the BCC and NSCLC 

datasets. (E) Heatmap of genes upregulated in both BCC and NSCLC non-responder patients pre-treatment, 

displayed as row Z-score. (F) Heatmap of genes upregulated in both BCC and NSCLC responder patients pre-

treatment, displayed as row Z-score. (G) Venn diagram displaying overlap of genes upregulated in responders 

vs. nonresponders post-treatment in the BCC and NSCLC datasets. (H) Pathway enrichment analysis of genes 

upregulated in responders vs. nonresponders post-treatment in the BCC and NSCLC datasets. C-F) Adjusted 

P-value (FDR) < 0.05 and absolute log2fold change > 0.5.
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Figure S8: Differences between responders and nonresponders prior to treatment in BCC and NSCLC 

patients, related to Figure 5

(A) Venn diagrams displaying overlap in DEGs between BCC and NSCLC Tregs when comparing non-responders (NR) 

to responders (R). (B) Pathway enrichment analysis using pre-treatment DEGs upregulated in BCC and NSCLC Tregs 

from responders and nonresponders to anti-PD1 therapy. (C) Heatmap displaying scaled mean expression of genes 

upregulated in both BCC and NSCLC Tregs from nonresponders to anti-PD1 therapy. (D) Heatmap displaying the 

scaled mean expression of genes upregulated in both BCC and NSCLC Tregs from responders to anti-PD1 therapy. 

A-D) Adjusted P-value (FDR) < 0.05 and absolute log2fold change > 0.5. DEG = differentially expressed gene.

Figure S9: Evaluation of proliferation in Tregs, CD4+ Th cells and CD8+ T cells in patients with SCLC, NSCLC 

and mesothelioma at baseline and following anti-PD-1/ anti-PD-L1 treatment, related to Figure 6

Peripheral blood was isolated from patients with SCLC, NSCLC and mesothelioma at baseline (V1) and two 

weeks following start anti-PD-1/ anti-PD-L1 treatment (V2). (A-B) Graphs displaying the level of proliferation 

of PD-1- Tregs in NSCLC (A) and mesothelioma (B). (C-D) Proliferation was assessed for PD-1- and PD-1+ CD8 

T cells (C) and PD-1- and PD-1+ CD4+ Th cells (D) for SCLC patients. (E-F) For NSCLC, proliferation of PD-1- and 

PD-1+ CD8 T cells (E) and PD-1- and PD-1+ CD4+ Th cells (F) were assessed for nonresponding patients (orange) 

and responding patients (blue). (G-H) Proliferation of PD-1- and PD-1+ CD8 T cells (G) and PD-1- and PD-1+ CD4+ 

Th cells (H) was also assessed for nonresponding (orange) and responding (blue) mesothelioma patients. 

Means and SEMs are shown and unpaired t tests were performed indicating statistical significance. * = p < 

0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. SCLC = small-cell lung cancer, NSCLC = non-small-cell 

lung cancer SEM = standard error of the mean.▸
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Figure S10: Gating strategy for the characterization of T cells in murine samples
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Figure S12: Gating strategy for the characterization of T cells in human peripheral blood
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Table S1: NSCLC and BCC patient characteristics, related to Fig. 5

  Yost et al. 2019 Liu et al. 2022
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Patient characteristics       

Age  N/A N/A N/A 60 (48-

73)

60 (48-

73)

61 (57-

64)

Sex Male N/A N/A N/A 8 (72.7) 5 (83.3) 3 (60.0)

 Female N/A N/A N/A 3 (27.3) 1 (16.7) 2 (40.0)

Tumor characteristics       

Tumor type BCC 11 (100) 6 (100) 5(100) x x x

NSCLC: LUAD x x x 8 (72.7) 6 (100) 2 (40.0)

 NSCLC: LUSC x x x 3 (27.3) 0 3 (60.0)

Biopsy site Lymph node x x x 4 (30.7) 2 (33.3) 2 (28.6)

Right lung x x x 5 (38.5) 3 (50.0) 2 (28.6)

Left lung x x x 3 (23.1) 1 (16.7) 2 (28.6)

Liver x x x 1 (7.7) 0 1 (14.3)

Left arm 1 (9.1) 1 (16.7) 0 x x x

Right arm 2 (18.2) 1 (16.7) 1 (20.0) x x x

Left ear 1 (9.1) 0 1 (20.0) x x x

Nose 1 (9.1) 1 (16.7) 0 x x x

Knee 1 (9.1) 1 (16.7) 0 x x x

Right calf 1 (9.1) 0 1 (20.0) x x x

Left forehead 1 (9.1) 1 (16.7) 0 x x x

Right neck 1 (9.1) 0 1 (20.0) x x x

 Left Cheek 2 (18.2) 1 (16.7) 1 (20.0) x x x

Treatment        

Prior Treatment Vismodegib 8 (72.7) 4 (66.7) 4 (80.0) x x x

Sonidegib 1 (9.1) 1 (16.7) 0 x x x

 None 2 (18.2) 1 (16.7) 1 (20.0) 11 (100) 6 (100) 5 (100)

Treatment Pembrolizumab 8 (72.7) 3 (50.0) 5 (100) 11 (100) 6 (100) 5(100)

 Cemiplimab 3 (27.3) 3 (50.0) 0 x x x

Additional 

treatment

Ongoing 

Vismodegib 

treatment

3 (27.3) 1 (16.7) 2 (40.0) x x x
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Table S1: NSCLC and BCC patient characteristics, related to Fig. 5

  Yost et al. 2019 Liu et al. 2022

Characteristics  
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Regulatory T-cells       

Cell numbers Pre-treatment 2103 

(46.8)

1347 

(46.3)

756 

(47.9)

4654 

(41.7)

3038 

(61.6)

1616 

(25.9)

 Post-treatment 2386 

(53.2)

1564 

(53.7)

822 

(52.1)

6517 

(58.3)

1896 

(38.4)

4621 

(74.1)

Clinicopathological descriptives of all samples, in total and per response (responders and nonresponders)
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Table S2. Patient characteristics of patients used in Figure 6.

Characteristics SCLC NSCLC Mesothelioma

Patient characteristics

n 7 21 15

Age 64 (52-78) 63 (45-73) 59 (49–82)

Sex

Male 2 (28,6) 10 (47,6) 14 (93)

Female 5 (71,4) 11 (52,4) 1 (7)

Histology

Adeno 15 (71,4) 0 (0)

Squamous 6 (28,6) 0 (0)

Epithelioid 0 (0) 12 (80)

Sarcomatoid 0 (0) 3 (20)

BOR (%)

PD 0 (0) 10 (47,6) 5 (33,3)

SD 0 (0) 0 (0) 1 (6,7)

PR 7 (100) 11 (52,4) 9 (60)

Previous treatment

0 0 (0) 5 (23,8) 0 (0)

1 0 (0) 5 (23,8) 15 (100)

2 0 (0) 2 (9,5) 0 (0)

3 0 (0) 4 (19) 0 (0)

4 0 (0) 1 (4,8) 0 (0)

5 0 (0) 1 (4,8) 0 (0)

6 0 (0) 1 (4,8) 0 (0)

7 0 (0) 1 (4,8) 0 (0)

8 0 (0) 1 (4,8) 0 (0)

anti-PD-1/PD-L1

Platinum/etoposide

/atezolizumab

7 (100) 0 (0) 0 (0)

Nivolumab 0 (0) 15 (71,4) 14 (93,3)

Pembrolizumab 0 (0) 6 (28,6) 1 (6,7)

0 = no treatment, 1 = Pemetrexed/platinum, 2 = Gemcitabine/platinum, 3 = Pemetrexed/platinum, 

radiotherapy, 4 = Etoposide/platinum, radiotherapy, 5 = Gemcitabine/platinum, radiotherapy, 6 = Etoposide/

platinum, gemcitabine/platinum, radiotherapy, 7 = Pemetrexed/platinum, docetaxel, radiotherapy, 8 = 

Radiotherapy Clinicopathological descriptives of all samples (peripheral blood)





Part 2
Enhancing cancer vaccine 
efficacy through combined 
immunotherapy strategies





Chapter 5

Mandy van Gulijk, Floris Dammeijer, Joachim Aerts, Heleen Vroman

Frontiers of Immunology 2018 Dec 5:9:2759

Combination strategies to 
optimize efficacy of dendritic 
cell-based immunotherapy



130

| Chapter 5

Abstract

Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of 

immune responses. In various malignancies, these immunostimulatory properties are exploited by 

DC therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo 

antigen-loaded DCs. Depending on the type of DC therapy used, long-term clinical efficacy upon DC 

therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor 

cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME) 

leading to the development of resistance. The efficacy of different types of DC therapy is dependent 

on the type of DC used and which type of antigen is used. In order to circumvent tumor-induced 

suppressive mechanisms and unleash the full potential of DC therapy, considerable efforts have 

been made to combine DC therapy with chemotherapy, radiotherapy or with immunomodulatory 

therapeutics, such as checkpoint inhibitors. These combination strategies could enhance tumor 

immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration 

of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such 

as regulatory T cells and myeloid-derived suppressor cells. In this review, different strategies of 

combining DC therapy with immunomodulatory treatments will be discussed. These strategies and 

insights will improve and guide DC-based combination immunotherapies with the aim of further 

improving patient prognosis and care.
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Introduction

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) and mediate a critical 

role in the interface between the innate and adaptive immune system. DCs can be subdivided in 

different subsets including conventional DCs (cDCs) and plasmacytoid DCs (pDCs) that arise in the 

bone marrow and reside in peripheral tissues in an immature state. In addition, monocytes are able 

to differentiate into monocyte-derived DCs (moDCs) upon inflammatory conditions 1-4. Activation 

and maturation of DCs are induced upon exposure to environmental stimuli including damage-

associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), 

leading to enhanced expression of co-stimulatory molecules, cytokine production, reduced 

phagocytosing capacity and improved T- and B cell activation 5,6. DC-mediated T cell activation 

is initiated by antigen presentation on major histocompatibility class (MHC) I and II and further 

guided by co-stimulation and secretion of cytokines 7-9. In addition to T cell activation, DCs can 

activate natural killer (NK) cells by cell-cell contacts and secretion of pro-inflammatory cytokines 

such as type I interferons (IFNs) 10. However, in a tumor setting, oncogenic mutations and factors 

secreted by cancer cells limit DC migration and maturation by inducing overexpression of signal 

transducer and activation of transcription 3 (STAT-3) 11-15, respectively. This leads to insufficient 

antigen presentation, T cell anergy and decreased T cell proliferation, thereby restricting effective 

anti-tumor immunity 16-18.

Therefore, administering mature ex vivo-activated DCs loaded with tumor antigens may 

circumvent suppressive tumor-derived signals, thereby inducing effective anti-tumor immunity 

upon vaccination. For the past two decades, DC therapy has been shown to be safe, well-tolerated 

and capable of inducing anti-tumor immunity 19. However, response rates to DC therapy are 

limited, with objective responses rarely exceeding 15% 20. Several mechanisms may contribute 

to the limited clinical efficacy besides suboptimal DC therapy design, including downregulation of 

tumor-associated antigens (TAAs) and MHC molecules by tumor cells, restricted migration of DCs 

to lymph nodes (LN) and the inherent immune suppressive tumor microenvironment (TME) 21-26. 

The TME harbors a complex network of tumor tissue, stroma and immune cells including tumor-

associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells 

(Tregs). These suppressive cells inhibit activation, proliferation and effector functions of infiltrating 

immune cells by the expression of co-inhibitory molecules and secretion of immunosuppressive 

cytokines 27-29. Conventional therapies, including chemotherapy and radiotherapy or more recently 

developed immunotherapies such as immune checkpoint inhibitors are able to counteract the 

immunosuppressive environment of the tumor. Therefore, combining these therapies with DC 

therapy could lead to synergistic effects and improve clinical responses. In this review, we will discuss 

current approaches of DC therapy, promising combinations with chemotherapy, radiotherapy 

and immune checkpoint inhibitors that are clinically applicable and future perspectives for novel 

combination therapies that can improve DC therapy efficacy.
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Current approaches of DC therapy

In order to obtain a sufficient number of DCs for administration, DCs are commonly generated from 

isolated CD14+ monocytes or from CD34+ hematopoietic progenitors isolated from peripheral blood, 

bone marrow or cord blood 3,5. Culturing purified CD14+ monocytes with granulocyte-monocyte 

derived growth factor (GM-CSF) and interleukin (IL) 4 will lead to differentiation into immature 

moDCs 30. Vaccination with these immature DCs loaded with tumor antigens characterizes first-

generation DC therapy and resulted in poor clinical results with a tumor regression of 3.3% 31. In 

second-generation DC therapy, DCs are additionally matured by ‘maturation cocktails’ including Toll-

like receptor ligands and cytokines which improved clinical results with objective response rates of 

8-15%. Sipuleucel-T, the only US FDA approved DC therapy for use in (prostate) cancer patients, can 

be positioned at the intersection between first- and second-generation DC therapy as maturation 

is not achieved by maturation cocktails but rather by the fusion of GM-CSF to prostate antigen 32. 

In next generation DC therapy, naturally-occurring DC (nDCs) subsets are employed as nDCs are 

superior over mo-DCs in terms of functionality and production costs and time. In addition, different 

DC subsets also induce different tumor-specific immune responses, as vaccination with murine 

cDC1s induced a prominent CD8+ T cell driven anti-tumor immune response beneficial in tumors 

with abundant Tregs whereas cDC2s induced a Th17-mediated anti-tumor immune response that 

were advantageous in tumors with tumor-associated macrophages 33,34. Clinical trials using nDCs 

have shown that the usage of nDCs is safe, feasible and associated with promising efficacy which 

indicates that this should be further investigated 35,36.

DC loading

DCs can be loaded with different sources of tumor antigens, such as mRNA, peptides, proteins or 

whole tumor cell lysate 5,37. While peptides bind directly to MHC molecules, proteins and tumor 

cells must be phagocytosed and processed before presentation on MHC molecules can occur. 

Furthermore, loading of DCs with tumor-associated peptides enables the induction of specific T 

cell responses, which minimizes the risk on side-effects and tolerance. However, for most tumor 

types, TAAs are still unidentified and can be circumvented by loading DCs with tumor lysate. 

Additionally, loading DCs with tumor lysate initiates a broad spectrum of immune responses which 

is not restricted to cytotoxic T lymphocyte (CTL) activation. This can improve DC therapy efficacy as 

objective clinical responses observed upon treatment with DCs loaded with tumor lysate (8.3%) are 

higher than treatment with DCs presenting defined antigens (3.6%) in a meta-analysis of 173 trials 38.

Route of administration

To induce effective anti-tumor immunity, migration of DCs to lymph nodes is essential. Therefore, 

various administration routes have been exploited (intradermally, intranodally, intravenously, 

subcutaneously and intratumorally), although to date the superior route of administration is not still 

not established. Also the percentages of DCs that migrate successfully towards the lymph nodes is 
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limited, with up to 4% of injected DCs reaching the lymph node after intradermal injection and 0-56% 

reaching the lymph node after intranodal injection 26. The migratory capacity can be improved by 

preconditioning the injection site with a potent recall antigen, tetanus/dipteria toxoid, which improved 

overall survival (OS) and progression free survival (PFS) in glioblastoma patients 39. In addition to 

improving migratory capacity, studies have also targeted apoptotic pathways by promoting Bcl-2 or 

inhibiting BAK/BAX signaling in DCs to increase the lifetime of DCs and thereby enhance bioavailability 

of the injected DCs which resulted in improved activation of T cells 40-43. However, despite these 

attempts to improve DC therapy, combinatorial strategies are essential to prorogue suppressive 

mechanisms in the TME and to further potentiate the clinical efficacy of DC therapy.

Combination therapies to enhance DC therapy

Combination with chemotherapy

Chemotherapeutics are traditionally designed to eradicate and eliminate malignant cells to lower 

tumor burden. However, more recent insights indicate that chemotherapy also has off-target 

immunological effects depending on the type of chemotherapy, such as immunogenic cell death 

(ICD) of tumor cells, thereby enabling the induction of anti-tumor immunity 44. ICD stimulates 

emission of DAMPs, including adenosine triphosphate (ATP), high mobility group box 1 (HMGB1) 

and calrecticulin (CALR), which initiates antigen uptake, maturation, activation, and recruitment 

of endogenous DCs in the tumor 45,46. In addition, specific chemotherapeutics can directly deplete 

suppressive immune cells including Tregs and MDSCs 47-49. Due to the effects on tumor burden and 

the immunosuppressive TME, chemotherapeutics could have synergistic effects when combined 

with DC therapy. For instance, tumor reduction by neo-adjuvant chemotherapy could improve DC 

therapy, as DC therapy is most effective in cases of low tumor burden 31. In addition, depletion 

of immunosuppressive cells in the TME renders the TME more receptive for tumor-specific T cell 

infiltration upon DC therapy. Timing of chemotherapy administration may be crucial as potential 

synergistic effects of combination treatments depends on the interval and sequence of treatment 

administration 50. For instance, chemotherapy applied prior to DC therapy with substantial intervals 

aims at tumor reduction whereas shorter intervals or concurrent combination therapy allow 

depletion of suppressive immune cells. In the following sections, combinations of well-studied 

chemotherapeutics with ex vivo antigen-loaded DCs will be discussed. A summary of the main 

characteristics of the studies is presented in Table S1.

Cyclophosphamide

Cyclophosphamide is an alkylating agent that has tumoricidal effects, thereby reducing tumor 

burden51. In addition, cyclophosphamide initiates ICD and transient lymphoablation upon high doses, 

which results in depletion of suppressive immune cells and stimulates anti-tumor T cell responses. In 

contrast, low-dose cyclophosphamide improves tumor-specific immunity by Treg depletion (Fig. 1) 47. In 
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mesothelioma, melanoma and colon carcinoma murine models, administration of cyclophosphamide 

prior to DC therapy prolonged survival compared with mice treated with monotherapy. This is likely 

caused by a cyclophosphamide-induced decrease in Tregs, and subsequent increase in CD3+ T cells, 

as observed in these studies 52,53. Cyclophosphamide administration 3 days prior to DC therapy was 

shown to induce T cell responses to 3 melanoma gp100 antigen-derived peptides G154, G206-2M and 

G280-GV in 6 out of 7 melanoma patients post vaccination 54. A reduction in Tregs was also observed 

in mesothelioma patients treated with concurrent combination of cyclophosphamide and DC therapy 

but remained unaffected in a study with melanoma patients 55,56. These differences could be explained 

by differences in sampling time, as reduction in Tregs was evaluated after the first cyclophosphamide 

treatment in mesothelioma patients 55, whereas in melanoma patients, these levels were assessed 

after 4 and 6 cycles of DC therapy56. Combining DC therapy with cyclophosphamide also improves 

clinical efficacy, as patients with ovarian cancer that received cyclophosphamide concurrent with 

DC therapy and bevacizumab, a VEGF-a blocking antibody, exhibited significantly prolonged survival 

compared with patients not receiving cyclophosphamide 57. These results were associated with 

reduced TGFβ levels, a cytokine that is abundantly produced by Tregs in ovarian cancer. Contradictory, 

combined DC therapy with cyclophosphamide resulted in poor clinical responses in patients with 

metastatic renal cell carcinoma. However, as the DCs administered in this study were of allogeneic 

origin, the lack of clinical efficacy could be explained by the nature of DCs administered58. These results 

indicate that Treg depletion upon cyclophosphamide treatment is able to synergistically augment DC 

therapy efficacy both in preclinical and clinical settings, depending on the tumor type and DCs applied.

Temozolomide

The alkylating agent temozolomide (TMZ) induces lymphoablation upon high dosages whereas at 

low doses it primarily targets Tregs (Fig. 1) 49. As this compound effectively crosses the blood-brain 

barrier, TMZ is mainly used to treat glioblastoma and melanoma, as the brain is a frequent metastatic 

site for melanoma 59,60. In patients with advanced melanoma, administration of one TMZ cycle 

prior to each DC therapy decreased circulating Tregs with 60.5% 61. Simultaneous administration 

of TMZ and DC/glioma cell fusions in recurrent and newly-diagnosed glioma patients resulted in 

WT-1, gp100 and MAGE-A3-specific CTLs upon vaccination. In the newly-diagnosed patients, PFS 

and OS were improved compared with an international trial of TMZ monotherapy 62. However, in 

recurrent glioblastoma patients, where DC therapy was followed by TMZ administration, combined 

treatment failed to improve 6-month PFS compared with a reference group with TMZ monotherapy 
63. This could be due to reduced CTL numbers caused by TMZ-induced lymphoablation, thereby 

counteracting the effects of DC therapy, as shown by a recent study 64. Interestingly, this study 

also illustrated that, in contrast to CTL numbers, NK cells in peripheral blood remained constant 

after concurrent combinations with TMZ. However, whether the effects observed on NK cells 

were associated with depletion of Tregs remains elusive. Furthermore, this indicates that TMZ 

administration before or during DC therapy could enhance DC therapy efficacy, whereas DC therapy 

followed by TMZ may exert negative effects on DC-induced anti-tumor immunity.
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Gemcitabine

Gemcitabine is able to improve anti-tumor immunity by depletion of MDSCs and Tregs (Fig. 1) 47,48,65. 

Treatment of mice bearing pancreatic tumors with gemcitabine 2 days before and after DC therapy 

prolonged survival compared with untreated mice which was not observed for both monotherapies 
66. Concurrent treatment of DC therapy and gemcitabine in a murine pancreatic model delayed 

tumor growth and prolonged survival compared with both monotherapies. This could be dependent 

on MDSC numbers, as MDSC numbers were significantly reduced in spleens and tumors of mice 

treated with gemcitabine 67. However, in pancreatic cancer patients, despite decreased PD-1+CTL 

numbers in responders, the concurrent combination did not result in decreased MDSC and Treg 

numbers in responders versus non-responders 68. These results indicate that gemcitabine may 

enhance DC therapy efficacy, however the mechanism of action warrants further investigation.

Other chemotherapy combinations

With the aim to reduce tumor burden, Hegmans et al. treated mesothelioma patients with 

premetrexed and cisplatin 12 weeks prior to DC therapy, which resulted in immunological responses 

in all patients against keyhole limpet hemocyanin (KLH), a protein used to assess T cell responses 

initiated by DC therapy 69. As this trial has no control arm no conclusions on synergy can be made. 

Co-administration of oxiplatin, capecitabine and DC therapy in colon cancer patients induced 

proliferation of KLH-specific CD4+T cells in all patients as well 70. An effect on CD4+ T cells was 

also observed in multiple myeloma patients wherein treatment with DCs and cytokine-induced 

killer cells (CIK) combined with bortezomib and dexamethasone improved CD4+/CD8+ T cell ratios 

compared with baseline and treatment with chemotherapy alone 71. Specific anti-tumor immunity 

with CTLs directed against gp100, tyrosine and NY-ESO or WT1 was induced in respectively 67% or 

44% of patients with stage IV melanoma upon combination with dacarbazine or carboplatin and 

paclitaxel 72,73. However, combination with docetaxel failed to improve clinical responses in patients 

with esophageal cancer and did not resulted in improved PFS in patients with prostate cancer 

compared with docetaxel monotherapy 74,75. These results indicate that combined treatment with 

chemotherapy and DC therapy is feasible and safe, however further research should be conducted 

providing insight into the potential synergistical effects.

Combination with radiotherapy

Ever since radiotherapy was found to affect non-radiated tumor lesions in a process called the 

abscopal effect, the immunomodulatory effects of this therapy have been more thoroughly 

appreciated. As radiotherapy induces ICD, one primary effect is the release of DAMPs and 

tumor-derived antigens which initiate the activation and migration of DCs to the LN where DCs 

subsequently cross-present these antigens to T cells and induce systemic anti-tumor immune 

responses (Fig. 1) 76-80. The induction of systemic anti-tumor immunity was indeed observed when 

radiotherapy was combined with GM-CSF as it generated abscopal effects in some patients 81. 

In addition, the combination with Flt-3 ligand in a Lewis lung carcinoma murine model reduced 
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metastases and prolonged survival 82. However, in settings of compromised DC functionality, 

intratumoral injection of exogenously-prepared unloaded DCs followed by radiotherapy could 

be advantageous. Induction of systemic immunity was indeed observed in a squamous-cell 

carcinoma murine model, as combining radiotherapy with DC transfer increased the presence 

of CTLs in the tumor-draining LN (TDLN) compared with DC monotherapy 83. In addition, reduced 

tumor burden and prolonged survival were observed compared with monotherapy 84-88. In clinical 

trials with patients suffering from hepatocellular carcinoma and high-risk sarcoma, combining 

unloaded DCs with radiotherapy induced tumor-specific immunity in 70% and 52.9% of the cases, 

respectively 89,90. Besides synergistic effects when combined with unloaded DCs, radiotherapy may 

also improve efficacy when combined with loaded DCs as it transforms irradiated tissue into an 

immunogenic niche by enhancing the expression of vascular endothelial cell adhesion protein 

1 (VCAM-1) on endothelial cells, FAS, MHCI and natural killer group 2D (NKG2D) on tumor cells 

and increasing CXCL16 secretion, thereby promoting homing, infiltration and tumor killing by 

DC-induced lymphocytes (Fig. 1) 91-96. In patients with stage I esophageal cancer, 1- and 2-year 

survival rates were significantly improved upon treatment with loaded DCs and radiotherapy 

as compared with radiotherapy alone. Addition of CIK to this combination failed to improve 

survival in patients with stage III/IV non-small-cell lung cancer 97,98. These results indicate that 

combinatorial treatment has synergistic effects, but these depend on tumor type and stage, as 

improved efficacy is most prominent at early tumor stages.

Combination with immune checkpoint inhibitors

In cancer, tumor cells and immune cells often overexpress co-inhibitory molecules, such as PD-1/

PD-L1 and CTLA-4, which suppress anti-tumor immunity. Checkpoint inhibitors targeting these co-

inhibitory molecules improve existing anti-tumor immunity when administered as monotherapy 
99,100. Additionally, combinations with DC therapy may result in synergistic effects as expression of 

these co-inhibitory molecules could also limit durable DC therapy effects by inhibiting DC therapy 

induced T cells as well as DCs directly.

PD-1/PD-L blocking antibodies

The PD-1/PD-L-axis exerts negative effects on TME-infiltrating immune cells by inhibiting T cell 

effector functions, NK cells and inducing T cell exhaustion 101-104. Additionally, PD-L1 expression 

on tumor cells also directly inhibits IFNγ-mediated cytotoxicity by a STAT3/caspase 7 dependent 

pathway 105. Therapeutically targeting PD-1/PD-L1 could therefore render the TME more receptive 

for lymphocyte infiltration and sensitize tumor cells for cytotoxicity which could act synergistically 

upon combination with DC therapy (Fig. 1). Combining DC therapy with PD-1 blockade reduced 

Tregs, induced IFNγ secretion, while secretion of IL-10 by CD4+T cells was decreased. In addition, 

cytotoxicity of CTLs improved when PD-1 was inhibited in a co-culture of tumor cells and T cells 

isolated from mice treated with DC/myeloma fusion 106. In vivo investigation of DC therapy combined 

with PD-1 blockade reduced tumor volume of mice with melanoma 107 and prolonged survival in 
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murine models for glioblastoma 108 compared with monotherapy. These beneficial effects on anti-

tumor immunity were also observed in a breast cancer murine model upon combinations with 

anti-PD-L1 antibodies 109. Additionally, this study investigated the combination of specific blockade 

of PD-L1 on DCs by in vitro incubation with antagonistic monoclonal antibodies 109.

PD-L1/2 are both expressed on DCs and are associated with suppression of effector CTLs and CD4+ T 

cells and induces Treg-expansion 110-117. Conversely, the expression of PD-1 on DCs negatively affects 

DC survival 118. This indicates that blockade of PD-1 or PD-L1 on DCs could enhance anti-tumor 

immunity in vivo via multiple ways. PD-L1 blockade on DCs improved maturation and proliferation 

of DCs during culture, inhibited tumor outgrowth and prolonged survival compared with mice 

treated with DCs and anti-PD-L1 inhibitors systemically 109. These results underline the importance 

of PD-L1 expression on DCs in inhibiting anti-tumor immunity. Therefore, efforts are undertaken 

to establish DC-specific PD-L1 blockade, primarily by different RNA introducing techniques, such 

as small interference RNA (siRNA) or short hairpin RNA (shRNA). Preclinical data indicate that 

PD-L1 can effectively be silenced using these approaches without affecting viability, maturation 

or costimulatory molecule expression. In addition, silencing PD-L1 or PD-L2 specifically on DCs 

enhanced proliferation of tumor-specific CTLs and CD4+ T cells, augmented production of IFNγ, 

tumor-necrosis factor alpha (TNFα), IL-2, IL-5 and IL-12 and promoted cytolysis of tumor cells in vitro 
119-123. These promising data provide incentive to further investigate the combination of systemic 

PD-(L)1 blockade with DC therapy and PD-L1 blockade on DCs.

CTLA-4

The antagonistic antibodies ipilimumab and tremelimumab are designed to target CTLA-4, an 

inhibitory pathway that inhibits activation of naïve T cells by preventing the binding of CD28 on T 

cells to CD80/CD86 on APCs, a mechanism widely exploited by Tregs124,125. In various murine models, 

ipilimumab was shown to induce antibody-dependent cell-mediated cytotoxicity (ADCC), thereby 

facilitating Treg depletion while tremelimumab inhibits effector functions of Tregs (Fig. 1) 126,127. 

However, recent clinical data question the Treg-depleting capacity of ipilimumab, as treatment 

with ipilimumab did not deplete Tregs in the TME of patients with melanoma, prostate cancer and 

bladder cancer 128. In a retrospective study with stage III melanoma patients that progressed after 

DC therapy, administration of ipilimumab induced tumor-specific T cell responses in 72% of the 

cases although this was not associated with improved OS 129. Clinical and CTL responses were also 

not associated in a clinical trial with 16 melanoma patients treated with MART-1 peptide loaded 

DCs and tremelimumab 130. However, most promising clinical results were obtained by a recent 

study, in which the overall response rate reached 38% in advanced melanoma patients treated with 

ipilimumab combined with DCs electroporated with CD40L, CD70 and constitutively activated TLR-4 

encoding mRNA and one of 4 melanoma-associated antigens (MAGE-A3, MAGE-C2, tyrosinase, or 

gp100) fused to an HLA-class II targeting signal 131, thereby indicating that combining DC therapy 

with CTLA-4 targeting agents could lead to synergistic effects.
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◂Figure 1: Immunological effects of chemotherapy, radiotherapy and checkpoint inhibitors

Cyclophosphamide induces ICD which enhances the recruitment, activation, maturation and antigen uptake 

by DCs. In addition, cyclophosphamide and temozolomide deplete Tregs and induce lymphoablation upon 

treatment with low-dose or high-dose, respectively. Immunological functions of gemcitabine entail depletion 

of Tregs and MDSCs. Radiotherapy induces, besides ICD, enhanced expression of FAS, MHC class I and NKG2D 

ligands on tumor cells and enhanced expression of VCAM-1 on endothelial cells. Furthermore, secretion 

of CXCL16 by tumor cells is increased after radiotherapy. Antagonistic CTLA-4 antibodies enhance T cell 

activation by the preventing the binding of CD28 with CD80/86. Ipilimumab depletes Tregs by ADCC whereas 

tremelimumab inhibits functions of Tregs upon binding. Anti-PD1 antagonistic antibodies enhance T cell 

effector functions while preventing exhaustion of T cells. Blockade of PD-L1 on DCs improves survival while 

blockade on tumor cells results in improved tumor-cell infiltration and killing. Ab, antibody; Ag, antigen; ATP, 

adenosine triphosphate; CALR, calreticulin; CTLA-4 = cytotoxic T-lymphocyte-associated antigen, CXCL16 = 

chemokine ligand 16, DC = dendritic cell, Fas = first apoptosis signal, HMGB1 = high mobility group box 1, 

MDSC = myeloid-derived suppressor cell, MHC class I/II = major histocompatibility complex class I/II, NKG2D 

ligand = natural killer group 2 member D, PD-1 = programmed death 1; PD-L, programmed death ligand, TCR 

= T cell receptor, Treg = regulatory T cell, VCAM-1 = vascular endothelial cell adhesion protein 1.

Combination with other immunomodulating therapies

Recently also other immunomodulatory therapies were approved that enable depletion of specific 

immunosuppressive cell types, such as macrophages that are depleted upon antibody or tyrosine 

kinase inhibition of the M-CSF-receptor. In line, we have previously combined DC therapy with 

M-CSFR inhibitor treatment in murine tumor models and found improved survival compared with 

DC-monotherapy. In addition, numbers, proliferation and exhaustion state of CTLs were improved 
132. Similar results were obtained when combining DC therapy with a CD40-agonistic antibody, 

capable of converting macrophages to a proinflammatory phenotype and further stimulating 

the CD40+ DCs 133. Besides macrophages, selective depletion of Tregs could enhance anti-tumor 

immunity. Results in a preclinical melanoma mouse model showed that depletion of Tregs using 

anti-CD25 antibodies prior to DC therapy elicits long-lasting anti-tumor immunity, as most mice 

remained tumor-free after tumor rechallenge 134. Further investigation into these combinations in 

different (pre)clinical models could lead to promising novel combination strategies.

Future perspectives

Despite the clinical success of DC therapy, clinical efficacy remains limited to a proportion of patients 

and integration of combinatorial approaches are therefore warranted to improve efficacy. Timing 

of these combinatorial approaches should be carefully considered as this will affect the potential 

synergistic mode of action. In addition, determining optimal combination therapies likely depends 

on multiple factors including patient’s condition, tumor type, stage and composition of the TME. 

Therefore, characterization of tumor cells and immune cells present in the TME or peripheral blood 

of individual patients will help to select immunotherapies that most likely will work synergistically 
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with DC therapy. For example, treatment of tumors enriched with Tregs should entail combinations 

with Treg-depleting chemotherapeutics, whereas DC therapy should be combined with PD-L1 

antagonistic antibodies in tumors with high PD-L1 expression. Furthermore, careful characterization 

of the TME and peripheral blood could provide novel insights for combination strategies.

Conclusion

Although combinations with DC therapy have demonstrated beneficial effects contributing to 

anti-tumor immunity, the potential for further improvement remains. A major focus should be on 

the careful characterization of tumor and peripheral blood of each individual patient as this will 

be needed to tailor treatments and enhance efficacy on a personalized level. In addition, more 

controlled clinical trials should be executed to directly compare efficacy with monotherapy. Timing 

of treatment administration should be taken into consideration in these studies as it could affect 

the efficacy of combination immunotherapies.
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Supplementary data

Table 1. Study characteristics of (pre)clinical studies.

Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Pr
ec

lin
ic

al

Cyclophosphamide Mesothelioma

(AB1)

6 Untreated

CTX + DC-Tx + 

CTX

DC-Tx + CTX

CTX: day 3-10b

DC-Tx: day 12b

Tumor lysate-

loaded mature 

BM-derived DCs

0,13 mg/

ml (drinking 

water)

Tregs Prolonged survival 

compared with untreated

52

Melanoma

(B16)

10 Untreated

CTX

DC-Tx

CTX: day 5b

DC-Tx: day 9 and 23b

Tumor lysate-

loaded mature 

BM-derived DCs

50 mg/kg 

body weight

Prolonged survival 

compared with 

monotherapy and 

untreated

53

Colon carcinoma 

(CT26)

10 Untreated

CTX

DC-Tx

CTX: day 5b

DC-Tx: day 9 and 23b

Tumor lysate-

loaded mature 

BM-derived DCs

50 mg/kg 

body weight

Tregs IFNγ secreting 

lymphocytes

Prolonged survival 

compared with 

monotherapy and 

untreated

53

Gemcitabine Pancreatic 

cancer

(Panc02)

6-8 Untreated

CTX

DC-Tx

CTX 2 days prior and after DC-Tx 

for 5 weeks

BM-derived 

mature DCs loaded 

with Panc02 cells

25 and 50 

mg/kg body 

weight

Prolonged survival 

compared with untreated 

(for both dosages)

66

Pancreatic 

cancer

(Panc02)

8 Untreated

CTX

DC-Tx

CTX: every 3-4 days until day 42 

(start day 3)

DC-Tx: day 3, 7 and 10b

Unloaded 

immature BM-

derived DCs

120 mg/kg 

body weight

MDSCs IFNγ secreting 

lymphocytes

CD8+ T cells in 

tumor tissue

Prolonged survival 

compared with 

monotherapy and 

untreated

67

Cl
in

ic
al

Cyclophosphamide Melanoma 7 CTX: 3 days prior to first DC-tx.

DC-tx: 6 vaccinations with 3-week 

intervals

gp100 antigen 

derived peptide-

loaded mature 

autologous DCs

300 mg/m2 T cell immunity 

against

gp100-derived 

antigens 6/7

Positive 

correlation 

DC derived 

IL-12p70 levels 

and time to 

progression

54

Mesothelioma 10 7x CTX followed by 1x DC-Tx 4 

days after CTX.

Cycle repeated 3x

Tumor lysate-

loaded mature 

autologous DCs

2x50 mg Tregs Disease control in 8 

patients

55
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Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 
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with Panc02 cells
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derived DCs
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body weight

MDSCs IFNγ secreting 
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untreated

67
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in

ic
al

Cyclophosphamide Melanoma 7 CTX: 3 days prior to first DC-tx.

DC-tx: 6 vaccinations with 3-week 
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gp100 antigen 

derived peptide-

loaded mature 
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300 mg/m2 T cell immunity 
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correlation 
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Table 1. Continued

Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Cl
in

ic
al

 (C
on

tin
ue

d)

Melanoma 22 7x CTX followed by 1x DC-Tx.

Cycle repeated 6x

Mature autologous 

DCs transfected 

with p53, survivin 

and hTERT

50 mg Tregs and 

MDSCs 

unchanged

IFNγ Immune 

response

6/17

PD: n=13 OS: 10.4 mo

SD: n=9 PFS: 3.1 mo 

56

Ovarian cancer 22 DC-tx

(+ bevacizumab) 

(n=10)

CTX one day prior to each DC-Tx 

+ bevacuzimab given 1x each 3 

weeks

Repeated 4-5x

Tumor-lysate 

loaded mature 

autologous DCs

200 mg/m2 Vaccine-

specific T cells

IFNγ serum 

levels

TGFβ serum 

levels 

compared with 

no CTX

Improved OS compared 

with no treatment with 

CTX

57

Renal cell 

carcinoma

22 DC-tx

(n=12)

CTX: 3 and 4 days prior to each 

DC-Tx

DC-Tx: 3 vaccinations with 

monthly intervals

Tumor lysate-

loaded mature 

allogeneic DCs

300 mg/m2 No proliferative 

or cytokine 

immune 

responses

No CTX CTX

PD: n=9 PD: n=4

SD: n=2 SD: n=1

MR: n=0 MR: n=2

LFU: n=1 LFU: n=3

OS: 20.3 mo OS: 23.2 mo

58
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Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Cl
in

ic
al

 (C
on

tin
ue

d)

Melanoma 22 7x CTX followed by 1x DC-Tx.

Cycle repeated 6x

Mature autologous 

DCs transfected 

with p53, survivin 

and hTERT

50 mg Tregs and 

MDSCs 

unchanged

IFNγ Immune 

response

6/17

PD: n=13 OS: 10.4 mo

SD: n=9 PFS: 3.1 mo 

56

Ovarian cancer 22 DC-tx

(+ bevacizumab) 

(n=10)

CTX one day prior to each DC-Tx 

+ bevacuzimab given 1x each 3 

weeks

Repeated 4-5x

Tumor-lysate 

loaded mature 

autologous DCs

200 mg/m2 Vaccine-

specific T cells

IFNγ serum 

levels

TGFβ serum 

levels 

compared with 

no CTX

Improved OS compared 

with no treatment with 

CTX

57

Renal cell 

carcinoma

22 DC-tx

(n=12)

CTX: 3 and 4 days prior to each 

DC-Tx

DC-Tx: 3 vaccinations with 

monthly intervals

Tumor lysate-

loaded mature 

allogeneic DCs

300 mg/m2 No proliferative 

or cytokine 

immune 

responses

No CTX CTX

PD: n=9 PD: n=4

SD: n=2 SD: n=1

MR: n=0 MR: n=2

LFU: n=1 LFU: n=3

OS: 20.3 mo OS: 23.2 mo

58
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Table 1. Continued

Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Cl
in

ic
al

 (C
on

tin
ue

d)

Temozolomide Melanoma 21 14x CTX followed by 1x DC-tx. 

Cycle repeated 6x

Tumor lysate-

loaded mature 

autologous DCs

75 mg/m2 Tregs PD: n=10 OS: 10 mo

SD: n=6

PR: n=1

NT: n=3

61

Glioblastoma 32 CTX: 5 days/28 in each cycle

DC-Tx: 3x starting 2 weeks after 

CTX. Repeated 3x

DCs fused with 

glioma cells

150-200 

mg/m2

WT-1, gp100 

and MAGE-A3 

specific 

immune 

responses 4/4

Recurrent Initial

OS: 18.0 mo OS: 30.5 mo

PFS: 10.3 mo PFS: 18.3 mo

62

Glioblastoma 14 CTX: 5 days/28 starting one week 

after 3rd DC-Tx

Cycle repeated up to 6x

DC-Tx: 3x each cycle with 2 –week 

intervals.

Tumor cell-loaded 

mature autologous 

DCs

150-200 

mg/m2

PD: n=4 OS: 23 mo

SD then PD: n=3 PFS6mo: 

22%

PR then PD: n=2

NT: n=4

63

Glioblastoma 24 CTX: 5 days/28 starting after 3rd 

DC-Tx.

Cycle repeated 6x

DC-Tx: 1-4: two-week intervals, 

5-6: monthly intervals, 7: 8 weeks 

after 6th DC-Tx

Tumor lysate-

loaded mature 

autologous DCs

75 mg/m2 Positive 

correlation 

activation NK 

cells and PFS

OS: 20.1 mo

PFS: 10.5 mo

64

Gemcitabine Pancreatic 

cancer

10 CTX: day 1,8 and 15 of a 28-day 

cycle

DC-Tx: Starting one week after 

first CTX cycle. Given 3x biweekly

I, II or I/II-WT1 

restricted peptide-

loaded mature DCs

1000 mg/m2 PD: n=3

SD: n=7

68

Premetrexed and 

cisplatin

Mesothelioma 10 CTX: 4x each 3 weeks

DC-Tx: 3x each 2 weeks starting 12 

weeks after last CTX

Tumor lysate-

loaded mature 

autologous DCs

Preme-

trexed:

500 mg/m2

Cisplatin:

75 mg/m2

KLH-specific 

antibodies

10/10

PD: n=6

SD: n=1

PR: n=3

69

Oxiplatin and 

capecitabine

Colon cancer 7 CTX: 1x oxiplatin followed by 14x 

capecitabine. Cycle repeated 8 

times

DC-Tx: 3x during first cycle of CTX

CEA peptide-

loaded mature 

autologous DCs

Oxiplatin:

130 mg/m2

Capecit-

abine:

2000 mg/m2

CEA-specific T 

cell response

4/7

Proliferative 

KLH-specific

CD4+ T cell 

response 7/7

70
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Table 1. Continued

Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Cl
in

ic
al

 (C
on

tin
ue

d)
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loaded mature 
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NT: n=3
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DC-Tx: 3x starting 2 weeks after 
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DCs fused with 

glioma cells
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mg/m2
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specific 

immune 
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PFS: 10.3 mo PFS: 18.3 mo
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mature autologous 

DCs
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mg/m2
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SD then PD: n=3 PFS6mo: 

22%

PR then PD: n=2

NT: n=4

63

Glioblastoma 24 CTX: 5 days/28 starting after 3rd 

DC-Tx.

Cycle repeated 6x

DC-Tx: 1-4: two-week intervals, 

5-6: monthly intervals, 7: 8 weeks 

after 6th DC-Tx

Tumor lysate-

loaded mature 

autologous DCs

75 mg/m2 Positive 

correlation 

activation NK 

cells and PFS

OS: 20.1 mo

PFS: 10.5 mo

64

Gemcitabine Pancreatic 

cancer

10 CTX: day 1,8 and 15 of a 28-day 

cycle

DC-Tx: Starting one week after 

first CTX cycle. Given 3x biweekly

I, II or I/II-WT1 

restricted peptide-

loaded mature DCs

1000 mg/m2 PD: n=3

SD: n=7

68

Premetrexed and 

cisplatin

Mesothelioma 10 CTX: 4x each 3 weeks

DC-Tx: 3x each 2 weeks starting 12 

weeks after last CTX

Tumor lysate-

loaded mature 

autologous DCs

Preme-

trexed:

500 mg/m2

Cisplatin:

75 mg/m2

KLH-specific 

antibodies

10/10

PD: n=6

SD: n=1

PR: n=3

69

Oxiplatin and 

capecitabine

Colon cancer 7 CTX: 1x oxiplatin followed by 14x 

capecitabine. Cycle repeated 8 

times

DC-Tx: 3x during first cycle of CTX

CEA peptide-

loaded mature 

autologous DCs

Oxiplatin:

130 mg/m2

Capecit-

abine:

2000 mg/m2

CEA-specific T 

cell response

4/7

Proliferative 

KLH-specific

CD4+ T cell 

response 7/7

70



152

| Chapter 5

Table 1. Continued

Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Cl
in

ic
al

 (C
on

tin
ue

d)

Bortezomib and 

dexamethasone

Multiple 

myeloma

50 CTX

(n=24)

Bortezomib: day 1,4,8 and 11

Dexamethasone: day 1-2, 4-5, 8-9, 

11-12

DC-Tx: 6x day 15-20

Cycle lasted 28 days. Repeated 3x

Autologous DCs/

CIK

Bortezomib:

1.0-1.3 mg/

m2

Dexame-

thasone:

20 mg

CD4/CD8 ratio

IL-2 and IFNγ 

in PB

IL-4, IL-5 and 

TGFβ in PB 

compared with 

CTX

Improved quality of life 

compared with no DC-Tx

71

Dacarbazine Melanoma 6 CTX: 6x at 3-week intervals

DC-Tx: 6x one day after CTX

Autologous IFN-

DCs

1000 mg/m2 Tyrosinase, 

NY-ESO-1 and 

gp100-specific 

immune 

response 2/3

PD: n=2

SD: n=3

NT: n=1

72

Carboplatin and 

paclitaxel

Melanoma 9 CTX: day 1 of each cycle

DC-Tx: day 8 and 22 of each cycle

Cycle lasted 28 days Repeated 3x

WT1, gp100, 

tyrosinase and 

MAGE-A2/A3 

peptide-loaded 

mature DCs

Carboplatin:

AUC5

Paclitaxel:

175 mg/m2

WT1-specific 

immune 

response 4/9

PD: n=4 OS: 12 mo

SD: n=4 PFS: 2.3 mo

PR: n=1

73

Docetaxel Prostate cancer 40 CTX

(n=19)

CTX: 1x each 3 weeks. Repeated 

10x

DC-Tx: 2x in cycle 1-5 and 1x cycle 

5-10

Mature autologous 

DCs transfected 

with PSA, PAP, 

survivin and hTERT

75 mg/m2 MDSCs and

Tregs 

unchanged

MDSCs 

(positive 

correlation 

with PFS)

Tregs 

unchanged

PFS without DC-Tx: 5.5 mo

PFS with DC-Tx: 5.7 mo

74

Esophageal 

cancer

10 CTX: day 1 of each cycle

DC-Tx: day 15 and 22 of each cycle

Cycle lasted 4 weeks. Repeated 3x

WT-1 peptide-

loaded matured 

DCs

50 mg/m2 WT1-specific 

immune 

response 5/8

PD: n=9

SD: n=1

OS: 5 mo

75

AUC = area under curve, BM-derived DCs = bone marrow-derived DCs, CEA = carcinoembryonic antigen, CTX 

= chemotherapy, CIK = cytokine-induced killer cells, DC = dendritic cell, DC-Tx = Dendritic cell therapy, gp100 

= glycoprotein 100, hTERT = human telomerase reverse transcriptase, IFN = interferon, IFNγ = interferon 

gamma, IL = interleukin, KLH = keyhole limpet hemocyanin, LFU = lost to follow-up, MAGE = melanoma-

associated antigen, MDSC = myeloid-derived suppressor cell, MR = mixed response, NK cells = natural killer 

cells, NT = not treated, OS = overall survival,

PAP = prostatic acid phosphatase, PB = peripheral blood, PD = progressive disease, PFS = progression-free 

survival, PR = partial response, PSA, = prostate-specific antigen, SD = stable disease, TGF-β = transforming 

growth factor beta, Tregs = regulatory T cells, WT = wilms tumor gene. a, for preclinical studies n is number 

mice per group, for clinical studies n is the total number patients; b, days after tumor inoculation; c, compared 

with baseline unless indicated otherwise; d, immunological responses measured after combination treatment.
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Table 1. Continued

Type of CTX Cancer Type na Comparison 

group

Treatment schedule Type of DC vaccine Dosage CTX Immunological 

response CTXc

Immunological 

response 

combination 

treatmentc,d

Clinical response Ref.

Cl
in

ic
al

 (C
on

tin
ue

d)
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dexamethasone
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50 CTX

(n=24)
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Autologous DCs/

CIK

Bortezomib:

1.0-1.3 mg/

m2

Dexame-

thasone:

20 mg

CD4/CD8 ratio

IL-2 and IFNγ 

in PB

IL-4, IL-5 and 

TGFβ in PB 

compared with 

CTX

Improved quality of life 

compared with no DC-Tx

71

Dacarbazine Melanoma 6 CTX: 6x at 3-week intervals

DC-Tx: 6x one day after CTX

Autologous IFN-

DCs

1000 mg/m2 Tyrosinase, 

NY-ESO-1 and 

gp100-specific 

immune 

response 2/3

PD: n=2

SD: n=3

NT: n=1

72

Carboplatin and 

paclitaxel

Melanoma 9 CTX: day 1 of each cycle

DC-Tx: day 8 and 22 of each cycle

Cycle lasted 28 days Repeated 3x

WT1, gp100, 

tyrosinase and 

MAGE-A2/A3 

peptide-loaded 

mature DCs

Carboplatin:

AUC5

Paclitaxel:

175 mg/m2

WT1-specific 

immune 

response 4/9

PD: n=4 OS: 12 mo

SD: n=4 PFS: 2.3 mo

PR: n=1

73

Docetaxel Prostate cancer 40 CTX

(n=19)

CTX: 1x each 3 weeks. Repeated 

10x

DC-Tx: 2x in cycle 1-5 and 1x cycle 

5-10

Mature autologous 

DCs transfected 

with PSA, PAP, 

survivin and hTERT

75 mg/m2 MDSCs and

Tregs 

unchanged

MDSCs 

(positive 

correlation 

with PFS)

Tregs 

unchanged

PFS without DC-Tx: 5.5 mo

PFS with DC-Tx: 5.7 mo

74

Esophageal 

cancer

10 CTX: day 1 of each cycle

DC-Tx: day 15 and 22 of each cycle

Cycle lasted 4 weeks. Repeated 3x

WT-1 peptide-

loaded matured 

DCs

50 mg/m2 WT1-specific 

immune 

response 5/8

PD: n=9

SD: n=1

OS: 5 mo

75

AUC = area under curve, BM-derived DCs = bone marrow-derived DCs, CEA = carcinoembryonic antigen, CTX 

= chemotherapy, CIK = cytokine-induced killer cells, DC = dendritic cell, DC-Tx = Dendritic cell therapy, gp100 

= glycoprotein 100, hTERT = human telomerase reverse transcriptase, IFN = interferon, IFNγ = interferon 

gamma, IL = interleukin, KLH = keyhole limpet hemocyanin, LFU = lost to follow-up, MAGE = melanoma-

associated antigen, MDSC = myeloid-derived suppressor cell, MR = mixed response, NK cells = natural killer 

cells, NT = not treated, OS = overall survival,

PAP = prostatic acid phosphatase, PB = peripheral blood, PD = progressive disease, PFS = progression-free 

survival, PR = partial response, PSA, = prostate-specific antigen, SD = stable disease, TGF-β = transforming 

growth factor beta, Tregs = regulatory T cells, WT = wilms tumor gene. a, for preclinical studies n is number 

mice per group, for clinical studies n is the total number patients; b, days after tumor inoculation; c, compared 

with baseline unless indicated otherwise; d, immunological responses measured after combination treatment.
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Abstract

Immunotherapy with anti-PD1/PD-L1 is effective in only a subgroup of patients with malignant 

pleural mesothelioma (MPM). We investigated the efficacy of a combination of anti-PD1/PD-L1 

and dendritic cell (DC) therapy to optimally induce effective anti-tumor immunity in MPM in both 

humans and mice. Data of nine MPM patients treated with DC therapy and sequential anti-PD1 

treatment were collected and analyzed for progression-free survival (PFS) and overall survival 

(OS). Survival and T cell responses were monitored in AC29 mesothelioma-bearing mice treated 

concurrently with the combination therapy; additionally, the role of the tumor-draining lymph 

node (TDLN) was investigated. The combination therapy resulted in a median OS and PFS of 17.7 

and 8.0 months, respectively. Grade 3-4 treatment-related adverse events had not been reported. 

Survival of the mesothelioma-bearing mice treated with the combination therapy was longer than 

that of untreated mice, and coincided with improved T cell activation in peripheral blood and less T 

cell exhaustion in end stage tumors. Comparable results were obtained when solely the TDLN was 

targeted. We concluded that this combination therapy is safe and shows promising OS and PFS. 

The murine data support that anti-PD-L1 treatment may reinvigorate the T cell responses induced 

by DC therapy, which may primarily be the result of TDLN targeting.
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Introduction

The median survival after diagnosis for patients with malignant pleural mesothelioma (MPM) 

remains between 13 and 18 months 1,2. Therefore, novel therapeutic strategies that effectively 

induce anti-tumor responses are warranted. PD-1 checkpoint inhibition has shown remarkable 

responses in multiple cancer types. Anti-PD-1 therapy induces responses in 9-29% of MPM 

patients and as second line treatment it has been associated with a median progression-free 

survival (PFS) of 2.5 months and median overall survival (OS) of 10.7 months 1,3-5. In combination 

with ipilimumab (anti-CTLA-4), response rates were even higher and more durable. Still, the 

majority of patients failed to respond which could be due to lack of T cell infiltration before 

treatment 2,6.

Dendritic cell (DC) therapy has been shown to be safe, feasible and able to induce radiological 

responses in MPM coinciding with enhanced intratumoral T cell infiltration 7-9. As DC therapy-

induced infiltrating T cells may in turn become exhausted through PD-1/PD-L1 signaling, we 

investigated the efficacy of adjuvant anti-PD-1 immunotherapy in DC-treated MPM patients. 

Additionally, as PD-L1 is expressed on DCs, the effects of concurrently combining DC- and anti-

PD-L1 therapy were analyzed in a MPM murine model.

Material and methods

Patient data collection

Data were collected of nine patients with histologically proven MPM treated in second or third line 

with CI therapy after progression on treatment with autologous monocyte-derived DCs (moDCs) 

loaded with allogeneic (n = 8) or autologous (n = 1) tumor lysate (NCT02395679, NCT01241682). 

Five patients had received first line chemotherapy prior to DC therapy.

Patient treatment

Intravenous anti-PD-1 treatment, consisting of nivolumab (3 mg/kg every 2 weeks) or 

pembrolizumab (2 mg/kg every 3 weeks) was administered, irrespectively of PD-L1 expression. 

One patient received nivolumab and ipilimumab at dosages described in the INITIATE trial 10.

Patient response evaluation

Radiological tumor evaluation was done 6 weeks after start of treatment and every 4 to 12 

weeks thereafter; the interval depended on the previous CT evaluation. The tumor response 

was assessed using the modified Response Evaluation Criteria in Solid Tumors (mRECIST) for 

mesothelioma (final data check November 19th, 2021) 11. OS was defined as the time from start of 

CI therapy until death. PFS was determined from the time of start of CI therapy until radiological 
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progression or death of any cause. The overall response rate was defined as the percentage of 

patients with a partial response (PR) or complete response. Disease control rate was defined as 

the percentage of patients without progressive disease as best overall response (BOR).

In vivo experiment in murine AC29 tumor model

Female 8- to -12-week-old CBA/J mice and C57BL/6 mice were purchased from Envigo and housed 

under specific pathogen-free conditions in individually ventilated cages at the animal care facility 

of the Erasmus University Medical Center (Erasmus MC), Rotterdam. For tumor inoculation, mice 

were intraperitoneally (i.p.) injected with 106 AC29 mesothelioma tumor cells (RRID:CVCL_4407) 

in 300 µl PBS, as described previously 12. Mice with established i.p. tumors were killed at indicated 

time points for immune cell profiling or when profoundly ill according to the body condition score 

for therapy efficacy experiments. Mice were randomly assigned to experimental groups. For bone 

marrow derived dendritic cells (BMDC)-transfer, AC29 tumor lysate was produced and DCs were 

cultured as previously described 13. Briefly, tumor lysate was produced by disrupting frozen tumor 

cells by four cycles of freeze-thaw cycles with liquid nitrogen followed by sonication. BMDCs were 

generated using recombinant murine GM-CSF (provided by B. Lambrecht VIB, Ghent) in DC-culture 

medium followed by loading with tumor lysate and activation with CpG (Invitrogen) on day 9 

and injection at day 10. Where applicable, DCs were labeled at day 10 with carboxyfluorescein 

succinimidyl ester (CFSE) according to the manufacturer’s instructions (Thermo Fisher). Dependent 

on treatment arm, mice were treated with either 200 µg isotype (clone 2A3, BioXCell) or 200 µg 

anti-PD-L1 antibody (clone MIH5, provided by L. Boon, Bioceros B.V., Utrecht, the Netherlands) in 

300 µl PBS in the peritoneal cavity. In case of intrapleural injection, 200 µL PBS was injected in the 

pleural cavity of mice that were under short-term anesthesia. All experiments were performed 

with mycoplasma-free cells.

Preparation of single cell suspensions from mouse tissues

Single-cell suspensions were generated from isolated inguinal lymph node (non-tumor draining 

lymph node (non-TDLN), mediastinal lymph node (TDLN), blood and tumor tissue of mice from 

each group as previously reported 13. In brief, 30 µl blood was collected in EDTA tubes (Microvette 

CB300, Sarstedt) and erythrocytes were lysed using osmotic lysis buffer (8.3% NH4Cl, 1% KHCO3, 

and 0.04% Na2EDTA in Milli-Q). Tumors were collected and dissociated using a validated tumor 

dissociation system (Miltenyi Biotec) according to protocol.

Statistical analysis

Median OS and PFS were estimated using a Kaplan-Meier curve in combination with a log-rank 

(Mantel-cox) test. Survival data were plotted as Kaplan-Meier survival curves, using the log-rank 

test to determine statistical significance. A P-value of 0.05 or below was considered to indicate 

statistical significance. All reported p-values were two tailed. Statistical analyses were performed 

using R 3.6.0 (R Foundation for Statistical Computing) or Graphpad Prism 8.0.



159

Combination of anti-PD-(L)1 and DC therapy in mesothelioma |

Results

We identified strong PD-L1 upregulation on in vitro matured patient-derived moDCs used for vaccination 

(Fig 1A). Vaccination of mice with DCs induced CD8+ T cell (CTL) infiltration, which coincided with 

increased PD-L1 expression by tumor cells, likely due to increased IFNγ production by CTLs (Fig. 1B-

C). Due to the upregulation of PD-1 on CTLs and PD-L1 on both tumor cells and exogenous DCs, we 

investigated whether checkpoint blockade could re-induce T cell mediated immunity and responses 

in patients. We assessed nine MPM patients receiving pembrolizumab (n = 2) or nivolumab (n = 7; 

one patient combined with ipilimumab) upon progression after DC therapy (Fig. 1C). The median PFS 

following start checkpoint blockade was 8.0 months and the median OS was 17.7 months (Fig. 1E). 

Three patients exhibited partial responses, five stable disease, and one progressive disease; thus, the 

objective response rate was 33% (Fig. 1D). At 6 months, five patients (55.6%) showed disease control. 

Application of the Common Terminology Criteria for Adverse Events (CTCAE 5.0) did not reveal any 

grade 3/4 adverse events.

Similar to the PD-L1 upregulation on patient-derived moDCs, we identified increased PD-L1 expression 

on both transferred and endogenous DCs in the TDLNs of tumor-bearing mice (Fig. 2A). Therefore, we 

wondered whether concurrent treatment with DC therapy and checkpoint blockade could enhance 

anti-tumor immunity. To investigate this, we concurrently treated mesothelioma-bearing mice with 

DC therapy and anti-PD-L1, enabling us to assess PD-1 expression on T cells following treatment. This 

combination treatment resulted in longer survival compared with untreated mice (Fig. 2B-C). This was 

accompanied by synergistic and rapid CD69 upregulation (early activation marker) on T cells in peripheral 

blood, followed by increased proliferation (assessed by Ki67), which was most prominent for CD4+ Th-

cells (Fig. 2D, S1A). Moreover, the expression of the exhaustion-program driver TOX on tumor-infiltrating 

CTLs was most profoundly decreased following combination treatment, indicating a less-exhausted T cell 

phenotype. This phenotype was confirmed by a decreased percentage of cells positive for PD-1, TIM3 

and CD39, and lower TOX expression within this triple-positive cell subset (Fig. 2E, S2B).

We have previously shown a critical role for PD-L1-expressing DCs in suppressing anti-tumor T cells 

in TDLNs of mesothelioma-bearing mice 12. This potentially suggest that TDLNs may be important in 

mediating the efficacy of PD-L1 blockade combined with DC therapy. To investigate whether the efficacy 

in mice resulted from PD-L1 blockade in TDLNs or in tumors, we targeted PD-L1 specifically and solely in 

TDLNs using an established method in which anti-PDL1 is administered at a low dose in the pleural cavity 
12. Blocking PD-L1 solely in TDLNs mimicked systemic anti-PD-L1 treatment for survival (Fig. 2C) and for 

alterations in immune phenotype (Fig. 2D-E). This implies that the efficacy of concurrent combination 

treatment may primarily depend on blocking the PD-1/PD-L1 axis in the TDLN, thereby resulting in 

improved T cell priming by DCs. These findings could indicate the importance of optimizing T cell priming 

in TDLNs for maximum anti-tumor T cell capacity and provide a preclinical rationale for concurrent 

treatment in MPM patients.
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Figure 1: Rationale and clinical responses to treatment with checkpoint blockade upon progression to DC 

therapy

(A) MFI of PD-L1 on immature and mature patient-derived DCs cultured in vitro for therapy. (B) CD8+ T cell 

infiltration, IFNγ production and PD-L1 expression on tumor cells was assessed in AC29 bearing female CBA/J 

mice untreated (n = 9) or treated with DC therapy (n = 5) on day 15. (C) Correlation of PD-L1 expression 

on tumor cells and CD8+ T cell levels and a Pearson correlation coefficient was calculated (r2) (n = 14). (D) 

Swimmer plot of patients treated with checkpoint blockade upon progression to DC therapy. Overall survival 

of patients since date of first vaccination is represented by the filled bars. Start and end of RECIST responses 

are depicted by the red circles and black squares, respectively. First evaluation of response was after 6 weeks 

for all patients. (E) Kaplan-Meier curves showing progression-free survival (left) and overall survival (right) 

for all patients. Means and SEMs are shown and Mann-Whitney U tests were performed indicating statistical 

significance. * = p < 0.05, ** = p < 0.01.
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Figure 2: Concurrent treatment with anti-PD-L1 and DC therapy results in improved survival and anti-tumor 

immunity

(A) MFI of PD-L1 on injected CFSE labeled DCs and endogenous DCs in non-TDLN and TDLN of AC29 

mesothelioma bearing CBA/J mice (n = 6 per group; total n = 12) 24 hours after DC therapy. (B) Mice bearing 

AC29 tumors (n = 7 per group; total n = 35) were treated with DC therapy or PBS at day 15. At day 15, 18 

and 21, mice were also treated with either isotype, low-dose anti-PD-L1 (2.5 µg) or systemic dose (200 µg). 

(C) Mice were monitored for survival which is depicted in a Kaplan-Meier curve. (D) From the experiment 

in B, blood was isolated at day 18 and 20 and expression of early-activation marker CD69 and proliferation 

marker Ki67 were determined for CD8+ T cells and CD4-Th cells. (E) Expression of TOX on CD4+ Th cells, Tregs 

and CD8+ T cells and the percentage of triple-positive (PD-1+ TIM3+ CD39+) and their TOX expression level was 

determined in end-stage tumor material from experiment in B. Means and SEMs are shown and paired- and 

unpaired t tests were performed indicating statistical significance. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, 

**** = p < 0.0001. MFI = median fluorescence intensity, non-TDLN = non-tumor draining lymph node, TDLN 

= tumor-draining lymph node, CD4-Th = CD4 T helper, SEM = standard error of the mean.
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Discussion

In this study, we have shown that anti-PD-1 following DC therapy is safe and feasible in MPM 

patients. The response rate (33%), PFS (8.0 months) and OS (17.7 months) are promising when 

compared with anti-PD-1 monotherapy. Still, the potential bias in patient selection calls for caution 

in the interpretation of these findings. To support the potential synergy, combining DC therapy 

with concurrent blockade of the PD-1/PD-L1 axis reinvigorated T cells and prolonged survival 

in the mesothelioma-bearing mice. This synergistic effect of concurrent treatment may be the 

result of the high PD-L1 expression on DCs in vivo and on moDCs given as DC therapy. The data 

suggest that this effect could be primarily derived from the TDLN, as TDLN-specific blockade of 

PD-L1 resulted in comparable immune-stimulating effects as did systemic anti-PD-L1 treatment. By 

releasing progenitor-exhausted tumor-specific T cells, PD-L1 blockade on DCs in the TDLN has been 

shown to induce effective tumor immunity 12,14. As we observed a less-exhausted tumor-infiltrating 

CTL phenotype in combination therapy-treated mice, these results could indicate that concurrent 

treatment may eventually result in more efficient T cell priming in the TDLN by DCs. Since we treated 

MPM patients sequentially with PD-1 blockade, our data indicate that clinical responses might even 

be further improved by concurrent treatment.

Limitations of our study include the lack of pre-and post-treatment biopsies in MPM patients 

treated with DC therapy. This precluded investigation of the PD-L1 upregulation that we observed 

in mice. Furthermore, due to rapid tumor growth, we could not include a murine treatment arm 

of DC- and anti-PD-L1 therapy administered sequentially. Lastly, while MPM patients were treated 

with PD-1 blocking agents, mesothelioma-bearing mice were treated with antibodies blocking its 

ligand, PD-L1. Although both antibodies block the same axis, it has recently been demonstrated 

that anti-PD-1 and anti-PD-L1 may have different immune modulating effects due to cis interactions 

with CD80 on antigen-presenting cells which could potentially influence efficacy of the combination 

treatment 15. Whether anti-PD-L1 leads to suboptimal anti-tumor immunity, compared with anti-

PD-1, needs to be further investigated in our models.

In conclusion, our data from both patients and mice indicate that the combination of DC therapy 

and anti-PD-1/PD-L1 could be a promising treatment for MPM, as it was found feasible and safe, 

and did show clinical efficacy.
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Figure S1. Characterization of T cells in peripheral blood and tumor in AC29 bearing mice treated with DC therapy and/or 
anti-PDL1

(A) Gating strategy of T cells (CD8 T cells and CD4 T helper cells) and related expression levels of CD69 of Ki67 in peripheral 
blood isolated 72- and 120 hours following start treatment, related to figure 2D.

(B) Gating strategy for the characterization of end stage tumor infiltrating T cells (CD8 T cells, CD4 T helper cells and regulatory 
T cells) and related expression levels of TOX. For CD8 T cells, gating for triple-positive cells was accomplished by first gating on 
TIM3 and PD-1 (PD-1- TIM3- (grey)/ PD-1+ TIM3- (light purple)/PD-1+ TIM3+ (dark purple)), followed by CD39 in each subset, 
related to figure 2E. 

Figure S1: Characterization of T cells in peripheral blood and tumor in AC29 bearing mice treated with DC 

therapy and/or anti-PDL1

(A) Gating strategy of T cells (CD8+ T cells and CD4+ T helper cells) and related expression levels of CD69 of 

Ki67 in peripheral blood isolated 72- and 120 hours following start treatment, related to Figure 2D. (B) Gating 

strategy for the characterization of end stage tumor infiltrating T cells (CD8+ T cells, CD4+ T helper cells and 

regulatory T cells) and related expression levels of TOX. For CD8+ T cells, gating for triple-positive cells was 

accomplished by first gating on TIM3 and PD-1 (PD-1- TIM3- (grey)/ PD-1+ TIM3- (light purple)/PD-1+ TIM3+ 

(dark purple)), followed by CD39 in each subset, related to Figure 2E.
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Abstract

Terminal T cell exhaustion poses a significant barrier to effective anti-cancer immunotherapy 

efficacy with current drugs aimed at reversing exhaustion being limited. Recent investigations into 

the molecular drivers of T cell exhaustion have led to the identification of chronic IL-2 receptor 

(IL-2R) – STAT5 pathway signaling in mediating T cell exhaustion. We targeted the key downstream 

IL-2R-intermediate Janus kinase (JAK) 3 using a clinically relevant highly specific JAK3-inhibitor 

(JAK3i; PF-06651600) that potently inhibited STAT5-phosphorylation in vitro. Whereas pulsed high-

dose JAK3i administration inhibited anti-tumor T cell effector function, low-dose chronic JAK3i 

significantly improved T cell responses and decreased tumor load in mouse models of solid cancer. 

Low-dose JAK3i combined with cellular and peptide vaccine strategies further decreased tumor 

load compared with both monotherapies alone. Collectively, these results identify JAK3 as a novel 

and promising target for combination immunotherapy.
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Introduction

Cancer immunotherapy induces durable anti-tumor immune and clinical responses but only in a 

minority of patients and tumor types for reasons still incompletely understood 1-3. T cell exhaustion is 

a major mechanism underlying cancer immunotherapy resistance and current treatment strategies 

aimed at the prevention or reversal of exhaustion are lacking 4. T cell exhaustion arises through 

chronic antigen stimulation of the T cell receptor (TCR) in a suppressive tumor microenvironment 

(TME), decreasing T cell functionality and persistence 5,6. Attempts have been made to prevent T cell 

exhaustion by inhibiting key downstream TCR-signaling pathways (e.g. MAPK/ERK, mTOR), yielding 

varying clinical and preclinical results 7-11. Possible redundancy between different signaling pathways 

and the existence of exhaustion mechanisms other than chronic TCR-activation could be involved 

in T cell exhaustion and immunotherapy resistance.

Besides excessive TCR stimulation, continuous IL-2 receptor (IL-2R)-induced signal transducer and 

activator of transcription 5 (STAT5)-phosphorylation in T cells has recently been linked to exhaustion 

in chronic viral infection and cancer, with IL-2hi cancers exhibiting poor prognosis 12,13. Despite that 

IL-2 is required for initial T cell expansion and survival, excess IL-2 during T cell priming skews toward 

a short-lived T cell effector fate at the expense of memory precursor T cells 14,15. Whether temporal 

downstream IL-2R-inhibition improves antitumor immunity is currently unknown. The IL-2R may 

be a particularly attractive target as activation of the receptor culminates in MAPK-, mTOR- as 

well as STAT5-signaling, thereby allowing for concomitant targeting of multiple exhaustion-related 

pathways.

Binding of IL-2 to the high affinity IL-2R consisting of α, β and γ chains (CD25, CD122 and CD132, 

respectively) activates a downstream cascade initiated by Janus-kinase (JAK) family members JAK1 

and JAK3 that in turn phosphorylate STAT5 leading to dimerization and target gene transcription 
16,17. In contrast with JAK1 associating with various type I and II cytokine receptors, JAK3 is located 

downstream of the common-gamma chain cytokine receptor family, including IL-2R, IL-4R, IL-7R and 

IL-15R. With the recent development of specific JAK inhibitors, interrogation of these downstream 

cytokine-receptors pathways has become feasible with minimal off-target activity 18. This allowed 

us to investigate JAK3 as novel immunotherapeutic target downstream of the IL-2R using the 

highly specific JAK3-inhibitor (JAK3i) PF-06651600 (further referred to as PF-06) that was initially 

developed for treatment of autoimmune disease 19,20. In this report, we demonstrate that this 

JAK3i effectively inhibits IL-2-mediated STAT5-phosporylation in T cells and when administered at 

high dose diminishes anti-tumor T cell immunity. In contrast, at low-dose, PF-06 improves T cell 

responses and decreases tumor load in solid tumor mouse models. Moreover, JAK3i potentiated 

cellular- and peptide-vaccine immunotherapies, improving therapeutic efficacy and reducing the 

exhausted T cell phenotype. These important potential improvements of current immunotherapy 

warrant further investigation into the clinical use of low-dose JAK3i in patients with solid tumor.
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Materials and Methods

Phosphoflow analysis

Wildtype C57BL/6 mice were euthanized by cervical dislocation and the spleens were isolated and 

mashed over a 100-µm filter establishing a cell suspension in RPMI 1640 containing 2% FCS. A total of 

2x106 splenocytes were incubated for 3 hours at 37°C with vehicle (same amount of DMSO as highest 

concentration of inhibitor as negative control) or acalabrutinib (10µM, 1µM and 0.1µM in DMSO) or 

Ibrutinib (10µM, 1µM and 0.1µM in DMSO) or PF-06651600 (10µM, 1µM and 0.1µM in deionized 

water (MilliQ), all obtained from Sigma-Aldrich). The cells were stimulated with anti-CD3/CD28 biotin 

in case of the stimulated samples or RPMI1640 2% FCS for unstimulated samples. Afterwards, the cells 

were washed with RPMI1640 2% FCS and stained with streptavidin PerCP Cy5.5 to establish receptor 

cross-linking. After washing, the samples were stimulated at 37°C for 1 minute for pZAP70Y319 (pZAP70) 

and pSLP76Y128 (pSLP76), 5 minutes for pITKY180 (pITK180) 120 minutes for IkB and pS6S240/244 (pS6). Ten 

minutes before the end of the stimulation a live/death marker was added. At the end of the stimulation, 

Fix/Perm was added and incubated at 37°C for 10 minutes followed by transfer on ice and wash 

with permeabilization buffer. After permeabilization, the samples were stained for 30 minutes with 

extracellular surface markers using a monoclonal antibody (mAb) staining mix including Fc-receptor 

blocking antibodies (anti-CD16/32; Bioceros). After wash, the samples were stained for one of each of 

the following phosphoflow targets; pZAP70, pSLP76, pITK180 and pS6. In case of the unlabeled anti-pS6 

antibody, a third staining step containing a PE-labeled anti-Rabbit antibody was necessary. For pIkB a 

different staining protocol was used by which cells were fixed with paraformaldehyde incubated for 10 

minutes at room temperature followed by permeabilization using 0.5% saponin in FACS. Cells were then 

stained with surface markers and anti-pIkB followed by acquisition for flow cytometry.

IL-2 stimulation and pSTAT5 phosphoflow

A total of 24x106 splenocytes were divided over 12 wells of a 24-well plate and anti-CD3/CD28 Dynabeads 

(Thermofisher) were added in a 1:1 ratio for 72 hours in TCM to induce IL-2R expression as assessed by 

upregulation of CD25. Dynabeads were extracted by magnet retrieval and 2x106 cells were incubated for 

3 hours at 37°C with vehicle (same amount of DMSO as highest concentration of inhibitor as negative 

control) or Acalabrutinib (10µM, 1µM and 0.1µM in DMSO) or Ibrutinib (10µM, 1µM and 0.1µM in 

DMSO) or PF-06651600 (10µM, 1µM and 0.1µM in deionized water). After 3 hours, a 500.000/50µL 

cell suspension was activated for 15 minutes with 10ng/mL IL-2 (R&D Systems) at 37°C. Ten minutes 

before the re-stimulation end time, a live/death marker was added (eBioscience) followed by cell fixation 

using BD Cytofix and incubated for 10 minutes at 37°C. After the cells were fixed, the cells were washed 

with MACS buffer (PBS containing 5mM EDTA and 1% BSA) and permeabilized with 150µL permbuffer 

III (BD) and the cells were incubated for 30 minutes at -20°C. After 30 minutes the cells were washed 

with MACS buffer and stained with surface markers containing CD25, CD8, CD4, PD-1, CD44, B220 and 

CD3 and Fc-block for 30 minutes at 4°C followed by wash with MACS buffer and pSTAT5 staining for 30 

minutes at room temperature.
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Bone marrow derived macrophage cultures

Bone marrow cells were isolated from the femurs and tibias of naïve CBA/J (Janvier, Hannover, 

Germany), or C57BL/6 mice (Envigo, Zeist, The Netherlands) mice under sterile conditions. In short, 

all muscle tissues are removed with gauze from the bones and placed in a 60-mm dish with 70% 

alcohol for 1 minute, washed twice with PBS and transferred into a fresh dish with RPMI 1640. 

Bones were crushed using a pestle and mortar and subsequently passed through nylon mesh to 

remove small pieces of bone and debris followed by erythrocyte lysis using ammonium chloride. 

Bone marrow cells were resuspended in RPMI supplemented with 10% FCS, 2.5ml gentamicin 

(10mg/ml) (Gibco, Breda, the Netherlands), 50 μM β-mercaptoethanol (SigmaAldrich) and 10 ng/ml 

M-CSF (R&D systems, Oxon, UK) to establish macrophage-TCM. 2x105 cells were plated per well in 

a 24-well Nunc plate with Upcell surface coating, allowing for harvest of cells at low temperatures 

following a 7-day culture period. Fresh TCM was added on day 3 of culture, and polarizing cytokines 

with or without a range drug concentrations on day 6 for the final 24-hour remainder of the culture 

period. M1 macrophages were generated by adding LPS (50ng/ml) and IFNγ (50ng/ml), or IL-4 

(10ng/ml) with or without IL-10 (10ng/ml) or IL-13 (10ng/ml) in case of M2 macrophages. Besides 

the inhibition of JAK3 using the specific JAK3-inhibitor (PF06651600, Sigma Aldrich), cells were 

alternatively treated with trimeric CD40L (Immunex, 1µg/ml), with a JAK1/JAK3 dual inhibitor 

(Tofacitinib, Sigma-Aldrich) or associated diluents as negative controls. At the end of the culture, 

the plates were put on ice and cell suspensions were harvested and prepared for flow cytometry 

analysis.

Monocyte derived macrophage cultures

Venous blood from adult healthy individuals was collected in EDTA tubes and peripheral blood 

mononuclear cells (PBMCs) were isolated using a Ficoll-Hypaque gradient according to standard 

protocol (Axis-Shield Diagnostics, Dundee, UK). Written informed consent was obtained from the 

donors and studies were conducted in agreement with the Declaration of Helsinki, according to the 

ICH Harmonized Tripartite Guideline on Good Clinical Practice and in accordance with recognized 

ethical guidelines approved by our local institutional review board. Monocytes were extracted 

with magnetic-activated cell sorting (MACS) using anti-CD14 antibody coated microbeads (Milteny 

Biotec) according to the manufacturer’s protocol. Following the MACS-procedure, cells were stained 

for flow cytometry to guarantee sufficient purity (>98%). Monocytes were then suspended in TCM 

consisting of RPMI 1640 + Glutamax, 10% normal healthy AB serum and human macrophage colony-

stimulating factor (20ng/mL, R&D Systems). Cells were cultured similarly to murine macrophages, 

with the exception of being an 8-day culture with macrophage polarization occurring in the final 48 

hours of culture. Polarization to the M1 or M2 phenotype occurred in the presence of LPS (100ng/

mL, Sigma-Aldrich) and IFNγ (20ng/mL, R&D Systems) for M1 or IL-4 (20ng/mL, R&D Systems) with 

or without IL-13 (20 ng/mL, R&D Systems) for M2 for 2 days.
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Bone marrow derived DC- OT-I and tumor-cell co-culture

Bone marrow derived dendritic cells (BMDC) were cultured from n = 3 wild-type C57BL/6 donor mice 

(female, 8 weeks) similarly to BMDMs but GM-CSF instead of M-CSF was used as a growth factor 

for 9 days of culture in normal tissue-culture coated 6-well plates (Sarstedt), followed by 24 hours 

of simulation with OVA-protein (150µg/ml) and CpG in the presence of JAK3i (PF06651600, Sigma 

Aldrich) as reported previously and analyzed using flow cytometry 21. Next, OT-I cells were sorted 

from spleens and lymph nodes of female OT-I mice bred in house using a CD3+ negative selection kit 

(EasySep; StemCell) followed by cell labeling using CellTrace Far Red proliferation dye (Invitrogen) 

according to manufacturer protocols. Labeling efficacy and OT-I purity were checked using flow 

cytometry before co-culture. A total of 5.0x103 non-JAK3i pre-treated SIINFEKL-peptide (500ng/ml) 

loaded BMDCs were co-cultured with 2.5x104 naïve labeled and purified OT-I T cells in 96-well flat-

bottom plates using T cell medium (IMDM supplemented with 10% FBS, β-mercapto-ethanol and 

gentamicin) and JAK3i in a 1:5 (DC-T-cell) ratio for 72 hours and harvested or for subsequent co-culture 

with AE17-OVA tumor cells for 24 hours (ratio: 1:1) followed by for flow cytometry analysis.

Human T cell cultures

PBMCs from healthy donors were labelled with CellTrace Violet (ThermoFisher Scientific) and 

were stimulated with anti-CD3/CD28 Dynabeads at 0.5 bead per mononuclear cell with or without 

recombinant human IL-2 (1, 10 or 100 IU/ml, R&D Systems) for the indicated time-points. In some 

conditions, Tofacitinib (200µM or 1000µM) or PF-06651600 (200µM or 1000µM) was added to the 

culture. Cells were cultured in IMDM (ThermoFisher Scientific) supplemented with heat inactivated 

FCS, Glutamax (ThermoFisher Scientific), 2-mercaptoethanol, penicillin and streptomycin. Cytokine 

concentrations in cell supernatants were analyzed using an ELISA set for IFNγ (eBioscience) according 

to the manufacturer’s instructions. In case of murine T cell cultures, proliferation-dye pre-stained 

wild-type C57BL/6 T cells were stimulated with anti-CD3/CD28 Dynabeads at 1:1 ratio with various 

concentrations of PF06651600 (negative control=H2O) or Tofacitinib (negative control=DMSO) and 

assessed for proliferation, activation (CD69, CD25) and cytokine (TNFα, IFNy) production 24 hours 

later using (intracellular) flow cytometry.

In vivo murine tumor models and experiments

Female 8- to 10-week-old C57BL/6 mice (Envigo, Zeist, The Netherlands) and CBA/J mice (Janvier, 

Hannover, Germany) were housed under specific pathogen-free conditions at the animal care facility 

of the Erasmus MC, Rotterdam. Experiments were approved by the local and central Ethical Committee 

for Animal Welfare and complied to the Guidelines for the Welfare of Animals in Experimental 

Neoplasia by the United Kingdom Coordinating Committee on Cancer Research (UKCCCR) and by the 

Code of Practice of the Dutch Veterinarian Inspection. The AE17 cell and AC29 mesothelioma cell lines 

were kindly provided by Bruce W.S. Robinson of the Queen Elizabeth II Medical Centre, Nedlands, 

Australia who previously authenticated these cells as being mesothelioma cells. At every 8–10 

passages, cell lines were tested for mycoplasma contamination by PCR and remained negative. Tumor 
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cells were cultured in RPMI 1640 medium containing 25mM HEPES, Glutamax, 50g/ml gentamicin, 

and 5% FBS (all obtained from Gibco) in a humidified atmosphere and at 5% CO2, in air. For culture, 

either culture flasks or CellSTACKs (Corning Life Sciences) were used to reach appropriate tumor cell 

frequencies for injection. AE17 and AC29 cells were passaged once or twice a week to a new flask by 

treatment with 0.05% trypsin, 0.53n mmol/L EDTA in PBS (all Gibco). At the start of the experiment, 

CBA/J or C57BL/6 mice were intraperitoneally or subcutaneously injected with either 107 AC29 cells 

or 0.5x106 AE17 cells, respectively, dissolved in PBS, or with PBS as control. Mice were scored using 

the body condition score, killed when body condition score was below 2 and scored as a death in the 

survival analysis. For DC therapy experiments, BMDC were generated from wildtype CBA/J mice and 

loaded with AC29 tumor cell lysate in vitro as described previously22. On day 10 following i.p. tumor 

inoculation, 2-3x106 DCs pre-loaded with AC29 tumor lysate and stimulated with CpGwere injected 

i.p 21. For SLP-vaccination studies in the TC-1 tumor model, TC-1 cells were cultured in 500 ml IMDM 

medium, 8% FBS (40 ml) and pen/strep plus L-glutamin and following cell harvest were injected in the 

flank of wildtype C57BL/6 mice. When tumors were established on day 8, mice received subcutaneous 

PBS or the SLP HPV16 E743–77 (GQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIR) emulsified at a 1:1 

ratio with Incomplete Freunds Adjuvant (IFA; Difco) in the contralateral flank. In case of subcutaneous 

tumor models, tumors were measured twice weekly using an electronic micro-caliper and mice were 

euthanized when tumors grew beyond 100mm2 or became ulcerated.

In vivo treatment with PF-06651600

Mice were treated with a range of PF-06651600 concentrations dissolved in pre-warmed deionized 

water (Milli-Q) with all tested concentrations ranging within the solubility spectrum (5mg/ml). Mice 

were treated with the JAK3-inhibitor or the diluent (deionized water) via oral gavage, twice daily with 

intervals of 12 hours, as reported by the manufacturer for a maximum of 14 days. Alternatively, PF-

06651600 was administered in drinking water ad libitum, assuming that 8-week-old female mice with 

an average weight of 20 g drink approximately 5 ml of water per 24 hours (meaning that for the 5 mg/

kg dose in drinking water, 10 mg of PF-06651600 was dissolved in 1 L of deionized water, amounting 

to a ~25µM). Drinking water was refreshed every week and bottles were covered with aluminum foil.

Preparation of Single Cell Suspensions from Tissues

Single cell suspensions were generated from the spleens, blood and tumors of mice from each 

group. All tissues were either weighed in a microbalance in case of tumors and spleens, or volume 

determined for blood. Briefly, spleens were aseptically removed and mechanically dispersed over a 

100-μm nylon mesh cell strainer (BD Biosciences) followed by erythrocyte lysis using osmotic lysis 

buffer (8.3% NH4Cl, 1% KHCO3, and 0.04% Na2EDTA in deionized water). Blood was collected in EDTA 

tubes (Microvette CB300, Sarstedt) and subsequently lysed. Tumors were collected, and dissociated 

using a validated tumor dissociation system (Miltenyi Biotec). Cells suspensions were filtered through a 

100-μm nylon mesh cell strainer (BD Biosciences) and counted in trypane blue with a hemocytometer 

using the Burker-Turk method.
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Immunomonitoring using Flow Cytometry

For measurements of cytokine production in lymphoid cells by flow cytometry, cells were 

restimulated for 4 hours at 37°C using PMA and ionomycin supplemented with GolgiStop (BD 

Biosciences). For assessing cytokine production by myeloid cells, cells were subjected to 4 hours 

incubation with Golgistop. For cell surface marker staining, cells were washed with FACS-wash 

(0.05% NaN3, 2% BSA in PBS) and Fc II/III receptor blocking was performed using anti-mouse 

2.4G2 antibody (1 : 200; kindly provided by L. Boon, Bioceros, Utrecht, The Netherlands). After 

the blocking procedure, antibodies (all derived from BD Biosciences, Biolegend or Thermofisher 

Scientific, titrated to optimal dilutions and used according to the manufacturer’s protocol) for cell 

surface staining were added into each sample and placed on ice for 30 minutes. Cells were washed 

in FACS-wash followed by a PBS wash, and then stained for viability using fixable LIVE/DEAD aqua 

cell stain (Thermo-Fisher Scientific, 1:200). After two additional washes with FACS-wash, cells were 

either measured or in case of intracellular staining; fixed, permeabilized and stained using Fix/

Perm buffer (in case of nuclear protein staining, eBioscience) or 4% PFA and 0.5% saponin (in case 

of cytokine/granzyme-B stainings, Sigma-Aldrich). Antibodies were stained for 30 minutes in case 

of the PFA/Saponin protocol and 60 minutes for the intranuclear staining protocol, on ice in the 

dark. A fixed number of counting beads (Polysciences Inc.) was added before data acquisition to 

determine the absolute amount of cells. Data were acquired using an LSR II flow cytometer (BD) 

equipped with three lasers and FACSDiva software (BD) and analyzed by FlowJo (Tree Star Inc., 

USA) software V10.1.

Tumor cell apoptosis assay

A total of 0.2x106 cells from various murine and human cancer-derived cell lines were cultured in 

aforementioned appropriate culture conditions in 6-wells plates for 48 hours in the presence of 

absence of different JAK3i (PF-06651600) concentrations. Following culture, cells were harvested 

and stained for cell death and apoptosis using the 7-AAD/Annexin V staining kit, according to the 

manufacturer’s protocol (Biolegend).

Statistical Analysis

Data are expressed as means with SEM. Comparisons between groups were made using one-way 

ANOVA tests where experimental treatment groups were compared with vehicle, or the Wilcoxon 

signed rank test in case of paired samples. When correlations were depicted, Spearman’s rank 

correlation test was performed to test for statistical significance. A two-tailed value of p < 0.05 

was considered statistically significant. Survival data were plotted as Kaplan-Meier survival curves, 

using the log-rank test to determine statistical significance. Data was analyzed using Graphpad 

Prism software (Graphpad, V5.01).
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Results

PF-06 is a potent inhibitor of IL-2 mediated STAT5-phosphorylation in T cells

Chronic phosphorylation of STAT5 by JAK1/3 in T cells has been recently found to underlie ineffective 

anti-tumor immunity providing a rational for JAK3i in solid tumors 12. Because JAKs are involved 

in many pro- and anti-tumor cytokine receptor pathways, off-target specificity of early generation 

JAK3i could potentially antagonize beneficial outcomes of JAK3-specific inhibition at the expense 

of increased toxicity 18. To evaluate whether the novel compound PF-06 specifically inhibits STAT5-

phosphorylation and to which degree, wildtype naive and pre-activated CD25+ murine T cells were 

simulated in vitro using anti-CD3/CD28 or IL-2, respectively, and analyzed using Phosphoflow 
23. The broad kinase inhibitor Ibrutinib was applied as a positive control since kinomescan data 

identified multiple kinases, including JAK3 as targets 24. The selective BTK-inhibitor Acalabrutinib 

was used as a negative control in our studies as BTK is not expressed by T cells 24,25. Only PF-06 

specifically inhibited IL-2-mediated pSTAT5 in both CD8+ and CD4+ T cells (Fig. 1) while leaving other 

quintessential T cell signaling pathways (e.g. downstream TCR and NF-κB unaltered (Fig. 2, S1). 

As CD25 expression among CD25+ T cells varied, we compared pSTAT5 levels at baseline and in 

response to JAK3i in CD25-high, intermediate and low-expressing T cells. CD25-high expressing 

cells displayed increased STAT5-phosphorylation at baseline but also in response to low-dose JAK3i 

in vitro suggesting increased sensitivity to IL-2 in CD25-high expressing cells (Fig. S2A). Regulatory 

T cells (Tregs) constitutively express CD25 as a means to scavenge IL-2 thereby inhibiting effector 

T cell proliferation 26. To investigate how Tregs respond to IL-2 and JAK3i, we assessed pSTAT5-

phosphorylation status in CD44+ CD25hi CD4+ T cells, a population enriched for Tregs in the naïve 

spleen (Fig. S2B). As expected, pSTAT5-expression was nearly twice as high in Tregs compared with 

non-Tregs, with pSTAT5 being completely inhibited only at higher micromolar levels of PF-06 in vitro 

(Fig. S2B). We concluded that the specific JAK3i PF-06 efficiently prevented STAT5 phosphorylation 

in mouse T cells in a low micromolar range.

PF-06 inhibits T cell proliferation and effector function at high concentrations in vitro

To investigate how decreased IL-2-mediated STAT5-phosphorylation translates to T cell proliferation 

over time, we stimulated dye-labeled T cells in vitro using anti-CD3/CD28 Dynabeads alone or 

in the context of JAK3i. Head-to-head comparison between PF-06 and the less specific JAK1/3i 

Tofacitinib showed both drugs to inhibit T cell proliferation, activation and effector cytokine 

production but only at high (>1.0 µM) drug concentrations in mouse (Fig. S3) and human (Fig. S4A-C) 

T cells. Interestingly, whereas Tofacitinib more potently inhibited T cell proliferation and cytokine 

expression in humans compared with PF-06, the opposite was true for mice (Fig. S3-4). In contrast 

to Tofacitinib, however, PF-06 only modestly inhibited cellular activation and IFNy production in 

healthy-control derived T cells at the micromolar range (Fig. S4C). These findings show PF-06 to be 

a potent inhibitor of IL-2-mediated pSTAT5 in T cells, with T cell functions being inhibited only at 

higher drug concentrations providing a window for STAT5 modulation.
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Figure 1: The JAK3-inhibitor PF-06651600 potently inhibits STAT5-phosphorylation in response to IL-2 in 

T cells

(A) Pre-activated IL-2Rα (CD25) expressing murine T cells were stimulated with IL-2 after pre-incubation alone 

(orange), with the specific JAK3i; PF-06651600 (purple), aspecific JAK3i; Ibrutinib (turquoise) or negative 

control; Acalabrutinib (red) using Phosphoflow. Histograms are shown displaying the effects of the different 

inhibitors on pSTAT5-expression at 10µM (left panel, CD8+) and quantified expression of pSTAT5 in CD8+ and 

CD4+ T cells stimulated or unstimulated with IL-2 (right panels). MFI = median fluorescence intensity, * = p < 

0.05, ** = p < 0.01, *** = p < 0.001. Means and SEM are shown, n = 5 per condition.

JAK3i decreases tumor progression depending on the dose and mode of administration

To assess the effects of PF-06 in vivo and its anti-tumor efficacy, we treated AE17 and AC29 

immune competent mesothelioma tumor-bearing mice with PF-06 administered by oral gavage 

twice-daily as described by others 19. Using this treatment scheme, tumor progression was 

unaltered in these tumor models compared with vehicle treatment (Fig. 3A). The lack of response 

was accompanied by a reduction in T cell proliferation monitored in peripheral blood (PB), and 

decreased activation, proliferation and effector function at the tumor site (Fig. 3B), indicative 

of suppressed anti-tumor immunity. We postulated that peak PF-06 concentrations following 

oral administration would approach immune suppressive drug concentrations reminiscent 

of aforementioned in vitro studies (Fig. S3), and that low-grade and stable dosing of JAK3i in 

drinking water would ameliorate this issue. Therefore, we repeated the in vivo experiment 

dissolving PF-06 in drinking water aiming for tonic inhibition of the IL-2R/JAK3/STAT5-axis 

throughout the anti-tumor immune response. In contrast with oral gavage, continuous low-

dose JAK3i suppressed tumor growth with approximately 25 µmol/L being established as the 

optimal dose (Fig. 4A). Changes in tumor burden were paralleled by increased T cell frequencies 

and a more activated and proliferative T cell compartment as evidenced by increased Ki67 
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and PD-1 expression (Fig. 4B, Fig. S5). B and NK cells on the other hand were not, or only 

marginally affected by JAK3i treatment (Fig. S5). These data show that JAK3i, if provided as 

a steady continuous administration, impedes tumor progression coinciding with increased T 

cell activation. In contrast to in vitro, macrophage polarization is not altered by JAK3i in vivo

As JAK3 associates with cytokine receptors on other immune cells, treatment efficacy could 

potentially be explained by inhibition of alternative pathways, including IL-4/IL-4R signaling. Indeed, 

BMDMs stimulated in vitro with IL-4 upregulated the M2 markers CD206, arginase and PD-L1 that 

could be antagonized by JAK3i (Fig. S6A). This effect could not be rescued by addition of excess IL-13, 

another M2-inducing cytokine sharing the IL-4R-alpha subunit, or IL-10 (Fig. S6B) 27,28. In contrast 

with the JAK1/3i Tofacitinib, PF-06 did not alter pro-inflammatory (M1) macrophage differentiation 

as evaluated by iNOS and MHCII expression (Fig. S6C). Similar findings were obtained using human 

monocyte-derived macrophages (MoDM) (Fig. S7). Tumor-associated macrophage and conventional 

DC frequency and phenotype, however, were largely unaltered by JAK3i in all our investigated 

models, indicating that IL-4 plays an inferior or redundant role in in vivo myeloid cell polarization 

(Fig. S6D-E). On the same line, JAK3i did not directly affect solid tumor-cell apoptosis in vitro (Fig. 

S8A) or in vivo (Fig. S8B), except in case of the JAK3-mutated T cell lymphoma cell line Hu-78 (Fig. 

S8A). We concluded that T cells are the most likely direct targets of JAK3i.
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◂Figure 2: PF-06651600 does not inhibit other T cell signaling pathways

In order to determine off-target efficacy of PF-06 on other crucial T cell signaling pathways we assessed 

phosphorylation of proteins downstream of the T cell receptor (TCR) (pZAP70, pSLP76, pITK180), PI3K-Akt 

(pS6), NF- kB (IKB) or MAPK-ERK (pERK) pathways following anti-CD3/CD28 stimulation with or without 

inhibitors using Phosphoflow. Results for both CD8+ (upper panels) and CD4+ T cells (lower panels) are shown 

as histograms (10µM drug concentration) and line graphs. MFI = median fluorescence intensity, means and 

SEM are shown, n = 5 per condition.

Although JAK3i as monotherapy is capable of inhibiting tumor progression, combining JAK3i with 

existing immunotherapies could further enhance efficacy of both modalities. Cellular and peptide 

cancer vaccines are safe and efficacious in inducing anti-tumor T cell responses in solid advanced 

cancer, but durable responses are obtained in a small minority of patients possibly due to the 

eventual exhaustion of vaccine-elicited T cell responses 21,29-33. To improve vaccine-induced T cells and 

treatment efficacy, we treated AC29-bearing mice, at late stage, with tumor-lysate loaded BMDCs 

in the presence or absence of JAK3i (Fig. 5A). We found JAK3i-DC-combination immunotherapy 

to effectively reduce tumor load compared with both monotherapies alone (Fig. 5B). Similarly, 

we combined JAK3i with a SLP vaccine in the aggressive TC-1 solid tumor model showing similar 

combination immunotherapy efficacy, improving response rates, and reducing heterogeneity in 

tumor responses observed (Fig. 5C-E). Further investigations into the immunological mechanisms 

underlying combination immunotherapy efficacy in end-stage tumors revealed JAK3i to spare CD8+ 

T cell proliferation and boost TIL activation as indicated by increased CD25 and PD-1- but not CTLA-4 

expression (Fig. 6A). In line with an activated rather than exhausted TIL phenotype was a specific 

increase in single PD-1-expressing TILs (PD-1+ CTLA-4-) rather than inhibitory receptor double-

positive TILs known to be exhausted 34,35. Recently, the surface molecule CD39 was reported to 

mark activated, (pre-)exhausted and tumor-specific CD8+ and CD4+ T cells in the TME and this marker 

was significantly upregulated in combination immunotherapy-treated TILs compared with TILs 

derived from untreated- or JAK3i-only treated mice 36,37. Besides surface molecules, combination 

immunotherapy-treated TILs displayed highest levels of IFNy and granzyme-B (Fig. 6A). These 

findings were not limited to CD8+ T cells, as CD4+ T-helper cells were similarly altered in the TME 

(Fig. 6B). These findings provide a preclinical rationale for JAK3i-combination immunotherapy and 

inclusion of anti-PD-1 ICI to further increase anti-tumor responses.
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Figure 3: Twice-daily high-dose JAK3i via oral gavage does not impact tumor growth and inhibits T cell 

immunity

(A) AE17 subcutaneous and AC29 intraperitoneal tumor-bearing mice were treated with the JAK3i; PF-

06651600 via twice-daily oral gavage starting on day 10 and tumor burden was assessed on day 21. (B) CD8+ 

T cells in peripheral blood on day 15 or in the tumor at end-stage (C) were assessed for proliferation (Ki67) and 

activation status using multicolor flow cytometry. Means and SEM are shown with n = 6 mice per condition. 

JAK3i = JAK3-inhibitor, Ns = non-significant, * = p < 0.05, ** = p < 0.01, GrzB = granzyme-B.
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◂Figure 4: Continuous low-dose JAK3i at 5.0mg/kg significantly decreases tumor weight in AC29-bearing 

mice and improves anti-tumor T cell immunity

(A) AC29 intraperitoneal tumor-bearing mice were treated with the JAK3i; PF-06651600 dissolved in drinking 

water at various pre-specified doses and tumor weight was monitored. (B) CD8+ T cells in peripheral blood 

on day 15 or in the tumor at the end of the experiment (day 20) were assessed for proliferation (Ki67) and 

activation status using multicolor flow cytometry. Means and SEM are shown with n = 6 mice per condition. 

JAK3i = JAK3-inhibitor, ns = non-significant, * = p < 0.05.

JAK3i modulates DC-mediated T cell priming resulting in decreased sensitivity to exhaustion

We previously observed that continuous low-dose JAK3i as monotherapy, or in combination with 

vaccines, increased T cell proliferation early after treatment. This suggests that T cell priming 

could be modulated by fine-tuning JAK3-activity. To investigate this, we first assessed whether 

JAK3i directly affected DC-phenotype in vitro by treating GM-CSF cultured BMDCs with increasing 

concentrations of JAK3i during activation with the TLR9-ligand CpG (Fig. 7A). We found that DC-

viability, co-stimulatory- and homing (CCR) receptor expression were unaltered by JAK3i and MHC 

class I and II expression was only marginally increased at high concentrations, similar to macrophages 

(Fig. S9, S6-7). Next, OVA-peptide loaded DCs were co-cultured with sorted naïve OT-I T cells in the 

presence or absence of JAK3i and T cell proliferation and phenotype were assessed. Even at the 

highest concentration, we found that JAK3i did not impair T cell expansion or activation capacity 

(determined by proliferation dye dilution and CD44, PD-1-expression, respectively). However, 

activated-induced apoptosis and exhaustion (as measured by TOX and CD39 expression) were 

decreased, suggesting sustainable T cell activation (Fig. 7B). CD25 expression was dose-dependently 

decreased by JAK3i confirming the role of IL2R-JAK3-STAT5 signaling in amplifying CD25 and thus 

high-affinity IL2R-expression38. Furthermore, 0.1 µmol/L JAK3i cultured T cells demonstrated 

increased AE17-OVA killing capacity in vitro, albeit not statistically significant, whereas at higher 

concentrations effector function decreased (Fig. 7C). The improved T cell phenotype observed 

during priming persisted during the effector phase of the immune response (Fig. S9B). These 

findings indicate that fine-tuning JAK3-activity during priming yields a superior T cell phenotype 

that could underlie improved anti-tumor efficacy in vivo.
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Figure 5: JAK3i increases cellular and peptide vaccine efficacy

(A-B) intraperitoneal (i.p.) AC29 and subcutaneous (s.c.) TC-1 bearing mice (C) were treated with dendritic 

cell (DC) therapy or a synthetic-long peptide (SLP) vaccine, respectively, alone or in combination with JAK3i 

(PF-06651600) at indicated time points. Tumor weight was monitored at end-stage in case of AC29 tumors, 

and individual tumor-size was monitored 3/week in case of TC-1 (D). (E) tumor responses were graded as 

complete response (CR) defined as a complete eradication of tumor (being non-palpable), partial response 

(PR) being >30% decrease in tumor volume compared with maximum initial tumor size and progressive 

disease less than 30% regression and eventual tumor progression. Means and SEM are shown with n = 6 to 10 

mice per condition. JAK3i = JAK3-inhibitor, Vac = SLP-vaccine, ns = non-significant, * = p < 0.05, ** = p < 0.01
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Figure 6: JAK3i improves peptide-vaccine induced CD8+ and CD4+ T cell immunity in the tumor 

microenvironment

CD8+ (A) and CD4+ T-helper cell (B) proliferation (Ki67), and surface expression of co-inhibitory checkpoints or 

activation markers was assessed in end-stage tumors of the experiment described in Fig. 4C. Means and SEM 

are shown with n = 9 to 10 mice per condition. JAK3i = JAK3-inhibitor, Vac = SLP-vaccine, GrzmB = granzyme-B, 

IFNγ = interferon-gamma, ns = non-significant, * = p< 0.05, ** = p < 0.01, *** = p < 0.001, **** = p <0.0001.
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Figure 7: JAK3i does not impede expansion following DC-mediated priming but rather limits T cell 

exhaustion and apoptosis in vitro

(A) Experimental setup of the in vitro OT-I T cell-DC/tumor-cell co-culture system (B), Histograms showing 

T cell phenotype after 72 hours of co-culture with OVA-peptide loaded DCs in the presence of increasing 

concentrations of JAK3i ((PF-06651600). (C) Primed JAK3i-cultured OT-I cells were mixed with AE17-OVA 

tumor cells for 24 hours and tumor killing (dead + apoptotic tumor cells) was assessed. Ns = non-significant, 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.
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Discussion

In this study, we found low-dose JAK3i to decrease pSTAT5 expression while preserving T cell 

proliferation in vitro and to improve T cell phenotype and tumor load in solid tumor models as 

monotherapy, and in combination with cellular and peptide-vaccine approaches. JAK3i-cancer 

vaccine combination immunotherapy could be a particularly potent anti-cancer strategy with cellular 

and peptide vaccines inducing novel polyfunctional T cell clones that are preserved and further 

boosted by JAK3i. This approach differs from current treatments primarily aimed at amplifying 

existing and often dysfunctional anti-tumor T cell responses that are only short-term effective in 

a proportion of patients with cancer 1,39. Of note, in a recently described screening assay for T cell 

exhaustion reversing compounds, two JAK3i were identified to effectively counter T cell exhaustion 

in vitro similar to our findings, further solidifying a role for JAK3 in mediating T cell dysfunction 4. 

Whether in vivo anti-tumor efficacy of JAK3i is driven solely by effects of JAK3i on T cells or whether 

other immune cells are involved remains to be further investigated.

With the discovery of more specific JAK3i (e.g. PF-06 and decernotinib 40), JAK3 can be specifically 

targeted limiting unwanted action and toxicity as described for more broad kinase inhibitors such 

as Tofacitinib and Ibrutinib 18,41,42. Specific, small molecule inhibitors hold significant advantages 

compared with antibody-mediated therapies including route of administration (oral vs. i.v.), lack 

of anti-drug antibody formation and the possibility of timely and graded target inhibition which 

may be key in case of pleiotropic targets such as the IL-2R 43. IL-2-IL-2R interaction may be essential 

or deleterious for T cell effector function and pool size, depending on the strength, duration 

and moment of interaction in the anti-tumor immune response 12,16. Especially in the setting of 

vaccination, too early or strong blockade of IL-2R signaling following T cell priming could suppress 

proper T cell expansion thereby limiting therapy efficacy. Although we did not assess early T cell 

expansion in PB of mice following DC- or SLP-vaccination, the effects of JAK3i monotherapy in PB 

and the effects on tumor progression indicate that graded JAK3i improves, rather than hampers 

T cell activity. Further exploration of JAK3i timing and dosing could further inform about optimal 

treatment conditions in solid tumor treatment.

Recently, Liu and colleagues demonstrated that chronic IL-2-mediated JAK1/3-pSTAT5 signaling in 

the TME-induced T cell exhaustion via generation of tryptophan metabolites triggering the aryl 

hydrocarbon receptor (AhR) in T cells 12. As the authors did not therapeutically target this pathway in 

vivo, our findings with JAK3i complement their findings as JAK3i using PF-06 potently and specifically 

inhibited STAT5-phosphorylation in T cells and improved T cell phenotype in vivo. Interestingly, 

Liu and colleagues found that an IL-2hi gene signature in multiple solid cancer types but also AML 

was associated with poor patient survival, indicating that IL-2R targeting compounds may act on a 

wide variety of tumor types, including solid- and non-solid cancer types 12. Whether our JAK3i acts 

by limiting pSTAT5 mediated tryptophan metabolism and subsequent AhR-stimulation remains 
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to be investigated. JAK3 is located downstream of several (common γ-chain) cytokine receptors 

besides the IL-2R which may in part explain our in vivo efficacy. Although we found a strong effect 

of JAK3i on IL-4 mediated alternative macrophage polarization in vitro, we could not detect this in 

vivo questioning the role of this Th2-related cytokine in the TME. IL-4-mediated M2-polarization 

and T cell suppression can be induced, however, following radiotherapy limiting its immunogenic 

effect on CD8+ T cells as documented in a mammary tumor model 44. IL-15 and IL-7 are two other 

important cytokines signaling through JAK3-associated receptors whose downstream inhibition 

could play a role in our tumor models. In contrast with IL-2 that is dynamically upregulated following 

TCR-stimulation by cognate antigen, IL-7/IL-15 are involved in maintaining survival of naïve and 

memory T cells during homeostatic conditions 45. Liu and colleagues found IL-15 to be unable to 

exert the same exhausted profile in CD8+ T cells, even though both IL-2 and IL-15 signal through 

STAT5 12. Besides their known effects on CD8+ T cells, common γ-chain cytokines including IL-2 can 

skew Th-phenotypes, particularly IL-2 mediated Th1-induction 45. Although we could not detect 

changes in IFNγ production by Th-cells following JAK3i in vivo modulation through Th-subclass 

differentiation remains a possibility. The same accounts for Treg that constitutively express high 

levels of the IL-2R and rely on IL-2 for their expansion, survival but not for their suppressive function 
26,45,46. Interestingly, although effector T cell phenotype was altered by JAK3i, we did not observe 

changes in Treg frequencies or proliferation at the applied JAK3i dose, possibly due to high intrinsic 

IL-2R expression compensating for decreased downstream signaling in the context of JAK3i (Fig S2B).

We have shown JAK3 to be a novel and effective target for cancer immunotherapy, improving T 

cell phenotype and anti-tumor function depending on the mode of targeting. Our findings lay the 

groundwork for further efficacy testing in human cancer as monotherapy but more promising in 

combination with existing immunotherapies.
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Supplementary data
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Figure S1: The effects of the different inhibitors used in Figs 1-2 on phospho-targets in different T cell signaling 

pathways in the unstimulated setting, for both CD8+ (upper panels) and CD4+ T cells (lower panels) at the 10 

µmol/L concentration.
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pSTAT5 expression was assessed for the different subsets. (B) Alternatively, as FoxP3 could not be included in 

the Phosphoflow analysis for technical reasons, CD44+ CD25hi (enriching for FoxP3-positivity, left panel) was 
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p < 0.01, *** = p < 0.001, **** = p < 0.0001, Means and SEM are shown, n = 5 mice per condition.
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Figure S3: Murine wildtype proliferation-dye labeled T cells were stimulated with anti-CD3/CD28 beads in 

the absence or presence of ascending concentrations of either PF-06651600 (PF) or Tofacitinib (Tofa, both 

as µmol/L) and proliferation (A), activation (B) and cytokine production (C) were assessed by multicolor 

flow cytometry. Means and SEM are shown with n = 5 mice per condition IFNγ = interferon gamma, TNFα = 

tumor-necrosis factor alpha.



193

JAK3 inhibition promotes anti-tumor immunity and immunotherapy |

A

Proliferation CD8 T cells +IL-2

un
sti

m

aC
D3/2

8 +
 IL

2

aC
D3/2

8 +
 IL

2 +

 1.
0μ

M in
hib

ito
r

0

20

40

60

80

100

%
Pr

ol
ife

ra
tio

n

un
sti

m

    
    

aC
D3/2

8

    
 aC

D3/2
8 +

 

 1.
0μ

M in
hib

ito
r

un
sti

m

aC
D3/2

8 +
 IL

2

aC
D3/2

8 +
 IL

2 +

 1.
0μ

M in
hib

ito
r

0

20

40

60

80

100

%
Pr

ol
ife

ra
tio

n

Proliferation CD8+ T cells -IL-2

0

20

40

60

80

100

%
Pr

ol
ife

ra
tio

n

un
sti

m

    
    

aC
D3/2

8

    
 aC

D3/2
8 +

 

 1.
0μ

M in
hib

ito
r

    
 aC

D3/2
8 +

 

 0.
2μ

M in
hib

ito
r

0

20

40

60

80

100

%
Pr

ol
ife

ra
tio

n

    
 aC

D3/2
8 +

 

 0.
2μ

M in
hib

ito
r

Proliferation CD4+ T cells +IL-2

Proliferation CD4+ T cells -IL-2

p=0.026
p=0.993

p=0.096
p=0.953

p=0.059
p=0.865

p=0.051
p=0.999

0

10000

20000

30000

40000

CD25 expression CD4+ T cells

M
FI

CD25 expression CD8+ T cells

0

10000

20000

30000

40000

50000

M
FI

un
sti

m

    
    

aC
D3/2

8

    
 aC

D3/2
8 +

 

 1.
0μ

M in
hib

ito
r

    
 aC

D3/2
8 +

 

 0.
2μ

M in
hib

ito
r

un
sti

m

    
    

aC
D3/2

8

    
 aC

D3/2
8 +

 

 1.
0μ

M in
hib

ito
r

    
 aC

D3/2
8 +

 

 0.
2μ

M in
hib

ito
r

p=0.005
p=0.004

IFN-gamma T cells

0

10000

20000

30000

IF
N

ga
m

m
a 

(p
g/

m
l)

un
sti

m

    
    

aC
D3/2

8

    
 aC

D3/2
8 +

 

 1.
0μ

M in
hib

ito
r

    
 aC

D3/2
8 +

 

 0.
2μ

M in
hib

ito
r

p=0.019

Tofacitinib (JAK1/3)

PF-06651600 (JAK3)

B

C

Figure S4: healthy donor-derived T cells were stimulated with anti-CD3/CD28 beads in PF-06651600 or 

Tofacitinib containing medium without (A) or with (B) exogenous IL-2 added to the culture system. (C) CD4+ 

and CD8+ T cell activation as assessed by CD25-upregulation was quantified by flow cytometry, in addition 

to IFNy levels in the supernatant using ELISA (D). Means and SEM are shown with n = 4 healthy controls per 

condition, IL-2 = interleukin 2, MFI = median fluorescence intensity.
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Figure S5: B-, NK- CD4+ Th- and Treg data relating to the experiment in Figure 4. Means and SEM are shown.
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Figure S6: M-CSF generated murine bone-marrow derived macrophages were skewed to the M2 phenotype 

using IL-4 (A) or IL-4+IL-13 (B), or to a pro-inflammatory M1 phenotype using LPS and IFNy (C) in the presence 

of PF-06651600 (PF) or Tofacitinib (Tofa) and surface markers were assessed using flow cytometry. a trimeric 

CD40-agonist (aCD40) was used as a prototypic M1-skewing compound serving as a positive control. (D) 

tumor-associated macrophages (TAM) and conventional dendritic cells (cDC) in end-stage tumors from the 

experiment in Figure 4 were analyzed for frequency and phenotype. MFI = median fluorescence intensity. 

Means and SEM are shown.
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Figure S7: M-CSF generated monocyte-derived macrophages from healthy donors were skewed to M2- 

macrophages using IL-4 (A), IL-4+IL-13 (B) or to a pro-inflammatory M1 phenotype using LPS and IFNγ (C) in 

the presence of various JAK3i (PF-06651600) concentrations (as µM). MFI = median fluorescence intensity. 

Means and SEM are shown. * = p < 0.05, ** = p < 0.01.
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Figure S8: (A) various murine and human tumor cell lines were cultured in the absence or presence of 

increasing concentrations of JAK3i (PF-06651600) followed by flow-cytometric apoptosis and cell death 

detection. The T-cell lymphoma cell line Hu78 was used as a positive control as JAK3 is constitutively active 

and hence responsive to JAK3i. (B) CD45- (tumor) cells from the experiment in Figure 4 were assessed for 

proliferation (Ki67) at various doses of PF-06651600 in vivo. Ns = non-significant.
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Figure S9: (A) bone-marrow derived DCs (BMDCs) were loaded- and stimulated, respectively, with OVA protein 

and CpG in the presence or absence of increasing doses of JAK3i (PF-06651600) followed by flow-cytometry 

analysis. (B) T cell phenotypical analysis following 24-hour co-culture with AE17-OVA tumor cells, related to 

the experiment performed in Figure 7C. Means and SEMs are shown with n = 3 OT-I donor mice.
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General discussion

Immunotherapy has caused a paradigm shift in the treatment of patients with cancer 1. However, 

durable clinical responses are limited to a subset of patients and tumor types 2-4. To understand this 

limited efficacy, extensive research has focused on the tumor microenvironment (TME), but these 

efforts have not yet succeeded in substantial improvements in therapeutic efficacy. The significance 

of coordinating regulation across various tissues is becoming apparent, highlighting the roles of the 

spleen, bone marrow, gut microbiome, and the tumor-draining lymph node (TDLN) in establishing 

systemic anti-tumor immunity. Therefore, to effectively reach a wider population of patients, our 

palette of immunotherapy research should extend beyond the tumor site. Understanding the 

dynamic coordination between cell types and their location in orchestrating anti-tumor immunity 

could provide novel insights in the requirements for an effective response to immunotherapy 5-8. 

Therefore, the aim of this thesis was to acquire in-depth understanding of mechanisms underlying 

the effectiveness and resistance of different immunotherapy strategies – immune checkpoint 

blockade (ICB) and dendritic cell (DC) therapy - by adopting a wider perspective of the systemic anti-

tumor immune response. More specifically, in Part A of this thesis, we identified novel modes of 

action and resistance of antibodies blocking programmed cell death protein 1 (PD-1) or its ligand PD-

L1. In Chapter 2, we identified the TDLN as an important site in dictating the efficacy of anti-PD-L1 

therapy and the level of PD-1/PD-L1 interactions in the TDLN were indicated to be of predictive 

value in melanoma patients. The importance of TDLN biology in orchestrating effective anti-tumor 

immunity was further underlined in Chapter 3, where we found that differences in TDLN immune 

contexture could underlie effective anti-tumor immunity as an immunosuppressive environment in 

the TDLN was related to disease recurrence in melanoma patients. Besides a deeper understanding 

of the mechanisms of action, we also aimed to unravel novel mechanisms responsible for therapy 

resistance in Chapter 4. Here we identified the systemic activation of regulatory T cells (Tregs) by 

anti-PD-1/PD-L1, causing therapy resistance in the process. In Part B of this thesis, we focused on 

identifying systemic immunological mechanisms that could be targeted to improve the efficacy of 

DC therapy as discussed in Chapter 5. Combination of DC therapy with anti-PD-1/PD-L1 in Chapter 6 

was safe and feasible in mesothelioma patients and resulted in increased T cell activation and 

therapeutic efficacy in preclinical tumor models. In Chapter 7, chronic and low-dose inhibition 

of IL-2 receptor-STAT5 signaling using a janus kinase 3 (JAK3) inhibitor resulted in improved T cell 

responses and decreased tumor load when combined with DC therapy and peptide vaccination. 

How do these findings relate to our current understanding of systemic anti-tumor immunity and 

how can these findings give direction to future research and immunotherapy development?

The central role of the TDLN in systemic anti-tumor immunity and immunotherapy efficacy

The first step to initiate a functional anti-tumor T cell response is the release of cancer cell antigens 

that are presented by antigen-presenting cells (APCs), primarily migratory and resident DCs, to T cells 

with a cognate T cell receptor (TCR). This process of priming and activating T cells is predominantly 
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localized within the TDLN. Subsequently, primed tumor-reactive T cells migrate to the tumor site, 

where they carry out their effector functions 9,10. In the context of cancer, these processes are often 

hampered as TDLN contexture and priming capacity are impaired due to drainage of tumor-derived 

suppressive molecules and cell subsets 11. This could imply that enhancing the functionality of 

immune processes in TDLNs could be advantageous for bolstering systemic anti-tumor immunity 

and immunotherapy efficacy.

The role of the TDLN in the context of PD-1/PD-L1 blocking antibodies

In Chapter 2, we demonstrated that therapeutic efficacy of checkpoint targeting therapy, at least 

in part, arises from the disruption of the PD-1/PD-L1 axis in the TDLN. How do these findings align 

with the prevailing knowledge about the orchestration of anti-tumor immunity in the context of 

PD-1/PD-L1 blockade? A long-held view was that PD-1 primarily acts on TCR signaling in tumor-

infiltrating T cells 12,13. However, this view was challenged by findings that PD-1 also significantly 

impacts CD28-B7 mediated co-stimulation, thereby suggesting that B7-expressing myeloid cells in 

the vicinity of PD-1+ T cells could be important in dictating efficacy following anti-PD-1/PD-L1 14,15. 

This was further supported by observations that PD-L1 expression on host cells, and not on tumor 

cells, is essential in mediating anti-PD-1/PD-L1 efficacy 16-18. Our data not only corroborate these 

findings by demonstrating close interactions between DCs that express high levels of PD-L1 and 

B7 molecules and PD-1+ tumor-reactive T cells, but they also add to these findings by showing that 

these interactions occur in the TDLN. Thereby, even more prominently, our findings oppose the 

commonly-held view that the key target of inhibitors blocking PD-1 or PD-L1 is solely contained 

at the tumor site. Specific inhibition of the PD-1/PD-L1 axis in the TDLN resulted in delayed tumor 

growth with concomitant increase of tumor-infiltrating T cells, including the progenitor-exhausted 

T cell population (Tpex cells) that are described to be preferentially reinvigorated following anti-

PD-1/PD-L1 19-24. Tumor infiltration of T cells activated in the TDLN could also explain the emergence 

of novel T cell clones from extratumoral sources in patients responding to anti-PD-1/PD-L1 25-28. 

Seminal discoveries finding clonal overlap of Tpex cells in the TDLN and more terminally exhausted 

T cells (Tex) cells in the tumor further supports a model where the TDLN acts as a functional 

reservoir for anti-tumor immunity by continuously seeding the tumor with Tpex cells which then 

further differentiate into exhausted states 29-32. Our findings together with these studies highlight 

the importance of the TDLN in dictating efficacy of PD-1/PD-L1 blockade. What are the remaining 

questions that need to be addressed to acquire a better understanding of TDLN biology in the 

context of PD-1/PD-L1 blockade to improve efficacy?

First, in-depth insight is required into the modes of action by which DCs impact T cell priming 

and phenotype through PD-1/PD-L1 interactions and how this translates to improved anti-

tumor immunity upon blockade. In Chapter 2, we identified that the frequency of PD-1/PD-L1 

interactions associated with recurrence in melanoma patients and that these interactions were 

primarily observed between cDCs and T cells. In combination with observations that anti-PD-L1 
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efficacy is independent from TDLN-macrophages, our findings highlight cDCs as prime candidates 

for mediating response to anti-PD-L1 in the TDLN. The important role for DCs in the PD-1/PD-

L1 axis is further supported by data showing that PD-L1 expression on DCs is a key regulator in 

restricting CD8+ T cell responses 29,33-35. Recent studies by Spitzer’s group provided more detailed 

insights by demonstrating that anti-PD-L1 treatment in patients with head- and neck cancer 

increased the frequency of DCs in the vicinity of Tpex cells and more-differentiated Tex-int cells 

in the TDLN 29. How this is mediated remains to be elucidated. Antibodies blocking PD-1 or PD-L1 

could potentially improve migration of DCs to the TDLN or alter their spatial organization within 

the TDLN. In addition to pinpointing these underlying mechanisms, it is essential to provide 

formal evidence regarding which subset of PD-L1-expressing cDCs exert the most significant 

role in limiting CD8+ T cell responses. Our findings showed that cDC2s were more dominant in 

the TDLN, expressed higher levels of PD-L1 compared with cDC1 and co-localized with CD8+ T 

cells. This notable finding does not align with the well-established paradigm where cDC1s are 

specialized in priming CD8+ T cells, and cDC2s are dedicated to the activation of CD4+ T cells. 

However, this paradigm underwent a shift in light of recent data suggesting that cDC2s could 

efficiently impact CD8+ T cells besides their well-established function in activating CD4+ T cells 
36,37. Therefore, specific depletion of cDC subsets in the TDLN together with spatial analyses, could 

shed further light on the role of cDCs in expanding tumor-reactive T cells following anti-PD-1/

PD-L1. In addition, in-depth insights into these PD-1/PD-L1-specific interactions in the TDLN 

could also offer novel avenues for predicting disease outcome by using TDLN biopsies or even 

peripheral blood as Text-int cells were reported to be increased in this compartment following 

anti-PD-L1 treatment 29. This will need to be investigated in larger cohorts with responding and 

nonresponding patients.

As DCs in the TDLN are important candidates in dictating efficacy following PD-1 or PD-L1 

blockade, the TDLN could also act as an important effector site of DC therapy in the context of 

anti-PD-1/PD-L1. Therefore, the relative contribution of the TDLN in determining the therapeutic 

potential of DC therapy combined with anti-PD-1/PD-L1 should be further established. In Chapter 

6, we identified strong PD-L1 upregulation on DCs used for vaccination in both murine and human 

setting. Concurrent administration of DC therapy and anti-PD-L1 increased T cell activation and 

prolonged survival. Interestingly, TDLN-specific blockade of PD-L1 in combination with DC therapy 

resulted in near comparable levels of T cell activation and survival, suggesting that improved 

efficacy is in part derived from improved T cell priming in the TDLN. Future studies should 

decipher whether this TDLN-derived effect can be explained by distinct effects of DC therapy 

and anti-PD-L1 on T cell responses or by the improvement of the priming potential of DCs used 

for vaccination in the context of anti-PD-L1. Experiments using PD-L1 knockout DCs for vaccination 

could shed further light on the mechanisms responsible for improved therapeutic efficacy. These 

findings could subsequently provide a preclinical foundation for the potential refinement of DC 

culture protocols and the adjustment of timing and dosing for DC therapy within the context of 
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PD-1/PD-L1 blockade in clinical setting. Furthermore, whether comparable PD-L1 upregulation 

occurs with other DC-targeting therapies, such as peptide vaccines, remains to be determined. 

This could provide mechanistic insights in the synergy of peptide vaccines and anti-PD-1 blockade, 

as has been recently reported 38,39.

Our findings in Chapter 2 and 6 highlight the TDLN as an important orchestrator of anti-tumor 

immunity following PD-L1 blockade. However, systemic administration of anti-PD-L1 antibodies 

outperformed local TDLN dosing which could imply the additional requirement of responses in 

the TME for optimal efficacy 40. For example, the abundance of tissue-resident memory T cells 

in human tumors also associated with improved overall survival and contributes to therapeutic 

efficacy following neoadjuvant ICB 41-44. However, it is important to note that our approach of 

TDLN-specific blockade of PD-L1 was incomplete, with only 30-40% of cDCs bound by anti-PD-L1 

antibodies. Therefore, an alternative explanation for the outperformance by systemic anti-PD-L1 

treatment could be superior antibody binding efficacy. Hence, it remains to be determined what 

the exact magnitude of PD-1/PD-L1 inhibition on TDLN T cells is and how this relates to targeting of 

PD-1+ T cells in the TME. It could well be that efficacy of anti-PD-1/PD-L1 depends on a concerted 

effort by PD-1+ T cells in TME inducing a local inflammatory response that potentiates T cell priming 

in the TDLN, egress of primed T cells from the TDLN and/or their migration to the TME.

In these chapters we have primarily focused on melanoma, NSCLC and mesothelioma. Could our 

findings on PD-1/PD-L1 interaction in TDLNs be extrapolated to other cancer types as well? In 

Chapter 2, we show that in nearly all preclinical models analyzed, PD-1 and PD-L1 are increasingly 

expressed on TDLNs compared with non-TDLNs. Only in the KPC pancreatic cancer cell line lacking 

OVA, we could not discern any PD-1/PD-L1 axis activity which could be due to lack of immunogenicity 

in this model. Therefore, it is to be expected in the patient setting that similar immunogenic tumor 

types harbor PD-1/PD-L1 and likely also other immune checkpoint activity in TDLNs and that in more 

immunologically naïve tumors such as most pancreatic cancers, an immune-sensitizing approach 

(e.g. with peptide or cellular vaccines) is needed to induce this activity. This will be of importance 

for further studies investigating the utility of TDLN-composition (and PD-1/PD-L1 in particular) as 

biomarkers and novel therapeutic targets.

The TDLN as therapeutic opportunity beyond the PD-1/PD-L1 axis

The role of the TDLN as effector site in establishing anti-tumor immunity receives increasing 

interest and could represent an untapped target for immunotherapies beyond the PD-1/PD-L1 

axis. This increasing interest is partly fueled by observations that the process of tumor-specific T 

cell differentiation starts in the TDLN, with the TDLN functioning as a reservoir by maintaining the 

tumor-specific T cells in a stem-like state 32,45. Stimulation of this reservoir could therefore benefit 

the strength of anti-tumor T-cell immunity. However, how this pool is maintained in the TDLN and 

'protected' from differentiation to a dysfunctional state remains incompletely understood. This may 
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entail continuous differentiation of Tpex cells from naïve T cells followed by their rapid egress as 

well as maintenance of the pool due to the self-renewal capacity of Tpex cells that are protected 

from further differentiation to a more exhausted state by spatial or molecular cues within the 

TDLN. One such protective mode could be the prevention of persistent antigen exposure in TDLN 

residing tumor-reactive T cells. TCR signaling transcripts were found to be lower in TDLN-residing 

T cells compared with intratumoral T cells 32. As chronic TCR signaling is described to be a driving 

factor for differentiation into a terminally exhausted state once infiltrated in the tumor, reduced TCR 

signaling in the TDLN could potentially prevent this terminal differentiation 46,47. The extent to which 

the abovementioned mechanism contribute to the maintenance of this T cell pool in the TDLN and 

the specific mechanisms through which this occurs needs to be determined. Besides understanding 

how tumor-reactive T cells, including Tpex cells, are generated, maintained and depart from the 

TDLN, it is vital to understand how perturbations of these processes contribute to failed anti-tumor 

immunity. For example, it was shown that cDC numbers and their immunostimulatory phenotype 

decreased in the TDLN upon tumor progression. Boosting this cell type by administration of Ftl3L 

and anti-CD40 resulted in improved anti-tumor immunity 45. DC functionality was also impaired 

in immunosuppressive cellular niches surrounding Tpex cells in metastatic TDLNs with increased 

IDO, PD-L1, CD39 and TIM-3 expression, indicating a tolerogenic DC state 29,35,48. It will be important 

to determine to which extent impaired DC functionality and other TDLN-based perturbations 

contribute to TME-composition and failed anti-tumor immunity.

Understanding the molecular mechanisms through which tumor progression influences DC 

dysfunction and hinders T cell activation, including Tpex cells, in the TDLN could potentially offer 

novel avenues to improve DC therapy efficacy. While vaccination using DCs can initiate potent 

anti-tumor immune responses, these responses are often not effective enough to achieve clinical 

benefit. On one hand, this could be explained by the lack of DCs reaching the TDLN following 

administration of DCs to more easily accessible sites (e.g. intradermal and intravenous injection) 49-

51. Recent observations indicated that the TDLN harbors tumor-reactive functional resident memory 

T cells that predicted survival in patients with melanoma52. Due to the residency of these tumor-

reactive T cells in the TDLN, enhancing the proportion of administered DCs capable of reaching the 

TDLN might consequently provide therapeutic benefit. The therapeutic potential of local immune 

modulation by enhancing the proportion of DCs in the TDLN is already shown by the administration 

of GM-CSF and CpG around the melanoma excision site 53-55. Local immunosuppressive mechanisms 

could, on the other hand, intervene with DC-mediated T cell priming. Tregs congregate around DCs 

to downregulate B7 molecule expression which was rescued in Treg-depleted hosts 56,57. Next to 

downregulation of B7 molecules, recent data highlight the role of Tregs in impairing T cell activation 

by restraining cDC1 functionality, which was dependent on MHCII 58. Therefore, anti-tumor efficacy 

of DC therapy may be further boosted by restraining the immunosuppressive counterpart. In 

addition to modulating these immunosuppressive mechanisms, engaging a broader range of 

adaptive immunity may offer an alternative strategy to propel therapeutic efficacy. Thus far, DC 
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therapy has been shown to predominantly elicit a CD4+ T helper response 50. The relevance of CD4+ T 

cells in anti-tumor immunity is becoming more apparent as they can exert cytolytic mechanisms and 

modulate the TME 59,60. Perhaps more important is the role of CD4+ T cells in providing help to CD8+ 

T cells. In this process, antigen-specific interactions of CD4+ T cells with DCs, including CD40/CD40L 

interactions, optimize the capacity of DCs to functionally prime CD8+ T cells resulting in improved 

memory formation, migratory potential and enhanced activity and expansion 61. Therefore, it is 

important that, next to stimulating CD4+ T cell responses, the same DC has the capacity to elicit 

strong CD8+ T cell immunity. Research efforts should be focused on methods, including antigen-

delivery tools, which can promote this presentation capacity of exogenous in vitro stimulated DCs.

In order to further explore the immunosuppressive mechanisms in the TDLN, digital spatial profiling 

(DSP) was performed on TDLNs from patients with stage III melanoma either with or without disease 

recurrence. In Chapter 3, we revealed increased expression of suppressive proteins including CTLA-

4, IDO1, PD-L1 and FOXP3 as well as increased frequencies of PD-L1+ DCs in patients with disease 

recurrence, which is consistent with our findings in Chapter 2 and findings by others 29. Intriguingly, 

these differences were found at sites distant from the TDLN metastasis while immune compositions 

in peritumoral regions were similar between patients with and without disease recurrence. This 

suggests that risk on recurrence is dictated by regions in the TDLN that are spatially distant from 

metastasis and aligns with recent findings showing that the suppressive TDLN-environment not 

only enables LN metastasis but also colonization to distant tissues 62. It remains to be formally 

determined on single-cell level which cell types in the TDLN are primarily involved and how 

interactions with other immune cells and/or stromal cells dictate disease progression. The increased 

expression of CTLA-4, IDO1, PD-L1 and FOXP3 in patients with disease recurrence may suggest a role 

for TDLN-residing Tregs in impeding systemic anti-tumor immunity. Tregs are central regulators of 

immune homeostasis by safe-guarding self-tolerance. Treg accumulation in the TDLN is associated 

with metastatic spread to those lymph nodes which was recently suggested to be explained by 

local suppression of natural killer cells, thereby facilitating metastasis 63,64. Depletion of Tregs 

from TDLN cell suspensions resulted in improved IFNy production by CD8+ T cells upon co-culture 

which could potentially be due to improved cDC1 functionality 65,58. In the clinical setting, local 

administration of anti-CTLA-4 at the primary excision site of patients with melanoma resulted in a 

systemic reduction of Tregs, including in the TDLN, and was associated with bolstered activation of 

migratory cDCs 66. Together with our findings, this could suggest a prominent role for Tregs in the 

TDLN in curtailing anti-tumor immunity by creating an immunosuppressive TDLN milieu. However, 

to date, it remains a technical challenge to explicitly probe the impact of Tregs in the TDLN. The 

importance of overcoming this technical challenge is further underlined as it has been shown that 

tumor-residing Tregs could impact CD4+ T cell priming by inducing a tolerogenic cDC2 phenotype 

in the TDLN 67. Therefore, specific ablation of the Treg population in the TDLN by using transgenic 

murine tumors models could shed further light on the relevance of TDLN-residing Tregs in impeding 

systemic anti-tumor immunity.
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Targeting regulatory T cells to improve therapeutic efficacy of antibodies blocking PD-1 or PD-L1

In Chapter 4, we unveiled that PD-L1 blockade systemically increased the suppressive ability of 

Tregs in both nonresponsive mice and patients, thereby playing a critical role in resistance to 

anti-PD-L1 treatment. How do these findings relate to our current understanding of the role of 

Tregs in limiting anti-PD-1/PD-L1 efficacy? Other studies have previously reported that anti-PD-1 

treatment can enhance the suppressive capabilities of Tregs 68-70. Notably, a group led by Nishikawa 

suggested that this phenomenon could be a driving factor in a subset of patients experiencing 

hyperprogressive disease, which is characterized by rapid tumor progression 71. Supporting this 

concept, additional preclinical data showed that creating a TME dominated by Tregs through CD8+ 

T cell depletion, using near-infrared photoimmunotherapy (NIR-PIT), resulted in hyperprogressive 

disease upon subsequent anti-PD-1 therapy 72. Furthermore, they demonstrated that the level of 

PD-1 expression on Tregs relative to CD8+ T cells within the tumor tissue could predict whether 

patients with gastric cancer and non-small cell lung cancer (NSCLC) would respond to anti-PD-1 

therapy 73. Our own findings complement these existing studies by revealing that Tregs are not solely 

associated with the rare occurrence of hyperprogressive disease but are also likely involved in the 

much more common problem of therapy resistance. What is particularly interesting is that while 

above-mentioned studies mainly focused on the effect of anti-PD-1/PD-L1 antibodies on tumor-

residing Tregs, we found that the effects of anti-PD-1/PD-L1 extended beyond the tumor site and 

affected the macroenvironment, including the TDLN. As already mentioned, TDLN-residing Tregs are 

able to curb T cell priming, facilitate LN metastasis and are potentially involved in mediating disease 

recurrence in patients with melanoma, as demonstrated in Chapter 3. Amplifying the suppressive 

function of Tregs by antibodies blocking PD-1 or PD-L1 could therefore not only impact anti-tumor 

immunity at the tumor site but also influence TDLN immune contexture and T cell priming. Systemic 

Treg activation was also found in mice bearing breast cancer as combined treatment with anti-

CTLA-4 and anti-PD-1 amplified Treg activity in multiple tissues, including the TDLN. Treg depletion, 

in turn, resulted in sustained T cell activation in the circulation together with decreased metastasis 

formation and was suggested to be the result of improved T cell priming in Treg-depleted TDLNs 
74. Whether resistance to PD-1 or PD-L1 blockade is mediated through amplification of effector 

functions of tumor-residing Tregs or by restricted priming in the TDLN remains to be investigated 

using abovementioned transgenic murine models. Understanding the primary tissue involved and 

the mechanisms underlying the enhanced suppressive capacity of Tregs following anti-PD-1/PD-L1 

therapy is critical as it can guide the identification of potential Treg-directed targets for intervention.

How to counteract ICB-mediated activation of Tregs to reinforce therapeutic benefit?

Due to the function of Tregs in impairing effective anti-tumor immunity, various Treg-directed 

targets, including anti-CD25, were used for intervention to either deplete this suppressive subset 

or attenuate their suppressive function. However, the clinical success of these approaches has been 

limited, and they often give rise to immune-related adverse effects like pneumonitis and colitis 75-78.  

Emerging studies are uncovering context-specific functional reprogramming of Tregs in tissues, 
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including the tumor. Confining alterations specifically to tumor tissue could potentially prevent 

impacting Tregs at other sites, thereby rationally minimizing the risk on autoimmunity. For example, 

recent data highlighted the activator protein-1 (AP-1) transcription factor Basic Leucine Zipper 

ATF-Like Transcription Factor (BATF) and chemokine receptor CCR8 to be viable candidates as their 

expression is mainly conserved to highly immunosuppressive Tregs residing in tumor tissue 57,79-84. 

Alternatively, tumor-residing Tregs are described to be able to adapt to the challenging metabolic 

landscape in the TME, including alterations in lactate and lipid signaling. Targeting metabolic 

checkpoints could therefore potentially dampen Treg functioning specifically at the tumor site 85-

89. In the context of ICB-mediated activation of Tregs, it remains to be determined which signaling 

entities are the drivers of the increased suppressive capacity of Tregs following treatment, whether 

these entities are shared between different tumor types, and, as already mentioned, whether 

the tumor site is the primary effector location of this effect. Limited data available suggested an 

important yet conflicting role for the PI3K-AKT signaling pathway in mediating enhanced suppressive 

capacity of Tregs, with some groups reporting enhanced activity of this pathway while others 

demonstrated reduced PI3K-AKT signaling 70,73. Instead of focusing on a limited set of molecules 

or pathways, future research should focus on getting a complete understanding of Treg-intrinsic 

alterations induced by PD-1 or PD-L1 blocking antibodies using unbiased systems approaches and 

comprehensive (epi)genetic tools. Of note, recent data suggested that in some cases PD-1 blockade 

reduces Treg activity and tumor development. However, this PD-1 inactivation was induced prior 

to tumor inoculation, thereby suggesting that Treg activation by tumor antigens may cause cell-

intrinsic rewiring that results in an altered response to PD-1 or PD-L1 blockade 90. These factors 

should be taken into account when investigating the intrinsic changes in Tregs following PD-1 or 

PD-L1 blockade. These findings could pave the way to the identification of targetable modalities 

that could prevent or neutralize inadvertent activating Treg-directed effects by anti-PD-1/PD-L1 

therapy. By employing these strategies, only the subset of Tregs that are influenced by PD-1 or PD-

L1 blockade would be selectively targeted, thereby potentially minimizing the risk of side effects.

Concluding remarks and prospects

Cancer immunotherapy has made an unprecedented impact on the treatment landscape of patients 

with cancer but durable clinical success is limited to a subset of patients. Knowledge on the modes 

of action of immunotherapies as well as on factors that thwart effective anti-tumor immunity could 

offer avenues for improving efficacy of existing immunotherapies and propel the development of 

novel immunotherapeutic strategies. This thesis provides novel insights in modes responsible for 

induction and suppression of anti-tumor immunity following immunotherapy. Importantly, these 

insights move away from the traditional tumor-based view to a more systemic holistic view, where 

coordinated regulation across multiple tissues is required for sculpting effective anti-tumor immunity. 

As we and others have identified the TDLN as a central regulator of anti-tumor immunity and efficacy 

of PD-1/PD-L1 blockade, future research will be directed to further in-depth characterization of the 

immune landscape in TDLNs in the context of the PD-1/PD-L1 axis and beyond. More specifically, 
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this research will entail detailed understanding of DC and T cell interactions on spatial and molecular 

level and the means by which these TDLN-based interactions dictate the quality of anti-tumor T cell 

immunity and TME composition. In parallel, it will be indispensable to pinpoint immunosuppressive 

mechanisms responsible for impeding these interactions and how this contributes to anti-tumor 

immunity and LN metastasis. To achieve this understanding on detailed level, it is important to 

exploit sequencing and imaging tools that enable (spatial) insights at single-cell resolution. This 

detailed understanding could, in turn, aid in further optimization of existing immunotherapies, 

including antibodies blocking PD-1 or PD-L1 and DC therapy, and could potentially offer novel 

therapeutic targets. As we identified the value of PD-1/PD-L1 interactions in the TDLN in predicting 

disease recurrence, focusing on the TDLN and/or the resultant effect in peripheral blood could 

also be valuable for the purpose of biomarker finding 29. In addition to pinpointing the TDLN as 

an important anatomical site of action for antibodies blocking PD-1 or PD-L1, our research has 

uncovered that PD-L1 blockade can inadvertently systemically activate Tregs which leads to therapy 

resistance by curbing anti-tumor immunity. Future research will provide more insights into the 

extent to which ICB-mediated Treg activation influences the obstruction of either the priming phase 

in the TDLN or effector phase at the tumor site and their relative contribution to therapy resistance. 

These insights will aid in uncovering potential therapeutic targets in Tregs activated by PD-1 or 

PD-L1 blockade. Such targets can be harnessed to mitigate or counteract the activation of these 

suppressive Tregs, with the ultimate goal of maximizing anti-tumor immunity while minimizing the 

potential for adverse side effects. The findings by us and other groups underlining the importance of 

Tregs in (primary and secondary) therapy resistance in multiple murine and human tumors indicate 

that patients with different types of tumor treated with anti-PD-1/PD-L1 blocking antibodies could 

benefit from Treg-directed therapies. However, in-depth characterization of the macroenvironment 

is warranted to identify the importance of Tregs in different tumor types to maximize efficacy and 

prevent unnecessary toxicity.

Due to increasing ethical, societal and political pressures, a movement is directed from preclinical 

murine experiments towards studying anti-tumor immunity in patient-derived materials, including 

organoids and ex vivo tumor platforms 91-93. Although these patient-derived approaches directly 

provide clinical relevance and have enabled more mechanistic understanding of human tumors, 

these methods also face important challenges. In light of the increasing relevance of systemic anti-

tumor immunity, longitudinal multi-tissue analyses are required to get a full glimpse of (therapy-

induced) anti-tumor immunity and its mechanistic underpinnings. These options are often limited 

using these platforms and also obscure the coordinated dynamics between tissues, such as T cell 

infiltration and recirculation. Despite the obvious pitfalls, preclinical tumor immunology models 

remain an irreplaceable cornerstone as it allows longitudinal interrogation of multiple tissues. 

In addition, (transgenic) murine models enables experimental validation for establishing causal 

relationships. This is becoming increasingly important in the current era where multidimensional 

analysis platforms such as scRNA-seq and ATAC-seq are widely applied. Findings are often descriptive 
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and it remains a great challenge to prevent the obscuring of experimental error and biological 

complexity in the deluge of –omics data. Therefore, a collaborative effort between clinicians, 

biomedical scientists and bioinformaticians in combination with the use of appropriate models 

and techniques will be indispensable to provide precise mechanistic understanding of cancer 

immunotherapies and ultimately improve clinical outcome for affected individuals.
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English Summary

Cancer is one of the leading causes of death and the global burden of cancer is predicted to increase 

to approximately 30 million new cases by 2040. The development of cancer is characterized by 

genomic instability causing mutations and structural alterations in genes, which eventually results 

in uncontrolled cell growth. To target these rapidly growing and dividing tumor cells, the most 

recommended conventional treatment strategies encompass chemotherapy, radiotherapy or 

targeted therapies, such as tyrosine kinase inhibitors. Since the last decade, a different type of 

therapy, termed immunotherapy, has created a monumental breakthrough in cancer treatment. 

Instead of directly targeting rapidly growing and dividing tumor cells, immunotherapy modulates 

components of the immune system to install effective immunosurveillance. The immune system 

surveys the body for tumor cells as it does for infections with pathogens like bacteria and viruses. 

Due to the fundamental role of the immune system in controlling the development of cancer, tumor 

cells acquire different mechanisms to hijack and suppress the immune system to prevent their 

elimination. For example, tumor cells can hide from the immune system or can create a suppressive 

local environment that prevents immune cells from entering the tumor site or their functioning. 

The success of immunotherapy relies on overcoming these barriers and to effectively activate the 

immune system. Indeed, immunotherapy has achieved impressive clinical responses in multiple 

types of cancer, however, only a fraction of patients responds durably to treatment. To improve 

the understanding of the interplay between immune cells and cancer and enhance the fraction of 

responding patients, extensive research has focused on the tumor site and the local interactions 

with the immune system. Despite these efforts, it is increasingly recognized that the disease extends 

beyond tumor cells and their local immune environment as the immune landscape undergoes 

alterations more globally and affects functional and compositional immune-related changes in 

lymph nodes, bone marrow, spleen, and gut. Therefore, to more effectively combat cancer, it is of 

paramount importance to understand the systemic requirements for an effective immune response. 

Having a more holistic vision encompassing the tumor macroenvironment could offer avenues for 

improving the efficacy of existing immunotherapies and pave the way for the development of novel 

immunotherapies.

Novel perspectives on the mode of action and mechanisms of resistance to immune checkpoint 

blockade

T cells play a central role in the immune system as they are responsible for recognizing and attacking 

foreign invaders, including tumor cells as they differ slightly from healthy cells. The activation of 

T cells is a highly regulated process to ensure effective immune responses while preventing the 

attack on the body’s own cells. Following T cell activation, the expression of programmed cell 

death protein 1 (PD-1) is upregulated on the cell surface of T cells. The main physiological function 

of PD-1 is to dampen T cell activation by sending inhibitory signals when binding to its ligand 

protein PD-L1, thereby functioning as an immune checkpoint. In the context of cancer, tumor 
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cells exploit PD-1/PD-L1 signaling to dampen T cell activation, thereby promoting the survival of 

tumor cells. Immune checkpoint blockers (ICB) as immunotherapy prevent the binding of PD-1 

with their partner proteins. This releases the molecular brakes in T cells, allowing them to kill 

tumor cells. The introduction of ICB has been an important achievement in cancer treatment. 

Despite the success of ICB for multiple types of cancer, the majority of patients, however, does not 

durably respond to treatment. Part A of this thesis delves into novel perspectives on the mechanism 

of action and resistance associated with ICB. Due to the PD-L1 expression on tumor cells, the 

longstanding paradigm is that the efficacy of ICB is attributed to its impact on T cells at the tumor 

site. However, the value of using PD-L1 expression on tumor cells as a predictive biomarker for ICB 

appeared limited for the majority of tumor types and the therapeutic relevance of PD-L1 at other 

sites remains unknown. In Chapter 2, we studied whether tumor-draining lymph nodes (TDLNs) are 

involved in ICB efficacy. TDLNs have a central role in anti-tumor immunity as T cells are activated 

to tumor antigens in TDLNs followed by migration to the tumor site to kill tumor cells. The PD-1/

PD-L1 axis appeared to be greatly present in the TDLN with high levels of PD-1 on T cells directed 

to tumor antigens together with abundant PD-L1 expression. In order to study whether PD-1 to 

PD-L1 binding in the TDLN is important in determining therapy response, we developed a system 

in mouse tumor models to prevent these interactions in the TDLN using ICB without affecting 

other sites. This selective approach enhanced the immune response to tumor cells by activating T 

cells in the TDLN that subsequently migrate to the tumor, indicating that the TDLN is an important 

target for ICB. This response was no longer observed when migration of T cells from the TDLN to 

the tumor was prevented, further underlining the importance of TDLN in ICB efficacy. As clinical 

translation of our findings, we revealed that the level of PD-1 to PD-L1 binding in the TDLN is also 

important in determining whether patients with melanoma were likely to have metastasis in the 

future (e.g. disease recurrence). To further establish the role of the TDLN in the process of disease 

recurrence beyond the PD-1/PD-L1 axis, we studied in Chapter 3 more in detail how the immune 

composition of the TDLN correlates to disease recurrence. We revealed that patients with disease 

recurrence have increased expression of suppressive proteins in the TDLN compared with patients 

without disease recurrence. Using a novel imaging technique, we discovered that these differences 

were found at sites distant from the metastasis in the TDLN while the regions close to the tumor 

cells were rather similar.

The ultimate goal of ICB is to release the break from T cells, thereby allowing T cells to more 

effectively kill tumor cells. Yet, not all T cells are focused on eliminating tumor cells. A subset 

of T cells, regulatory T cells (Tregs), suppresses the immune system and provides protection to 

tumor cells. As PD-1 is also highly expressed on this subset, ICB could potentially impact this Treg 

subset which could have a negative impact on therapeutic outcome. In Chapter 4, we examined the 

impact of ICB on the function of Tregs and their involvement in mediating therapy resistance. Tregs 

demonstrated an increased capacity to suppress the immune system after ICB, especially notable 

in mouse tumor models that are not responding to ICB. To investigate the contribution of Treg 
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activation to therapy resistance, we selectively depleted this suppressive subset in combination with 

ICB. Indeed, Treg depletion reversed therapy resistance by sensitizing mice with mesothelioma to 

the effects of ICB. These observations extended beyond the murine setting, as we noted that Tregs 

in tumor tissue and peripheral blood of patients treated with ICB were more activated, particularly 

in patients not responding to therapy. This underscores that ICB can also have negative effects on 

the immune system by activating Tregs and suggests that patients not responding to ICB might 

benefit from Treg-directed therapies.

Enhancing cancer vaccine efficacy through combined immunotherapy strategies

In addition to ICB, cancer vaccines are another promising type of immunotherapy, intending to 

educate the immune system to recognize and eliminate tumor cells. Dendritic cells (DCs) play an 

essential role in the mechanism of these vaccines as DCs possess the capability to capture and 

present various antigens, including those derived from tumors. Through antigen presentation, 

DCs instruct T cells to eliminate potential harmful non-self particles and cells, establishing them as 

central regulators of immune responses. However, the quantity and/or functionality of DCs are often 

compromised in the context of cancer, leading to weakened immune responses directed against 

tumor cells. Cancer vaccines are designed to enhance the activation of T cells by DCs and can be 

categorized into different classes, such as peptide vaccines and cellular vaccines. A type of cellular 

vaccine is DC therapy, where DCs are produced from patient’s blood, loaded with tumor antigens 

and then reintroduced into the patient. Although cancer vaccines are able to induce effective 

anti-tumor T cell responses, the majority of treated patients does not respond clinically or only 

temporarily. In Part B of this thesis, we investigated whether the efficacy of cancer vaccines can be 

enhanced through combination with therapies that neutralize mechanisms that may diminish the 

effectiveness of cancer vaccines which are reviewed in Chapter 5. T cells activated by cancer vaccines 

need to infiltrate the tumor site to effectively eliminate tumor cells and their effectiveness can be 

hampered by the abundance of PD-L1 at the tumor site. To overcome this hurdle, we explored ICB 

with DC therapy in mouse models and patients with mesothelioma in Chapter 6. In patients with 

mesothelioma, ICB treatment after DC therapy resulted in promising survival responses. Combining 

ICB with DC therapy significantly improved survival and enhanced T cell activation in mice with 

mesothelioma compared with DC therapy alone. Notably, this improvement was, in part, associated 

with the TDLN, as blockade between PD-1 and PD-L1 specifically in the TDLN using aforementioned 

strategy produced outcomes nearly as effective as systemic ICB treatment.

In addition to the PD-1/PD-L1 axis, targeting other pathways that hinder optimal T cell activation 

could enhance the efficacy of cancer vaccines. Janus kinase 3 (JAK3) plays a crucial role in signaling 

pathways responding to various cytokines in immune cells like macrophages and T cells. In 

Chapter 7, we investigated the impact of a specific JAK3 inhibitor on macrophages and T cells 

and its therapeutic potential when combined with peptide vaccination and DC therapy. Prolonged 

JAK3 inhibition positively influenced T cells by improving their activation within tumors. Notably, 
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combining JAK3 inhibition with a peptide vaccine and DC therapy further enhanced these responses 

in mouse models and resulted in reduced tumor weight. These results identify the inhibition of 

JAK3 as an promising approach for combination immunotherapy although the potential benefit of 

this approach remains to be investigated in patients.

The results of this thesis are put into perspective in Chapter 8. Together, the results presented in 

this thesis provide novel and important insights in the mode of action and mechanisms of resistance 

to immunotherapies, with a focus on ICB (anti-PD-1/PD-L1) and cancer vaccines (DC therapy). 

Importantly, these findings highlight that the effectiveness of immune responses directed at tumor 

cells is shaped by the intricate interactions among multiple tissues, rather than being exclusively 

dictated by conditions at the tumor site. These insights could offer novel avenues for improving 

existing strategies and could pave the way for the emergence of novel immunotherapies. To propel 

these developments, future research should be directed to more in-depth characterization of the 

role of tissues beyond the tumor site in establishing anti-tumor immunity, with a focus on the 

TDLN. In parallel, finding selective therapeutic targets in Tregs to mitigate the activating effect of 

ICB on Tregs could be pivotal to optimize ICB efficacy in a subset of patients. Achieving these goals 

requires robust collaboration among biomedical scientists, clinicians, and bioinformaticians. This 

collaborative effort is essential for advancing the percentage of patients who can benefit optimally 

from immunotherapy.
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Nederlandse Samenvatting

Kanker is een van de belangrijkste doodsoorzaken en het aantal nieuwe gevallen van patiënten 

met kanker zal wereldwijd stijgen tot ongeveer 30 miljoen in 2040. De ontwikkeling van kanker 

wordt gekenmerkt door veranderingen in het genoom, wat uiteindelijk leidt tot ongecontroleerde 

celgroei. Om deze snelgroeiende en delende tumorcellen aan te pakken bestaan de meest 

aanbevolen conventionele behandelingen uit chemotherapie, radiotherapie of gerichte therapieën, 

zoals tyrosinekinaseremmers. Sinds het afgelopen decennium heeft een ander type behandeling, 

genaamd immuuntherapie, een doorbraak gecreëerd in de behandeling van kanker. In plaats van 

zich primair te richten op snelgroeiende en delende tumorcellen, richt immuuntherapie zich op het 

moduleren en activeren van het immuunsysteem. Het immuunsysteem patrouilleert het lichaam 

op de aanwezigheid van tumorcellen zoals het dat doet voor bacteriële en virale infecties. Gezien 

de fundamentele rol van het immuunsysteem bij het onderdrukken van de ontwikkeling van kanker 

hebben tumorcellen verschillende manieren ontwikkeld om het immuunsysteem te omzeilen. Zo 

kunnen tumorcellen zich camoufleren voor het immuunsysteem of een omgeving creëren die 

voorkomt dat immuun cellen de tumor binnendringen of hun functie goed kunnen uitvoeren. Het 

succes van immuuntherapie hangt af van het dusdanig activeren van het immuunsysteem, waardoor 

het in staat is deze barrières te overwinnen. De introductie van immuuntherapie heeft geresulteerd 

in indrukwekkende klinische reacties bij meerdere soorten kanker, maar slechts een fractie van de 

behandelde patiënten reageert duurzaam op de behandeling. Veel onderzoek is gericht op het 

begrijpen van wat er zich afspeelt in de tumor en de lokale interacties met het immuunsysteem, 

met als doel het aantal patiënten dat effectief reageert op immuuntherapie te vergroten. Ondanks 

deze inspanningen wordt steeds meer erkend dat kanker niet alleen de tumorcellen en hun lokale 

omgeving beïnvloedt. Zo ondergaat het immuunsysteem systemische veranderingen tijdens de 

groei van de tumor en wordt de samenstelling en functie van andere organen, zoals de milt, darm, 

beenmerg en lymfeklieren ook beïnvloed. Om die reden is het van groot belang om een meer 

holistische visie te ontwikkelen, zodat er een beter begrip ontstaat over de totstandkoming van 

een effectieve immuunrespons tegen de tumor. Dit zou bestaande immunotherapieën kunnen 

verbeteren en de ontwikkeling van nieuwe soorten immuuntherapie kunnen bevorderen.

Nieuwe inzichten in de werkingswijze van ICB antistoffen

T cellen spelen een centrale rol in het immuunsysteem doordat ze verantwoordelijk zijn voor het 

herkennen en aanvallen van lichaamsvreemde stoffen, waaronder tumorcellen, aangezien deze 

enigszins verschillen van gezonde cellen. De activering van T cellen is een sterk gereguleerd proces 

om een effectieve immuunreactie te kunnen genereren zonder dat het lichaamseigen cellen gaat 

aanvallen. Na activatie van T cellen wordt de expressie van het eiwit PD-1 op het celoppervlak 

verhoogd om zo de T cel activatie weer te dempen. Deze dempende functie van PD-1 komt tot stand 

wanneer deze bindt aan zijn bindingpartner PD-L1. In de context van kanker maken tumorcellen 

misbruik van deze interactie door aanzienlijke hoeveelheden PD-L1 tot expressie te brengen. Dit 
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vermindert de activatie van T cellen, waardoor tumorcellen kunnen overleven. Een veelvoorkomende 

vorm van immuuntherapie is het gebruik van antilichamen, bekend als ICB antilichamen, die de 

binding tussen PD-1 en PD-L1 voorkomen. Hierdoor wordt de moleculaire rem opgeheven in de 

T cellen, waardoor ze beter in staat zijn in het doden van tumorcellen. De introductie van deze ICB 

antistoffen is een belangrijke stap geweest in de behandeling van patiënten met kanker. Ondanks het 

succes van deze therapie voor meerdere soorten kanker reageert de meerderheid van de patiënten 

niet duurzaam op de behandeling. Deel A van dit proefschrift richt zich op nieuwe inzichten in de 

werkingswijze en locaties van ICB antilichamen, evenals de mechanismen die verantwoordelijk zijn 

voor resistentie tegen deze therapie. Vanwege de hoge expressie van PD-L1 op tumorcellen werd 

lange tijd aangenomen dat de effectiviteit van ICB antistoffen uitsluitend wordt toegeschreven aan 

de impact op T cellen in de tumor. Echter, deze PD-L1 expressie op tumorcellen blijkt van beperkte 

waarde bij het voorspellen of een patiënt gaat reageren op ICB antistoffen. Dit suggereert dat PD-L1 

expressie op andere cellen of andere locaties dan de tumor ook van belang is in het bewerkstelligen 

van een immuunreactie na behandeling. In Hoofdstuk 2 hebben we onderzocht of lymfeklieren die 

zich dicht in de buurt van de tumor bevinden (tumor-drainerende lymfeklieren) betrokken zijn bij de 

werkzaamheid van ICB antistoffen. Tumor-drainerende lymfeklieren spelen een centrale rol bij de 

immuunreactie tegen tumoren, aangezien hier de eerste stap wordt gezet in de activatie van T cellen 

tegen de tumor. Onze resultaten lieten zien dat er een hoge expressie was van zowel PD-1 als PD-L1 

in de tumor-drainerende lymfeklieren, met een hoge expressie van PD-1 op T cellen gericht tegen 

de tumor, samen met een hoge PD-L1 expressie. Om te onderzoeken of bindingen tussen PD-1 en 

PD-L1 in deze lymfeklieren van belang zijn voor de respons op ICB antistoffen ontwikkelden we een 

systeem waarbij de binding tussen PD-1 en PD-L1 werd verbroken in de tumor-drainerende lymfeklier 

zonder andere weefsels te beïnvloeden, zoals de tumor zelf. Deze selectieve therapie resulteerde in 

een toename van geactiveerde T cellen in de tumor-drainerende lymfeklieren, die vervolgens naar 

de tumor migreerden en daar in grotere aantallen aanwezig waren. Wanneer de T cellen in de tumor-

drainerende lymfeklier niet meer in staat waren uit de lymfeklier naar de tumor te migreren werd 

het effect van ICB antistoffen op de tumor teniet gedaan. Dit impliceert dat de tumor-drainerende 

lymfeklier een belangrijk doelwit is voor ICB antistoffen. Deze resultaten bleken ook van waarde in 

klinische setting aangezien in patiënten met huidkanker een hoge hoeveelheid bindingen tussen PD-1 

en PD-L1 in de tumor-drainerende lymfeklier gecorreleerd was met de ontwikkeling van uitzaaiingen. 

In patiënten die geen uitzaaiingen ontwikkelden waren deze bindingen in mindere mate aanwezig. 

Om de rol van de tumor-drainerende lymfeklier in het proces van uitzaaiing verder te onderbouwen, 

hebben we in Hoofdstuk 3 de samenstelling van het immuunsysteem in de tumor drainerende 

lymfeklier op een gedetailleerde niveau bestudeerd en de correlatie ervan met het ontwikkelen 

van uitzaaiingen onderzocht. We zagen in patiënten die uitzaaiingen ontwikkelden een verhoogde 

expressie van eiwitten die het immuunsysteem afremmen in de tumor-drainerende lymfeklieren in 

vergelijking met patiënten zonder deze ontwikkeling. Met behulp van een nieuwe techniek ontdekten 

we dat deze verschillen werden gevonden op locaties op afstand van de tumorcellen in de tumor-

drainerende lymfeklier. De regio’s dicht bij de tumorcellen waren echter meer vergelijkbaar.
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Zoals eerder benoemd, is het uiteindelijke doel van ICB antistoffen om de T cellen zodanig te activeren 

dat ze tumorcellen effectiever kunnen aanvallen. Echter zijn niet alle T cellen gespecialiseerd in het 

elimineren van tumorcellen. Een deel van T cellen, de regulatoire T cellen (Tregs), heeft juist als 

functie om het immuunsysteem te onderdrukken en biedt daarmee bescherming aan tumorcellen. 

Aangezien PD-1 ook sterk tot expressie komt op deze subset, zouden ICB antistoffen ook mogelijk 

invloed kunnen hebben op Tregs, wat de therapeutische respons negatief kan beïnvloeden. In 

Hoofdstuk 4 onderzochten we het effect van ICB antistoffen op de functie van Tregs en hun rol 

bij het ontstaan van resistentie tegen ICB antistoffen. Na therapie zagen we dat Tregs beter in 

staat waren het immuunsysteem af te remmen, met name in muismodellen die niet reageerden 

op de behandeling met ICB antistoffen. Ook in patiënten bleek dat Tregs in de tumor en bloed 

actiever waren na behandeling met ICB antistoffen, vooral bij patiënten die niet reageerden op de 

behandeling. Wanneer deze Tregs therapeutisch werden verwijderd uit muizen met mesothelioom 

zagen we dat de behandeling met ICB antistoffen wel effectief was. Deze resultaten benadrukken 

dat ICB antistoffen ook een nadelig effect kunnen hebben middels de activatie van Tregs, wat 

vervolgens resulteert in een slechte respons op de behandeling met ICB antistoffen. Patiënten 

met een beperkte respons op ICB antistoffen zouden mogelijk baat kunnen hebben bij nieuwe 

behandelingen die gericht zijn op Tregs om het activerende effect van ICB antistoffen op Tregs te 

voorkomen.

Effectiviteit van tumor vaccins verhogen door middel van combinatietherapieën

Een andere soort immuuntherapie die veelbelovend is, is het gebruik van tumor vaccins. Deze 

vaccins zijn gericht op trainen van immuuncellen om kankercellen aan te vallen. Dendritische cellen 

(DCs) spelen een essentiële rol in de werking van deze vaccins, aangezien DCs de capaciteit hebben 

om eiwitten afkomstig van tumorcellen op te nemen en te presenteren aan het immuunsysteem. 

Door deze presentatie van eiwitten aan T cellen zijn DCs in staat om T cellen te activeren en hen te 

informeren over hoe de tumor eruitziet, wat uiteindelijk resulteert in de eliminatie van tumorcellen. 

DCs hebben daardoor een centrale rol in het bewerkstellen van een immuunreactie tegen de tumor 

maar de kwaliteit en/of functionaliteit van deze DCs is vaak aangetast in de context van kanker. 

Tumor vaccins zijn ontworpen om de activatie van T cellen door DCs te verbeteren en kunnen worden 

ingedeeld in verschillende klassen, zoals peptide vaccins en cellulaire vaccins. Onder cellulaire 

vaccins valt onder andere DC therapie, waarbij DCs worden geproduceerd uit het bloed van de 

patiënt, geladen met tumordeeltjes en vervolgens opnieuw in de patiënt worden geïntroduceerd. 

Hoewel tumor vaccins in staat zijn om effectieve en langdurige T cel reacties op te wekken tegen 

de tumor, reageert de meerderheid van behandelde patiënten niet of slechts tijdelijk. In Deel B van 

dit proefschrift hebben we onderzocht of de effectiviteit van tumor vaccins kan worden verhoogd 

door middel van combinatie met therapieën die gericht zijn op het neutraliseren van mechanismen 

die de effectiviteit van tumor vaccins kunnen verminderen zoals besproken in Hoofdstuk 5. Om 

tumorcellen effectief aan te kunnen vallen moeten T cellen, die in lymfeklieren geactiveerd zijn door 

DCs, in staat zijn om hun functie uit te oefenen wanneer ze de tumor binnendringen. Deze functie 
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kan echter belemmerd worden door de eerdergenoemde expressie van PD-L1 op tumorcellen. 

Om deze potentiële belemmering aan te pakken, onderzochten we de blokkade van de PD-1/PD-

L1-as met behulp van ICB antistoffen in combinatie met DC therapie in Hoofdstuk 6. Het gebruik 

van ICB antistoffen na DC therapie in patiënten met mesothelioom resulteerde in veelbelovende 

klinische responsen. Het combineren van ICB antistoffen met DC therapie verbeterde de overleving 

aanzienlijk en verhoogde de activatie van T cellen in muizen met mesothelioom in vergelijking 

met DC therapie alleen. Deze verbetering bleek geassocieerd te zijn met de tumor-drainerende 

lymfeklier, aangezien het blokkeren van PD-1 en PD-L1 interacties enkel in de tumor-drainerende 

lymfeklieren bijna net zo effectief was als systemische behandeling met ICB antistoffen. Naast 

PD-1 en PD-L1 interacties kunnen andere mechanismen ook betrokken zijn het belemmeren van 

optimale T cel activatie en daarmee de effectiviteit van tumor vaccins. Janus kinase 3 (JAK3) wordt 

tot expressie gebracht in immuun cellen zoals macrofagen en T cellen. In Hoofdstuk 7 onderzochten 

we de impact van een specifieke JAK3-remmer op macrofagen en T cellen en het therapeutische 

potentieel ervan bij gecombineerd gebruik met peptide vaccins en DC therapie. Langdurige JAK3-

remming had een positieve invloed op T cellen door hun activatie in tumoren te verhogen. Dit 

effect werd verder versterkt bij het combineren van JAK3-remming met een peptide vaccin en DC 

therapie, wat resulteerde in verminderd tumorgewicht in muismodellen. Deze resultaten wijzen 

op de remming van JAK3 als een veelbelovende benadering, hoewel het potentiële voordeel van 

deze aanpak nog nader onderzocht moet worden.

In Hoofdstuk 8 worden de resultaten van dit proefschrift in perspectief geplaatst, wat nieuwe 

inzichten biedt in de werking van immuuntherapie, evenals de mechanismen die resistentie 

tegen immuuntherapie kunnen veroorzaken. Deze inzichten benadrukken dat de kwaliteit van 

immuunreacties tegen de tumor niet alleen wordt bepaald door effecten in de tumor zelf, maar ook 

door processen in organen verder gelegen van de tumor. In toekomstig onderzoek zal het belangrijk 

zijn om de rol van het immuunsysteem in het tot stand brengen van anti-tumor immuniteit in 

weefsels buiten de tumor verder in kaart te brengen, met een focus op de tumor-drainerende 

lymfeklier. Tegelijkertijd kan het vinden van een therapeutische target in Tregs van belang zijn 

voor patiënten die slecht reageren op behandeling met ICB antistoffen. Uiteindelijk zouden deze 

inspanningen mogelijkheden kunnen bieden om bestaande immunotherapieën te verbeteren en 

bij te dragen aan de ontwikkeling van nieuwe vormen van immuuntherapie. Voor deze vooruitgang 

is een effectieve samenwerking tussen biomedische wetenschappers, clinici en bioinformatici 

noodzakelijk, met als doel het vergroten van het percentage patiënten dat effectief kan worden 

behandeld met immuuntherapie.
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Dankwoord

En zo komt deze fantastische en uitdagende periode bijna tot een einde. Ondanks dat mijn naam 

op dit proefschrift staat, is dit werk een reflectie van de inspanning van velen. Veel bijzondere 

mensen hebben hun bijdrage geleverd aan dit proefschrift, ieder op hun eigen manier. Graag zou 

ik een aantal personen specifiek willen uitlichten zonder wiens inspanning dit proefschrift niet tot 

stand zou zijn gekomen.

Promotieteam

Graag wil ik mijn promotoren en copromotor bedanken voor hun bijdrage aan dit boekje en mijn 

ontwikkeling als wetenschapper. Prof.dr. Aerts, beste Joachim. Vanaf het allereerste moment dat ik 

onder jouw vleugels begon als PhD student heb ik de vrijheid gekregen om me te ontwikkelen als 

onafhankelijke wetenschapper. Door de jaren heen heb jij me gestimuleerd en losgelaten om alle 

uitdagende proeven uit te voeren die nodig waren voor de meest creatieve onderzoeksvragen. Deze 

vrije aanpak is echter nooit gepaard gegaan met het gevoel dat ik er alleen voor sta aangezien ik altijd 

binnen no time bij je terecht kan voor de meest uiteenlopende vragen en gesprekken. Waar ik af en 

toe kan twijfelen aan mijn eigen kwaliteiten, heb jij altijd het volste vertrouwen in mij. De combinatie 

van het loslaten en dit vertrouwen heeft mij veel gebracht in mijn ontwikkeling als wetenschapper 

en persoon. Ik hoop dat onze samenwerking nog vele jaren zal blijven continueren als preklinische 

Postdoc in de THORR groep. Prof.dr. Van Hall, beste Thorbald, waar Joachim altijd hamerde op de 

klinische relevantie, focuste jij je meer op de biologische relevantie. Jullie vormden voor mij dan ook 

het perfecte promotor duo. Bij jou kon ik altijd terecht voor de meest gedetailleerde immunologische 

vraagstukken en wist jij altijd een kritische en terechte toevoeging te leveren aan proefopzetten. 

Tegelijkertijd heb ik veel geleerd van jouw gave om een verhaal pakkend en bondig op te schrijven. 

Jouw diepgaande kennis en ervaring hebben een grote bijdrage geleverd aan de successen die we 

hebben behaald als team, waarvoor veel dank. Beste Floris, van stagebegeleider naar copromotor! 

De combinatie van je talent, ontembare energie en enthousiasme, creativiteit en de kunst om 

ieder (wetenschappelijk) verhaal net iets aantrekkelijker te maken, maakt jou een wetenschapper 

pur sang. In de afgelopen jaren heb ik hier veel van kunnen leren en ik ben dan ook trots op onze 

samenwerking. Voor mij wordt deze samenwerking gekenmerkt door humor, hard werken en 

tegenstrijdigheden welke de drijfveer vormen van ons succes als team. Met jou als de optimistische 

en chaotische creatieveling en met mij als de realistische en georganiseerde perfectionist zijn we in 

staat om diepgang en kwaliteit te leveren aan ieder project. Je bent er altijd voor me, ook buiten 

wetenschappelijke context. Ik waardeer je ontzettend als persoon en wetenschapper en ik hoop dat 

we nog lang kunnen samenwerken! Tevens wil ik graag de leden van de kleine commissie bedanken 

voor het kritisch lezen en becommentariëren van mijn proefschrift, dank Prof.dr. Reno Debets, Prof.

dr. Karin de Visser en Prof.dr. Tanja de Gruijl. Graag wil ik ook de leden van mijn promotiecommissie 

bedanken voor het doorlezen van mijn proefschrift en de bereidwilligheid om deel te nemen aan mijn 

verdediging. Ik hoop dat het een mooie discussie gaat worden!
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Prof.dr. Hendriks, beste Rudi. Jouw passie voor wetenschap gecombineerd met je kritische blik 

werkt aanstekelijk en heeft mij vaak aan het denken gezet hoe we het onderzoek kwalitatief nog 

naar een hoger niveau konden tillen. Dank voor alle inspiratie, waardevolle input en dat ik al deze 

jaren op de afdeling heb mogen werken.

Paranimfen

Collega’s komen en gaan, maar soms ontmoet je collega’s waarmee de band uitgroeit tot een 

vriendschap. Het is dan ook van onschatbare waarde dat deze personen met je kunnen toeleven 

naar dit bijzondere moment en naast je staan als paranimfen tijdens de verdediging. Lieve Denise, 

jij bent een van de belangrijkste steunpilaren geweest tijdens mijn promotie. Jij wist vaak bij mij de 

scherpe randjes eraf te halen door een luisterend oor te bieden tijdens momenten van zorgen en 

frustratie. Tegelijkertijd was je ook de liefste persoon met wie ik elke overwinning, hoe klein ook, 

kon vieren. Ik ben dankbaar dat onze band niet is verzwakt toen je het lab verliet en dat we tot op 

de dag van vandaag  nog steeds onze successen samen vieren, genieten van heerlijke diners en 

neerploffen op de bank voor een slechte serie of een goed gesprek. Je hebt een hart van goud en ik 

ben heel trots op hoe jij je de afgelopen tijd hebt ontwikkeld. Ik hoop dat ik nog lang kan genieten 

van jou als vriendin! Lieve Marcella, vanaf het allereerste moment zijn wij twee handen op één buik 

geweest. Wij spreken dezelfde taal, al zijn woorden vaak niet eens nodig en begrijpen we elkaars 

gedachten met slechts een simpele blik. Doordat wij zo op één lijn zitten, zijn de congressen - en de 

daaropvolgende vakanties - in Frankrijk, Canada en Amerika de hoogtepunten van mijn promotie 

die ik met niemand anders had willen meemaken. Ik bewonder hoe je iedere uitdaging (en vaak 

meerdere tegelijk) vol aanpakt en tegelijkertijd met beide benen op de grond kan blijven staan. Ik 

ben dan ook ontzettend blij dat jij niet alleen tijdens mijn verdediging naast mij staat, maar ook 

tijdens alle andere successen en uitdagingen in de afgelopen tijd. Ik hoop dat onze band zo blijft 

en dat we samen nog veel mooie momenten mee gaan maken!

De THORR groep

De afdeling Longziekten, en met name de THORR groep, is voor mij vele jaren de plek geweest 

waar ik meer tijd heb doorgebracht dan waar dan ook. Het is dan ook geëvolueerd tot mijn 

wetenschappelijke thuisbasis: waar ik 7 jaar geleden begon als masterstudent, loop ik nu door 

de gangen als Postdoc. Het is dan ook een voorrecht om omringd te zijn met fijne collega’s. Beste 

Heleen, jij was de eerste persoon met wie ik in contact kwam van de afdeling Longziekten. Dank 

voor je ondersteuning tijdens de eerste periode van mijn wetenschappelijke carrière, eerst als 

masterstudent en daarna als beginnend PhD student. Ik heb veel van je mogen leren. Anneloes, wat 

ontzettend fijn dat je mij zo hebt kunnen helpen met alle - voor mij onnavolgbare - bioinformatische 

analyses die een grote bijdrage hebben geleverd aan dit proefschrift. Je bent een ware wizard en ik 

vond het top om met je samen te werken! Vivian, ondanks dat onze persoonlijkheden zich bevinden 

aan ieder uiteinde van het spectrum, vind ik het heerlijk om je als collega te hebben. Je humor, 

enthousiasme en levensvisie zorgen voor een goede sfeer op het lab. Ik hoop dat ik je nog vaak al 
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mompelend in de vensterbank zal aantreffen tijdens een zonnige dag. Never change! Ciao Luca! 

Our relationship has evolved from three conversations a year to a friendship that I hope will endure 

in the years to come (no need to be too flattered now..). You are the perfect example of how to 

embrace life as one big crazy adventure, and I am grateful for all the great moments we have shared! 

Bob en Joanne, wij zijn rond dezelfde tijd begonnen in de THORR groep als PhD knurften. Naast 

het bespreken van de tragedie van een promotietraject kon ik altijd bij jullie terecht met klinische 

vraagstukken en zonder jullie bijdrage was dit proefschrift er niet geweest. Daarnaast heb ik veel 

met jullie kunnen lachen bij ons op kantoor en tijdens congressen. Veel succes met het afronden 

van jullie boekje! Christianne, je bent sinds kort begonnen bij ons op het lab als Postdoc en ik ben 

stiekem al fan van je geworden. Het is heerlijk om iemand in de groep te hebben die dezelfde ‘no-

nonsense’ mentaliteit heeft. Op naar mooie samenwerkingen! Sai Ping, jouw bijzondere benadering 

van de wetenschap en het leven in het algemeen zorgden vaak voor de unieke combinatie van een 

lach en ongeloof. Succes met je klinische carrière! Gedurende mijn promotietraject heb ik een aantal 

studenten mogen begeleiden. Robin, Alexis, Tim en Sabine, jullie hebben allemaal op jullie eigen 

manier een bijdrage geleverd aan dit proefschrift. Dank! Ik wens jullie allemaal heel veel succes 

met jullie studie en toekomstige (wetenschappelijke) carrière. Sinds ruim een jaar heb ik ook de eer 

om een aantal PhD studenten te mogen begeleiden. Beste Mike, voor jou is echt niets te gek. Je 

was nog niet eens geregistreerd in Hora Finita of je had al tot ’s avonds laat rebuttal experimenten 

uitgevoerd in Gent samen met mij, Floris en Sjoerd. Deze bereidwilligheid, gecombineerd met je 

leergierigheid, behulpzaamheid en je gevoel voor humor maken jou een ideale teamplayer en 

beloven veel goeds voor jouw wetenschappelijke carrière. Je bent een topper! Dear Leila, I admire 

your courage to start your PhD and rebuild your life in this foreign and cold country. With your 

motivation and enthusiasm, I hope that your time as a PhD student will be a great experience. I am 

looking forward to unravel the mysteries of DC therapy with you. We are in this together!

Dit proefschrift is zeker ook een reflectie van de kwaliteit van de analisten die onderdeel zijn/waren 

van de THORR groep. Beste Menno, jij hebt de gave om aan alles wat je doet een extra dimensie toe 

te voegen. Jouw schurende opmerkingen, abstracte humor en filosofische denkwijze maakten veel 

gesprekken los over de zin van het leven, in de breedste zin van het woord. Het is werkelijk nooit 

saai met jou en tegelijkertijd ben je een meester in het brengen van rust op chaotische dagen. Ik 

hoop dat ik nog lang met jou mag samenwerken! Lieve Melanie, terwijl ik dit schrijf, verschijnt er 

een grote glimlach op mijn gezicht. Wat kijk ik met een hoop plezier terug op onze tijd samen op het 

lab! Als een geschenk van boven kwam jij als analist terecht in onze groep toen ik net begon aan mijn 

promotietraject. Het feit dat wij door iedereen ‘Mandelie’ werden genoemd, geeft maar aan hoe 

onafscheidelijk wij waren. Je blijft me altijd verbazen met je wijsheid en positieve instelling en ik ben 

dan ook ontzettend blij dat je nog steeds in mijn leven bent als vriendin! Larissa, ondanks dat we je 

mailden met ‘Davey’ in de aanhef begon je vol enthousiasme bij ons in de groep als analist. Je was 

er een uit duizenden; er zijn maar weinig mensen die zo hard en met zulke precisie kunnen werken, 

wat resulteerde in een blind vertrouwen. We hebben samen kostelijk kunnen lachen om onder 
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andere het mini stikstofvat (en het bijbehorende personeel), de fiets tatoeage en het wijntje te veel 

tijdens een rebuttalexperiment. Bedankt voor alle mooie momenten! Nina, ik heb nog niet veel 

met je samen mogen werken maar ik kan altijd genieten van je enthousiasme en je sprankelende 

energie. Tegelijkertijd weet je wat hard werken is en ik hoop dat je nog lang bij ons blijft.

De afdeling Longziekten

De THORR groep is slechts een onderdeel van de gehele afdeling Longziekten en ook zij hebben 

een grote bijdrage geleverd aan dit poefschrift door hun ondersteuning en/of door het zijn van 

lotgenoten. Ralph, ik vraag me soms af hoe je het allemaal doet. Binnen no time heb je een grote 

en succesvolle onderzoeksgroep weten op te zetten. Vaak gaat zulk succes ten koste van persoonlijk 

contact, maar in jouw geval is niets minder waar. Marjolein, als labmama heeft jij mij vaak voorzien 

van goed advies, technische ondersteuning en een terechte kritische blik. Zonder jou was het lab 

nog een veel grotere chaos geweest. De deur staat altijd bij je open voor (last minute) vragen en 

ik wil je bedanken voor al je hulp en geduld. Mieke, Lianne en Simone, mijn gym bae’s. Het is een 

wekelijkse routine geworden die hopelijk nog lang stand houdt. Dit is niet alleen vanwege het 

sportieve element, maar ook omdat deze momenten vaak gekenmerkt worden door hilarische 

gesprekken waar iedereen in de kleedkamer van kan meegenieten. Ook buiten de fitnessruimte 

vinden wij elkaar voor een ‘wine and dine’ avondje (laten we het daar maar op houden..). Op 

naar nog veel leuke momenten samen! Stefan, wij zijn echt lotgenoten aangezien wij ongeveer 

tegelijkertijd zijn begonnen aan de pracht en tragedie van een PhD en die nu doorzetten als Postdoc. 

Dank voor alle hilarische momenten, de knuffels en voor het creëren van een fijne sfeer in onze 

PhD groep. Lieke, ook jij brengt een hoop gezelligheid met je mee zowel op het lab, tijdens PhD 

weekenden als tijdens borrels. Je hebt nog even te gaan maar ik ben er van overtuigd dat je een 

mooi boekje gaat krijgen! Bernard, in de afgelopen jaren heb je enkele iconische memes gecreëerd, 

wat een positieve weerspiegeling is van je persoonlijkheid. Momenteel ben je druk bezig met het 

afronden van je promotieonderzoek, en dat lijkt net zo snel te gaan als het eten van brood. Heel 

veel succes met de laatste loodjes! Odilia, Esmee, Niels, Anne en Thomas en alle anderen op het 

lab, dank voor alle gezelligheid! Jennifer, Ingrid, alle ‘Pheravengers’, Karolina, Margreet en Orisia, 

dank voor alle ondersteuning en leuke momenten door de jaren heen. Jasper, dank voor alle leuke 

gesprekken, je uitgebreide kennis en voor het bewaren van je geduld tijdens de miljoenen vragen 

die ik op je afvuurde. Jelle, mede door jouw gevoel voor humor en je kwaliteit om bijzondere vragen 

te stellen is jouw aanwezigheid op het lab een memorabele periode geweest. Met niemand anders 

had ik dan ook het iconische PhD weekend willen organiseren. Ik vind het ontzettend tof dat jij, 

samen met Paula, bij mijn verdediging aanwezig kunt zijn! Lisette, jouw tijd op het lab herinner ik 

me als kort maar krachtig. Op de meest positieve manier heb jij wat stof (letterlijk) doen opwaaien 

en bracht je een hoop gezelligheid met je mee. Dank voor alle leuke momenten! Pauline, Irma, 

Peter, Simar, Madelief, Mirjam en Alex, ik wens jullie heel veel succes en plezier met jullie nieuwe/

huidige werk.
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Beste Sjoerd, in Amsterdam of Gent; onze samenwerking blijkt altijd te blijven continueren. Ondanks 

onze gave om de meest monstrueuze experimenten op te zetten, was jij altijd bereid om ons te helpen 

vol overgave, enthousiasme en hier en daar wat chaos. Dank voor de fijne samenwerking, voor het 

brengen van diepgang in onze artikelen en voor alle goede filosofische gesprekken!

Vrienden en familie

Liefste Levensnectar meiden, waar veel vriendschappen uit elkaar groeien na de middelbare 

schoolperiode, zijn wij juist naar elkaar toe gegroeid. Al meer dan 17 jaar (!) zijn jullie in mijn leven 

en in al die jaren hebben we zo veel fantastische momenten met elkaar mogen beleven. Tegelijkertijd 

zijn jullie bij uitstek degenen die weer een glimlach op mijn gezicht weten te toveren tijdens mindere 

periodes. Met jullie is simpelweg alles leuker en ik zou niet weten wat ik zonder jullie zou moeten. 

Anne, onze vriendschap heeft een vlucht genomen sinds wij beiden aan de Boezemsingel wonen. 

Deze vriendschap betekent ontzettend veel voor me, meer dan ik misschien laat blijken. Wat ben 

je een fantastische vriendin en wat kijk ik uit naar alle avonturen die we samen nog gaan beleven! 

Merel, wat ben ik dankbaar hoe onze vriendschap de afgelopen tijd is gegroeid. Je bent een prachtig 

persoon, van binnen en van buiten. Elise, met bewondering kijk ik naar jou als je op het podium staat 

en, hoe langer ik erover nadenk, hoe meer paralellen ik zie met hoe jij door het leven danst: met 

kracht, elegantie en passie. Samen met Bas ga je een fantastische toekomst tegemoet! Elze, met je 

gevoel voor humor, belangstelling en je scherpe opmerkingen weet jij ieder moment samen mooier 

te maken. Ik weet zeker dat je passie en toewijding je ontzettend ver gaan brengen en ik kan niet 

wachten op het moment dat jij je proefschrift mag verdedigen! Inge, wat heb ik bewondering voor 

de manier waarop jij je eigen weg kan kiezen en je niet snel laat afleiden door wie of wat dan ook. Ik 

geniet van je nuchterheid, je gekkigheid en de gave om van kleine dingen te genieten.

Lieve Evelien, als er iemand een voorbeeld is van een powervrouw dan ben jij het wel. Als een grote 

zus voorzie jij mij vaak van goed advies in een voorverwarmde auto op dat aftandse parkeerterrein na 

een uurtje calorieën verbranden in de dansschool. Wat doe je het allemaal goed; ik kan niet anders 

zeggen dan dat ik trots op je ben!

Lianne, amies. ik denk dat wij allebei niet hadden kunnen bedenken dat wij nu zo close zouden zijn 

maar wat ben ik dankbaar dat ik nu kan spreken van een echte vriendschap. Spontaan naar Barcelona, 

bezoekje aan de Veluwse bron en iedere zondagochtend staan we als twee Rotterdamse yuppen 

op de yogamat, gevolgd door avocado toast en een goed gesprek. Je wijsheid, gevoel voor humor, 

oprechtheid en ‘let’s go’ mentaliteit maken je een mooi mens en een fijne vriendin.

Lieve Gijs, ons decennium durende tijdperk samen gevuld met je ongelimiteerde steun en liefde 

moet hier zeker benoemd worden. Deze steun en de liefde hebben een grote bijdrage geleverd aan 

de totstandkoming van dit proefschrift en - nog belangrijker - aan de vorming van de persoon die ik 

vandaag de dag ben. Ik zal onze fantastische tijd samen nooit vergeten.
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Els en André, vaak heb ik jullie mijn tweede ouders genoemd. In goede en mindere tijden zijn 

jullie er altijd geweest voor ons gezin en mede door jullie heb ik de stap gemaakt om Biomedische 

Wetenschappen te gaan studeren. Els, wat had ik je graag met een grote glimlach in het publiek 

willen zien tijdens mijn verdediging. We missen je.

Lieve oma, bij elk bezoek kreeg ik steevast de vraag of ik nou nog steeds bezig ben met hetzelfde 

onderzoek, maar ook hoe trots je bent op wat ik doe. Een van je wensen was dan ook dat je dit 

proefschrift door mij overhandigd zou krijgen en dat we het samen kunnen vieren. Wat ben ik 

dankbaar dat die wens, een gedeelde wens, in vervulling is gebracht.

Lieve Remco en Lisanne. Lisanne, al meer dan 15 jaar maak jij deel uit van onze familie als mijn 

schoonzus(je). Ik zie ons nog zitten aan de keukentafel, waar jij mij bijles gaf in scheikunde. Dit 

geeft ook meteen weer hoe betrokken en lief jij bent als persoon. Ik weet dan ook zeker dat je 

een fantastische moeder gaat worden en ik kan niet wachten om tante te worden van jullie kleine 

wonder! Remco, mijn grote broer. Wij lijken misschien in veel opzichten niet op elkaar maar ik vind 

het mooi om te zien dat we steeds meer naar elkaar toe groeien naarmate de jaren verstrijken. In 

de afgelopen jaren is gebleken dat je er altijd voor me zult zijn en dit is volledig wederzijds. Ik vind 

het bewonderingswaardig hoe jij in het leven staat en stiekem kan ik daar af en toe een beetje 

jaloers op zijn. Ik ben ontzettend trots op je!

Lieve papa en mama, de waarde van jullie steun en liefde is met geen pen te beschrijven. Jullie staan 

soms achter me om mij een duwtje in de juiste richting te geven, soms voor me om mij te behoeden 

voor een foute keuze, maar bovenal staan jullie naast me en geven jullie onvoorwaardelijke steun bij 

elke stap die ik maak. De omslag van dit proefschrift is dan ook een ode aan jullie; als harmonieus 

team hebben jullie er altijd voor gezorgd dat ik de beste versie van mezelf kan zijn, op werkgebied 

en daarbuiten. Jullie zijn mijn vangnet, mijn grootste fans, mijn thuis en tegelijkertijd zie ik jullie 

als mijn beste vrienden. Meer kan ik als dochter niet wensen en ik ben dan ook ongelooflijk trots 

om jullie mijn ouders te mogen noemen. Ik houd zielsveel van jullie.
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Laboratory at Erasmus Medical Center under supervision of dr. Nicole van Besouw and prof.dr. 

Carla Baan to investigate the role donor-specific memory B cells in kidney transplant recipients. 
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PhD Portfolio
Summary of PhD training, teaching activities and funding

Name Mandy van Gulijk

Department Dept. of Pulmonary Medicine, Erasmus Medical Center Rotterdam

Research School Molecular Medicine Postgraduate School

PhD period  2018-2024

Promotors Prof. J.G. Aerts, Prof. T. van Hall

Co-promotor Dr. F. Dammeijer

1. PhD training Year Workload

(ECTS)

Courses

• The advanced course on Applications in flow cytometry 2018 0.5

• Basic and Translational Oncology 2018 1.8

• Advanced Immunology Course 2019 4.5

• Research Integrity 2019 0.3

• The Basic course on R 2019 1.8

• Biomedical English Writing Course 2021 2.5

Presentations & Conferences

• Annual Cancer Immunology & Immunotherapy Conference CICON

(AACR/CIMT/CRI/EATI) NYC, USA | Poster Presentation

2018 1.2

• Annual Cancer Immunology & Immunotherapy Conference CICON

(AACR/CIMT/CRI/EATI) Paris, France | Poster Presentation

2019 1.2

• NVVI Annual Meeting, Noordwijkerhout, NL – Poster Presentation 2019 0.6

• Annual Molmed Day, Rotterdam, NL | Oral Presentation 2020 0.3

• Biomedical Science PhD day, Rotterdam, NL | Poster Presentation 2022 0.3

• NVVI Annual Meeting, Noordwijkerhout, NL | Poster Presentation 2022 0.6

• VIB congress, Leuven, BE | Oral Presentation 2022 0.6

• Annual Cancer Immunology & Immunotherapy Conference CICON

(AACR/CIMT/CRI/EATI) NYC, USA | Poster Presentation

2022 1.2

• Keystone Meeting – Cancer Immunotherapy: Mechanisms of Response 

versus Resistance – Banff, Canada | Poster Presentation

2023 1.5

• 16th International Conference of the International Mesothelioma 

Interest Group, Lille, France | Oral Presentation

2023 2.0

• IASLC 2023 Hot Topic Meeting In Basic & Translational Science: 

Resistance to IO in NSCLC, Brussels, BE | Oral Presentation

2023 1.2
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2. Teaching Year Workload

(ECTS)

Supervising students

• Supervisor of Life Science Student: 5-month internship R. 

Hoogenboom,

project entitled: JAK3: a future target for immunotherapy

2019 2.2

• Supervisor of Chemistry and Bio-industries student: 2-month 

internship A. Fontaine, project entitled: Assessment of the efficacy 

of gemcitabine used as a second-line treatment on T cell subsets in 

peripheral blood of mesothelioma patients

2019 1.5

• Supervisor of Master student Biomedical Sciences: 9-month 

internship T. van Tienhoven, project entitled: The role of regulatory 

T cells in the resistance to checkpoint inhibitors in a mesothelioma 

mouse model

2020 -

2021

5.0

• Supervisor of Master student Biomedical Sciences: 9-month 

internship S. Nooren, project entitled: The role of immunotherapy-

medicated activation of regulatory T cells in therapy resistance

2021 -

2022

5.0

• Co-promotor PhD student M. Eterman on the subject of identifying 

novel resistance mechanisms to immune checkpoint blockade

2022 - 5.0

• Co-promotor PhD student L. Pisheh on the subject of identifying novel 

mechanisms to improve the efficacy of dendritic cell therapy

2023 - 5.0

• Co-organizer annual ACE symposium 2023 - 1.0

Total ECTS 46.8

3. Funding Year Amount

• Mesothelioma Applied Research Grant

Research grant awarded for project ‘Identifying novel Treg targets to 

sensitize mesothelioma to ICB’

2022 €100.000

• Team Westland

Research grant awarded for project: Asbestkanker gevoelig maken 

voor immuntherapie

2022 €90.000

Total funding €190.000
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About the Cover

Ballet, a mesmerizing art form filled with intricate narratives and fluid movements, thrives on the 

enigmatic bond between dancers and music. A wise ballet instructor once mused, “Music pulsates 

at the core of ballet; it steers our steps and injects vitality in our gestures”. Within the captivating 

domain of ballet, music therefore acts as an artist’s brushstroke, adding richness and vibrancy 

and establishing a platform for dancers to fully embody their roles. Comprising a diverse group 

of musicians, each with their unique skills and instruments, an orchestra is a marvel of teamwork 

and collaboration. Musicians must play their parts precisely when required and rely on impeccable 

timing and coordination. Each musician has clearly defined roles and each role should be filled; if the 

piano player is missing, the flute cannot substitute its sound. As such, a combination of individual 

excellence and teamwork creates a powerful synergy that drives success. Imagine the immune 

system as the ballerina. Imagine multiple tissues as the musicians of the orchestra that coordinately 

regulate the optimal performance of this immune system. Only when all components and tissues 

are able to individually excel in their performance and work together as a team, the immune system 

is able to successfully attack the tumor, just like a symphony is required for a ballerina to flourish. 

At the same time, the instruments symbolize different types of immunotherapy. The creation of 

music is like an enigmatic puzzle that must be pieced together with precision to bring a ballet to 

life and this creation is different for each ballet production. The right type of immunotherapy, and 

combinations thereof, should be carefully selected to fully bring the immune system to life and this 

can differ for different tumor types, or even for individual patients. A collaborative effort is required 

among biomedical scientists, clinicians and bioinformaticians to compose these immunotherapy 

strategies. It takes an orchestra, not a soloist, to cure cancer.






