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Introduction: Coronary artery disease (CAD) stands among the leading 
global causes of mortality, underscoring the critical necessity for early 
detection to facilitate effective treatment. Although Coronary Angiography 
(CA) serves as the gold standard for diagnosis, its limitations for screening, 
including side effects and cost, necessitate alternative approaches. This 
study focuses on the development and comparison of machine learning 
techniques as substitutes for CA in CAD screening, leveraging routine clinical 
and laboratory data. 

Material and Methods: Various machine learning classification 
algorithms—decision tree, k-nearest neighbor, artificial neural network, 
support vector machine, logistic regression, and stacked ensemble learning 
were employed to differentiate CAD and healthy subjects. Feature selection 
algorithms, namely LASSO and ReliefF, were utilized to prioritize relevant 
features. A range of evaluation metrics, including accuracy, precision, 
sensitivity, specificity, AUC, F1 score, ROC curve, and NPV, were applied. The 
SHAP technique was employed to elucidate and interpret the artificial neural 
network model. 

Results: The artificial neural network, support vector machine, and stacked 
ensemble learning models demonstrated excellent results in a 10-fold cross-
validation evaluation using features selected by LASSO and ReliefF. With the 
LASSO feature selection algorithm, these models achieved accuracies of 
90.38%, 90.07%, and 90.39%, sensitivities of 94.43%, 93.03%, and 93.96%, 
and specificities of 80.27%, 82.77%, and 81.52%, respectively. Using ReliefF, 
the accuracies were 88.79%, 88.77%, and 90.06%, sensitivities were 
92.12%, 91.66%, and 93.98%, and specificities were 80.13%, 81.38%, and 
80.13%, respectively. The SHAP technique revealed that typical and atypical 
chest pain, hypertension, diabetes mellitus, T inversion, and age were the 
most influential features in the neural network model. 

Conclusion: The machine learning models developed in this study exhibit 
high potential for non-invasive screening and diagnosis of CAD in the Z-
Alizadeh Sani dataset. However, further studies are essential to validate and 
apply these models in real-world and clinical settings.  
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INTRODUCTION 

Coronary artery disease (CAD) is a common chronic 
disease in which the coronary arteries become 

narrowed by atherosclerosis, resulting in an 
inadequate blood supply to the heart muscle [1, 2].  
Narrowing of the coronary arteries can lead to 
sudden blockage of the coronary arteries, resulting in 
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myocardial infarction or even sudden cardiac death 
[3, 4]. The World Health Organization has identified 
CAD as the leading cause of death in both developing 
and developed countries [5, 6]. CAD is reported to be 
responsible for approximately 30% of annual deaths 
worldwide. However, more than 60% of the global 
burden of CAD occurs in developing countries [7]. 
CAD is also the leading cause of death in the United 
States [3]. In China, an estimated 290 million people 
suffer from heart disease, and the death rate from 
heart disease is more than 40% [7]. In Iran, 
cardiovascular diseases are the leading cause of 
death, and one million disability-adjusted life years 
(DALY) have been reported from this disease, of 
which CAD is the largest contributor [8]. 
Furthermore, CAD accounts for 20-23% of the 
disease burden in the country and cause 46% of all 
deaths. 

Early diagnosis of CAD is very important and life-
saving. However, the diagnosis of CAD is a very 
challenging issue. Signs and symptoms overlap with 
other diseases and can mislead physicians [9, 10]. In 
many cases, the first manifestation of CAD is 
myocardial infraction [11, 12]. The gold standard 
method for diagnosing CAD is Coronary Angiography 
(CA). However, CA is an expensive and invasive 
procedure that requires a high level of technology 
and technical experience [4]. Unfortunately, this 
diagnostic method is currently overused [13]. 
Although there are guidelines to avoid this invasive 
procedure in low-risk patients, for example, in the 
United States, a significant number of patients who 
underwent this procedure had a normal CA [14, 15]. 
Computed Tomography coronary Angiography (CTA) 
is an alternative, non-invasive, and highly accurate 
method of assessing CAD [16]. The European Society 
of Cardiology recommends that the use of CTA be 
considered only in patients with a pre-test 
probability of CAD of 15-50% [17]. However, CTA is 
not widely available and easily accessible method, 
and cannot be used in all patients, for example in 
pregnant women or those with an allergic reaction to 
contrast dye [18]. Therefore, an accessible and non-
invasive method for screening patients with 
suspected CAD is still needed to reduce the overuse 
of CTA and its associated risks while increasing the 
accuracy of diagnosis. 

Numerous studies have attempted to determine the 
excessive utilization of CA and its contributing factors 
[19-24]. However, these investigations have failed to 
alleviate physicians' apprehensions regarding 
overlooking the detection of potentially perilous CAD, 
prompting the continued widespread application of 
this diagnostic procedure. In recent years, artificial 
intelligence (AI) techniques have been explored for 
diagnosing heart disease and assessing its risks [5]. 
Emerging diagnostic techniques employing computer 
systems equipped with machine learning algorithms 
hold promise as non-invasive approaches for heart 

disease detection. Gokulnath et al. developed a 
classification model based on genetic algorithms and 
support vector machines, achieving an impressive 
88.34% accuracy in distinguishing patients with CAD 
[25]. Similarly, Das et al.'s neural network ensemble 
demonstrated outstanding performance, attaining an 
accuracy of 89.01% in CAD diagnosis [26]. Mohan et 
al. presented a model for CAD detection with an 
accuracy of 88.4% [27]. Zhenya et al.'s hybrid cost-
sensitive ensemble model further enhanced the 
diagnostic accuracy, producing a specificity of 
93.21% [7]. Forrest et al.'s random forest model-
based quantitative marker for CAD diagnosis yielded 
an area under the ROC curve (AUC) of 0.91, 
demonstrating remarkable discriminatory ability 
[28]. Alizadeh-Sani et al.'s sequential minimal 
optimization (SMO) model-powered CAD detection 
approach surpassed the 90% accuracy benchmark, 
reaching 94% [29]. These advancements in AI-driven 
diagnostic methods pave the way for more precise, 
risk-free, and cost-effective CAD evaluation for 
patients [7]. 

The integration of artificial intelligence approaches 
has the potential to alleviate the substantial burden 
and risks associated with diagnostic procedures like 
CA and CTA, benefiting both the healthcare system 
and patients. It serves as an efficient tool for 
screening individuals with suspected low or 
intermediate risk of CAD. However, to our 
understanding, artificial intelligence techniques have 
not been applied in the screening of patients 
suspected of CAD through routine assessments or 
tests. In this study, our aim is to assess and compare 
various machine learning techniques (including K-
nearest neighbors, artificial neural network, support 
vector machine (SVM), decision tree, logistic 
regression, and stacked ensemble) in identifying CAD 
patients using non-invasive (routine) clinical and 
paraclinical data obtained from both healthy 
individuals and those with CAD. We were intended to 
identify machine learning algorithms that could 
effectively support physicians in diagnosing CAD in 
patients with low or intermediate risk, thereby 
contributing to a reduction in both associated risks 
and costs. Furthermore, the distinctive contributions 
of this study compared to similar research are 
twofold: First, to the best of our knowledge none of 
the prior studies in this domain have determined the 
importance and weight of clinical and paraclinical 
parameters in CAD diagnosis. In alignment with the 
clinical significance of this matter and in accordance 
with the MI-CLAIM checklist [30] recommendations, 
our study explores the weight and significance of the 
parameters influencing CAD diagnosis. Second, 
feature selection methods are employed to identify 
the minimal variables that bear the most significant 
impact on CAD diagnosis. This approach enhances the 
precision and efficiency of the diagnostic process by 
identifying the key variables that contribute 
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substantially to the accuracy of CAD diagnosis. 

MATERIAL AND METHODS 

Dataset description 

In this study, we used the Z-Alizadeh Sani dataset. 
The dataset was collected from 303 patients who 
were referred to Shahid Rajaei Cardiovascular 
Research Center in Tehran between fall 2011 and 
winter 2012 [31]. Each patient had 54 recorded 
features that can be considered as indicators for the 
occurrence of CAD [32]. These features were divided 
into four categories: demographics, symptoms and 
examination, ECG and laboratory, and echo 
characteristics. Table 1 shows the names, definitions, 
and value ranges of these features. All patients 
belonged to one of the two categories of patients 
(with CAD) or healthy (without CAD). If a coronary 
artery's diameter was stenosed 50% or more, the 
person was classified as a patient with CAD. 

Table 1: Description of Z-Alizadeh Sani dataset. 

Range Feature name Feature type 
30-86 Age 

Demographic 

48-120 Weight 
Male, Female Sex 

18-41 
BMI (Body Mass 
Index: Kg/m2) 

Yes, No 
DM (Diabetes 
Mellitus) 

Yes, No HTN (Hypertension) 
Yes, No Current smoker 
Yes, No Ex-smoker 
Yes, No FH (Family History) 
Yes (if MBI > 25), no 
(otherwise) 

Obesity 

Yes, No 
CRF (Chronic Renal 
Failure) 

Yes, No 
CVA (Cerebrovascular 
Accident) 

Yes, No Airway disease 
Yes, No Thyroid disease 

Yes, No 
CHF (Congestive 
Heart Failure) 

Yes, No DLP (Dyslipidemia) 

90-190 
BP (Blood Pressure: 
mmHg) 

Symptom 
and 
examination 

50-110 /minute PR (Pulse Rate) 
Yes, No Edema 

Yes, No 
Weak peripheral 
pulse 

Yes, No Lung rales 
Yes, No Systolic murmur 
Yes, No Diastolic murmur 
Yes, No Typical chest pain 
Yes, No Dyspnea 
1,2,3,4 Function class 
Yes, No Atypical chest pain 
Yes, No Nonanginal chest pain 

Yes, No 
Exertional CP 
(Exertional Chest 
Pain) 

Yes, No 
Low Th Ang (low 
Threshold angina) 

 

Range Feature name Feature type 
Yes, No Q Wave 

ECG 

Yes, No ST Elevation 
Yes, No ST Depression 

Yes, No 
LVH (Left Ventricular 
Hypertrophy) 

Yes, No Poor R progression 

LBBB, RBBB  ،No 
BBB (Bundle Branch 
Block) 

62-400 
FBS (Fasting Blood 
Sugar: mg/dl) 

Laboratory 
and echo 

0.5-2.2 Cr (Creatine: mg/dl) 

37-1050 
TG (Triglyceride: 
mg/dl) 

18-232 
LDL (Low Density 
Lipoprotein: mg/dl) 

15-111 
HDL (High Density 
Lipoprotein: mg/dl) 

6-52 
BUN (Blood Urea 
Nitrogen: mg/dl) 

1-90 
ESR (Erythrocyte 
Sedimentation Rate: 
mm/h) 

8.9-17.6 
Hb (Hemoglobin: 
g/dl) 

3-6.6 
K (Potassium: 
mEq/lit) 

128-156 Na (Sodium: mEq/lit) 

3700-18000 
WBC (White Blood 
Cell: cells/ml) 

7-60 
Lymph (Lymphocyte: 
%) 

32-89 Neut (Neutrophil: %) 

25-742 
PLT (Platelet: 
1000/ml) 

15-60 
EF (Ejection Fraction: 
%) 

0,1,2,3,4 

Region with RWMA 
(Regional Wall Motion 
Abnormality: 
number) 

Normal, mild, 
moderate, severe 

VHD (Valvular Heart 
Disease) 

Preprocessing 

Data preprocessing plays a crucial role in converting 
raw data into a format compatible with machine 
learning algorithms, thereby enhancing their 
performance. This process involves employing 
diverse techniques like handling missing values, 
eliminating outliers, discretization, scaling, and more. 
It is worth noting that the dataset under 
consideration did not contain any missing values. In 
this investigation, we applied discretization and 
standardization approaches to enhance the efficacy 
of machine learning algorithms, as elucidated in the 
subsequent sections. 

Standardization 

To eliminate the undue effects of different scales on 
the algorithm performance, the standardization 
method was used. It ensured that the mean and 
variance of the continuous features were equal to 
zero and one, respectively. The standardization 
formula shown in (1) is used for this purpose. 
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𝑍 =  
𝑋− 𝜇

𝜎
            (1) 

Where X represents the value, we intend to 
standardize, μ denotes the average of the samples, 
and σ represents the standard deviation of the 
samples. 

Discretization 

Discretization of continuous variables (features) can 
improve classification performance [33]. In this 
study, the discretization method was utilized to 
discretize the values of certain continuous features, 
such as the age feature, into three categories. Table 2 
shows the remaining continuous features that were 
discretized according to Braunwald's heart book 
[32]. 

Table 2: Discritized features and their range of values 

Discretization and range of values 
Feature 
name 

55< 36-55 18-35 Age 
105< 70-105 70> FBS 

130<   ≤130 LDL 

 ≥35 35> HDL 

20< 7-20 7> BUN 
If male and 
ESR > age/2 
or if female 
and ESR > 
age/2 + 5 

If male and ESR ≤ age/2 
or if female and ESR ≤ 
age/2 + 5 

ESR 

If male and 
Hb > 17 or if 
female and 
Hb > 15 

If male and 
14 ≤ Hb ≤ 
17 or if 
female and 
12.5 ≤ Hb ≤ 
15 

If male 
and Hb < 
14 Or If 
female 
and Hb < 
12.5 

Hb 

5.6< 3.8-5.6 3.8> K 
146< 136-146 136> Na 

11000< 
4000-
11000 

4000> WBC 

450< 150-450 150> PLT 
140< 90-140 90> BP 
100< 60-100 60> PulseRate 

200<   ≤200 TG 

Feature selection 

The primary aim of this study was to differentiate 
CAD using routine and readily available tests. To align 
with this objective, the initial step involved the 
exclusion of three echo-related features. Feature 
selection in machine learning entails the process of 
identifying and choosing a subset of the most relevant 
features from a dataset for the construction of 
machine learning models. The utilization of feature 
selection algorithms serves to streamline models, 
enhance interpretability, decrease training time, and 
ultimately improve overall model performance. In 
the context of this specific research, two distinct 
feature selection techniques, namely LASSO and 
ReliefF, were implemented to refine the selection of 

features for subsequent analysis and model 
development. 

LASSO feature selection algorithm 

The LASSO algorithm chooses features by updating 
the absolute value of the feature coefficient in the 
regression model [34]. As the coefficients are 
updated, features with zero coefficients are 
eliminated from the subset. The algorithm selects 
features with significant coefficients, discarding 
others, thereby simplifying the machine learning 
model and enhancing interpretability. 

ReliefF feature selection algorithm 

The ReliefF algorithm employs instance-based 
learning, assigning weights to features based on their 
importance [35]. Feature weights indicate their 
ability to differentiate between classes (healthy vs. 
CAD patients). Features are ranked according to their 
weights, and those exceeding a predefined threshold 
are chosen for the final subset. ReliefF selects crucial 
features with the most impact on the target class. The 
algorithm operates by randomly selecting samples 
from the training set and determining the closest 
samples of the same and opposite classes for each. 
Feature weights are updated based on how 
effectively their values distinguish between the 
chosen sample and its nearest neighbors of the same 
and opposite classes. Higher weights signify greater 
feature importance. 

Machine learning algorithms 

In this research, six widely recognized classifiers, 
SVM, LR, KNN, ANN, DT, and SE were constructed to 
differentiate between patients with CAD and healthy 
individuals. Notably, ensemble learning models like 
SE have been relatively underutilized in prior studies 
within the CAD domain, while SVM, ANN, DT, and 
KNN models have been more frequently employed 
[36]. 

Support vector machine (SVM) 

The SVM is a powerful machine learning model. This 
model creates a hyperplane, or set of hyperplanes, in 
a high-dimensional space that can be used for 
classification, regression, or other tasks. Good 
separation is achieved by a hyperplane with the 
largest distance to the nearest training data points of 
each class, because in general, the larger the distance, 
the lower the generalization error of the model. SVMs 
are particularly useful for classifying small or 
moderately complex data sets [37, 38]. 

Logistic regression (LR) 

LR, also known as logit regression, is a widely used 
method for predicting the probability that a sample 
belongs to a particular class. If the probability is 
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greater than 50%, the model classifies it as belonging 
to the positive class (labeled one); otherwise, it 
predicts it as belonging to the negative class (labeled 
zero). This property makes logistic regression an 
effective binary classifier [39]. 

K-nearest neighbor (KNN) 

The KNN is a supervised learning algorithm that 
classifies an instance based on the labels of its k-
nearest neighbors in the feature space. Neighbors are 
identified using a distance function, which is chosen 
based on the types of features in the dataset. The label 
of a sample is defined by the highest number of labels 
corresponding to its k-nearest neighbors [40]. 

Artificial neural network (ANN) 

The multilayer perceptron (MLP) is a supervised 
learning algorithm and a fully connected class of 
feedforward artificial neural networks. MLPs can be 
used for both classification and regression tasks. An 
MLP consists of at least three layers: an input layer, a 
hidden layer, and an output layer [37]. 

Decision tree (DT) 

The decision tree algorithm is a powerful machine 
learning algorithm that can perform classification, 
regression, and even multi-output tasks. In this study, 
we used the classification and regression tree (CART) 
algorithm to train the decision tree, also known as the 

"growing" tree. This algorithm works by first dividing 
the training set into two subsets using a feature k and 
a threshold tk. It searches for the pair (k, tk) that 
produces the purest subsets. Once the CART 
algorithm has successfully split the training set into 
two parts, it continues to split the subsets and sub-
subsets using the same logic. The process stops when 
the maximum depth is reached, defined by the 
max_depth hyperparameter, or when no partition 
can be found that reduces the impurity [37]. 

Stacked ensemble learning (SE) 

A group of predictors is called an ensemble, and an 
ensemble learning algorithm is called an ensemble 
method. Stacked generalization is one of the 
ensemble learning methods that works by inferring 
the biases of the generalizer(s) with respect to a given 
training set. In this method, each of the base 
predictors predicts a different value, and then the 
final predictor (called the blender or meta learner) 
takes these predictions as inputs and makes the final 
prediction [37, 41]. In the present study, SVM, DT, 
ANN, and KNN models were selected as the basic 
classifiers, and the LR model was selected as the 
meta-learner. The hyperparameters of the developed 
models, which were selected using the grid search 
method, are presented in Table 3. The 
hyperparameters presented in the mentioned table 
were used for the basic classifiers in the SE models. 

Table 3: Hyperparameters of models developed using LASSO and ReliefF feature selection method. 

Hyperparameter Model 
Feature 

selection 
method 

n_neighbors=12 p=1 weights = 'distance' KNN 

LASSO 
C=80 kernel='sigmoid'  SVM 
activation='logistic' hidden_layer_sizes = (2) max_iter =1000 ANN 
C=1 solver='sag'  'penalty': 'l2' LR 
criterion='entropy'  max_depth=8 splitter='random' DT 
n_neighbors=5 p=1 weights='uniform' KNN 

ReliefF 
C=1 kernel='linear'  SVM 
activation='tanh' hidden_layer_sizes=(3,) max_iter =1000 ANN 
C=1 solver='lbfgs'  'penalty': 'l2' LR 
criterion='gini'  max_depth=5 splitter='random' DT 

Experimental Setup 

This experiment was implemented in the Colab 
Jupyter notebook environment using Python 3.10.11 
and applying the following libraries: Scikit-learn 
1.2.2, NumPy 1.22.4, Pandas 1.5.3, and SHAP 0.41.0.  

Machine learning models evaluation 

We utilized the MI-CLAIM checklist for result 
reporting [30]. Performance evaluation of the 
learning models was conducted using the confusion 
matrix, with metrics including accuracy, precision (or 

positive predictive value (PPV)), F1 score, sensitivity, 
specificity, negative predictive value (NPV), and AUC 
(area under the curve (ROC)). In this investigation, 
the two classes are class one (CAD positive - 
individuals with CAD) and class zero (CAD negative - 
healthy individuals). Correct classification into the 
positive class is termed true positive (TP), while 
correct classification into the negative class is termed 
true negatives (TN). Misclassifying samples from the 
positive class as negative is denoted as false negatives 
(FN), and misclassifying samples from the negative 
class as positive is termed false positives (FP). These 
frequencies enable the calculation of classification 
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performance metrics, reflecting the classifier's 
effectiveness in detecting the specified class. 
Commonly used evaluation metrics include recall or 
sensitivity (2), F1 score (3), accuracy (4), precision 
(5), specificity (6), and AUC. Notably, for screening a 
severe condition like CAD, a high sensitivity metric 
holds greater importance in evaluating the CAD 
screening model than the specificity metric. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (2) 

𝐹1 = 2 ∗
 precision ∗ recall 

 precision + recall 
            (3)  

Accuracy =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
           (4)  

Precision (PPV) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (5) 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (6)  

In this research, we employed stratified K-fold cross-
validation to assess the models' performance. This 
technique involves the random division of the dataset 
into K partitions. For instance, with K set at 10, the 
model undergoes 10 iterations. During each iteration, 
one partition is designated for validation, while the 
remaining K-1 partitions serve as training data. 
Subsequently, the average of the K results is 
computed. Past studies across different datasets and 
machine learning approaches have indicated that 10 
is a suitable value for error estimation and model 
evaluation [42]. 

Model explaining 

While machine learning models have notably 
enhanced the predictive capabilities for diseases, 
length of stay, complications, and future patient 
outcomes, a substantial drawback lies in the 
challenge of interpreting outputs from highly 
complex models. This limitation hinders the effective 
use of these models in clinical settings, as clinicians 
require insight into the factors influencing a 
prediction for targeted interventions. Consequently, 
clinicians often prefer more interpretable and 
simpler models, such as linear models, even if they 
exhibit lower accuracy, over complex yet more 
accurate models [43]. 

To address this concern, our study employed the 
SHAP (SHAPley Additive exPlanations) technique to 
elucidate the output of the ANN model. SHAP is a 
method rooted in game theory, offering explanations 
and interpretations for machine learning models. By 
utilizing SHAPley values, it reveals the significance 
and contribution of each feature to the model's 
output [43]. In our study, we leveraged 227 samples 
as background data and computed SHAPley values 
for 76 samples to enhance the interpretability of the 
model. 

RESULTS 

The dataset consisted of 303 samples with an average 
age of 58.9 years, comprising 127 women and 176 
men. After pre-processing the data, the LASSO and 
ReliefF feature selection techniques were employed 
to identify the most important features from the 
initial 51 (excluding 3 echo-related features). The 32 
selected features, ordered by their importance, are 
presented in Table 4. Subsequently, six machine 
learning classification models—ANN, SVM, KNN, LR, 
DT, and SE—were developed using different subsets 
of these 32 features. The best results for each of the 
six models were reported based on the stratified 10-
fold cross-validation technique. 

Table 5 presents the evaluation results of models 
utilizing the top 25 selected features with the LASSO 
technique. In terms of accuracy, the proposed SE 
model achieved the highest performance, reaching an 
impressive 90.39%. Following the SE model, the ANN 
and SVM models, employing the top 22 selected 
features, demonstrated the next highest accuracies. 
Specifically, the ANN model achieved an accuracy of 
90.38%, while the SVM model attained an accuracy of 
90.07%. Notably, the ANN model exhibited the 
highest sensitivity at 94.43%, surpassing the SE and 
LR models with sensitivities of 93.96% and 93.52%, 
respectively. 

Regarding specificity, the DT model led with the 
highest value at 83.75%, while the SVM and KNN 
models displayed specificities of 82.77% and 82.63%, 
respectively. In terms of the F1-score metric, the ANN 
model outperformed others with the highest score at 
93.36%. The SVM model demonstrated the highest 
AUC at 93.22%, followed by the ANN and SE models 
with AUCs of 92.46% and 92.21%, respectively. 
Additionally, the ANN model achieved the highest 
NPV at 85.95%, with the SE and SVM models 
recording NPVs of 85.35% and 83.94%, respectively. 
For precision, the DT model exhibited the highest 
value at 93.57%, while the SVM and KNN models 
displayed precisions of 93.28% and 92.98%, 
respectively. 

Following the exploration of various subsets of 
selected features using the ReliefF feature selection 
technique to develop machine learning models, the 
results were detailed in Table 6. The SE model, 
employing the top 27 selected features, 
demonstrated the highest accuracy at 90.06%. 
Subsequently, the ANN and SVM models, utilizing the 
top 18 selected features, achieved accuracies of 
88.79% and 88.77%, respectively. Notably, the SE 
model exhibited the highest sensitivity among the 
models, reaching 93.98%. Following closely, the ANN 
model recorded a sensitivity of 92.12%, while the LR 
model displayed a sensitivity of 91.68%. Specificity 
was highest for the DT model at 82.36%. The SVM and 
KNN models achieved the highest specificities 
following the DT model, with values of 81.38% and 
80.27%, respectively. 
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In terms of the F1-score metric, the SE, ANN, and SVM 
models led with the highest scores, achieving 
percentages of 93.12%, 92.13%, and 92.05%, 
respectively. Based on the AUC metric, the ANN 
model secured the highest AUC at 92.24%, with the 
SVM and SE models obtaining the next highest AUC 
values of 91.71% and 91.30%, respectively. The SE 

model also achieved the highest NPV at 85.33%, 
followed by both the ANN and SVM models at 
81.33%. For precision, the DT model led with the 
highest value at 93.27%, while the SVM and SE 
models displayed precision metrics equal to 92.74% 
and 92.48%, respectively. 

Table 4: Evaluating the importance of the variables (features) using the LASSO and ReliefF algorithms. 

Rank Selected feature Coefficient Rank Selected feature Weight 

1 'Typical_Chest_Pain' 2.21 1 Typical_Chest_Pain 0.322772 

2 'DM' 1.59 2 Atypical 0.231023 

3 'Q_Wave' 1.49 3 Age_enc 0.122112 

4 'Tinversion' 1.31 4 HTN 0.119802 

5 'Nonanginal' -1.3 5 DM 0.082838 

6 'Age_enc' 1.27 6 Nonanginal 0.058086 

7 'HTN' 1.14 7 Tinversion 0.051815 

8 'FH' 1.08 8 FBS_enc 0.048845 

9 'PLT_enc' -0.93 9 BP_enc 0.048185 

10 'Dyspnea' -0.81 10 Current_Smoker 0.042574 

11 'Lung_rales' 0.72 11 Dyspnea 0.036304 

12 'TG_enc' 0.58 12 TG_enc 0.033003 

13 'ST_Depression' 0.57 13 Weight_stndrd 0.032765 

14 'Atypical' -0.56 14 BMI_stndrd 0.029858 

15 'DLP' -0.55 15 Sex 0.029703 

16 'Na_enc' -0.43 16 Neut_stndrd 0.026767 

17 'CR_enc' -0.4 17 DLP 0.022772 

18 'St_Elevation' 0.39 18 Systolic_Murmur 0.020132 

19 'HB_enc' -0.38 19 Length_stndrd 0.018461 

20 'Current_Smoker' 0.34 20 BUN_enc 0.015842 

21 'PR_enc' -0.33 21 LVH 0.013201 

22 'ESR_enc' -0.27 22 Lymph_stndrd 0.012193 

23 'Neut_stndrd' 0.27 23 Edema 0.010231 

24 'BP_enc' 0.21 24 BBB 0.010231 

25 'Systolic_Murmur' 0.18 25 LDL_enc 0.008911 

26 'Function_Class' 0.12 26 FH 0.006931 

27 'BBB' -0.12 27 Function_Class 0.006601 

28 'HDL_enc' -0.11 28 ST_Elevation 0.005281 

29 'BMI_stndrd' -0.11 29 PLT_enc 0.00495 

30 'Sex' 0.08 30 HB_enc 0.00495 

31 'Diastolic_Murmur' -0.07 31 Thyroid_Disease 0.00462 

32 'LDL_enc' -0.04 32 Diastolic_Murmur 0.00462 
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Table 5: Evaluation metrics of the models developed using the LASSO feature selection technique. 

Model Accuracy Sensitivity Specificity Precision 
F1 

score 
AUC NPV 

Top 
used 

features 

KNN 0.8812 0.9030 0.8263 0.9298 0.9150 0.8855 0.7835 10 

SVM 0.9007 0.9303 0.8277 0.9328 0.9302 0.9322 0.8394 22 

ANN 0.9038 0.9443 0.8027 0.9251 0.9336 0.9246 0.8595 22 

LR 0.8873 0.9352 0.7680 0.9132 0.9228 0.9217 0.8282 24 
SE 0.9039 0.9396 0.8152 0.9291 0.9332 0.9221 0.8535 25 
DT 0.8911 0.9123 0.8375 0.9357 0.9223 88.28 0.8058 11 

Table 6: Evaluation metrics of the models developed using the ReliefF feature selection technique. 

Model Accuracy Sensitivity Specificity Precision 
F1 

score 
AUC NPV 

Top 
used 

features 
KNN 0.8845 0.9166 0.8027 0.9224 0.9189 0.9028 0.7982 13 
SVM 0.8877 0.9166 0.8138 0.9274 0.9205 0.9171 0.8133 18 
ANN 0.8879 0.9212 0.8013 0.9229 0.9213 0.9224 0.8133 18 
LR 0.8810 0.9168 0.7930 0.9201 0.9164 0.9111 0.8091 19 
SE 0.9006 0.9398 0.8013 0.9248 0.9312 0.9130 0.8533 27 
DT 0.8810 0.9030 0.8236 0.9327 0.9154 0.8848 0.7849 7 

 

(a)      (b) 

 

(c) 

 

(d) 

Fig 1: SHAP summary plot for the top 20 features that contributing to the ANN model 
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The SHAP technique 

In the context of feature selection through the LASSO 
technique, wherein a subset of 22 features was 
identified, the ANN model demonstrated superior 
sensitivity. Subsequent to this selection, an analysis 
of the importance and contribution of each feature to 
the ANN model was conducted using SHAP values. In 
Fig 1(a), the presentation encompasses the top 20 
features of significance, delineated by the average 
absolute SHAP value. Within this figure, the 
assessment of feature importance and its 
corresponding contribution to the model's output is 
organized in a descending order, signifying the 
hierarchical ranking of features based on their 
respective significance. Consequently, the feature 
occupying the highest rank within this sequence is 
deemed to exert the greatest importance on the 
model's output. 

Fig 1(b) employs a color spectrum ranging from blue 
to red to visually represent the values associated with 
each feature. In this representation, the blue color 
denotes the lowest values, while the red color 
signifies the highest values of the respective features. 
Notably, in this visualization, the "typical chest pain" 
feature emerges as the most prominently colored, 
suggesting its heightened importance and substantial 
impact on the predictive outcomes of the ANN model. 
To elucidate, if an individual exhibits characteristic 
such as typical chest pain, hypertension (HTN), 
diabetes mellitus (DM), and T inversion, these 
features collectively exert a positive influence, 
thereby contributing to a model prediction favoring 
classification into the CAD class, and conversely for 
those lacking these attributes. 

Fig 1(c) and 1(d) provide detailed insights into the 
significance and contribution of individual features 
within the output of the ANN model for two randomly 

selected cases. In Fig 1(c), the model has categorized 
the case as belonging to the CAD class based on the 
values of the features. Notably, the presence of typical 
chest pain and ST-depression, coupled with the 
absence of atypical chest pain, emerged as features 
with substantial contributions to the predictive 
outcome of this model.  

Fig 1(d) further illustrates the importance and 
contribution of features for a case identified by the 
model as belonging to the healthy class. In this 
instance, the absence of typical chest pain, 
hypertension (HTN), and diabetes mellitus (DM), 
along with the presence of the "Atypical chest pain" 
feature, exerted the most substantial impact on the 
model's output. This collective evidence suggests that 
these specific features were influential indicators 
that led the model to predict the absence of CAD in 
this case. 

Classification And Regression Tree (CART) 

In this study, decision trees were generated using two 
distinct feature selection techniques—LASSO and 
ReliefF. Both techniques demonstrated favorable 
outcomes in terms of accuracy, sensitivity, and 
specificity metrics. Notably, the decision tree 
constructed with the top 11 features selected through 
the LASSO technique (depicted in Fig 2(a)) exhibited 
slightly superior performance compared to the 
decision tree formulated with the top 7 features 
selected by the ReliefF technique (illustrated in Fig 
2(b)). However, it is noteworthy that the decision 
tree derived from the ReliefF feature selection 
algorithm, with a depth of 5, showcased greater 
simplicity and comprehensibility when contrasted 
with the decision tree developed through the LASSO 
algorithm, which had a depth of 8. 

 

 

(a): Top 11 features selected by the LASSO feature selection method 
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(b): Top 7 features selected by the ReliefF feature selection method. 

Fig 2: Decision trees generated using selected features.  

DISCUSSION  

In this study, we employed two feature selection 
algorithms, namely LASSO and ReliefF, to identify the 
most pivotal features within the Z-Alizadeh Sani 
dataset. The LASSO algorithm identified the top 10 
features, ranked in order of significance, as follows: 
Typical chest pain, diabetes mellitus, Q wave, T-
inversion, non-anginal chest pain, age, hypertension, 
family history, platelet count, and dyspnea. Similarly, 
the ReliefF algorithm selected the top 10 features out 
of the initial 32, arranged by their importance: 
Typical chest pain, atypical chest pain, age, 
hypertension, diabetes mellitus, non-anginal chest 
pain, T-inversion, fasting blood sugar, blood pressure, 
and current smoker. Utilizing various subsets of these 
selected features, we developed and assessed six 
machine learning models—DT, LR, KNN, ANN, SVM, 
and SE. Evaluation was performed using a 10-fold 
cross-validation approach. Overall, all models 
exhibited robust performance, as evidenced by the 
high metrics presented in Tables 5 and 6. These 
findings underscore the considerable potential of 
machine learning algorithms in effectively discerning 
CAD.  

The ANN, SVM, and SE models demonstrated higher 
performance using both feature selection methods. 
However, when comparing the performance of the 
models across the feature selection methods, the 
performance of the ANN, SVM, and SE models was 
slightly better using the features selected by the 
LASSO method. A potentially effective screening AI 
model should use fewer but more accessible features 
to develop a model while maintaining high 
performance. The most important performance 
indicator for a screening method is the sensitivity 
test. Because the method should not miss any true 
case of CAD. Therefore, the ANN model developed 
using LASSO feature selection is a better candidate 

for our purpose. This model also showed better 
performance when considering other performance 
indicators. Furthermore, the ANN model is preferable 
to the SE model in the LASSO group because of the 
smaller number of features used by the model.   

CAD is the leading cause of death in both developing 
and developed countries. Correct and timely 
diagnosis of this disease is very important but also 
very challenging. This is because the signs and 
symptoms of this disease are complex, and in some 
cases they may be asymptomatic, or the symptoms 
may overlap with those of other diseases. The 
accurate methods of diagnosing CAD are expensive, 
inaccessible to the broader population, and 
associated with potential side effects. Therefore, it 
can be very helpful to use a more accessible and cost-
effective screening method before proceeding with 
these advanced methods.  

The ANN model, commonly referred to as a black box, 
posed a challenge in terms of interpretability. To 
address this, the SHAP model explanation technique 
was employed to elucidate and quantify the 
importance and contribution of features within the 
ANN model, which demonstrated high performance 
utilizing 22 features. The utilization of the SHAP 
technique is deemed valuable as it offers clinicians a 
more comprehensive understanding of the model. 
The SHAP results highlighted that typical chest pain, 
atypical chest pain, hypertension, diabetes mellitus, T 
inversion, and age were the most impactful features 
influencing the output of the ANN model. In addition 
to the ANN model, DT models were developed in this 
study due to their simplicity and ease of 
interpretation. The decision tree derived from the 
ReliefF feature selection algorithm, with a depth of 5, 
exhibited greater simplicity and comprehensibility 
compared to the decision tree developed through the 
LASSO algorithm, which had a depth of 8. 

Recently, machine learning techniques have garnered 
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significant attention for the development of robust 
tools in predicting CAD. Numerous studies in this 
domain have yielded promising outcomes. Alizadeh 
Sani et al. [29] conducted a study wherein the SMO 
model, featuring 36 SVM-selected features, achieved 
notable performance with 93.39% accuracy, 95.37% 
sensitivity, and 88.51% specificity, outperforming 
NB, SMO bagging, and ANN models. In a related study, 
our ANN model, utilizing LASSO feature selection, 
achieved a sensitivity of 0.9443 with a smaller set of 
routine features, surpassing the performance of the 
ANN model in the aforementioned study. Arabasadi 
et al. [44] introduced a hybrid neural network-
genetic algorithm model, demonstrating a sensitivity 
of 97%, specificity of 92%, and an accuracy of 
93.85%. Hassannataj et al. [45] illustrated improved 
SVM performance using the ANOVA kernel combined 
with GA, achieving 89.45% accuracy, 81.22% 
sensitivity, 100% specificity, 100% PPV, and 92.9% 
NPV. Velusamy et al. [46] utilized an ensemble voting 
technique based on weighted-average voting 
(WAVEn), achieving 98.97% accuracy, 100% 
sensitivity, and 96.30% specificity. Notably, the top 
features in these studies often derived from 

echocardiography, an accessibility challenge for the 
general population. 

Joloudari et al. [47] demonstrated superior 
performance of the random trees (RT) model, using 
40 features, compared to SVM, C5.0 decision tree, and 
CHAID decision tree models. Our DT and SVM models, 
developed with LASSO and ReliefF, outperformed 
these models in accuracy and AUC metrics with fewer 
features. Ghiasi et al. [48] developed a CART decision 
tree model with five features, achieving 92.41% 
accuracy, 77.01% specificity, and 98.61% sensitivity. 
While our DT models using LASSO and ReliefF feature 
selection algorithms showed comparable accuracy 
and sensitivity, they offer simplicity, interpretability, 
and do not rely on echocardiography features. Dahal 
et al. [49] emphasized the superiority of the SVM 
model in diagnosing CAD over LR, KNN, Bagging 
CART, and RF models, achieving an accuracy of 
89.47%, sensitivity of 94.34%, specificity of 78.26%, 
and an AUC of 88.68%. Table 7 provides a 
comparative overview of studies conducted on the Z-
Alizadeh Sani dataset.  

Table 7: A compilation of previous studies conducted on the Z-Alizadeh Sani dataset. 

Algorithms + feature selection technique Accuracy Sensitivity Specificity NPV AUC 
Number of 

selected 
features 

SMO + weight by SVM 
Alizadehsani et al. [29] 

93.39 95.37 88.51 _ _ 34 

ANN + weight by SVM 
Alizadehsani et al. [29] 

87.13 90.28 79.31 _ _ 34 

ANN + t-test + PCA 
Cüvitoğlu et al. [50] 

85.15 72.36 90.26 _ 93 25 

CART 
Ghiasi et al. [48] 

92.41 98.61 77.01 _ _ 5 

SVM + Chi-square 
Dahal et al. [49] 

89.47 94.34 78.26 _ 88.68 15 

LR + Chi-square 
Dahal et al. [49] 

86.84 94.34 69.57 _ 90.32 15 

KNN + Chi-square 
Dahal et al. [49] 

71.05 92.45 21.74 _ 58.94 15 

WAVEn    + Boruta wrapper+SVM 
Velusamy et al. [46] 

98.97 100 96.30 _ _ 5 

Random trees 
Joloudari et al. [47] 

91.47 _ _ _ 96.70 40 

SVM + GA 
Hassannataj et al. [45] 

89.45 81.22 100 92.90 100 31 

Machine learning algorithms have demonstrated 
remarkable performance in this area, but the 
interpretability of these complex models remains a 
formidable challenge [51]. Despite the superior 
performance of complex models in many scenarios, 
their interpretability is of paramount importance in 
settings such as healthcare, where conscientious and 
responsible decision making is imperative. The 
attractiveness of simpler and more understandable 

models is particularly evident in clinical settings. 
Recognizing this importance, we used the SHAP 
model explanation technique in our study to discern 
the importance and contribution of each feature and 
its impact on the output of the developed ANN model. 
Angina or chest pain stands out as one of the most 
common symptoms of CAD. The typical type proves 
to be more diagnostic than the atypical type, as the 
latter may be associated with various causes such as 
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digestive disorders and pericarditis [52, 53]. 
Consistent with these observations, the SHAP 
technique in our study identified typical chest pain as 
the most important feature for CAD diagnosis using 
the ANN model. Numerous studies have consistently 
highlighted hypertension, diabetes mellitus, and age 
as key factors in CAD [52, 54, 55]. In our investigation, 
hypertension, diabetes mellitus, and age emerged as 
the most influential features affecting the outcome of 
the ANN model. It's important to note that the SHAP 
model explanation technique, like other model 
explanation techniques, has its limitations [56, 57]. In 
particular, when applied to machine learning models 
that lack inherent causality, SHAP cannot accurately 
address causal issues. 

Our study is subject to several limitations. Firstly, the 
dataset employed in this study had a restricted 
number of samples sourced exclusively from a single 
medical center, compromising the generalizability of 
the machine learning models. Additionally, this study 
adopts a retrospective design, relying on historical 
data collection. Despite the favorable results 
obtained by the machine learning models, there is a 
need for prospective studies to comprehensively 
assess and validate these models. Furthermore, the Z-
Alizadeh Sani dataset featured an unequal 
distribution of patients and healthy individuals. This 
imbalance introduces the potential for bias, thereby 
influencing the outcomes and interpretation of the 
models. Addressing these limitations through larger 
and more diverse datasets, prospective study 
designs, and efforts to balance sample distributions 
would enhance the robustness and applicability of 
the findings. 

CONCLUSION  

The timely diagnosis of CAD is a critical imperative to 
prevent mortality and severe complications, yet it 
remains a formidable challenge. In this study, we 
addressed this challenge by developing machine 

learning models utilizing routine clinical and 
laboratory findings to identify individuals at high risk 
of CAD. The comprehensive set of machine learning 
models employed, including KNN, SVM, LR, ANN, DT, 
and SE, aimed to enhance screening accuracy. 
Notably, the ANN model, developed using the LASSO 
feature selection method, demonstrated high 
performance and emerged as a robust candidate for 
this screening purpose. However, it is crucial to 
emphasize the need for further assessments 
regarding external validity and generalizability 
before deploying the model for widespread screening 
in clinical environments. 
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