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Abstract: Microbial biofilm formation creates a persistent and resistant environment in which mi-
croorganisms can survive, contributing to antibiotic resistance and chronic inflammatory diseases.
Increasingly, biofilms are caused by multi-drug resistant microorganisms, which, coupled with a
diminishing supply of effective antibiotics, is driving the search for new antibiotic therapies. In this
respect, antimicrobial peptides (AMPs) are short, hydrophobic, and amphipathic peptides that show
activity against multidrug-resistant bacteria and biofilm formation. They also possess broad-spectrum
activity and diverse mechanisms of action. In this comprehensive review, 150 publications (from
January 2020 to September 2023) were collected and categorized using the search terms ‘polypeptide
antibiotic agent’, ‘antimicrobial peptide’, and ‘biofilm’. During this period, a wide range of natural
and synthetic AMPs were studied, of which LL-37, polymyxin B, GH12, and Nisin were the most
frequently cited. Furthermore, although many microbes were studied, Staphylococcus aureus and
Pseudomonas aeruginosa were the most popular. Publications also considered AMP combinations and
the potential role of AMP delivery systems in increasing the efficacy of AMPs, including nanoparticle
delivery. Relatively few publications focused on AMP resistance. This comprehensive review in-
forms and guides researchers about the latest developments in AMP research, presenting promising
evidence of the role of AMPs as effective antimicrobial agents.

Keywords: biofilm; antimicrobial peptides; AMPs; Pseudomonas aeruginosa; Staphylococcus aureus;
LL-37; polymyxin B; GH12; Nisin

1. Introduction

A biofilm is a complex structure formed by surface-attached, or non-surface attached,
aggregates of microorganisms that in nature provide protection from desiccation, shear
stress, toxic compounds, and protozoan grazing [1]. In the clinical environment, biofilms
are associated with chronic and inflammatory diseases, as well as resistance to antibiotic
therapy—microbial populations within biofilms tend to include minimally metabolically
active ‘persister’ and/or ‘viable, but nonculturable’ (VBNC) sub-populations of bacteria [2].
Biofilms comprise an extracellular matrix (ECM), containing a range of extracellular poly-
meric substances (EPS), including cellular debris, proteins, polysaccharides, lipids, and
nucleic acids [3], and the formation of biofilms relies on key signaling molecules such
as c-di-GMP, proteins, and small regulatory RNAs (sRNAs), as well as quorum sensing
(QS) [4]. Microscopic and biochemical techniques help in morphological analysis and
comprehending the formation and variability of biofilms [5].
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The emergence of global antimicrobial resistance (AMR) as a significant global health
crisis is exacerbated by biofilm formation in One Health environments and a diminishing
supply of novel antibiotics. Antimicrobial peptides (AMPs) are promising for fighting
multidrug-resistant bacteria and biofilm formation [6,7]. AMPs have broad-spectrum
activity against various pathogens through several inhibition mechanisms [8]. They can be
categorized by structure, function, and target, and their reactivity relies on determinants
such as cationic charge, beta fold, amphipathicity, and hydrophobicity [9,10]. AMPs and
their potential role in preventing biofilm-related infections could form an important strategy
in the fight against global pandemic AMR. Research in this broad scientific area is being
constantly updated. Therefore, this comprehensive review collects and categorizes the
latest research (from January 2021 to September 2023) in this fast-moving field and provides
an easy-to-read overview of current progress, including a brief overview of the future
direction of this research.

In this respect, the following databases were initially searched from inception until 28
September 2023: Embase; Medline ALL; Web of Science Core Collection, i.e., the Science
Citation Index Expanded (1975–present), the Social Sciences Citation Index (1975–present),
the Arts & Humanities Citation Index (1975–present), the Conference Proceedings Citation
Index—-Science (1990–present), the Conference Proceedings Citation Index—Social Science
& Humanities (1990–present), and the Emerging Sources Citation Index (2005–present); the
Cochrane Central Register of Controlled Trials; and Google Scholar (searched via ‘Publish
or Perish’). Database search terms included ‘polypeptide antibiotic agent’ (the preferred
term for antimicrobial peptides in Embase), ‘antimicrobial peptide’ and ‘biofilm’ according
to the following search criteria: (‘polypeptide antibiotic agent’/mj/de OR (((antimicro-
bial* OR anti-microbial*) NEAR/3 (peptide*))):ti) AND (biofilm/mj/exp OR (biofilm*
OR bio-film*):ti) NOT (review/exp OR (review):ti) NOT ([Conference Abstract]/lim OR
[Conference Review]/lim) AND [ENGLISH]/lim.

In order to limit the number of articles, searches were restricted to the publication title
and major index terms. Reviews and conference abstracts were excluded and only publica-
tions in English were used. The results were then collated, and duplicates were removed.

The initial search (from database inception to 28 September 2023) was intended to
provide the authors with an overview of the number of references available for this com-
prehensive review. Based on this information, a decision was then made to focus on
publications meeting the search criteria that spanned the years January 2020–September
2023, which included a final total of 150 publications. This total of 150 publications was
considered sufficient to provide an informative comprehensive review of the field of recent
(in the previous three years) AMP-associated biofilm research.

After collating these 150 published titles, the publications were manually sorted
into seven distinct categories based on a ‘weighting’ of publication titles (Figure 1). The
highest weighting was reserved for research into the use of AMP combinations as this
research requires collaboration between multiple scientific fields, including, for example,
chemistry, materials science, clinical medicine, and microbiology. Investigations into AMP
delivery efficiency are crucial for potentially overcoming the challenges associated with
the inactivation of AMPs, including proteolytic degradation, salt sensitivity, and binding
to host proteins. Strategies such as encapsulation, nanoparticle carriers, liposomes, and
micelles ensure the successful transport of AMPs to specific sites within microbial cells,
such as the inner membrane, where their antimicrobial activity can be exerted. Next, the
genus/species of bacteria used in AMP research are important in defining the clinical
relevance/importance of the AMP under investigation. Descriptions of research into AMPs
(including novel AMPs) and biofilm formation are relatively common and therefore may
not have as much scientific impact as the categories mentioned previously. The final
two categories included review-type publications and miscellaneous articles that were not
easily placed into the categories mentioned above. Finally, although alternative weightings
may generate slightly different categorizations, the general description and conclusion of
this comprehensive review would not be seriously affected if a few publications switched
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categories. Most importantly, this categorization process allows the different types of
publications to be sorted into more easily describable narrative features, simplifying the
narrative review for the reader.

ff
ff

ff

 

ff

Figure 1. Hierarchy for organizing 150 ‘AMP–and–biofilm’-related publications (January 2020–
September 2023) into seven categories. Top = highest weighting. * = One publication specifically
mentioned Staphylococcus aureus and Pseudomonas aeruginosa in its title.

In all, 150 references included research into a total of approximately 150 different
AMPs, with these AMPs being obtained from various natural and synthetic sources (Sup-
plementary Table S1). Short descriptions and contexts for all of these publications are
shown in Section 2 below.
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2. Results and Discussion

2.1. AMP Combination

Zhong et al. investigated novel beta-Ala-modified analogues of anoplin (from soli-
tary spider wasps) [11]. Ano-1β as well as Ano-8β showed synergistic effects against
Pseudomonas aeruginosa ATCC 27853 in combination with the antibiotics polymyxin B and
rifampicin, as well as an additive effect with gentamicin. AMP cecropin A (CecA) was
obtained from the greater wax moth (Galleria mellonella) and eradicated uropathogenic
Escherichia coli (UPEC) biofilms, destroying both sessile and planktonic UPEC cells. When
combined with the antibiotic nalidixic acid, synergistic activity was observed against UPEC
strain CFT073 [12].

Periodontitis and caries are major diseases of the mouth and teeth that require the
attention of dentists. Garcia de Carvalho et al. used chlorin-e6 (an extract from chlorophyll
obtained from Spirulina maxima) conjugated to LL-37 in a nanoemulsion nanocarrier to
inhibit biofilms that comprised multiple species during photodynamic therapy [13]. A com-
bination of AMP GH12 with fluoride (GH12/NaF) was found to inhibit the development of
caries, regulate the microbiota, and suppress both acid and exopolysaccharide production
by biofilms [14]. With respect to the food industry, Gao et al. report using a combination
of starch/poly (butylene adipate-co-terephthalate) (PBAT) together with AMPs ε-PL and
nisin in an antimicrobial film. This film effectively inhibited Staphylococcus aureus and
E. coli growth and prolonged the shelf life of fresh peaches. This type of approach may
be preferable to consumers compared to the use of chemical preservatives in foodstuffs
themselves [15]. In hospitals, Klebsiella pneumonia is a bacterium associated with difficult
to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections. How-
ever, AMP K11 generated synergistic effects against this bacterium in combination with
ceftazidime, chloramphenicol, meropenem, and rifampicin but not colistin antibiotics. K11
also exhibited good stability in physiological salts and serum, as well as high pH and high
thermal stability [16]. Another AMP (Pt5-1c) showed synergistic activity in combination
with traditional antibiotics against MDR bacteria including K. pneumoniae, S. aureus, and
E. coli [17], while a combination of acidic sophorolipid nanoparticles and LL-37 peptides
severely damaged the cell membrane of E. coli as shown by atomic force microscopy (AFM)
and effectively killed E. coli, S. aureus, Staphylococcus epidermidis and Pseudomonas aerugi-
nosa [18]. Finally, combinations of the frog skin AMP temporin L (TL) with different anionic
cyclodextrins (types of polysaccharides) have been shown to be potent and safe agents
against sessile bacteria [19].

New combinations of AMPs with new or existing antimicrobials or materials could
potentially generate killing and anti-biofilm synergies applicable in dental, food, and
hospital environments.

2.2. Delivery System

A focal point of treating biofilms lies in optimizing the AMP delivery system used,
with 9 out of 25 publications in this section of the manuscript relating to delivery systems
centred on carrier particles such as nanoparticles, liposomes, and micelles. The use of na-
noencapsulation is exemplified via the encapsulation of the AMP octominin with chitosan
(CS) and carboxymethyl chitosan (CMC), with this encapsulation showing greater antimi-
crobial activity against Acinetobacter baumannii and Candida albicans compared to octominin
alone [20]. Further advancements in this domain include sonochemically synthesized hy-
brid poly(sulfobetaine) methacrylate/polymyxin B nanoparticles (pSBMA@PM) coated on
silicone catheters that synergistically inhibited nonspecific protein adsorption and reduced
P. aeruginosa biofilm by 97% [21], as well as co-assemblies between host (MSNLP@PEICD)
and guest (MagNP@MSNA-CB[6]) mesoporous silica particles that together were able to
release the AMP melittin (large molecular weight) and the antibiotic ofloxacin (low molec-
ular weight) when subjected to a pathogen cell stimulus and alternating magnetic field
heating. This combination generated ‘strong antibiofilm capacity’ [22]. Moreover, Ali et al.
suggested that Poly(lactic-co-glycolic) acid (PLGA) nanoparticles ‘drastically increased’ the
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SAAP-148 selectivity index (cytotoxicity to antimicrobial activity ratio), by 20-fold against
AMR A. baumannii and 10-fold against AMR S. aureus [23]. The use of graphene-silver
nanocomposites (rGOAg) enhanced the delivery of poly-l-lysine-functionalized rGOAg,
which efficiently disrupted S. aureus biofilm via a ‘contact-kill-release’ mechanism, facili-
tating bacterial cell membrane disruption and a sudden release of intracellular DNA and
proteins [24]. In a separate study, also using silver, Xu et al. reported the synthesis of a
AMP/polydopamine/silver nanoparticle nanocomposite (AMP@PDA@AgNPs), which
exhibited ‘superior’ activity against both S. aureus, E. coli, and P. aeruginosa compared
to AgNPs or AMP alone [25]. Other types of carrier particles such as micelles and lipo-
somes have also shown great potential, as micelles formed from pH-responsive polymer
2,3-dimethylmaleic anhydride-polyethyleneimine-polylactic acid-glycolic acid copolymer
(DPP) and photosensitizer chlorin e6 linked to the AMP sequence ‘IRVKIRVKIRVKIRVK’
demonstrated 90% biofilm inhibition in vitro and rapid wound healing in vivo within
15 days when used with laser irradiation (to accelerate wound healing) [26]. Alternatively,
liposomes (~280 nm diameter) incorporating the synthetic AMP mimic 7e-SMAMP led to
a 75% reduction in P. aeruginosa and complete eradication of E. coli and S. aureus biofilm
in an in vitro model. A substantial (~30%) reduction in the inflammatory response of
murine macrophages was also observed [27]. Further results in the same area include
research using micelles containing a chimeric antimicrobial lipopeptide (DSPE-HnMc) with
amphiphilic biodegradable polymers that could to kill a ‘wide spectrum’ of bacteria and
their biofilms, including in mouse models [28].

New research into the stability/release of AMPs was available via the co-delivery of
nitric oxide (NO) and AMPs crosslinked with hyaluronic acid and divinyl sulfone in an
injectable, biocompatible nanogel with sustained 24-h NO release and enhanced antibacte-
rial/antibiofilm activity compared to free NO [29]. Additionally, poly(vinylpyrrolidone)
(PVP) microneedle patches were loaded with IR780 iodide and AMP W379s and subse-
quently coated with 1-tetradecanol. The resultant near infrared (NIR) light-responsive
microneedle patches were successfully tested in ex vivo (patient) and in vivo (methicillin-
resistant S. aureus (MRSA)-diabetic mouse infection model) [30]. Working to improve
protegrin-1 (PG-1) stability in physiological fluids, Maystrenko et al. [31] designed the hy-
brid peptide SynPG-1. SynPG-1 was able to retain activity in 25% serum for up to 24 h, com-
pared to 2 h for the original PG-1 AMP, with MRSA biofilm being prevented by both AMPs.
Zhang et al. described a simple strategy for the surface-active factor functionalization of
biomaterials using composite biofilms of graphene oxide (GO), poly(lactide-co-glycolide)
(PLGA), AMP ponericin G1, and basic fibroblast growth factor (bFGF) [32]. This composite
increased the rate of in vivo wound healing and antibacterial effects. The delivery of a
custom-designed AMP (W379) via a Janus-type antimicrobial dressing with dissolvable
microneedle arrays was found to generate more efficient delivery than a free AMP. Notably,
the dressing completely removed dual species MRSA and P. aeruginosa biofilm from an ex
vivo human skin model [33]. The AMP E6 was used by Lu et al. in combination with the
biocide tetrakis hydroxymethyl phosphonium sulfate (THPS) to inhibit the biocorrosion of
EH36 ship steel [34]. Although E6 alone was not biocidal and could not prevent the binding
of Desulfovibrio vulgaris, the AMP appeared to enhance the bactericidal effect of THPS.

Research into AMP-based coatings and implant publications were also quite popular,
including a combinatorial approach to antibiotics by developing a method to immobi-
lize nisin on NO-releasing silicone rubber (SR-SNAP-Nisin), which exhibited in vitro anti-
infection activity against planktonic and adherent-state S. aureus and E. coli [35]. Elastin-like
recombinamers (ELRs) were used by Acosta et al. to develop an extracellular matrix-
mimicking system for anchoring AMPs (e.g., D-GL13K) covalently to implant coatings
with strong antibiofilm activity [36]. Mesoporous titania-covered titanium implants were
used to deliver RRP9W4N, generating the sustained release of the AMP with equivalent or
greater antibiofilm properties than the cloxacillin antibiotic. An additional in vivo study
using a rabbit tibia model indicated no negative effects on osseointegration [37]. Immobili-
sation of the novel AMP JIChis-2 on the Ti-6Al-4V alloy resulted in a functional material
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with antibiofilm capacities [38], while laterosporulin-coated titanium generated resistance
against S. aureus biofilms [39]. De Luca et al. impregnated polymer polydimethylsiloxane
(PDMS) with r(P)ApoBLPro—an AMP associated with human apolipoprotein B [40]. The
stability, peptide release and biocompatibility were evaluated with 70% of the AMP being
released after 400 min and biofilm formation by E. coli ATCC 25922 being prevented.

Several publications described new approaches to AMP (conjugate) synthesis for AMP
delivery. Yang et al. reported the design of a novel neolignan isomagnolone and isomer and
their conjugation to form AMP-mimic conjugates (III5 and III15), which exhibited in vitro
and in vivo anti-MRSA activity comparable with vancomycin [41]. Cholesterol-modified
AMP PMAP-37(F34-R), yielded Chol-37(F34-R), with increased hydrophobicity, thereby
potentially increasing bacterial membrane damage and AMP stability. Subsequently, in an S.
aureus (ATCC 25923) mouse model of peritonitis, Chol-37(F34-R) reduced organ injury and
the burden of bacteria [42]. Finally, the potential of ‘click’ chemistry to generate covalent
AMP-ionic liquid-based conjugates was described by combining a classical imidazolium IL
with the N-terminus of AMP 3.1-PP4 (MeIm-3.1-PP4). This approach maintained the AMPs’
antibacterial activity for a range of pathogenic bacteria, as well as the AMP conjugate’s
antibiofilm proliferation activity against an MDR clinical isolate of K. pneumoniae, thereby
demonstrating improved stability towards tyrosinase-mediated AMP modifications (of
relevance, for example, in skin wounds) [43].

Efficient AMP delivery and release is essential in helping target bacteria and biofilms at
active concentrations, while helping protect AMPs from rapid degradation. Encapsulation
in particles, advances in coatings, and novel methods for AMP (conjugate) synthesis may
help to achieve this increased efficiency.

Finally, Milosavljevic et al. designed multifunctional ‘self-propelled microrobots’
(AMP-nanoarchitectonics) that could eradicate MRSA biofilms and aid the delivery and
release of drugs [44].

2.3. AMP Resistance

Between January 2020 and September 2023, five publications relating to AMP resis-
tance were published, relating to four different biofilm-forming bacteria. Specifically, a
mutation of the ‘biofilm-regulating Francisella protein Regulator’ (bfrp) gene resulted in
phenotypic changes indicating that bfrp is a positive regulator of AMP resistance (AMP
sheep AMP SMAP-29 and human cathelicidin peptide LL-37) and a negative regulator of
biofilm formation in Francisella novocida [45]. Lee et al. investigated the induction of the
two-component system pcfFeg-pcfRK, the primary mechanism for nisin resistance in Strep-
tococcus sp. A12. The results indicated that a novel set of genes (e.g., dipeptidase-PrsW-like
protease, Ccma ABC transporter, and Man-PTS) was responsible for nisin resistance [46].
With respect to Listeria monocytogenes, a transposon library was used to identify trans-
posants with significantly altered biofilm production levels when compared to a wild-type
strain. Inactivation of the phosphatidylglycerol lysyltransferase gene mprF led to enhanced
biofilm production but increased sensitivity to gallidermin (a type-A-I lantibiotic from
Staphylococcus gallinarum with some structural similarity to nisin) [47]. Interestingly, Hofer
et al. showed that polyunsaturated fatty acids (PUFAs) could generate modest protection
or vulnerability to polymyxin B and colistin in Aeromonas salmonicida. They concluded that
diverse, strain-specific responses to exogenous PUFAs may be an adaptive survival strategy
in bacteria that fluctuate between fish and environmental niches [48]. Finally, Bordetella
pertussis polysaccharide (Bps) was shown to resist AMP (LL-37, polymyxin B, HNP-1, and
HNP-2) killing, helping ‘shield’ non-pathogenic K12 E. coli and increase in vivo bacterial
survival in the respiratory tract [49].

2.4. Microbial Focus

AMP-related research into both bacterial and fungal species associated with biofilm
production continued in 2020–2023, covering a variety of aspects where the pathogen was
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the focus of AMP research. In this respect, the pathogens S. aureus (25%), P. aeruginosa
(13%), and C. albicans/spp. (13%) were most frequently cited in AMP research (Table 1).

Table 1. Frequency of microorganisms associated with published ‘AMP and biofilm’ research
where the pathogen was the focus of interest in the title (from January 2020 to September 2023).
Two publications reported research on S. aureus/S. epidermidis and S. aureus/P. aeruginosa.

Organism Number

Staphylococcus aureus/MRSA 13
Pseudomonas aeruginosa 8
Candida albicans/spp. 8
Streptococcus pneumonaie/mutans/oral 5
Enterococcus faecalis 3
Escherichia coli 1
Acinetobacter baumannii 2
Cryptococcus neoformans 2
Staphylococcus epidermidis 2
Actinobacillus pleuropneumoniae 1
Bacillus cereus 1
Corynebacterium striatum 1
Lactococcus lactis 1
Mycoplasma pneumoniae 1
Porphyromonas gingivalis 1
Salmonella serovars 1

Enterococcus faecalis
Three publications specifically focused on E. faecalis, with Li et al. investigating the

activity of AMP GH12 on this species. GH12 was found to inhibit biofilm formation and
virulence, as well as killing these bacteria in an ex vivo tooth model [50]. Staying in the field
of dentistry, Mergoni et al. used two antifungal peptides, i.e., KP and L18R, to demonstrate
impairment in the biofilm architecture of E. faecalis on hydroxyapatite disks [51]. Finally,
the cationic AMP lysozyme also appeared to reduce viable E. faecalis in biofilms (more
extracellular DNA and dead bacteria) [52].

Escherichia coli
Enterotoxigenic E. coli (ETEC) are responsible for large financial losses for pig farmers.

Synthetic AMP GW-Q4 derivative Q4-15-1a exhibited dose-dependent anti-MDR ETEC
activity in time–kill kinetic experiments. The minimum biofilm eradication concentration
was found to be four-fold the minimal inhibitory concentration (MIC) and in an porcine
intestinal epithelial cell model completely inhibited ETEC adhesion [53].

Pseudomonas aeruginosa
Four publications focused on human defense peptides such as S100A12, human beta

defensins (HBD)-2 and -3, and the cathelicidin-related peptide CRAMP in Pseudomonas spp.,
which inhibit biofilm formation via different mechanisms. Whereas S100A12 inhibited the
expression of genes involved in biofilm formation and the synthesis of the virulence factors
pyoverdine and pyocyanin [54], the AMPs HBD-2 and -3 had no effects on biofilm-related
gene expression but instead induced changes in the P. aeruginosa outer membrane that
hindered the transport of biofilm precursors into the extracellular space [55]. Stably infected
Caco-2 intestinal cells expressing HBD-2 and HBD-3 showed antibiofilm activity against P.
aeruginosa, indicating that therapeutic strategies that enhance endogenous cellular AMP
production might be successful as antibiofilm therapy [56]. The treatment of P. aeruginosa
with CRAMP led to the dispersion of established biofilms by affecting exopolysaccharides,
as well as promoting the flagellar motility of the bacteria inside the biofilm [57]. Yasir et al.
generated melimine, a chimeric AMP from melittin and protamine, which inhibited biofilm
formation by >75% at one-fold MIC by depolarizing the cell membranes of biofilm cells.
Melimine, however, was only effective in eradicating established biofilms when combined
with ciprofloxacin (≥61% at one-fold MIC). Importantly, while exposing P. aeruginosa
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to these AMPs or ciprofloxacin at sub-effective concentrations for more than 30 days
increased the MIC for ciprofloxacin by 64-fold, the MIC for the AMPs remained unchanged,
suggesting that no resistance will be developed to these peptides [58]. Jelleine was first
isolated from the royal jelly of bees, with novel analogues being developed by Zhou et al.,
indicating almost no toxicity yet ‘potent’ inhibition of biofilm formation against MDR P.
aeruginosa [59]. Established P. aeruginosa biofilms in cystic fibrosis possess extracellular
DNA that can be degraded by Gaduscidin-1, thereby helping eliminate existing biofilms.
This metal-AMP can also be used synergistically with ciprofloxacin and kanamycin [60].
Yin et al. investigated the antimicrobial activity of in silico designed DP7 against 104 clinical
P. aeruginosa isolates (57 of which were MDR). The AMP was able to inhibit growth, reduce
biofilm formation in vitro, and provide a 70% protection rate and 50% reduction in bacterial
colonization in chronic biofilm mouse infection models [61].

Staphylococci
Most publications focused on S. aureus, one of the major causes of skin, gastrointestinal,

respiratory tract, and blood stream infections. Additionally, biofilms formed by S. aureus are
among the most frequent causes of catheter-related or implant-related infections. Human
AMP LL-37 appeared to require a ‘quite high’ antimicrobial concentration with MIC values
of 132.3 mg/L and 89.6 mg/L for MRSA and methicillin-sensitive S. aureus (MSSA), strains,
respectively [62]. As previously mentioned for P. aeruginosa, Fusco et al. showed that stably
infected Caco-2 intestinal cells expressing HBD-2 and HBD-3 also show antibiofilm activity
against S. aureus, indicating that therapeutic strategies that enhance endogenous cellular
AMP production might be successful as antibiofilm therapy [56]. Mutation of the innate
defense regulator peptide (IDR-)1018 (1018M) showed activity against MRSA with a 78.9%
reduction in biofilm compared to the original peptide and increased binding to the ppGpp
stringent response molecule by 27.9% [63]. From non-human sources, the milk-derived
AMP BCp12 was shown to bind to accessory gene regulator (agr) QS proteins of S. aureus,
potentially useful in the food industry [64]. MPX from wasp venom showed activity against
S. aureus and in a skin scratch model was found to reduce S. aureus colonization, thereby
resulting in decreased wound size, the promotion of wound healing, and a reduction in
inflammation [65]. vCPP2319, a polycationic peptide derived from the Torque virus capsid
protein, exhibited activity against established biofilms by killing biofilm embedded bacteria
but had no effect on the EPS matrix [66]. The frog skin-derived AMP brevinine-1E-OG9, its
analogue (brevinine-1E-)OG9c-De-NH2 [67], and temporin G [68] as well as the synthetic
AMP SAMP-A4-C8 not only effectively inhibited and eradicated biofilms but also killed the
dormant persister cells, herewith counteracting the recalcitrance of S. aureus infections [69].
Both AP7121, produced by E. faecalis CECT7121 [70], and in silico designed 1018-k6 [71]
dose-dependently inhibited biofilm formation on inert surfaces. Furthermore, the AMPs
temporin A, citropin 1.1, and CA(1-7)M(2-9)NH2 were shown to eradicate established
biofilms formed on either polystyrene surfaces or central vein catheters [72]. Finally, in
two interesting studies, Seo et al. demonstrated that AMPs (HG-1 and haloganan) can be
degraded into fragments within hours by the protease aureolysin, secreted by S. aureus
bacteria in biofilms to shield themselves from treatment [73], while Liu et al. performed
in vitro research involving S. epidermidis, showing that many isolates could potentially kill
competing nasal microbiota by promoting the production of the AMPs HBD-3 and LL-37
while themselves forming resistant biofilms [74].

Streptococci
A range of Streptococci were investigated including the major cariogenic species.

Dental caries is an oral disease associated with microbial biofilm. The pH in these biofilms is
low (pH5.5) due to the metabolic activity of the cariogenic bacteria. Lin et al. conjugated the
phototherapeutic agent protoporphyrin IX to the synthetic AMP P12 to enable antimicrobial
activity at acidic pH [75]. Honey-derived exosome-like extracellular vesicles (HEc-EVs)
were shown to contain a number of AMPs (defensin-1, jelleine 3, and MRJP1) as cargo
molecules and bear antibiofilm capacity. Antibiofilm activity was stronger to S. mutans than
S. sanguinis and related to the induction of membrane damage [76]. Zhao et al. incorporated
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the AMP nisin into a single bond universal adhesive (at 3% w/v), which could inhibit the
growth of S. mutans monospecific biofilms, as well as that of saliva-derived multispecies
biofilms. Reduced biofilm growth resulted from an inhibitory effect on EPS synthesis
and/or excretion [77]. S. mutans growth was also inhibited by the strong membrane
disrupting activity of the lactotransferrin-derived AMP LF1 [78]. Boswell et al. reported
on the effect of lysozyme, lactoferrin, and LL-37 on S. pneumoniae serotype 23F, which is
associated with respiratory infections. Although a combination of all three AMPs inhibited
biofilm-derived bacterial activity, they did not affect the growth of persister cells [79].

Fungi
The majority of publications on AMP as treatment for fungi focused on C. albicans,

which can cause relatively simple to life-threatening invasive infections. The formation of
biofilms on tissues and medical devices makes these infections more difficult to treat as
they have become less susceptible to antifungal agents. Derivatives (specifically AMP3)
of the innate immunity defense protein BPIFA1 inhibited C. albicans biofilm formation
and downregulated several virulence genes [80]. Housefly larval AMP phormicin C-NS
was modified using benzoic and sorbic acid (food preservatives) and inhibited C. albicans
bud-to-hyphal transition, as well as biofilm formation [81]. Cnt[15-34], the C-terminal part
of the AMP Crotalicidin derived from rattlesnake venom, inhibited biofilm formation by
disrupting the plasma membrane of C. albicans reference strains and flucanozole-resistant
isolates [82]. The scorpion venom-derived AMP ToAP2 dose-dependently inhibited the
early phase of biofilms (by 60–99.85% at 25–100 µM) [83]. ToAP2 also decreased the viability
of mature biofilms but only at 200 µM. Likewise, CGA-N9-C8, an analogue of CGA-N9, also
demonstrated strong activity against early phase and established biofilms [84]. Interestingly,
this AMP also showed activity against the persister cells of C. albicans. Two publications
tested AMPs against Cryptococcus neoformans, which is frequently detected in immunocom-
promised individuals and can cause meningitis in HIV infected persons. AMP-17, a novel
AMP derived from Musca domestica, showed robust activity against both early phase and
established biofilms, inhibiting 80% of biofilm formation (BIC80) at concentrations ranging
from 16–32 µg/mL (i.e., two–four-fold MIC) and eradicating 80% of the biofilm (BEC80) at
concentrations of 64–128 µg/mL, surpassing the efficacy of fluconazole [85]. AMP-17 was
also found to inhibit yeast-to-hypha transition and interfered with the adherence of biofilm
cells in C. albicans. This activity was associated with the mitogen-activated protein kinase
(MAPK) pathway and filamentous growth [86]. Snail-derived (Pomacea poeyana) AMPs
pom-1 and pom-2 reduced the viability of a range of Candida spp., including C. albicans, C.
auris, and C. parapsilosis [87]. AMP analogues from wasp peptide toxins, MK58911-NH2
and MH58911-NH2, showed strong antimicrobial activity against extra- and intracellular
C. neoformans [88]. However, only MK58911 possessed activity against early phase and
established biofilms, in the 1–8 ug/mL range. The well-known AMPs LL-37 and lysozyme
showed no activity to C. tropicalis isolates [89].

Other species
With respect to systemic human infections, two papers tested AMPs on (carbapenem-

resistant) A. baumannii, which is a major threat to immunocompromised patients, es-
pecially patients in intensive care. The AMP cecropin Cec4 not only inhibits biofilm
formation but also eradicates established biofilms of (carbapenem-resistant) A. bauman-
nii by disrupting their structure, exhibiting a minimal biofilm inhibitory concentration
(MBIC) of 64–128 µg/mL and a minimal biofilm eradication concentration (MBEC) of
256–512 µg/mL [90]. Jung et al. screened 58 AMPs for activity against A. baumannii
and found two derivatives of the TP4 peptide, i.e., dN4 and dC4, to have therapeu-
tic activity in vivo in mice with A. baumannii pneumonia and to eliminate A. baumannii
biofilms [91]. Hiyash et al. investigated a variety of natural and synthetic AMPs includ-
ing Mag2, NK2A, and seven synthesized Mag2-derived AMPs (Mag2-17base, 17base-Aib,
17base-Ac6c, 17base-Hybrid, Block, Stripe, and Random). Three synthesized AMPs, i.e.,
17base-Ac6c, 17base-Hybrid, and Block, had activity against Mycoplasma pneumoniae [92].
The screening of derivatives from the AMP D51 against Bacillus cereus (a food poisoning
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bacterium) highlighted the peptides D51-P11G and D51-P11K for their anti-spore germi-
nation and anti-biofilm activities, which they instigated via membrane lysis [93]. Peptide
variants of BmKn-2 from scorpion venom exhibited anti-biofilm activity against Salmonella
isolates [94]. With respect to oral health, Jiang et al. showed that AMP DP7 inhibited
planktonic and biofilm forms of Porphyromonas gingivalis [95]. MPX, an AMP from wasp
venom, was shown to be effective against Actinobacillus pleuropneumonia, a highly conta-
gious pathogen causing significant economic loss to the pig industry [96]. The antibacterial
activity was not affected by high temperature or low pH, and the AMP protected mice
from a lethal dose of A. pleuropneumonia. Notably, this same AMP was also active against
S. aureus [65]. Associated with the food industry, Tanhaeian et al. generated a chimeric
peptide (cLFchimera) that included the peptides lactoferricin and lactoferrampin. This
AMP was recombinantly introduced into a food-grade strain of Lactococcus lactis, with the
expressed cLFchimera peptide showing weak (E. coli) and strong (E. faecalis, P. aeruginosa,
and S. aureus) activity in inhibiting biofilm formation (although the activity was described
as ‘moderate’ against E. faecalis and E. coli in the Discussion) [97]. Finally, B-AMP is a freely
available, curated 3D structural and functional repository of biofilm-relevant AMPs. As an
example, Mhade et al. demonstrated the use of the repository for developing in silico molec-
ular docking models for the Sortase C Protein of the emerging pathogen Corynebacterium
striatum [98].

2.5. AMP Type

2.5.1. Single AMP Type

The human cathelicidin LL-37 was one of the popular AMPs to be studied during
the review period, with LL-37 being one of the few human bactericidal peptides with
potent anti-staphylococcal activity (one of the main bacteria associated with orthopeadic
implant infections). Using in vitro studies and static biofilm models, Wei et al. showed
that LL-37 had significant anti-staphylococcal effects and a ‘destructive effect’ on S. aureus
biofilm formed on a titanium alloy surface (as a proxy for a prosthesis) [99]. Wuersching
et al. examined the effects of LL-37 and human lactoferricin AMPs on anaerobic biofilms
associated with oral diseases [100]. This was performed in combination with the antibi-
otics amoxicillin, clindamycin, and metronidazole using facultative and obligate anaerobic
polymicrobial biofilms. The inclusion of LL-37 or lactoferricin enhanced the reduction
in both obligate and facultative anaerobic biofilms by these antibiotics. Synthetic AMP
TC19 is another human AMP studied, with it being derived from Thrombocidin-1-derived
peptide L3 found in human blood platelets. TC19 killed Enterobacter cloacae, Enterococcus
faecium, S. aureus, K. pneumonia, and A. baumannii. Topical application of TC19-containing
hypromellose gel significantly reduced MDR A. baumannii and MRSA in a murine super-
ficial wound infection model [101]. Another human AMP studied was ‘Reactive Oxygen
Species Modulator 1′ (Romo1). Romo1 was observed to eradicate entero-invasive E. coli
from HeLa cells and a single dose of AMPR-11 (derived from Romo1) appeared to have
similar efficacy to multiple doses of imipenem in a mouse model of sepsis when using
A. baumannii, P. aeruginosa, K. pneumoniae, and S. aureus [102]. As well as humans, insects
are also a source of AMPs as Van Moll et al. utilized 36 synthetically produced black
soldier fly (Hermatia illucens) AMPs. Two cecropins, Hill-Cec1 and Hill-Cec10, were found
to be bactericidal with promising activity against K. pneumoniae and MDR P. aeruginosa.
However, although able to prevent P. aeruginosa biofilm formation, they could not eradicate
existing biofilms [103]. Continuing with a sea life theme, small peptides of 10–22 aa length
(Bip_AA_2 and Bip_AA_5) were associated with a significant decrease in the production of
biofilm by Klebsiella oxytoca. Bip_AA_2 and Bip_AA_5 were obtained via cDNA expression
from the Cnidarian moon jellyfish Aurelia aurita [104]. Sivakamavalli et al. purified and
characterized an AMP crustin from the green tiger shrimp Peaneaus semisulcatus [105]. This
crustin showed antibacterial activity against Gram-positive Bacilllus thuringienisis and B.
pumilis when compared to Gram-negative Vibrio parahaemolyticus and V. alginolyticus. From
the octopus (specifically Octopus minor), the AMP octopromycin inhibited the swarming,
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swimming, and alginate production of A. baumannii via anti-quorum sensing activity. The
AMP also significantly reduced the mass and structure of A. baumannii biofilm and killed
persister cells [106]. Investigation of the AMP capitellacin from the marine polychaeta
Capitella teleta indicated that this AMP appeared to have a ‘detergent-like’ action on target
cells rather than binding to a particular cellular target. Furthermore, after 21 days of
exposure, capitellacin did not generate resistance in E. coli with the AMP also preventing
and destroying mature E. coli biofilm [107]. Finally, with respect to aquatic life, Piscidin
AMPs are derived from several species of fish with Zhang et al. investigating six analogues
of Oreoch-2 that were derived from tilapia (Oreochromis niloticus) [108]. This species ranks
as one of the most farmed fish species globally. Two of these analogues (ZN-5 and ZN-6)
were bactericidal and could inhibit biofilms of S. aureus ATCC25923. Prior et al. studied
Piscidin AMPs (piscidin 1, piscidin 3, piscidin 4, and piscidin 5) from various bass species
of fish. Class II piscidins (piscidin 4 and piscidin 5) were found to be more potently active
against Flavobacterium columnare and E. coli than class I Piscidins (piscidin 1 and piscidin 3),
but class I Piscidins showed more growth inhibition of Aeromonas spp. [109].

With respect to synthetic derivatives of AMPs, Ajish et al. developed the new
symmetric-end AMPs Lf6-pP and Lf6-GG (based on RRWQWRzzRWQWR and centered
on D-Pro-Pro) that exhibited potent antibacterial activity against S. aureus (KCTC 1621)
and E. coli (KCTC 1682). Lf6-pP was effective in inhibiting biofilm formation and eradi-
cating mature biofilms of MDR P. aeruginosa (MDRPA) strain (CCARM 2095) [110]. The
antibiofilm activity of a previously designed AMP WLBU2 against P. aeruginosa isolates was
investigated by Mazihzadeh et al. [111]. WLBU2 significantly inhibited adhesion to a static
abiotic solid surface and biofilm formation in all tested P. aeruginosa strains. Additionally,
exposure to WLBU2 resulted in a >4-fold reduction in biofilm-associated gene (e.g., rhlI,
rhlR, lasI, and lasR) expression, while biofilm formation was significantly inhibited in
a murine catheter-associated carbapenem-resistant P. aeruginosa (CRPA) infection model.
‘Unnatural’ star-shaped AMPs were designed by Pan et al. via homologues of poly(l-
lysine)s and poly(l-alpha,zeta-diaminoheptylic acid)s. The star-shaped poly(l-ornithine)
PO3 had high proteolytic stability and broad-spectrum antimicrobial activity especially
against Gram-negative P. aeruginosa. In vivo studies using a P. aeruginosa-infected murine
skin burn model revealed that PO3 alleviated inflammation and exhibited a wound healing
process [112]. Using a different approach, Ghimere et al. reported on ‘the continued syn-
thetic molecular evolution of a lineage of host-compatible AMPs’ using variants derived
from an evolved AMP, which was originally derived from a consensus sequence where
two invariant glycines had been removed (termed ‘D-amino acid CONsensus with Glycine
Absent’ or ‘D-CONGA’). One variant (D-CONGA-Q7), with a polar glutamine inserted
into the middle of the sequence, showed a ‘gain of function’ by being active against in-
nately resistant clinical K. pneumoniae isolates [113]. Bactenecin from bovine neutrophils
is one of the shortest natural broad-spectrum AMPs currently known. By attaching a
hydrophobic fatty acid ligand to the AMP Bac8c (RIWVIWRR-NH2), the new LA-Bac8c
demonstrated improved antibiofilm activity towards S. aureus and MRSA compared to
Bac8c [114]. Several publications focused on modifications of the human endogenous
AMP LL-37. Laksmaiah Narayana et al. generated a library of lipopeptides via sequential
truncation of the AMP KR12 (derived from LL-37), which were also conjugated to fatty
acids. They found that the miniature LL-37-like peptide C10-KR8d (d-form) was able to
reduce MRSA bacterial burden in a neutropenic mouse model. In addition, C10-KR8d
prevented bacterial biofilm formation in an S. aureus mouse catheter model [115]. AMP
GA-KR12 (a short yet active peptide of LL-37) has novel dual-action activity that inhibits
the growth of S. mutans biofilm and promotes the remineralization of human dentine
blocks with artificial carious lesions [116]. Dimerization and backbone cyclization of KR-12
facilitated the production of the synthetic peptide CD4-PP, which was active against type
and clinical uropathogenic strains of K. pneumoniae, P. aeruginosa, and E. coli. CD4-PP re-
duced E. coli attachment to pieces of a urinary catheter placed in saline/CD4-PP fluid [117].
Interestingly, Hacioglu et al. compared the antibiofilm activities of a range of ceragenins
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(synthetic amphipathic molecules that are designed to mimic naturally occurring AMPs)
against AMPs LL-37, magainin, and cecropin. At the concentrations tested, ceragenins
(CSA-13, CSA-90) were reported to be much more effective against mono- and multi-species
biofilms than AMPs, with them being particularly effective against C. albicans biofilms [118].
The efficacy of AMPs as antimicrobial drugs is reduced by their low proteolytic stability,
suboptimal bioavailability, and relatively high manufacturing costs. In this respect, Yu
et al. described the synthesis of small molecules based on biphenylglyoxamide (15c), which
possessed Gram-positive and -negative antibacterial activity and disrupted (35%) of S.
aureus biofilm [119]. The compounds appeared to be non-toxic. GH12 is an example of an
AMP that has been de novo designed and synthesized with an emphasis on anti-dental
activity. Jiang et al. investigated the AMP’s effect in a complex biofilm model in vitro and
a rat caries model in vivo. GH12 reduced the exopolysaccharide and lactic acid produc-
tion in a S. mutans biofilm, as well as the abundance of caries-associated bacteria in a rat
model and maintained microbial diversity in multispecies dental plaque-derived biofilms
obtained from healthy volunteers [120]. In a similar publication, the same lead author
investigated the pH responsiveness of GH12, showing that this AMP generated much lower
minimal bactericidal concentrations and minimal inhibitory concentrations at pH 5.5 as
compared to pH 7.2. The relevance being that dental caries are associated with acidification
of biofilms on the affected teeth [121]. Consecutive exposure to sub-lethal levels of GH12
tended not to generate GH12 resistance, although the acquisition of resistance could not
be ruled out. TAT-RasGAP317-326 is a cell-permeable chimeric peptide derived from the
p120 Ras GTPase-activating protein that has anticancer properties via membrane lysis and
cell death. Heinonen et al. showed that this new AMP could limit biofilm expansion and
prevent biofilm formation by P. aeruginosa and A. baumannii, while also inhibiting S. aureus
biofilms [122]. Lima et al. used ‘Collection of AMPs (CAMPR3)’ software to cleave AMP
ILTI obtained from plant seeds, which exhibits biological activity against pest insects. The
result was the 198 amino-acid peptide KWI18 [123]. KWI18 reduced bacterial (P. aeruginosa)
and fungal (C. parapsilosis) biofilms.

2.5.2. ‘Novel’ AMP Types

The following publications include the word ‘novel’ in their titles but do not in-
clude publications containing ‘novel’ when related to methods or specific bacterial species.
Eight publications belong to this category. Of particular note during 2020–2023 is the
discovery and testing of novel AMPs from various types of aquatic life. One such example
is the marine mud crab Scylla paramamosain, with Chen et al. investigating a 22 amino-acid
variant of the C-type lectin homolog SpCTL6 (Sp-LECin) [124]. This AMP inhibited the
growth of a range of Gram-negative bacteria, e.g., P. aeruginosa, A. baumanii, and Shigella
fiexneri and Gram-positive bacteria, e.g., L. monocytogenes, E. faecium, and E. faecalis, as
well as showing anti-biofilm maturation and the formation for P. aeruginosa. The AMP oc-
toPartenopin was extracted from the suckers of Octopus vulgaris. This AMP possessed high
protease activity, with an analogue of this AMP showing inhibition and eradication activity
against P. aeruginosa, S. aureus, and C. albicans biofilms [125]. A recombinant version of
scyreprocin (found in the male gonads of this crab and named rScyreprocin) was identified
as an interacting partner of the AMP SCY2. Interestingly, this compound not only possessed
antibacterial and antibiofilm activity but also antifungal (Cryptococcus spp. and Candida
spp.) and Aspergillus spp. anti-spore germination activity [126]. AMPs have also been
isolated from bacteria, e.g., Zhang et al. aimed to simplify the structure of the AMP PE2
isolated from the endospore-forming, facultative anaerobic bacterium Paenibacillus ehimen-
sis. Linear analogues of AMP PE2, numbered 26 and 27, showed significant activity against
both MDR bacteria in vitro as well as in a mouse pneumonia model [127]. A different AMP,
‘YS12′, was derived from Bacillus velezensis strain CBSYS12 via the Korean food kimchi.
This showed strong antimicrobial activity against MRSA 4–5, VRE 82, E. coli, P. aerugi-
nosa, and Mycobacterium smegmatis and inhibited 80% of biofilm formation by E. coli and P.
aeruginosa [128]. Using rational design, Masadeh et al. combined the alpha-helical parts
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of BMAP-28 (bovine cathelicidin) and LL-37 (human cathelicidin), generating the hybrid
peptide MAA-41. This hybrid peptide showed strong activity against biofilm-forming cells,
as well as synergistic or additive effects in combination with conventional antibiotics [129].
Shang et al. designed AMPs containing ’RWWWR‘ as a central motif together with arginine
(R) end-tagging. One AMP (Pep 6) generated a 62–90% reduction in S. aureus skin burn
and E. coli bacteremia models. Moreover, Pep 6 could reduce robust mature MRSA biofilm
by 61% [130]. Ramakrishnan et al. designed a novel AMP SS-BF-3, against P. aeruginosa,
which was developed using machine learning and a random forest algorithm with decision
tree. However, the publication did not include in vitro or in vivo data [131]. Finally, Jiang
et al. used bioinformatics to generate four truncated AMPs of Spampcin (Spa31, Spa22,
Spa20, and Spa14) [132]. Spa31 demonstrated potent antimicrobial activity against E. coli,
P. aeruginosa, and S. aureus, inhibited/eradicated P. aeruginosa biofilms, and significantly
improved the survival rate (from 50% to 79%) of Danio rerio zebrafish infected with P.
aeruginosa [132].

2.5.3. AMP Models

Several AMP publications were associated with interesting in vitro or in vivo models.
Chitosan-derived gels loaded with the novel AMPs ASP-1 and ASP-2 were found to be
effective on monospecies biofilms grown for three days on ex vivo porcine skin and in vitro
(polymer mesh) models. Furthermore, over seven days, 70 to 80% of AMPs were released
from the chitosan [133]. Synergistic interactions between species (e.g., C. albicans and
S. aureus) can increase biofilm formation and AMR. Although AMP L18R was able to
reduce the biomass of monomicrobial C. albicans and S. aureus early-stage and mature
biofilms, no reduction in biomass was observed against a polymicrobial biofilm in the
Lubbock chronic wound biofilm model. However, L18R caused a moderate reduction in
total CFU number and decreased the number of C. albicans in the same model [134]. A
novel murine osteomyelitis model using the infected femoral bone canals of laboratory rats
was used by Melicherčík et al. to study bone implant-related infections [135]. A 12 amino
acid synthetic analogue of the AMP halictine-2 was mixed into polymethylmethacrylate
bone cement, preventing the subsequent formation of MRSA biofilm on the surfaces of
more than 80% of these implants. In another interesting murine model, Martinez et al.
studied two synthetic AMPs (P5 and P6.2) that had been earlier designed via combined
computer-assisted and rational approaches [136]. Both peptides were investigated using a
P. aeruginosa lung infection model of neutropenic mice, with the lungs being extracted to
assess both bacterial load and pro-inflammatory cytokine activity. A significant reduction
in bacterial load and a concomitant decrease in pro-inflammatory cytokines IL-1β, IL-6, and
TNF-α was observed. The bacterium Desulfovibrio vulgaris and a corrosion biofilm model
(using steel rivets as a surface for bacterial growth in a 96-well format) was developed
by Stillger et al., who showed that AMPs S6L3-33 (bacterial reduction), bactenecin (total
biomass reduction), and DASamP1 (biofilm inhibition up to 21 days) were the most useful
anti-biocorrosive AMPs of those tested [137]. Finally, AMPs may be important in protecting
foodstuffs from spoilage bacteria. In this respect, Zhang et al. utilized three food matrices
(cooked meat sauce, raw fish, and fruit juice) to investigate the AMPs As-CATH4, and
As-CATH5 and Hc-CATH (from the sea snake Hydrophis cyanocinctus and Chinese alligator
Alligator sinensis, respectively) that had previously been identified to exhibit broad-spectrum
antimicrobial activities. Sodium benzoate and potassium sorbate were used as positive
controls. Synergistic interactions were observed in combination with butyl paraben in fruit
juice [138].

Published research into novel AMPs and their variants included AMPs obtained from a
wide variety of (micro)organisms, including humans, mice, aquatic life, insects, plants, and
even bacteria. Several interesting models for evaluating AMP efficacy were also published
including mesh, bacterial/fungal synergistic, murine, and food preservative models.
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2.6. Miscellaneous

Seven publications were assigned to the ‘Miscellaneous’ category, including publica-
tions relating to the optimization of AMPs (L5K5W, S6L3-33, bactenecin, and DASamP1)
against biocorrosive bacteria [139], marine-based AMPs [140], and a real time thermal
sensor for quantifying the inhibitory effects of AMPs (protamine and OH-CATH-30) on
biofilms and bacterial adhesion [141]. A comment relating to the AMP cecropin A, derived
from moths, was made by Fenner [142].

Ravichandran et al. [143] describe a structural and functional repository containing
>5000 structural models (including a curated collection of 2502 biofilm protein targets
against a total of 473 bacterial species), while Xu et al. [144] provide a comprehensive
assessment of machine learning-based methods for accurately identifying AMPs. The
original text by Li et al. was written in Chinese, and only the abstract was available in
English [145]. From their abstract, AMP GH12 decreased biofilms consisting of S. mutans
and the commensal bacteria S. sanguinis and S. gordonii.

Various novel tools, databases, and environments are available to aid researchers
interested in AMP and biofilm research.

2.7. Review-Type

A total of 15 review-type articles remained in the total list of 150 publications gener-
ated by our search strategy, even though the strategy excluded ‘reviews/expo’, ‘conference
abstracts’, and ‘conference reviews’. Seven publications covered the topic of (multi-) drug
resistance [146–152], two related to surfaces/devices [153,154], and two focused on ‘thera-
peutics’ [155,156]. The other two review-types focused on biofilm matrix dynamics [157]
and the severity of biofilms in disease [158]. One review-type article focused on the stomach
pathogen Helicobacter pylori [159], whilst one focused on bacteriocins [160].

Many of these articles could have been included in the categories used to divide the
research publications into different themes but are broad in scope and did not provide the
type of information required for the current comprehensive review.

3. Conclusions

During the period of January 2020 to September 2023, research into the effect of AMPs
on biofilms resulted in 150 publications (when using the search criteria indicated in this
manuscript). In general, publications involving ‘single AMP types’ and ‘delivery systems’
were most frequent, with research being performed on a wide range of existing and new
AMPs, of which LL-37, GH12, and nisin were most frequently cited (Supplementary Table
S1). This is notable as research into LL-37 and nisin has been published over several decades
but still continues to the present day. That said, research into new and modified AMPs
continues to be published, although it remains to be seen if these new/modified AMPs
will eventually find a substantial place in the prevention/removal of biofilms in clinical,
farming, or food applications. With respect to target bacteria, research involving E. coli
and E. faecalis was least popular, with S. aureus and P. aeruginosa being the most popular
microorganisms associated with biofilm and AMP research (Table 1), which is a reflection
of the continued importance of these species in medical and veterinary AMR infections.
AMP ‘resistance’ continues to be published but at a relatively low level compared to the
other categories utilized in this manuscript. This most likely reflects the lack of impact of
AMP resistance in clinical, farming, or food applications, which itself is probably associated
with the lack of (large-scale) AMP use in these environments.

4. Future Outlook

Between January 2020 and September 2023, this review identified research into ap-
proximately 150 different AMPs. However, despite decades-long research into AMPs, these
compounds are still not widely used in clinical, farming, or food environments. These
implementation issues need to be overcome if the use of AMPs is to be successfully applied
in the future and include general problems such as AMP susceptibility to protease activity
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and bacterial AMP resistance mechanisms. With respect to proteolysis, continued research
into the development of novel AMP delivery systems that shield AMPs from proteolytic
digestion (at least until they reach the intended site of activity) may yield encouraging
results. With respect to bacterial AMP resistance, research into new AMPs and new AMP
combinations (i.e., AMP + AMP or AMP + other antibiotic compounds) may be a step
forward in helping prevent the development and/or spread of (multi-drug) resistance.
Research into existing and novel AMPs continues to be published, although for the future,
a focus on overcoming the hurdles to AMP implementation in medical, farming, and food
environments should be encouraged.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13040343/s1. Supplementary Table S1: Range of
AMPs and sources referenced in this review article.
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