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Background. Recommendations regarding personalized lung cancer screening are being informed by natural-history
modeling. Therefore, understanding how differences in model assumptions affect model-based personalized screening
recommendations is essential. Design. Five Cancer Intervention and Surveillance Modeling Network (CISNET)
models were evaluated. Lung cancer incidence, mortality, and stage distributions were compared across 4 theoretical
scenarios to assess model assumptions regarding 1) sojourn times, 2) stage-specific sensitivities, and 3) screening-
induced lung cancer mortality reductions. Analyses were stratified by sex and smoking behavior. Results. Most can-
cers had sojourn times \5 y (model range [MR]; lowest to highest value across models: 83.5%–98.7% of cancers).
However, cancer aggressiveness still varied across models, as demonstrated by differences in proportions of cancers
with sojourn times \2 y (MR: 42.5%–64.6%) and 2 to 4 y (MR: 28.8%–43.6%). Stage-specific sensitivity varied,
particularly for stage I (MR: 31.3%–91.5%). Screening reduced stage IV incidence in most models for 1 y postscreen-
ing; increased sensitivity prolonged this period to 2 to 5 y. Screening-induced lung cancer mortality reductions
among lung cancers detected at screening ranged widely (MR: 14.6%–48.9%), demonstrating variations in modeled
treatment effectiveness of screen-detected cases. All models assumed longer sojourn times and greater screening-
induced lung cancer mortality reductions for women. Models assuming differences in cancer epidemiology by smok-
ing behaviors assumed shorter sojourn times and lower screening-induced lung cancer mortality reductions for heavy
smokers. Conclusions. Model-based personalized screening recommendations are primarily driven by assumptions
regarding sojourn times (favoring longer intervals for groups more likely to develop less aggressive cancers), sensitiv-
ity (higher sensitivities favoring longer intervals), and screening-induced mortality reductions (greater reductions
favoring shorter intervals). Implications. Models suggest longer screening intervals may be feasible and benefits may
be greater for women and light smokers.
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Highlights

� Natural-history models are increasingly used to inform lung cancer screening, but causes for variations
between models are difficult to assess.

� This is the first evaluation of these causes and their impact on personalized screening recommendations
through easily interpretable metrics.

� Models vary regarding sojourn times, stage-specific sensitivities, and screening-induced lung cancer mortality
reductions.

� Model outcomes were similar in predicting greater screening benefits for women and potentially light
smokers. Longer screening intervals may be feasible for women and light smokers.
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Introduction

Lung cancer screening reduces lung cancer mortality by
more than 20%.1,2 Furthermore, inviting individuals for
lung cancer screening based on individual risk has been
shown to be (cost-)effective.3–5 Findings from trials sug-
gest that the effectiveness and efficiency of lung cancer
screening may be improved through personalization.6–12

For example, modeling studies have suggested that
personalizing the screening stopping age based on life
expectancy could considerably reduce overdiagnosis and
the number of screens required while retaining the life-
years gained by screening.3,10 This has led to recommen-
dations to personalize screening by incorporating an indi-
vidual’s life expectancy.13,14
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The information provided by the result of the com-
puted tomography (CT) screening may also be used to
personalize screening. Analyses of both the National
Lung Screening Trial (NLST) and the Dutch–Belgian
lung-cancer screening trial (NELSON) indicate that the
risk for developing lung cancer was substantially lower
among those with a negative baseline screening result
compared with those with indeterminate or positive
screening results.6,7 Consequently, multiple trials are cur-
rently evaluating personalizing screening intervals based
on the baseline screen result.15,16 Furthermore, studies
suggest that combining the results of the CT with infor-
mation from biomarkers may allow even further perso-
nalization of the screening interval.12

While trials are essential to provide information on
the effectiveness of personalized screening regimens, they
are restricted to evaluating a single design (e.g., annual
versus biennial screening) and population. Consequently,
obtaining trial-based evidence for personalized screening
regimens based on different combinations of individual
characteristics (e.g., individual risk factors, lung cancer
risk, expected life expectancy, previous screening results)
would be infeasible in practice.

Natural-history models explicitly model the preclinical
progression and probability of screening to detect a dis-
ease in a preclinical phase. These models are valuable in
extrapolating trial results to different program designs
and target populations to inform screening recommenda-
tions.17,18 Furthermore, comparative modeling analyses
(evaluations comparing multiple models with standar-
dized inputs) can provide more reliable and robust con-
clusions than single-model studies.19 Consequently,
personalized lung cancer screening recommendations are
likely to continue to be informed by collaborative model-
ing analyses.17 However, similar to risk-prediction mod-
els, equally valid natural-history models can vary in
predicted outcomes due to differences in model struc-
tures, assumptions, and data used for model calibra-
tion.20–22 In particular, assumptions regarding

1. screening test sensitivity by stage, affecting the over-
all potential of the model to detect cancers present in
a preclinical state;

2. sojourn time (the preclinical, screen-detectable
phase) lengths, affecting the overall duration that a
cancer can be detected by screening in the model;
and

3. treatment effectiveness for (screen-detected) cancers,
affecting the potential benefit a model may attribute
to the early detection of a cancer

can vary widely between models.22–24 Therefore, it is
essential to understand how model structures and
assumptions influence personalized lung cancer screening
recommendations.

Detailed descriptions and comprehensive documenta-
tion contribute to model transparency; however, the
implications of differences in model structures and
assumptions remain difficult to assess. The maximum
clinical incidence reduction (MCLIR) methodology has
been specifically designed to compare natural-history
assumptions between models.22 In brief, the MCLIR
methodology evaluates the model-specific reductions in
incidence and mortality achievable through screening
across different scenarios to evaluate model differences
in sojourn times, test sensitivity, and mortality reduction
achieved through screening (screening-induced mortality
reduction).

The MCLIR methodology has been used to evaluate
breast, cervical, and colorectal cancer screening mod-
els.22–24 In this study, we extend the MCLIR methodol-
ogy to evaluate how differences in model assumptions
regarding test sensitivity, sojourn time lengths, and treat-
ment effectiveness for (screen-detected) cancers affect
personalized lung cancer screening recommendations.

Materials and Methods

This study evaluated 5 Cancer Intervention and Surveil-
lance Modeling (CISNET) models that informed US and
Canadian lung cancer screening recommendations.17,25,26

These models are the Microsimulation Screening Analy-
sis (MISCAN; Erasmus University Medical Center Rot-
terdam) model, the Lung Cancer Natural History and
Screening (UoM/BCC; University of Michigan/BC Can-
cer) model, the Lung Cancer Outcomes Simulation
(LCOS; Stanford University) model, the Lung Cancer
Policy Model (LCPM; Massachusetts General Hospital),
and the Oncosim model (Canadian Partnership Against
Cancer/Statistics Canada).27–31 An overview of the mod-
els (Supplementary Table 1) and individual model pro-
files are provided in the Supplementary Material.

A general model structure overview is provided in
Supplementary Figure 1. Each model simulates individu-
als who may develop lung cancer in the absence/presence
of screening. All models simulate lung carcinogenesis
through a smoking dose-response model. When lung car-
cinogenesis occurs, a sojourn time (the preclinical,
screen-detectable phase) from tumor onset until clinical
diagnosis is simulated. Tumors may undergo preclinical
progression to more advanced stages (through stage
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transition, tumor size increase, or metastatic burden).
Upon clinical detection, survival functions (which may
vary by tumor and individual characteristics) determine
when lung cancer death occurs. Screening may affect a
person’s life history through earlier detection of the
tumor. The time between screen detection and diagnosis
in the absence of screening is known as the lead time.
Screening-induced benefits may manifest themselves
through improvements in survival due to a stage shift
and/or the probability of successful curative treatment.

MCLIR Methodology

The impact of modeling structures and assumptions is
evaluated by comparing lung cancer incidence (clinical
and screen detected) and mortality across 4 scenarios.
Table 1 provides an overview of the different scenarios,
MCLIR metrics, and their implications.

In brief, a scenario without screening (NoScreen) is
compared with 3 scenarios evaluating a 1-time screen at
age 65 y (the center of the US Preventive Services Task
Force–recommended screening age range) under differ-
ent assumptions.

Scenario RealSensRealTreat evaluates screening with
realistic sensitivity and treatment effectiveness estimates.
Thus, in this scenario, the models apply their regular
stage-specific screening sensitivity and effect of screening
on influencing lung cancer mortality. The comparison to
NoScreen thus provides information on the model’s rea-
listic clinical incidence reduction (RCLIR) and realistic
screening-induced lung cancer mortality reduction
(RMOR). These metrics reflect model predictions under
their baseline assumptions.

Scenario RealSensPerfectTreat evaluates a screening
test with realistic sensitivity estimates and perfect treat-
ment of all screen-detected cancers. This is facilitated in
the models through curing all screen-detected cancers or
setting their survival to 100%. While RealSensPerfect-
Treat and RealSensRealTreat screen detect the same
cancers, those in RealSensPerfectTreat are treated with
perfect effectiveness. The difference in mortality reduc-
tion between RealSensPerfectTreat and RealSensReal-
Treat thus represents cancers that were screen detected
but still lead to lung cancer death due to imperfect treat-
ment. Consequently, this comparison yields information
on the model’s screening-induced lung cancer mortality
reduction under perfect treatment but imperfect sensitiv-
ity (ISMOR). This metric represents the potential
mortality reduction that can be achieved by improve-
ments in treatment effectiveness under current screening
sensitivity.

Finally, scenario PerfectSensTreat evaluates a perfect
screening test with perfect treatment of all screen-
detected cancers. This is facilitated in the models by set-
ting the sensitivity of the screening test to 100% for all
stages of cancer. Thus, in this scenario, all cancers pres-
ent at the time of screening are detected. Consequently,
this scenario yields information on the model’s MCLIR.
This metric represents the potential incidence reduction
achievable through sensitivity improvements. Further-
more, all screen-detected cancers in this scenario receive
perfect treatment, yielding information on the model’s
screening-induced maximum lung cancer mortality
reduction (MMOR). This metric represents the maxi-
mum mortality reduction achievable by screening.
Finally, the sojourn time distribution can be derived
through comparing differences in time-specific clinical
incidence between NoScreen and PerfectSensTreat.

The MCLIR metrics (RCLIR/MCLIR/RCLIR;
RMOR/ISMOR/MMOR) are derived by comparing the
incidence and mortality between scenarios over ages 65
to 80 y, for example, the MCLIR is derived as

MCLIR=

1�
Page 80

A= age 65 Clinical incidence at age A in PerfectSensTreatPage 80
A= age 65 Clinical incidence at age A in NoScreen

 !
�100%:

Derivations for all MCLIR metrics are provided in
Table 1.

This study expands the MCLIR methodology by eval-
uating the stage distributions of screen-detected and
clinically detected cancers. Comparisons of the ratios of
screen-detected cancers by stage between scenarios with
perfect (PerfectSensTreat) and realistic (RealSensPerfect-
Treat/RealSensRealTreat) sensitivity provide insights
into the model-specific preclinical prevalence and screen
detectability by stage.

Screening aims to diagnose cancers at an early stage:
thus, the screening interval length should allow detection
before progression to advance disease occurs. Screen
detection of early-stage cancers before they progress to
advanced disease will reduce the clinical incidence of
late-stage disease. Therefore, we evaluated the incidence
of clinically detected stage IV cancers postscreening to
attain insights into model-specific optimal screening
intervals.

Evaluated Populations

Screening-induced lung cancer mortality reductions may
vary by sex.1,32 Furthermore, individuals with high lung
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cancer risk are more likely to have comorbidities that
may affect treatment options.33,34 The scenarios were
evaluated by sex and for different smoking behaviors to
provide insights into screening-effectiveness differences
across these characteristics. Two smoking behaviors were
considered. The first was heavy smoking, defined as
starting smoking at age 15 y, never quitting, and smok-
ing 30 cigarettes per day over the smoking lifetime (i.e.,
accumulating 75 pack-years and currently smoking at
age 65 y). The second was light smoking, defined as
starting smoking at age 15 y, quitting at age 55 y, and
smoking 10 cigarettes per day over the smoking lifetime
(i.e., accumulating 20 pack-years and having quit 10 y at
age 65 y). The 6 populations considered were thus 1)
heavy smokers (both sexes combined), 2) light smokers
(both sexes combined), 3) heavy-smoking men, 4) light-
smoking men, 5) heavy-smoking women, and 6) light-
smoking women. In each analysis, smoking behaviors
were uniform across the simulated population to allow
standardization across models.

Outcome Definitions

Heavy smokers (both sexes combined) were considered
for the primary analyses; the results for the other popula-
tions are provided in the supplementary materials. All
individuals were assumed to never have received prior
screening or been diagnosed with lung cancer before age
65 y. All individuals were assumed to die of other causes
at age 100 y to account for differences in smoking-related
mortality across models. All outcome metrics were calcu-
lated by comparing differences in outcomes between the
NoScreen, RealSensRealTreat, RealSensPerfectTreat,
and PerfectSensTreat scenarios. The outcome metrics are
provided as either medians across the models or by range
across the models. For example, the model range (MR)
represents the range from the lowest to highest value
across the models for the specified outcome metric.

Results

Model Differences in Stage-Specific Sensitivity

Differences in RCLIRs (Figure 1, area A) were modest
(MR: 4.5%–7.8%). However, RCLIRs in the year of
screening varied widely (MR: 44.7%–78.0%). This sug-
gests screening sensitivity variability across models, as
shown in Table 2. Stage I sensitivity varied considerably,
ranging from 31.3% to 91.5% (median: 43.5%). This
reflects differences in model structures as the upper
bound was derived from a model that assumes a similar
sensitivity across all stages. Similarly, sensitivity also

varied for more advanced cancers, MRs 35.1% to 90.8%
(median: 61.8%) for stage II, 62.7% to 92.2% (median:
90.2%) for stage III, and 86.4% to 98.0% (median:
91.4%) for stage IV. Overall, models with low sensitiv-
ities for early-stage cancers were more likely to favor
shorter screening intervals, as they required more oppor-
tunities to detect similar numbers of early-stage cancers
as models with high sensitivities.

Model Differences in Sojourn Times

All models assume that most cancers between ages 65 to
80 y develop postscreening, demonstrated by the
MCLIRs (Figure 1, areas A + B) ranging from 6.7% to
15.8% (median: 12.7%). Indeed, all models assumed
most cancers had sojourn times \5 y (MR: 83.5%–
98.7% of cancers). However, cancer aggressiveness still
varied across models, demonstrated by differences in
proportions of cancers with sojourn times \2 y (MR:
42.5%–64.6%) and 2 to 4 y (MR: 28.8%–43.6%). This
is also reflected in the MCLIR shapes. For example,
while all models show steep declines in MCLIR in the
first 3 y postscreening, the LCOS and Oncosim MCLIRs
further decline to nearly 0% in the subsequent 3 y. The
other MCLIRs show slower declines toward 0%, result-
ing in longer tails. Both patterns reflect mixtures of
highly aggressive cancers with short sojourn times and
less aggressive cancers with longer sojourn times. How-
ever, the differences in the rates of decline suggest that
the sojourn times of less aggressive cancers are generally
longer in the models with longer MCLIR tails. Conse-
quently, if individuals who develop less aggressive can-
cers can be identified, models with longer sojourn times
are more likely to recommend longer screening intervals.

Effects of Sensitivity and Sojourn Time Assumptions
on the Screening Interval

The stage distributions in the absence of screening (Sup-
plementary Figure 2) and of screen-detected cases under
perfect sensitivity (Supplementary Figure 3) are similar
across models. Thus, preclinical stage distributions and
maximum potential stage shifts at the first screening are
similar across models. However, at similar screening
intervals, models with shorter sojourn times may have
more interval cancers than those with longer sojourn
times and may be less likely to recommend longer
intervals.

The relation between sensitivity and the screening
interval is also demonstrated in Figure 2, which shows
how sensitivity affects the postscreening incidence of
stage IV cancers. Screening causes a postscreening

ten Haaf et al. 7



Figure 1 Fifteen-year model-specific lung cancer incidence reductions under different assumptions.
The y-axis refers to the observed reduction in the incidence of clinically detected lung cancers compared with no screening at each age across the

different modeled scenarios. The top part of the legend (overall area proportions) refers to the proportion of lung cancers occurring over ages 65

to 80 y in each of the areas A, B, and C, which represent cancers occurring over ages 65 to 80 y. Area A is derived by comparing the cancer

incidence in scenarios RealSensPerfectTreat /RealSensRealTreat to scenario NoScreen and forms the RCLIR. It shows the proportion of cancers

occurring over ages 65 to 80 y that are detected when assuming realistic sensitivity estimates. Area B is derived by comparing the cancer incidence

in scenario PerfectSensTreat to scenarios RealSensPerfectTreat/RealSensRealTreat to NoScreen. It shows the proportion of cancers that are

present at the moment of screening but are not detected due to imperfect sensitivity. Areas A and B combined form the MCLIR. Finally, area C

represents the proportion of cancers that will be detected clinically between ages 65 to 80 y but that are not yet present at the moment of

screening. For example, in MISCAN, 7.8% (area A) of cancers occurring over ages 65 to 80 y are detected at the moment of screening, while

8.0% (area B) is missed due to imperfect sensitivity and 84.2% (area C) is not yet detectable at the moment of screening. Consequently,

MISCAN’s RCLIR is 7.8% and its MCLIR 15.8%. Of the cancers that are detectable at the moment of screening, MISCAN detects 49.2% (area

A) but misses 50.8% (area B) due to imperfect sensitivity. The bottom part of the legend refers to the distribution of areas A and B when the

cancers detectable at the moment of screening are considered as the denominator (areas A+B).
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reduction in stage IV cancers in most models. This effect
is short lived and declines substantially after 1 y postscre-
ening under realistic sensitivity. However, when perfect
sensitivity is assumed, the reduction in stage IV cancers
prolongs to 2 to 5 y postscreening. Overall, these results
indicate that models with higher sensitivities are more
likely to favor longer screening intervals.

Screening-Induced Lung Cancer Mortality Reductions

Figure 3 shows the model-specific lung cancer mortality
reductions under different assumptions. The RMORs (Fig-
ure 3, area A) ranged from 1.2% to 4.4% (median: 2.0%)
while the ISMORs (Figure 3, areas A + B) ranged from
6.6% to 9.0% (median: 7.2%). The within-model difference
in ISMOR and RMOR reflects deaths not prevented due
to imperfect treatment. This difference was the greatest for
LCOS (RMOR: 1.2%; ISMOR: 8.1%) and smallest for
MISCAN (RMOR: 4.4%; ISMOR: 9.0%), reflecting dif-
ferences in treatment effectiveness assumptions.

The MMORs (Figure 3, areas A+B+C) ranged from
6.6% to 18.2% (median: 13.9%), which, similarly to the
MCLIRs, reflect that most deaths occur from lung can-
cers that developed postscreening. The within-model dif-
ference in MMOR and ISMOR reflects the cancer
deaths not prevented due to imperfect sensitivity. This
difference was greatest for UoM/BCC (ISMOR: 6.6%;
MMOR: 17.3%) and smallest for Oncosim (ISMOR:
7.2%; MMOR: 7.6%), reflecting differences in sensitivity
assumptions (Table 1).

Effects of Screening-Induced Mortality Reduction
Assumptions on the Estimated Value of Improved
Sensitivity and the Optimal Screening Interval

Table 3 further demonstrates differences in screening-
induced lung cancer mortality reductions. The proportion

of screen-detectable lung cancers resulting in mortality
missed by screening varied from 5.6% to 62.0%, reflect-
ing great differences in the potential benefits of sensitivity
improvements across models. Furthermore, the propor-
tion of screen-detected cases for which mortality was pre-
vented varied from 14.6% to 48.9%, indicating vast
differences in the estimated treatment effectiveness of
screen-detected cases. For example, while screen detection
in LCOS reduced lung cancer mortality by 14.6%, this
was 30.2% in UoM/BCC. Consequently, equal improve-
ments in sensitivity will more likely lead to notable
improvements in lung cancer mortality reductions for
UoM/BCC than LCOS. Furthermore, models with greater
treatment effectiveness of screen-detected cases are more
likely to recommend shorter intervals that maximize the
number of opportunities to detect curable cancer.

Sex Differences

All models suggest longer sojourn times for women than
men (Supplementary Figures 4 and 5). Furthermore,
women have more favorable stage distributions in the
absence of screening (Supplementary Figures 6 and 7) and
for screen-detected cases under perfect sensitivity (Supple-
mentary Figures 8 and 9). Consequently, although clinical
diagnosis occurs more often at an early stage for women,
the maximum screening-induced stage shift is more favor-
able than for men. Furthermore, all models showed greater
screening sensitivity for women (Supplementary Tables 2
and 3). Due to the longer sojourn times and greater sensi-
tivities, the postscreening reduction in stage IV cancers
persists longer in women than in men (Supplementary Fig-
ures 10 and 11). Finally, RMORs/ISMORs/MMORs were
higher for women than men (Supplementary Figures 12
and 13), suggesting greater screening-induced lung cancer
mortality reductions, as shown in Supplementary Tables 4

Table 2 Screening Sensitivity Differences between Modelsa

Model Stage I Sensitivity Stage II Sensitivity Stage III Sensitivity Stage IV Sensitivity

MISCAN 40.3% 43.9% 71.3% 98.0%
UoM/BCC 31.3% 35.1% 62.7% 87.1%
LCOS 52.1% 61.8% 92.2% 92.6%
LCPM 43.5% 67.0% 90.2% 86.4%
Oncosim 91.5% 90.8% 91.2% 91.4%
Median 43.5% 61.8% 90.2% 91.4%

LCOS, Lung Cancer Outcomes Simulation model; LCPM, Lung Cancer Policy Model; MISCAN, Microsimulation Screening Analysis model;

UoM/BCC, Lung Cancer Natural History and Screening model.
aAt the time of the analysis, Oncosim’s assumed screening sensitivity depends on screening round and age group and did not explicitly model

stage-specific sensitivities. Rather, it assigns a stage to a clinically detected cancer consistent with national cancer registry data (by sex, age

group, and jurisdiction) and a stage to a screen-detected cancer upon the moment of detection that is consistent with the National Lung

Screening Trial results.
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Figure 2 Effect of sensitivity on the occurrence of stage IV cancers postscreening.
The figure notes the proportion of clinically detected lung cancers occurring in stage IV (on the y-axis) in each year postscreening under the

different scenarios. The line ‘‘No screening’’ represents the proportion of stage IV cancers in scenario NoScreen. The line ‘‘Realistic sensitivity’’

represents the proportion of stage IV cancers in scenarios RealSensPerfectTreat and RealSensRealTreat. Finally, the line ‘‘Perfect sensitivity’’

represents the proportion of stage IV cancers in scenario PerfectSensTreat.
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Figure 3 Five-year model-specific lung cancer mortality reductions under different assumptions.
The y-axis of the graphs refers to the observed reductions in lung cancer mortality on the population level compared with no screening at each

age across the different modeled scenarios. The top part of the legend refers to the proportion of lung cancer deaths occurring under no screening

over ages 65 to 80 y in each of the areas A, B, C, and D. Area A is derived by comparing the cancer mortality in scenario RealSensRealTreat to

scenario NoScreen and forms the RMOR. It represents the proportion of cancer deaths occurring over ages 65 to 80 y that are detected when

assuming realistic sensitivity estimates and for which death is prevented when realistic treatment is assumed. Area B is derived by comparing the

cancer mortality in scenario RealSensPerfectTreat to scenario RealSensRealTreat. It represents the proportion of cancers leading to death that

are detected at the moment of screening under realistic sensitivity assumptions but for which death is not prevented due to imperfect treatment.

Areas A and B combined form the ISMOR. Area C is derived by comparing the cancer mortality in scenario PerfectSensTreat to scenario

RealSensPerfectTreat. It represents the proportion of deaths due to cancers that are present at the moment of screening but that are not detected

due to imperfect sensitivity. Areas A, B, and C combined form the MMOR. For example, in UoM/BCC, 2.0% (area A) of cancers leading to

deaths occurring over ages 65 to 80 y are detected at the moment of screening and successfully treated when realistic assumptions are used.

Meanwhile, 4.6% (area B) is detected but unsuccessfully treated; 10.7% (area C) is missed due to imperfect sensitivity and 82.7% (area D) of deaths

are due to cancers not yet detectable at the moment of screening. Consequently, UoM/BCCs RMOR is 2.0%, its ISMOR is 6.6%, and its MMOR

is 17.3%. Of the deaths due to cancers that are detectable at the moment of screening, UoM/BCC detects and successfully treats 11.5% (area A),

detects but unsuccessfully treats 26.5% (area B) and misses 62.0% (area C) due to imperfect sensitivity. The bottom part of the legend refers to the

distribution of areas A, B, and C when deaths due to cancers that are detectable at the moment of screening are considered as the denominator.
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and 5. Consequently, all models are more likely to predict
greater screening-induced lung cancer mortality reductions
and recommend longer screening intervals for women than
men.

Smoking Behavior Differences

Most models did not assume sojourn times varied by
smoking behavior (Supplementary Figure 14). However
in UoM/BCC and LCPM, the histology distribution var-
ies by smoking behavior, leading to a higher proportion
of adenocarcinomas in light versus heavy smokers. Con-
sequently, their MCLIRs for light smokers have longer
tails compared with heavy smokers, suggesting longer
sojourn times. Furthermore, both models estimated
more favorable stage distributions in the absence of
screening (Supplementary Figure 15) and for screen-
detected cases under perfect sensitivity (Supplementary
Figure 16) for light smokers. However, only UoM/BCC
estimated higher sensitivities for light smokers (Supple-
mentary Table 6). Consequently, UoM/BCC was the
only model to estimate longer reductions in postscreen-
ing stage IV cancers for light smokers (Supplementary
Figure 17). The RMORs/ISMORs/MMORs were higher
for light smokers than for heavy smokers (Supplemen-
tary Figure 18) in UoM/BCC and LCPM, suggesting
greater screening-induced lung cancer mortality reduc-
tions (Supplementary Table 7). In contrast, screening
effectiveness was greater for heavy smokers in Oncosim.

Discussion

This is the first study that evaluates how differences in
model structures and assumptions affect model-based

personalized lung cancer screening recommendations.
Our study compared 5 established natural-history models
and found that the models had similar stage-shift poten-
tials. However, models varied in assumptions regarding
the sojourn times of less aggressive cancers, stage-specific
sensitivities, and screening-induced lung cancer mortality
reductions. This is particularly important as our study
suggests that these assumptions drive model-based perso-
nalized screening recommendations.

Sensitivity estimates for stage I cancers ranged from
31.3% to 91.5%. Overall, lower sensitivities are associ-
ated with shorter screening intervals, demonstrated by
the postscreening stage IV cancer incidence reduction.
The median 1-y postscreening proportion of clinically
detected stage IV cancers at realistic sensitivity observed
across the models was 15.8%, which is in line with that
observed after the first screen in the NLST (16.7%).2

Our results suggest that improved sensitivity could pro-
long this period to 2 to 5 y. However, further evaluation
of empirical data is required to assess the proportions of
interval cancers that represent cancers missed at the CT
screening and interval cancers that develop after the
screening.

Differences in sensitivity may also affect the estimated
value of personalized information. For example, current
nodule management protocols suggest including prior
screening information (like nodule volume doubling
times) or blood-based biomarkers to improve sensitivity
at repeat screenings.9,12,35–38 However, the additional
value of sensitivity improvements depends on the base-
line level (e.g., a 10-percentage-point increase is of greater
value at a baseline of 30% compared with 80%).

Sensitivity also varied for advanced cancers: even for
stage IV lung cancer, the stage-specific sensitivity varied

Table 3 Screening Effectiveness in Reducing Lung Cancer Mortality

Model

Proportions of All Cancers Leading to Lung
Cancer Death Detectable at Screening Proportions of Screen-Detected Cases

Area A (Death

Prevented)

Area B (Detected

but Not Prevented)

Area C (Not Detected,

not Prevented)

A/A+B (Detected

and Prevented)

B/A+B (Detected

but Not Prevented)

MISCAN 24.1% 25.2% 50.7% 48.9% 51.1%
UoM/BCC 11.5% 26.5% 62.0% 30.2% 69.8%
LCOS 8.5% 50.1% 41.4% 14.6% 85.4%
LCPM 21.7% 45.2% 33.1% 32.5% 67.5%
Oncosim 26.4% 68.0% 5.6% 28.0% 72.0%
Median 21.7% 45.2% 41.4% 30.2% 69.8%

MISCAN, Microsimulation Screening Analysis model; UoM/BCC, Lung Cancer Natural History and Screening model; LCOS, Lung Cancer

Outcomes Simulation model; LCPM, Lung Cancer Policy model. Areas A, B, and C refer to the areas depicted in Figure 3. Area A represents

the proportion of cancers leading to death occurring over ages 65 to 80 y that are detected when assuming realistic sensitivity estimates. Area B

represents the proportion of cancers leading to death that are detected at the moment of screening but whose death is not prevented due to

imperfect treatment. Finally, area C represents the proportion of cancers leading to death that are not detected due to imperfect sensitivity.
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from 86.4% to 98%. Although a sensitivity of \90%
for metastatic cancer may seem low, a CT scan may miss
cancers that present as small pulmonary nodules but
have metastasis in areas not visible on the CT screen of
the chest. In the NLST, 14.7% of individuals with stage
IV cancers that were either detected at or clinically diag-
nosed within the year of each screening round had a neg-
ative screening result.2 Consequently, we believe that the
range of estimates for stage IV sensitivities across the
models is credible.

Although the difference in prognosis between stages
III and IV is more modest than between stages I and IV,
differences in sensitivity for advanced cancers may still
affect treatment patterns, treatment durations (due to
lead time), and associated costs.39,40 Consequently, this
may affect cost-effectiveness estimates when the costs
and effects of novel therapies are considered.41 This is
especially important considering the wide range in
screening-induced mortality reductions (14.6%–48.9%).
Similarly to sensitivity, models with low baseline estimates
for treatment effectiveness are more likely to attribute
greater value to improvements in treatment effectiveness
than models with high baseline estimates. Furthermore,
models with greater potential for screening-induced mor-
tality reductions are more likely to recommend shorter
intervals, maximizing the number of opportunities to
screen-detect curable cancer. In addition, an evaluation of
the impact of model differences in assumptions on overall
survival improvements in the absence of screening may be
useful in informing the joint effect of screening and
improvements of novel therapies.41

More than 80% of cancers in all models had sojourn
times \5 y. However, the models varied in the propor-
tions of cancers with sojourn times \2 y (MR: 42.5%–
64.6%) and 2 to 4 y (MR: 28.8%–43.6%). Although
annual screening intervals have been recommended in
the United States, biennial screening intervals may be
favored in other countries due to budgetary or CT capac-
ity constraints.42 For example, the United Kingdom,
Australia, and Switzerland are recommending or using
biennial screening intervals.42–45 Therefore, personalized
screening recommendations in countries using biennial
screening may entail shortening the screening interval to
annual screening for high-risk groups based on their CT
scan result. Consequently, this is being evaluated by
screening trials in Europe.15,16

All models found longer sojourn times and greater
screening-induced lung cancer mortality reductions for
women than for men. This is consistent with reported
differences in the incidence of less aggressive histological
subtypes, such as adenocarcinoma and screening-induced
lung cancer mortality reductions between sexes.1,32,46

Consequently, all models are more likely to estimate
more favorable screening outcomes and suggest longer
screening intervals for women. In contrast, only some
models considered differences in sojourn times and
screening-induced lung cancer mortality reductions by
smoking behavior. Therefore, personalized screening rec-
ommendations by smoking behavior may vary across the
evaluated models.

Lung cancer screening is becoming increasingly perso-
nalized.47 As further personalization will add increasing
complexity to, and increase the potential value of, colla-
borative modeling analyses, improving model transpar-
ency through easily interpretable metrics is vital. Our
study serves as a basis for comparing models in a trans-
parent and easily interpretable manner that can be fur-
ther expanded to different components of the screening
pathway. Previous comparative analyses showed that
although there is considerable heterogeneity in model
assumptions, the models were consistent in supporting
particular policies.17,18,48 The comparative analyses in
this investigation demonstrate that there could be more
heterogeneity in models’ assessment of the performance
of personalized screening strategies and their (cost-)effec-
tiveness. Consequently, this study demonstrates the value
of the MCLIR methodology in identifying areas of het-
erogeneity between models and assessing how these
might influence the estimated impact of different aspects
of personalized screening and which strategies are sup-
ported. Furthermore, it highlights the need to further
assess the validity of model assumptions on data from
ongoing trials on personalized lung cancer screening.

Nonetheless, our analysis has some limitations. While
between-model differences in sex and smoking behavior
were evaluated, the consideration of a single screen at
age 65 y precluded evaluating differences in age-specific
screening effectiveness and assumptions on information
from prior screenings. A previous collaborative analysis
suggested that age-specific overdiagnosis risks varied
substantially across models.49 Screening effectiveness
assumptions may similarly vary by age across models.
Therefore, future studies should evaluate the MCLIR
metrics at different ages and investigate scenarios that
consider multiple screenings.

Conclusion

Our study demonstrates how differences in model
assumptions and structures can affect model-based per-
sonalized screening recommendations. Differences in
model-based personalized screening recommendations
are primarily driven by assumptions regarding the
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sojourn times of less aggressive cancers, screening sensi-
tivity, and screening-induced mortality reductions.
Therefore, comparative modeling studies informed by
detailed assessment of the impact of model assumptions
are vital to inform personalized screening recommenda-
tions. Model validation to data from ongoing trials on
personalized lung cancer screening is essential to assess
the validity of model assessments of personalized screen-
ing strategies.
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