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Abstract
Background  Modulator therapies that seek to correct the underlying defect in cystic fibrosis (CF) have revolutionized 
the clinical landscape. Given the heterogeneous nature of lung disease progression in the post-modulator era, there is 
a need to develop prediction models that are robust to modulator uptake.

Methods  We conducted a retrospective longitudinal cohort study of the CF Foundation Patient Registry (N = 867 
patients carrying the G551D mutation who were treated with ivacaftor from 2003 to 2018). The primary outcome was 
lung function (percent predicted forced expiratory volume in 1 s or FEV1pp). To characterize the association between 
ivacaftor initiation and lung function, we developed a dynamic prediction model through covariate selection of 
demographic and clinical characteristics. The ability of the selected model to predict a decline in lung function, 
clinically known as an FEV1-indicated exacerbation signal (FIES), was evaluated both at the population level and 
individual level.

Results  Based on the final model, the estimated improvement in FEV1pp after ivacaftor initiation was 4.89% 
predicted (95% confidence interval [CI]: 3.90 to 5.89). The rate of decline was reduced with ivacaftor initiation by 
0.14% predicted/year (95% CI: 0.01 to 0.27). More frequent outpatient visits prior to study entry and being male 
corresponded to a higher overall FEV1pp. Pancreatic insufficiency, older age at study entry, a history of more frequent 
pulmonary exacerbations, lung infections, CF-related diabetes, and use of Medicaid insurance corresponded to 
lower FEV1pp. The model had excellent predictive accuracy for FIES events with an area under the receiver operating 
characteristic curve of 0.83 (95% CI: 0.83 to 0.84) for the independent testing cohort and 0.90 (95% CI: 0.89 to 0.90) 
for 6-month forecasting with the masked cohort. The root-mean-square errors of the FEV1pp predictions for these 
cohorts were 7.31% and 6.78% predicted, respectively, with standard deviations of 0.29 and 0.20. The predictive 
accuracy was robust across different covariate specifications.

Conclusions  The methods and applications of dynamic prediction models developed using data prior to modulator 
uptake have the potential to inform post-modulator projections of lung function and enhance clinical surveillance in 
the new era of CF care.
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Background
Cystic fibrosis (CF) is a progressive, genetic disease 
caused by CF transmembrane conductance regula-
tor (CFTR) protein dysfunction, leading to cyclical lung 
infection and inflammation. As a result, lung function 
monitoring through longitudinal measurement of forced 
expiratory volume in 1  s of % predicted (FEV1pp) has 
been a key element of CF care. Highly effective CFTR 
modulator therapies, which are designed to correct 
malfunctioning protein made by the CFTR gene, have 
revolutionized the clinical landscape. The first of these 
therapies, ivacaftor, which has been in widespread use 
in the U.S. since January 2012 for select mutations (e.g., 
G551D), has been shown to improve FEV1pp markedly 
[1]. Analysis of trial participants with a G551D mutation 
on ivacaftor, matched with historical F508del homozy-
gotes from the U.S. Cystic Fibrosis Foundation Patient 
Registry (CFFPR) as controls, found that ivacaftor treat-
ment associated with 50% slower decline in FEV1pp over 
a 3-year period [2]. A more recent pre-post study of the 
Canadian CF Registry considered follow-up as long as 
8 years before and 8 years after ivacaftor initiation and 
reported more variable benefits, demonstrating age-
related reductions in FEV1pp slope of 60% and 71% for 
pediatric and adult ivacaftor patients, respectively (dif-
ference in the FEV1pp slope between the pre and post 
ivacaftor: 0.58 predicted/year and 0.72 predicted/year, 
respectively) [3]. Another study of CF patients who carry 
the G551D mutation included data from a two-year clini-
cal trial and a 5-year observational cohort from West of 
Scotland suggested sustained lung function benefit from 
ivacaftor use among adults, but long-term improvement 
seemingly plateaued year over year in the pediatric popu-
lation [4]. These findings corroborate a prior U.S. multi-
center study, which showed that the rate of decline in 
FEV1pp over a 5.5-year period after ivacaftor initiation 
was worse for pediatric subjects than adults (1.68% pre-
dicted/year versus 0.63% predicted/year) [5].

While treatment heterogeneity is expected, the 
reported variability, both between patients and within 
an individual patient over time, demonstrates the need 
to reevaluate the suitability of both FEV1pp prediction 
models and the thresholds used to identify meaningful 
lung function decline after ivacaftor initiation. Predic-
tion models of CF FEV1pp decline have historically been 
useful for early identification of pulmonary exacerbation 
events and other phenomena clinically known as “rapid 
decline,” which have been defined as a meaningful drop in 
FEV1pp relative to center- and/or patient-level norms [6, 
7]. Early detection and timely treatment of rapid decline 

improve lung function but can be difficult to achieve 
without prediction models [8–10]. One such model was 
developed specifically for real-time prediction of rapid 
decline in CF using target functions [10]. These functions 
were derived mathematically based on clinically relevant 
definitions of rapid decline. However, these definitions 
reflect pre-modulator thresholds (e.g., drops more than 
1.5% predicted/year) [11]. More recent approaches have 
included the use of an alternative method to identify 
pulmonary exacerbations, known as the FEV1-indicated 
exacerbation signal (FIES) [12]. While pulmonary exac-
erbation has historically been defined heterogeneously 
through assessment primarily of lung function drops, 
there has been limited consensus on how to define such 
drops [13].

For these reasons, the aims of our study were to (i) 
evaluate the robustness of an existing prediction model 
framework that accurately detected rapid decline in the 
pre-modulator era and (ii) adapt this framework to exam-
ine a novel target function specific to FIES events.

Methods
Study design and cohort
We conducted a retrospective longitudinal cohort study 
using the CFFPR, which is a national patient registry that 
collects demographic and clinical data on individuals 
with CF who are patients at care centers across the U.S 
[14]. The study included data from 2003 to 2018. To con-
struct the analysis cohort, we considered patients with 
a valid CF diagnosis (e.g., blood test, sweat test, genetic 
test) who carry the G551D mutation and received iva-
caftor any time after January 1, 2012, which represents 
the era of widespread U.S. Food and Drug Administra-
tion (FDA) approval for this therapy. Data observed when 
patients were younger than 6 years old was excluded, 
given the potential for unreliable pulmonary function 
test (PFT) results in very young patients with CF. Data 
observed after lung transplantation were censored.

Determining ivacaftor initiation. We omitted PFTs 
observed during the first 30 days after the CFFPR-
recorded ivacaftor start date (Fig.  1). Our rationale was 
(i) we wanted to avoid estimating the initial increase in 
FEV1pp related to ivacaftor that has been previously 
reported in other analyses [2], and (ii) we sought to 
reduce the potential bias between the ivacaftor prescrip-
tion date and the actual start date recorded in the CFFPR. 
To ensure valid estimation before and after ivacaftor 
initiation, we restricted the cohort to patients who had 
at least one PFT before initiation and at least two PFTs 
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after, and for whom the earliest and latest post-initiation 
PFTs were separated by at least 6 months in time.

FIES definition. We derived our criteria at each clinical 
encounter from the definition provided by the CF Learn-
ing Network [12], which was applied as follows:

1)	 For baseline FEV1pp ≥ 50, if the current FEV1pp 
represents a 10% or more relative decline in lung 
function, compared to the baseline.

2)	 For baseline FEV1pp < 50, if the current FEV1pp 
represents a 5% or more relative decline in lung 
function, compared to the baseline.

In this definition, baseline is the average of the two 
highest FEV1pp values in the past 12 months that were 
not recorded during intravenous antibiotic treatment. 
Expanded details on the FIES definition are provided as 
supplemental material (Part 1, Section I).

Statistical analysis
Outcome, covariates, and missing data. The study out-
come was the FEV1pp value observed at each clinical 
encounter. Covariates included observed demographic 
and clinical characteristics that have been previously 
associated with accelerated FEV1pp decline: the time-
varying variables were Medicaid insurance use, infec-
tion with methicillin-resistant Staphylococcus aureus 
(MRSA), infection with Pseudomonas aeruginosa (Pa), 
diagnosis of CF-related diabetes (CFRD), and numbers 
of acute pulmonary exacerbations and outpatient vis-
its within the previous year; the non-time-varying vari-
ables were age and FEV1pp at study entry, birth cohort 
(defined based on year of birth), sex, and pancreatic 
insufficiency (defined as any reported use of pancreatic 

enzymes). All subsequently described prediction model-
ing assumed that outcome data were missing at random 
[15]. 

Prediction model setup. A previously described longi-
tudinal model framework with nonstationary stochas-
tic process to the prediction of FEV1pp and the use of 
clinically relevant target functions in CF was adapted 
for this study [10]. Particularly, the variance terms in 
the linear mixed effects model included a random inter-
cept to account for between-patient variation, an inte-
grated Brownian motion covariance function to account 
for within-patient variation over time and to allow us to 
create predictive probability distributions using a prior 
approach, and a residual measurement error [16]. We 
first set up a saturated model within this framework to 
examine various covariate effects. The time since study 
entry (in years) was used as the time variable. A change 
point term, which represented pre- and post-ivacaftor 
initiation periods, was included as a main effect, and its 
interaction with time was used to examine associations 
between ivacaftor response and absolute FEV1pp, as 
well as the difference in slopes between pre- and post-
ivacaftor initiation periods. Covariates were considered 
as both main effects and interactions with the time vari-
able in the saturated model. Results were scaled to the 
time since ivacaftor initiation (in years) for presentation 
purposes. Details of the model setup are presented as 
supplemental material (Part 2, Section I) and the residual 
diagnostics of the selected model are shown in the sup-
plemental material (Part 1, Section II).

Covariate selection. Reduced forms of the previously 
described terms in the saturated model were examined 
with the Akaike and Bayesian information criteria (AIC 
and BIC, respectively) and the likelihood ratio test (LRT).

Fig. 1  Lung function trajectory and ivacaftor initiation shown for a male with cystic fibrosis in the analysis cohort. The outcome was measured as the 
percent predicted forced expiratory volume in 1 s (FEV1pp, y-axis) observed over time (x-axis). (A) before and (B) after ivacaftor initiation. His pre-ivacaftor 
FEV1 ranged from 68 to 118% predicted, while post-ivacaftor was 82 to 102% predicted. His overall FEV1pp increased, but he experienced FIES events 
(examples of events shown using red arrows in A and B) before and after ivacaftor initiation
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Predictive probabilities for FIES events. The target func-
tion derived from the above FIES definition was imple-
mented as part of the model fitting in the R package 
“lmenssp” version 1.2 [17]. The formulas and code can be 
found from supplementary material Part 2, Sections II-III 
and Part I, Section V, respectively.

Validation. Two types of validation were performed 
that are relevant to clinical scenarios: (i) predictions for 
“new patients,” and (ii) forecasting for patients who were 
part of the model building but return for follow-up visits 
(i.e., updated predictions). To accomplish both types of 
predictions, the analysis cohort was randomly split into 
80% for training and 20% for independent testing (Fig. 2). 
For type (i), we examined predictions within the testing 
cohort. For type (ii), we examined data that were held out 
for the last 6 months of follow-up in the training cohort. 
Both types of predictions were evaluated using 5-fold 
cross-validation.

Evaluation of predictive performance. Metrics to evalu-
ate predictive accuracy included the root-mean-square 
error (RMSE), the mean absolute error (MAE), the Brier 
score, and the area under the receiver operating char-
acteristic curve (AUC). Formulas for the metrics are 
provided as supplemental material (Part 1, Section III). 
Lower values of the RMSE, MAE, and Brier score imply 
higher predictive accuracy, while lower AUC values indi-
cate lower predictive accuracy. The 95% confidence inter-
val (CI) for each AUC estimate was obtained through 
nonparametric bootstrapping with 1,000 replicates via 
the R package “boot” version 1.3–28.1 [18]. 

Results
Patient characteristics
The analysis cohort consisted of 867 ivacaftor-treated 
patients with CF who had a total of 45,540 PFTs over the 
study timeframe. Patients typically entered the study as 
adolescents with ivacaftor initiation in early adulthood 
(Table  1). There were slightly more males than females 
(53.1% versus 46.9%). Most patients had pancreatic insuf-
ficiency, reported Medicaid insurance use, and had lung 
infections with MRSA or Pa during the follow-up period. 
Slightly more than half of all patients developed CFRD. 
There was a total of 11,328 FIES events, which occurred 
in 27% and 25% of observations before and after ivacaftor 
initiation, respectively.

Prediction model
In the final model, ivacaftor initiation was associated 
with a change in absolute FEV1pp and a slower rate of 
decline in FEV1pp (Table 2). The estimated improvement 

Table 1  Characteristics of Ivacaftor-Treated Cohort*
Characteristics Total Number 

of Patients
(N = 867)

Age at entry 14.7 (6.00–68.5)
Age at ivacaftor initiation 21.6 (6.19–68.7)
FEV1pp at entry 83.7 (18.0–140)
Sex
Female 407 (46.9%)
Male 460 (53.1%)
Birth Cohort
<1968 37 (4.3%)
[1968,1982) 131 (15.1%)
[1982,1996) 377 (43.5%)
>1996 322 (37.1%)
Pancreatic insufficiency 828 (95.5%)
Medicaid insurance use
At entry 371 (42.8%)
Ever during follow-up 763 (88.0%)
MRSA infection
At entry 65 (7.5%)
Ever during follow-up 490 (56.5%)
Pa infection
At entry 205 (23.6%)
Ever during follow-up 699 (80.6%)
CFRD
At entry 38 (4.4%)
Ever during follow-up 449 (51.8%)
Duration of follow-up per patient 12.36 

(1.04–15.96)
Number of observations over follow-up per patient 48 (5–204)
*Entry refers to the first available clinical encounter for each patient in the 
analysis cohort. Continuous and categorical variables are summarized as 
mean (minimum – maximum) and frequency (%), respectively). Abbreviations: 
CFRD = cystic fibrosis-related diabetes; FEV1pp = percent predicted forced 
expiratory volume in 1  s; MRSA = methicillin-resistant Staphylococcus aureus; 
Pa = Pseudomonas aeruginosa

Fig. 2  Dataflow for model fitting and validation. The overarching analysis 
cohort (the first level) was segmented into training and testing cohorts 
(the second level). The training cohort was further split into a cohort for 
model fitting and a masked cohort for forecast validation (the third level)
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in FEV1pp was 4.89% predicted (95% CI: 3.90 to 5.89). 
The rate of decline was reduced by 0.14% predicted/year 
(95% CI: 0.01 to 0.27). The overall rate of FEV1pp decline 
throughout the follow-up period was 0.61% predicted/
year (95% CI: 0.84 to 0.37). Those who had more outpa-
tient visits before entering the study and males tended 
to have higher absolute FEV1pp values. Pancreatic 
insufficiency, older age at study entry, a history of more 
frequent pulmonary exacerbations prior to the study, 
infection with MRSA or Pa, CFRD, and use of Medicaid 
insurance corresponded to lower absolute FEV1pp val-
ues. In model selection, these covariates were not associ-
ated with an accelerated rate of decline in FEV1pp. The 
final model also indicated high between-patient variabil-
ity (quantified as the estimated standard deviation [SD] 
and 95% CI, which were  8.10 and 7.59 to 8.57, respec-
tively). The changes in absolute FEV1pp corresponded to 
a meaningful increase and slower decline after ivacaftor 
initiation (Fig. 3). Carrying forward the projected rate of 

decline from the pre-ivacaftor initiation period (the light 
blue dashed line), there were differences between the 
pre- and post-ivacaftor initiation trajectories with non-
overlapping 95% CIs (comparing the light blue dashed 
line with the darker blue solid line during the post-iva-
caftor period).

Predictive accuracy
The selected model presented a reasonable predictive 
performance for both the FEV1pp outcome and FIES 
events (Table  3). It achieved similar predictive accuracy 

Table 2  Parameter Estimates from Ivacaftor-Informed Prediction 
Model
Parameters* Estimate 95% CI SE P
Fixed effect terms
Intercept 82.58 (76.81, 88.35) 2.94 0.00
Time since study entry -0.61 (-0.84, -0.37) 0.12 0.00
Change point, pre- to post-
ivacaftor initiation

4.89 (3.90, 5.89) 0.51 0.00

Time × change point** 0.14 (0.01, 0.27) 0.07 0.04
FEV1pp at study entry 0.74 (0.71, 0.78) 0.02 0.00
Age at study entry -0.16 (-0.32, 0.00) 0.08 0.05
Frequency of acute pulmo-
nary exacerbations within 
prior year

-0.23 (-0.28, -0.18) 0.03 0.00

Number of outpatient visits 
within prior year

0.23 (0.17, 0.29) 0.03 0.00

Pa infection -1.26 (-1.53, -0.99) 0.14 0.00
MRSA infection -1.54 (-1.89, -1.18) 0.18 0.00
CFRD -0.95 (-1.34, -0.56) 0.20 0.00
Male (Ref: female) 0.16 (-1.14, 1.46) 0.66 0.81
Pancreatic insufficiency -0.18 (-0.44, 0.09) 0.14 0.19
Medicaid insurance usage -0.26 (-0.6, 0.07) 0.17 0.12
Born 1982–1996 (Ref: born 
1968–1982)

1.15 (-1.93, 4.23) 1.57 0.47

Born < 1968 0.85 (-3.47, 5.16) 2.20 0.70
Born > 1996 2.45 (-1.57, 6.48) 2.05 0.23
Variance terms
Between patient variability 65.58 (57.67, 73.48) 4.03
Within patient variability 5.16 (4.78, 5.54) 0.19
Residual variability 67.65 (66.58, 68.71) 0.54
*Coefficient estimates of fixed effects should be combined across other 
covariates to find average estimate of absolute FEV1pp. Positive estimates for 
main effects terms correspond to increase in FEV1pp. Positive estimates for 
interaction terms imply increase in slope of FEV1pp (i.e., less rapid decline). 
Abbreviations: CI=confidence interval;  CFRD = cystic fibrosis related diabetes; 
FEV1pp = forced expiratory volume in 1  s of % predicted; MRSA = Methicillin 
resistant Staphylococcus aureus; Pa = Pseudomonas aeruginosa

Table 3  Predictive performance of the model*
FEV1pp FIES

Cohort (N) RMSE (SD) MAE (SD) Brier 
Score 
(SD)

AUC (95% 
CI)

Fitting cohort(N = 694) 7.34 (0.08) 5.19 (0.06) 0.14 (0) 0.83 
(0.83,0.83)

Masking cohort (N = 694) 6.78 (0.20) 4.48 (0.1) 0.12 (0) 0.90 
(0.89,0.9)

Testing cohort (N = 173) 7.31 (0.29) 5.16 (0.21) 0.14 
(0.01)

0.83 
(0.83,0.84)

*Average values obtained from 5-fold cross-validation, including standard 
deviation shown for RMSE, MAE, and Brier scores. Abbreviations: CI=confidence 
interval; FEV1pp = forced expiratory volume in 1 s of % predicted; FIES = FEV1-
Indicated Exacerbation Signal

Fig. 3  Population-level estimate of lung function trajectories and 95% 
confidence bands for the pre-ivacaftor trend (lightly shaded curve, ex-
tended to show the projected rate of decline without ivacaftor initiation) 
versus the post-ivacaftor trend (darker shaded curve). The outcome was 
measured as the percent predicted forced expiratory volume in 1 s (FE-
V1pp, y-axis) observed over the follow-up time (in years, x-axis). The start 
of the darker blue curve (vertical dashed line) corresponds to ivacaftor 
initiation

 



Page 6 of 9Zhou et al. Respiratory Research          (2024) 25:187 

for FEV1pp across the different segments of the analy-
sis cohort, which were formed to carry out the different 
types of validation, indicating the ability of the model to 
predict data in real time and to forecast data accurately. 
In the case of FIES events, the Brier Score consistently 
remained low across all cohorts, which are indicative of 
better-calibrated predictions. The AUC (over 80%) indi-
cated high levels of predictive accuracy, with the highest 
accuracy in the masked cohort and similar levels of accu-
racy in the fitting and independent testing cohorts.

Dynamic predictions
To further illustrate the model’s predictive performance 
at an individual patient level, we evaluated the predic-
tive probability of FIES events for two randomly selected 
patients from the training set (Fig. 4). The top row shows 
a female CF patient. Her trajectory was variable through-
out both the pre- and post-ivacaftor initiation periods 
(represented by light blue and dark blue shaded trajec-
tories, respectively). She experienced a series of FIES 
events over both periods. The gray area shows the 95% 
confidence band for projected estimates of FEV1pp and 
the trend during the 6-month held-out timeframe. Her 
predictive probability of FIES events also varied signifi-
cantly during both the pre- and post-ivacaftor initiation 
periods. The model accurately projected an elevated risk 

of FIES events during periods in which they occurred, 
including in the yellow-shaded prediction intervals for 
the 6-month held-out timeframe. The male CF patient in 
the bottom row had a more stable FEV1pp trajectory that 
exhibited more gradual increases, with a FIES risk that 
increased over time.

We similarly showed individual trajectories for patients 
who were in the independent testing cohort (Fig. 5). The 
female CF patient with data and predictions displayed in 
the top row experienced a more gradual FEV1pp decline 
over the follow-up period with relatively few FIES events. 
Although this patient did not contribute data to the 
model development, since she was in the testing cohort, 
her projected low risk of FIES was accurate (based on the 
cut point for predictive probabilities from the receiver 
operating characteristic analysis). The male CF patient in 
the bottom row appears to have benefited from ivacaftor 
initiation, as evidenced by the overall increase in FEV1pp 
and slower rate of FEV1pp decline.

Robustness of predictive performance across models
The individual predictive performance of the models 
tended to be invariant under different combinations of 
covariates. To evaluate the robustness of predictive per-
formance across models, we performed simulation stud-
ies that support this conclusion (see supplemental Part 

Fig. 4  Dynamic predictions from the training cohort shown for a female patient with baseline age 9.36 years (first row) and a male patient with baseline 
age 31.2 years (second row). Left panel: observed FEV1pp against time with estimated values, 95% CI, and six-month forecasted lung function; gray 
shaded area shows estimation for 6-month held-out data. Right panel: predictive probabilities of FIES, including observed FIES events, predicted prob-
ability, and bootstrapped 95% CI. Abbreviations: CI = confidence interval; IVA = ivacaftor
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1, Section IV a, for further details). From the results, we 
found that to choose the “best” model, we should rely on 
model information criteria (AIC and BIC) rather than 
accuracy metrics because in some cases, both correctly 
and incorrectly specified models presented similar, small 
predictive errors, but their AIC and BIC values were dis-
tinct. In addition, in cases with extremely poor model 
performance (i.e., extremely large RMSE or AIC/BIC), 
we found that examining different variance-covariance 
structures improved performance. Across these alterna-
tive models, all those with the ivacaftor initiation period 
as a covariate had both higher AIC and BIC values (see 
Supplement Part 1, Section IV b).

Discussion
This study found that dynamic prediction models from 
the pre-CFTR modulator era can be effectively adapted 
to characterize ivacaftor responsiveness in people with 
CF while providing accurate, individualized predictions 
of precipitous drops in lung function that may provide 
an early signal for the onset of a pulmonary exacerbation. 
We developed a novel target function to predict FIES 
events, which serve as data-driven surrogates intended 
to standardize pulmonary exacerbation definitions 
and enhance early detection. Moreover, the findings 

demonstrate that FIES events were equally prevalent 
before and after ivacaftor initiation, highlighting the need 
for lung function monitoring even after a modulator is 
initiated.

Parameter estimates from this model echoed the short-
term ivacaftor benefits on FEV1pp that were observed 
in prior studies, along with the potential for dwindling 
effects. While we observed a 23% reduction in the rate 
of FEV1pp decline with ivacaftor initiation, this reduc-
tion was less substantial than in the Canadian CF reg-
istry study, which included a wider variety of mutation 
types [3]. However, the lack of consensus on a minimal 
clinically important difference for FEV1pp as a CF clini-
cal trial endpoint makes it challenging to determine the 
clinical relevance of observed differences [19]. Another 
prospective multi-center study that included only G551D 
patients treated with ivacaftor found an average post-iva-
caftor initiation decline of 1.22% predicted/year over the 
5.5-year study period, which is steeper than our current 
study estimate. Despite these differences, which may be 
attributable to differences in cohort definitions, covariate 
information, or model structure, the dynamic prediction 
model developed in the current study was able to esti-
mate lung function trajectory and FIES-defined drops 
accurately at the individual patient level. Perhaps more 

Fig. 5  Dynamic predictions from the independent test validation cohort for a female patient with baseline age 48.8 years (first row) and a male patient 
with baseline age 15.4 years (second row). Left panel: observed FEV1pp against time with estimated values, 95% CI, and six-month forecasted lung 
function. Right panel: predictive probabilities of FIES, including observed FIES events, predicted probability, and bootstrapped 95% CI. Abbreviations: 
CI = confidence interval; IVA = ivacaftor
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importantly, the current study sought to develop an accu-
rate prediction model that allows projections after initia-
tion rather than estimating ivacaftor effects; explaining 
and predicting are viewed in statistical modeling as 
requiring two different approaches [20]. For the purposes 
of real-time lung function monitoring and clinical sur-
veillance, the dynamic prediction model and predictive 
probabilities of FIES can be embedded into existing pre-
diction tools that have relied on frameworks established 
prior to the availability of CFTR modulators [21]. 

Although the current study focused only on ivacaftor 
use among individuals with a G551D mutation, highly 
effective modulator therapy is now available for many 
CF patients with other ivacaftor-responsive variants 
(10–15% of patients) and/or a copy of the most common 
CFTR variant, F508del corresponding to treatment with 
elexacaftor/tezacaftor/ivacaftor therapy (currently total-
ing 94% of the U.S. population, given latest FDA approv-
als) [22–24]. Available short-term clinical effectiveness 
studies of elexacaftor/tezacaftor/ivacaftor suggest sub-
stantial improvements over a 6-month period (increase 
in FEV1: 9.76 [8.76, 10.76]% predicted) [25–27]. These 
studies also indicated response heterogeneity within sub-
groups (the improvement ranged from 6.14 to 10.84% 
predicted depending on prior use of another modulator). 
Challenges to evaluating the robustness of prediction 
models for patients on elexacaftor/tezacaftor/ivacaftor 
include limited post-approval follow-up and less fre-
quent PFTs during 2020 and part of 2021, which could 
be attributed to COVID-19 pandemic restrictions or the 
positive pulmonary impacts of the therapy itself [28]. 

While our retrospective analysis provides valuable 
insights, it is essential to acknowledge the absence of pro-
spective validation. The broad uptake of the newest mod-
ulator, elexacaftor/tezacaftor/ivacaftor, which coincided 
with the COVID-19 pandemic era, brings about the need 
for assessing its effectiveness in new data and mitigat-
ing the risk of overfitting to historical data. Future work 
should prioritize prospective validation and adjust our 
approach based on its performance in practical settings 
to account for other modulator use and the pandemic. 
Our study uses an accurate prediction model to identify 
FIES events, which correspond to a universal definition 
of what constitutes a decline in FEV1pp. However, real-
world diagnoses of pulmonary exacerbations may con-
sider changes in symptoms or other clinical factors, such 
as weight. A symptom-indicated exacerbation score has 
also been considered, as well as standardizing home exac-
erbation detection [12]. The prediction model framework 
presented here could be extended to incorporate weight 
thresholds, e.g., changes in body mass index over time, as 
another element of the target function. More novel statis-
tical methodology is required to implement bivariate tar-
get functions, but this represents an important research 

direction for clinical monitoring in the post-modulator 
era.

Conclusions
The methods and applications of dynamic prediction 
models developed using pre-CFTR modulator data have 
the potential to inform post-CFTR modulator projec-
tions of lung function and enhance clinical surveillance 
in the new era of CF.
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