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Abstract
Choice-based preference elicitation methods such as the discrete choice experiment (DCE) present hypothetical choices 
to respondents, with an expectation that these hypothetical choices accurately reflect a ‘real world’ health-related decision 
context and that consequently the choice data can be held to be a true representation of the respondent’s health or treatment 
preferences. For this to be the case, careful consideration needs to be given to the format of the choice task in a choice 
experiment. The overarching aim of this paper is to highlight important aspects to consider when designing and ‘setting up’ 
the choice tasks to be presented to respondents in a DCE. This includes the importance of considering the potential impact 
of format (e.g. choice context, choice set presentation and size) as well as choice set content (e.g. labelled and unlabelled 
choice sets and inclusion of reference alternatives) and choice questions (stated choice versus additional questions designed 
to explore complete preference orders) on the preference estimates that are elicited from studies. We endeavoure to instil a 
holistic approach to choice task design that considers format alongside content, experimental design and analysis.

Key Learnings/Points for HPR Researchers 

The design and set-up of choice tasks in a choice 
experiment should mimic the real-world choice of 
interest if the discrete choice experiment is to be able 
to validly and accurately predict the actual decision 
behaviour of a wider group of individuals whom the 
respondents represent.

To achieve this, it is important to understand the 
implications of options available to the researcher in 
considering the following steps:

The choice context.

Choice set size and composition, including:

the impact of labelled vs. unlabelled alternatives.

inclusion of an opt-out alternative and appropriate 
specification.

Format for the ‘choice’ question (such as most preferred, 
most/least preferred, best/worst option).
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1  Introduction

Health preference research (HPR) provides important 
insights into the choices that health care decision mak-
ers, such as patients, caregivers and health care providers, 
would make regarding health and health care, and helps 
to build an understanding of what drives those choices. 
HPR studies are used for a range of purposes in health-
care, including to inform product design [1, 2], input to 
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benefit-risk assessment and regulatory and HTA decisions 
[3–5], and for health state valuation [6].

There are many methods used to elicit preferences in 
HPR [7, 8]. Choice-based methods such as discrete choice 
experiments (DCEs) are arguably the best known and most 
commonly applied choice-based method in HPR, outside 
of the context of health state valuation (when indifference 
methods are commonly used). Choice-based methods such 
as DCEs elicit preferences by presenting hypothetical 
choices to respondents, with an expectation that these 
hypothetical choices accurately reflect a ‘real world’ 
health-related decision context and that consequently 
the choice data are driven by respondent’s health or 
treatment preferences [9]. For this to be the case, careful 
consideration needs to be given to the format of the choice 
task in a choice experiment. Over the last 20 years, the 
question of how best to design and present the choice task 
has been the focus of methodological enquiry and debate 
[10, 11].

The overarching aim of this paper is to outline 
important aspects to consider when designing the content 
and presentation of choice tasks in a choice experiment 
and the impact of such decisions on resulting choice 
models, while drawing on the current knowledge and 
methodological insights available to inform this. By 
choice tasks we mean the alternatives presented in choice 
sets, the decisions respondents are asked to make and 
the description of the context in which those choices are 
made. Related to the presentation of choice tasks are key 
considerations of how attributes and levels are generated 
and framed, and subsequently inform an experimental 
design and analysis, and the overall survey design. These 
topics are not addressed directly by this paper but guidance 
is available from key methods guidance in the field (e.g., 
Bridges et al. [12], Lancsar and Louviere [13]).

The paper is organised around the three main 
components of a choice task: the choice context 
respondents are asked to place themselves in (Sect. 2); 
the choice sets containing alternatives respondents are 
asked to consider (Sect. 3); and the choice question(s) 
respondents are asked to make about each choice set 
(Sect. 4); as well as the discrete choice response type 
(Sect. 5).

2 � Conceptualising the Choice Task—Setting 
the Scene

2.1 � Engagement and Framing

When thinking about the design of surveys to elicit 
preferences, how information and choice questions are 
presented can influence the choices individuals make. In 

designing a choice task, we aim to present respondents with 
a task they are willing and able to engage with and that 
captures their preferences in a neutral and non-directed way.

Respondent engagement with the choice tasks varies with 
many features of a survey and this can impact the accuracy 
and speed of data collection. In an interview setting, 
task engagement can be positively influenced, although 
differences between interviewers in this regard give rise to 
interviewer effects [14]; yet, preference surveys are typically 
offered to respondents in the form of a self-complete paper-
based or, more usually, online survey. In this context, it is 
important to consider in advance how the presentation of 
choice tasks may influence participant engagement. This 
may include minimising task complexity and enhancing their 
relevance to respondents (through, for example, supporting 
acceptance of the premise of the choice task, enhancing the 
attractiveness of the task layout, and carefully considering 
the number of attributes included in the tasks) [15].

The quality of the data arising from a choice task will 
also be affected by the respondent’s ability to process the 
information provided. Processing the information involves 
distinct cognitive steps by respondents: (1) interpreting 
the provided information in a concrete way, relying on 
imagination and experience; and (2) judging how the 
available options would affect one’s life, given that person’s 
preferences and circumstances [16]. Careful pretesting of 
the preference elicitation instrument including the choice 
task should be undertaken to ensure respondents are able 
to process the information provided [17]. If respondents 
are asked to process too much information simultaneously, 
they may be overwhelmed and less likely to complete the 
choice tasks, or to use decision short cuts (heuristics), 
opt out of the choice tasks, or complete the tasks half-
heartedly to finish and receive payment. Deciding whether 
too much information is being presented is nuanced and 
includes consideration of whether the choice task includes 
too many attributes, descriptor levels that are too long, or 
too many alternatives. Eye-tracking technology has shown 
that attribute and alternative non-attendance increases with 
the number of attributes or alternatives presented in the 
choice tasks [18]. How many is ‘too many’ attributes or 
alternatives is an important topic and not one for which there 
is a strict answer since it will depend on the choice at hand 
and respondent familiarity with making that choice and the 
decision context. One review reports the median number 
of attributes in a health-related DCE study is five, with 
most (> 80%) including between four and nine attributes 
and only two alternatives (not including any opt-out or 
status quo option) [19]. Non-completion of choice tasks or 
the application of decision heuristics is not a trivial issue 
for DCEs [20–22] because it may violate the assumptions 
underpinning DCE modelling and increase error variance 
and the risk that biased results will be obtained.
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Nonetheless, there is a limit to how much any task 
can be simplified, for instance by reducing the number of 
alternatives. Some decisions in real life require deliberation 
and consideration of many issues. If choice tasks in a DCE 
ignore alternatives or attributes that have relevance to the 
decision maker in a real-world context, the results obtained 
will have low external validity and the stated preferences are 
less likely to predict behaviour. In this situation, the initial 
DCE design should be revisited to ensure that all relevant 
alternatives are appropriately captured.

In making choices, individuals adopt a frame that depends 
partly on how the choice problem is presented, as well as 
their innate norms, habits and characteristics [23, 24]. If 
the way in which a choice is presented does not match a 
person’s view, that can induce bias in subtle ways. Framing 
can influence the choices individuals make in two ways: 
(1) through cues that present information/the situation as 
positive or negative [25, 26]; and (2) through priming, 
where the information presented may result in individuals 
using pre-existing information to draw unintended meaning, 
or it establishes ‘rules’ for how later information is to be 
processed, thereby affecting their choices [25, 27].

The impact of framing effects in choice tasks has been 
investigated empirically, for example by looking at the 
influence of contextual cues—whether attributes are framed 
as gains or losses [28–32], how attributes are presented 
[30, 33], and priming effects in terms of the information 
included within a choice context or attribute [34, 35]. Taking 
framing into account, when considering the information to 
present in a DCE it is important to ask whether information 
is being presented in a way that would bias the respondent 
or presents some choice options in a ‘more positive light’ 
relative to others. Whether potential framing effects can be 
addressed a priori in the study design phase (potentially 
through qualitative studies for the development of DCE 
surveys) or in the analysis of subsequent results is open to 
further research [31].

2.2 � Choice Context

As with any survey, DCE respondents must be oriented 
to not only how to complete the survey in a technical 
way, outlining what they are expected to do (e.g. choose 
their preferred treatment/health state etc.; see Sect. 5 for 
discussion of response type), but, importantly, the context 
in which they are being asked to make decisions. The choice 
context is the scenario in which respondents are asked 
to consider themselves to be in and from which they are 
asked to make discrete choices. For example, respondents 
could be asked to imagine ‘your doctor tells you that your 
current risk of stroke is 4% and your current risk of a bleed 
is 2%. Suppose you have the following options’ [36], or 
imagine ‘you are entering a convenience store to purchase a 

beverage’, etc. [37]. To support a respondent to make their 
choice, information on all aspects of the context needs to 
be provided. In the example above, what is meant by risk of 
stroke or a bleed needs to be clearly defined.

The importance of constructing the choice context in a 
way that mimics the reality which the research aims to model 
is emphasised by Lancsar and Swait [9], who note that 
external validity (encompassing the choice context, choice 
process, task design and modelling) should be an objective 
pursued from the initial conceptualisation and design of any 
DCE as a preference elicitation design philosophy.

Being able to accurately represent a ‘real-life’ decision 
context is influenced by whether the information can be 
understood by respondents. This will depend on the type 
of language used and the quantity of information that 
respondents are asked to process. While it is possible to 
include definitions for technical terms, this can complicate 
the choice task (the inclusion of definitions can be facilitated 
by using ‘hover’ functions with computer-based surveys) and 
requires that the language used in definitions is sufficiently 
accessible to respondents. Similarly, it is recommended that 
surveys also include upfront information about the range of 
attributes and their levels. Whether or not the information 
can be understood also depends on the characteristics of 
the respondent; however, this is not amenable to addressing 
though the representation of the choice context and therefore 
is not discussed further here.

3 � How to Compose the Choice Task

Presenting the choice task to be as close to reality as possible 
enhances the internal and external validity of the choice 
task (and subsequently the results). Moreover, respondents 
will be more likely to understand and engage in a task if it 
is familiar to or well understood by them. To help decide 
how to present the choice task, researchers must understand 
which aspects individuals include in their decision-making 
process, because failure to include relevant aspects will limit 
the possibility to predict respondent behaviour based on the 
experiment.

Researchers need to make several important decisions 
regarding the structure of the alternatives presented within 
a choice set, to inform how the choice tasks are presented 
to respondents.

3.1 � Forced Choice Versus Non‑forced Choice

An important decision required to formulate a choice task 
is to consider whether to make each choice task a ‘forced 
choice’ or whether to provide an ‘opt-out’ alternative [38]. 
A forced choice is when each choice set asks (i.e. ‘forces’) 
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a respondent to choose one of the alternative profiles on 
offer in the choice set; for example, in a choice between 
treatment A or treatment B. The choice task does not allow 
the respondent to select ‘neither’ alternative. An advantage 
of forced choice questions is that respondents have to 
provide a response, and this will offer the analysts a clear 
differentiation of the preferences for all attribute levels.

The preferences estimated from a forced choice model 
are conditional on making a choice [39] and will lead to a 
conditional demand model. This has consequences for how 
the results may be interpreted or used. In effect, a conditional 
demand model assigns a zero probability to not making a 
choice, even when the probability may be non-zero.

The decision whether to use a forced choice scenario 
or to include an opt-out should reflect the options that are 
available to respondents and can be informed by qualitative 
insights. As noted in the literature (e.g. Viney et al. [40], 
Lancsar and Louviere [13]), forcing respondents to choose 
between two alternatives when neither of which would be 
chosen in the real world will simply reveal ‘the best of a 
bad bunch’. If the alternatives presented are all unattractive, 
being forced to choose one of them represents a utility loss 
(since choosing none or ‘opting out’ has higher value or 
utility for the respondent). Here, we may lose the ability 
to learn whether the options on offer enhance welfare 
or not. If not choosing either alternative is a realistic 
option in real life, then using a forced choice design will 
potentially bias both attribute level trade-offs and lead 
to an overestimate of demand for the commodity being 
valued [41]. It can also increase randomness in responses 
[42]. Where predicting demand/uptake is important, a non-
forced choice (unconditional demand) should be considered. 
Note that if a forced choice is realistic in the market (i.e. 
there is no feasible ‘opt out’ option), then the probability 
of making no choice is, in reality, zero, and the conditional 
and unconditional demand model are equivalent [39]. Forced 
choice may be relevant if the focus is on the attribute level 
trade-offs based on conditional demand rather than when the 
focus is on prediction of demand/uptake or welfare analysis 
where unconditional demand (and non-forced choice) is 
relevant.

In health, historically there are many examples of decision 
contexts where researchers have used a forced choice format, 
particularly where the focus was on attribute level trade-offs, 
but this has changed over time with increasing reporting 
of use of status quo and opt-out alternatives [19]. An area 
where forced choice has received attention is health state 
valuation literature, where the approach to anchoring to 0 
has been widely discussed and investigated [6]. In health 
state valuation, non-forced choice is also explored, including 
via the use of death as an opt-out, while full health may also 
be included as a reference state [43–45].

Instead of giving respondents an alternative of ‘none of 
these’, it is possible to present a reference case alternative. 
The most common is the ‘status quo’, that is the current or 
existing alternative (or usual treatment). The status quo or 
reference case may be described using none, some, or all of 
the attributes and levels that are used to describe other alter-
natives in the choice task, but the levels are typically held 
constant across choice tasks. In addition, the status quo alter-
native can be fixed across all respondents, or fixed within 
any one respondent but vary between respondents (Box 1).

Box 1: Defining the Status Quo or Reference Case

Fixed across all respondents

The status quo alternative may be the same (fixed) across all choice 
sets for all respondents. The status quo alternative might be 
presented this way when the usual care offered to people is the same 
for all individuals or when all choices are being compared with a 
constant reference case, e.g. full health.

Respondent-specific
The status quo alternative may be the same (fixed) across all 

choice sets for any one respondent but allowed to differ between 
respondents. For example, ‘usual care’ may differ between people.

While including a status quo or reference alternative has 
the advantage of increasing the realism of a choice situation, 
there is the potential for respondents to consistently choose 
the status quo alternative. For some respondents, the status 
quo is simply their preferred alternative. However, choice of 
status quo can also be driven by decision heuristics such as 
the endowment effect, status quo bias, loss aversion, or task 
avoidance, particularly if the task is cognitively demanding 
[46].

3.2 � Dual Response Questions

Some researchers have suggested using a dual response 
design to overcome some of the limitations associated with 
forced choice and opt-out formats [42]. In a dual response 
design, respondents are asked a two-stage choice question; 
in one stage they are asked to make a forced choice between 
the alternatives on offer, and in another stage, they are 
asked to indicate if they would like to opt-out of the choice. 
Thus, a dual response design enables the estimation of 
both conditional and unconditional choice models and may 
reduce the risk of losing data due to respondents avoiding the 
task to minimise cognitive effort [42]. However, this format 
also requires the researcher to select whether to analyse the 
data using a forced or non-forced choice specification, with 
the latter collapsing the dual response into a single three 
alternative choice task, with little guidance on rationale 
for doing so. Alternatively, choice data from both datasets 
could be jointly modelled, but this complicates the technical 
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specification of the model and the extent to which it adheres 
to theories (such as random utility theory [RUT]) that 
underpin DCE analysis. Examples of DCEs that have used 
a dual response design in health include Veldwijk et al. [42], 
Brazell et al. [47], Laba et al. [48], and Marshall et al. [49, 
50].

4 � Format of Discrete Alternatives

Regardless of the topic, the alternatives described in the 
choice sets can be presented in various ways, each of which 
is informed by the research questions at hand and will in turn 
have implications for the experimental design, the analysis 
of the resulting choice data, and the conclusions that can 
be drawn.

4.1 � Size of the Choice Set

A key decision to address is how many alternatives will be 
presented within a given choice task. In some choice tasks, 
respondents will be shown a single alternative and asked 
if they would choose/accept that alternative. In this case, 
researchers and respondents would need to know what 
non-choice/non-acceptance means; e.g. for Lancsar et al. 
[51], in the context of a hypothetical asthma medication, 
not choosing the alternative offered meant staying on their 
current real-world medication, which the respondent had 
already been asked to describe (in a ‘report card’) using the 
attributes used in the hypothetical alternatives.

More often, the focus of DCEs is on problems that involve 
choices among many alternatives, raising the question of how 
many alternatives to show in a single choice task. The number 
of alternatives in each choice set increases the amount of 
information that respondents need to consider. Two competing 
considerations need to be balanced: task complexity versus 
precision. Choice sets that include more alternatives produce 
more information, and thus are more efficient from a statistical 
point of view, implying that for a design of a given size a 
smaller sample size could suffice, or that respondents need 
to answer fewer questions. However, the inclusion of more 
alternatives within a choice may make it harder for respondents 
to choose and that might affect choice consistency or reduce 
the number of choice tasks that a single respondent can 
complete. Striving for maximal efficiency thus comes at a 
price [52]. The statistical properties of the design need to 
be considered in relation to (and possibly balanced against) 
respondent efficiency. The number of alternatives per choice 
set should also be informed by qualitative work and pretesting. 
Although choice sets of larger size are more common in other 
areas of applied economics beyond health, choice sets in health 
have tended to include two to three alternatives (one of which 
may be a fixed reference alternative) [19].

4.2 � Labelled versus Unlabelled Alternatives

The alternatives presented in each choice set can either 
be unlabelled (also called generic) or labelled. Unlabelled 
alternatives in a choice carry non-informative descriptors, 
such as Test A, Test B, Test C, etc. Labelled alternative 
presentation involves assigning labels (or descriptors) 
to each alternative that are in some way informative. In 
health, this might include generic names of medicines, or 
specific tests (e.g.  colonoscopy, computed tomography 
colonography) or treatments (e.g. surgery, medication).

One advantage of using labels is that it can help make 
the alternatives more realistic, and as discussed above, this 
can help improve respondent engagement and understanding 
of the task and improve validity of results. Labels convey 
information about the alternatives themselves that is not 
already captured in the attributes and levels. The use of 
labels also allows preferences specific to those labelled 
alternatives to be captured in the analysis via the use of 
alternative specific constants and interactions between 
the labels and attributes of the alternatives. However, the 
interpretation of and preference for the label may differ over 
respondents and such inferences may be correlated with 
the random component [39, 53]. Consequently, if labels 
are included, there is a risk that respondents will draw on 
their previous experience with a labelled alternative and 
the researcher may not be able to disentangle and interpret 
the impact of this experience when analysing the choice 
data. Therefore, if using labels, it is important to consider 
their description carefully, to try to ensure (as far as is 
possible) that all respondents interpret them the same way 
and to appropriately model preferences for the labels in the 
analysis. Unlabelled alternatives may be appropriate if the 
focus is solely on the attributes. A number of studies have 
compared the use of labelled and unlabelled alternatives 
(e.g. de Bekker-Grob et al. [54] and Jin et al. [55]).

5 � Discrete Choice Response Types

When designing choice tasks, a key consideration and 
decision faced by researchers is the choice question 
respondents will be asked to address under each choice set, 
or put differently, the type of response they are asked to 
make. By far the most common choice question is a single 
choice (described below). However, other response types 
that elicit a preference order over some or all alternatives 
presented in each choice set are gaining attention. This 
section outlines various response types, advantages and 
disadvantages of each, and the circumstances in which such 
a response type might be appropriate.
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5.1 � Single Choice of Most Preferred, Best 
and Variations

The most common response type in DCEs is a single choice, 
to choose the best or most preferred alternative from those 
on offer in the choice set. This discrete choice grounds the 
analysis of data generated from choice experiments in RUT 
and leads to the estimation of limited dependent variable 
models [56]. A key axiom of RUT is that the alternative 
chosen from a choice set is the alternative that provides at 
least as much or more utility than any other alternative on 
offer. This elicitation format also has high external validity 
as individuals are very familiar with making choices between 
alternatives in all facets of life. Variations on this single 
response per choice set include which would you choose/
recommend/accept/avoid.

5.2 � Full Preference Rank

A number of authors (e.g. Beggs et al. [57] and Chapman 
and Staelin [58]) have noted potential efficiency gains from 
eliciting a full preference order across the alternatives in 
choice sets containing three or more alternatives (choice 
sets of size 3 or more is increasingly the norm in health 
economics [59] and is the norm in other disciplines in 
which DCEs are undertaken (e.g. transport, environment, 
marketing). Below we set out three approaches to eliciting 
a full preference order (see Lancsar et al. [60] for the model 
equations and practical guide to estimation of each of these, 
including data and Stata code). We note that for each of 
the three approaches, partial preference orders can also 
be obtained by asking respondents to only rank a subset 
of alternatives, or only make a subset of possible best-
worst or best-best choices, respectively. The advantages of 
a complete preference order may be particularly relevant 
where sample sizes are small, e.g. due to budget constraints 
or if the population from which researchers are sampling is 
itself small [61].

5.2.1 � Ranking

One way to elicit the full preference order is to ask 
respondents to rank the alternatives presented in each choice 
set from best to worst [57, 58]. It can also be considered (and 
indeed most estimation makes this assumption explicitly) 
that the complete rank order is obtained by choosing 
best in successively smaller choice sets—the top-ranked 
alternative is the best from the full choice set, the second 
ranked alternative is considered the best from the choice set 
after the top ranked alternative is removed, and so on. An 
advantage is a complete preference order is obtained from 
the presented choice options. A potential disadvantage is, 
without further guidance, simply asking respondents to rank 

several alternatives could be challenging as the number of 
alternatives increases and researchers will not know the way 
in which the ranking was arrived at. Respondent burden of 
such free ranking increases as the choice set size increases.

5.2.2 � Best‑Worst

An alternative way to arrive at a complete rank order is 
to ask respondents repeated best and worst questions [52, 
61]: best from the full choice set, worst from the choice 
set excluding the alternative already chosen as best, and 
so on until a complete preference order is obtained. For 
example, “Please choose the best from all alternatives; 
from the remaining alternatives please choose the worst; 
from the remaining alternatives please choose the best…” 
and so on. This approach has been referred to as either best-
worst DCE because it is the same as a standard DCE but 
more questions are asked per choice set, or as best-worst 
scaling type three [61]. Unlike a free ranking task, a best-
worst DCE task puts structure on how respondents make 
choices to arrive at the rank, potentially reducing cognitive 
burden. This question type exploits the fact that people must 
consider all alternatives to identify the best option, and that 
a second question about the same set of alternatives is easier 
to answer than a question about a new set of alternatives. 
Lancsar et al. [61] demonstrate empirically the efficiency 
gains from such an elicitation process, but also note that 
there is ‘no free lunch’ in that respondents are completing 
more tasks per choice set compared with a standard DCE. 
Nevertheless, it is more efficient than presenting more 
choice sets and asking respondents to simply choose the 
best to achieve the same quantity of choice data, since in 
a best-worst task respondents have already considered all 
alternatives to make the choice of best. Flynn and colleagues 
[62] also suggested answering best-worst questions is easier 
for respondents, potentially improving respondent efficiency; 
however, some empirical evidence questions this [63, 64].

5.2.3 � Best‑Best

A key advantage of both ranking tasks and best-worst is the 
efficiency gains with which to elicit additional choice data 
and the resulting statistical efficiency gains (tighter standard 
errors). However, as noted by Ghijben et al. [36] and Lancsar 
et al. [60], a best-worst task requires respondents to change 
mental tasks—from choice of best to choice of worst. As 
noted above, using ranking data we assume when modelling 
those data that respondents arrived at the rank order by 
choosing best from successively smaller choice sets, which 
may or may not be how respondents rank. To collect the 
same amount of data but without asking respondents to 
change mental tasks, Ghijben et al. [36] introduced best-
best DCEs in which respondents are asked to choose best 
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from the full choice set, followed by best from the choice 
set without the alternative already chosen as best, and so 
on until a full rank order is obtained. The elicited data 
match the proposed data-generation process assumed in a 
rank order logit, namely choice of best from successively 
smaller choice sets and respondents remain in the single 
choice frame—choice of best. Recent research comparing 
different choice response formats suggests that best-best 
may be preferred to best-worst formats if going beyond a 
traditional single choice ‘best’ DCE [65].

6 � Summary/Conclusions

This paper has focused on the presentation of choice sets 
into a choice elicitation task to be considered by respondents 
in a DCE. Choice experiments elicit preferences to help us 
understand and measure the comparative value associated 
with a number of alternatives and the attributes that 
describe those alternatives, and predict choice behaviour in 
a particular decision context. A key purpose of a preference 
elicitation task is to be able to validly and accurately 
predict the actual decision behaviour of a wider group of 
individuals whom the respondents represent in a real-life 
choice context. Given this, it is important to mimic the real-
world choice of interest in the choice task, and the steps 
needed to do that include giving due consideration to the 
choice context presented to respondents; presentation of the 
choice sets, including choice set size, labelled and unlabelled 
alternatives; the importance of a reference alternative; and 
the choice question(s) respondents are asked to consider.
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