
Environment International 186 (2024) 108604

Available online 26 March 2024
0160-4120/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full length article 

Nitrogen dioxide exposure, attentional function, and working memory in 
children from 4 to 8 years: Periods of susceptibility from pregnancy 
to childhood 

Kellie L.H.A. Crooijmans a,b,c, Carmen Iñiguez c,d,e, Kristina W. Withworth f, 
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A B S T R A C T   

Background: Air pollution exposure during pregnancy and childhood has been linked to executive function 
impairment in children, however, very few studies have assessed these two exposure periods jointly to identify 
susceptible periods of exposure. We sought to identify potential periods of susceptibility of nitrogen dioxide 
(NO2) exposure from conception to childhood on attentional function and working memory in school-aged 
children. 
Methods: Within the Spanish INMA Project, we estimated residential daily NO2 exposures during pregnancy and 
up to 6 years of childhood using land use regression models (n = 1,703). We assessed attentional function at 4–6 
years and 6–8 years, using the Conners Kiddie Continuous Performance Test and the Attention Network Test, 
respectively, and working memory at 6–8 years, using the N-back task. We used distributed lag non-linear models 
to assess the periods of susceptibility of each outcome, adjusting for potential confounders and correcting for 
multiple testing. We also stratified all models by sex. 
Results: Higher exposure to NO2 between 1.3 and 1.6 years of age was associated with higher hit reaction time 
standard error (HRT-SE) (0.14 ms (95 % CI 0.05; 0.22) per 10 μg/m3 increase in NO2) and between 1.5 and 2.2 
years of age with more omission errors (1.02 (95 % CI 1.01; 1.03) of the attentional function test at 4–6 years. 
Higher exposure to NO2 between 0.3 and 2.2 years was associated with higher HRT-SE (10.61 ms (95 % CI 3.46; 
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17.75) at 6–8 years only in boys. We found no associations between exposure to NO2 and working memory at 
6–8 years. 
Conclusion: Our findings suggest that NO2 exposure during the first two years of life is associated with poorer 
attentional function in children from 4 to 8 years of age, especially in boys. These findings highlight the 
importance of exploring long-term effects of traffic-related air pollution exposure in older age groups.   

1. Introduction 

Air pollution has been widely recognized as one of the main global 
environmental public health hazards and it is the largest environmental 
health risk in Europe (European Environment Agency (EEA)., 2022; 
McDuffie et al., 2021). Within the European Union, particulate matter 
with a diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and 
ozone (O3) were together responsible for an estimated 311,000 prema-
ture deaths in 2020 (European Environment Agency (EEA)., 2022). 
Children, a particularly vulnerable subset of the population, are 
disproportionately impacted by the consequences of air pollution. 
Alarmingly, 93 % of children worldwide reside in areas exceeding World 
Health Organization air quality guidelines (World Health Organization, 
2018). During pregnancy, the placenta offers only limited protection 
from the influx of environmental toxicants and the foetus’ detoxification 
systems are still immature (Liu et al., 2021; Rice & Barone, 2000). 
Consequently, when the mother is exposed to air pollution, air pollut-
ants may affect the foetal brain development as a result of oxidative 
stress and systemic inflammation, resulting in persistent neuro-
inflammation, microglia activation, and neuronal migratory damage 
(Block et al., 2012; Ghazi et al., 2021). Postnatally, children remain 
susceptible to adverse health effects from air pollution due to rapid 
organ development and increased vulnerability to inflammation and 
oxidative stress-related damage (Brumberg et al., 2021). Moreover, 
children inhale more air per unit of body weight and have a longer 
lifespan, allowing latent diseases to manifest (Brumberg et al., 2021). 

There has been growing concern about the effects of air pollution 
exposure on brain development, particularly in children (Health Effects 
Institute Panel on the Health Effects of Long-Term Exposure to Traffic- 
Related Air Pollution, 2022). An important component of brain devel-
opment that might be affected by air pollution is executive function. 
Executive function generally refers to a range of cognitive processes, 
including planning, working memory, attentional function, cognitive 
flexibility, and inhibitory control, that manage and control actions, 
thoughts, and emotions to achieve a goal or objective (Gartland et al., 
2022). These cognitive processes emerge early in life and have a critical 
period of development from an age of 6 to 10 years (Gui et al., 2020). 
Executive functions are especially important for academic achievement, 
social functioning, and they form the basis of a child’s ability to learn 
(Gartland et al., 2022). A recent systematic review on the effects of air 
pollution on neurodevelopmental skills in preschool- and school-aged- 
children found that air pollution has a deleterious influence on both 
executive function and academic achievement during childhood (Cas-
tagna et al., 2022). The findings suggest a particularly pronounced as-
sociation between air pollution exposure during pregnancy and 
executive function, but some adverse effects are also seen with exposure 
during childhood (Castagna et al., 2022). Chiu et al. (2016) examined 
susceptible periods of prenatal air pollution exposure on executive 
functions and found susceptible periods between mid and late preg-
nancy, however they did not include childhood in their analyses. Rivas 
et al. (2019) were the first to our knowledge studying susceptible pe-
riods from conception till an age of 7 years and found periods of sus-
ceptibility between 5 and 7 years of age. Exploring susceptible periods of 
exposure is important because this can avoid potential biases inherent in 
earlier studies stemming from the averaging of extended intervals and 
inadequate adjustments across diverse time segments (Buckley et al., 
2019). Furthermore, associations at different time intervals may eluci-
date specific biological mechanisms rooted in known underlying 

developmental processes, such as the intricate neural pathways 
encompassing brain regions in development and neural processes 
(Buckley et al., 2019). Chiu et al. (2016) and Rivas et al. (2019) also 
observed that sex-differential susceptibility played a significant role in 
the association of air pollution with executive function. For instance, 
Chiu et al. (2016) identified an association of air pollution with atten-
tional function, particularly in boys, while Rivas et al. (2019) found an 
association with working memory, specifically in boys. This could be 
explained by enhanced regulation of oxidative stress balance in the fe-
male brain (Guevara et al., 2009). 

Therefore, this study aims to identify potential periods of suscepti-
bility to NO2 exposure from conception to early childhood on attentional 
function at the age of 4 to 6 years and 6 to 8 years, and working memory 
at the age of 6 to 8 years. 

2. Methods and materials 

2.1. Study population 

We utilized data from the INfancia y Medio Ambiente (INMA) Proj-
ect, a Spanish-based multi-site prospective birth cohort that recruited 
pregnant women from 1997 to 2008 to explore pre- and post-natal 
environmental effects on child health, growth, and development (Gux-
ens et al., 2012). Women were included during the first trimester of 
pregnancy and had to meet the following criteria: (1) resident in one of 
the study areas, (2) minimum age of 16 years, (3) a singleton pregnancy, 
(4) no programme for assisted reproduction, (5) intent to deliver in the 
recruitment hospital, (6) first pre-natal visit between 10 and 13 weeks of 
gestation, and (7) no communication problems. In this study, we 
included data from pregnant women and their children from the regions 
of Asturias, Gipuzkoa, Sabadell, and Valencia, who were enrolled be-
tween the years 2003 and 2007 based on data availability, comprising a 
total of 2,764 women (Supplemental Material, Figure S1). We included 
mother-infant pairs with children born after 32 weeks of gestation that 
had a complete exposure assessment from conception to the child́s age of 
4 years (for neuropsychological assessment at ages 4 to 6 years) or to the 
child́s age of 6 years (for neuropsychological assessment at ages 6 to 8 
years), and assessment of at least one outcome at ages 4 to 6 years or 6 to 
8 years. This resulted in an inclusion of 1,703 mother–child pairs in the 
present analysis (Supplemental Material, Figure S1). The INMA Project 
was approved by the ethics committees of the different reference hos-
pitals and informed consent regarding the prenatal period was collected 
from all mothers and in each phase of the childhood period further 
consent was collected by one of the parents or a legal representative. 

2.2. Assessment of the exposure to NO2 

We estimated residential exposure to NO2 for each participant using 
temporally-adjusted land use regression (LUR) models based on a stan-
dardized method that has been described previously (Estarlich et al., 
2011). Briefly, NO2 levels were measured during numerous 7-days 
sampling periods using passive samplers distributed throughout the 
study areas according to geographic criteria. NO2 levels were measured 
during times covering the gestational periods of women recruited in 
each region as well as when children were around 4 years or age in the 
Gipuzkoa and Valencia regions. We estimated annual NO2 levels at each 
participant’s home address with LUR models using predictor variables 
such as distance to local sources of pollution, land coverage, population 
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density, roads, and topography, taking into account the residential 
mobility of participants during pregnancy and childhood. For each 
participant, to enhance temporal precision, we utilized daily data from 
background monitoring sites to extrapolate the air pollution levels to the 
specific residency periods at each address (Brunekreef, 2012). This 
approach resulted in daily air pollution levels for all addresses where 
participants resided from conception until the time of the neuropsy-
chological assessment. Subsequently, daily levels were combined as 
arithmetic averages providing exposure levels for periods of 4-weeks for 
the entire pregnancy and for childhood from birth until 6 years old. We 
considered that 4-week periods of exposure had sufficient fine temporal 
resolution for identifying windows of susceptibility in our time series 
analysis. 

2.3. Attentional function 

To assess the attentional function of the children, two different 
validated computerized tests were used. When children were 4 to 6 years 
of age, attentional function was measured using the 2nd edition of the 
Conners Kiddie Continuous Performance Test (K-CPT) (Conners, 2015) 
and when children were 6 to 8 years of age, the Attention Network Test 
(ANT) was administered (Forns et al., 2014; Posner, 2017). In the K-CPT, 
children responded swiftly to images on a computer screen, pressing the 
space bar unless the image depicted a ball. In the ANT, children indi-
cated the direction a central fish was pointing using arrow keys. For both 
tests, the primary outcomes of interest were: the hit reaction time (HRT), 
a measure of speed processing, for correct targets; the hit reaction time 
standard error (HRT-SE), a measure of speed consistency throughout the 
test, for correct targets; and the number of omission errors, which is the 
absence of answers to targets, a measure of selective attention. We 
additionally evaluated the number of commission errors, which is an 
incorrect answer to non-targets, a measure of impulsivity, for the K-CPT; 
we did not have enough variability in the commission errors of the ANT, 
so we did not include this outcome in these analyses. Higher scores in all 
the aforementioned outcomes indicate a poorer attentional function. 

2.4. Working memory 

To evaluate the working memory of the children at an age of 6 to 8 
years, the N-Back Task was used (Coulacoglou & Saklofske, 2017). This 
task involved tracking numbers or colours on a laptop screen and 
responding when a presented number or colour matched the number or 
colour from one to three trials earlier (1-back to 3-back) (Forns et al., 
2014). We used the d prime (d’) and HRT as the main outcomes of the N- 
Back Task. D’ is a measure of detection derived from signal detection 
theory computed by subtraction of the z-score of the false alarm rate 
(incorrect answers to the non-targets) from the z-score of the hit rate 
(correct answers to the target) (Forns et al., 2014). HRT was only 
captured when the child correctly responded to the targets and is a 
measure of speed processing. In this study, we evaluated the 3-back load 
of both the numbers and colours tests, to assess the highest demands on 
working memory. Thus, we used 4 outcomes, namely, d’ and HRT for the 
3-back test of numbers and colours. A lower d’ indicates less accurate 
test performance, that is to say, poorer working memory function. A 
higher HRT indicates lower brain processing velocity, as it means poorer 
working memory function. 

2.5. Potential confounding variables 

Interviewer-administered questionnaires were carried out during 
pregnancy and at child’s age of 4 years (Guxens et al., 2012) to collect 
information on a range of covariates. Existing literature was used to 
select potential confounding variables (Chen et al., 2023; Julvez et al., 
2021; Sentís et al., 2017; Sunyer et al., 2015) for the present study. 
Based upon this evidence and availability of the data, a direct acyclic 
graph (DAG) (Supplemental Material, Figure S2) was used to inform 

variables to be included in our models (Weisskopf et al., 2015.). We 
included the following variables informing about the socioeconomic 
status of the family: maternal and paternal education level at enrolment 
(primary / secondary / higher); parental social class during pregnancy 
defined from the Spanish adaptation of International Standard Classifi-
cation of Occupations (ISCO88) (managers & technicians / skilled 
manual & non-manual / semiskilled & unskilled & others); and maternal 
and paternal country of birth (Spain / foreign). Furthermore, we 
included the variable maternal intelligence quotient, assessed at child’s 
age 4 to 6 using the Wechsler Adult Intelligence Scale, third edition 
(continuous). Related to the parental health and lifestyle we included 
the following variables: maternal and paternal age at enrolment (years); 
month and year of conception; maternal parity at birth (nulliparous / 
multiparous); maternal pre-pregnancy body mass index (BMI) (kg/m2); 
paternal BMI (kg/m2); maternal smoking during pregnancy (never / 
stopped when pregnancy known / continued); second-hand smoke 
exposure at home during pregnancy (yes / no); alcohol consumption 
during pregnancy (yes / no); maternal mean daily consumption of lean 
fish, large fatty fish, and fruit and vegetables at 12 weeks of pregnancy 
(high / medium / low); and maternal intake and supplementation of 
folic acid at 12 weeks of pregnancy (high / medium / low). In addition, 
maternal circulating blood levels of vitamin D were measured during the 
first trimester of pregnancy and deseasonalized (ηg/mL) (Morales et al., 
2012). Related to the child’s characteristics the following covariates 
were collected: exact age of child at the neuropsychological assessment 
(years) and the child’s biological sex at birth (female / male). Finally, 
regarding residence characteristics the following confounding variables 
were obtained: urbanicity of the living area at birth (urban / semi-urban 
and rural); normalized difference vegetation index (NDVI) during 
pregnancy, a near-infrared spectroscopy index and indicator of resi-
dential surrounding greenness within 300 m; cooking stove (electricity / 
other); and heating gas appliances at home (yes / no). We did not 
include marital status as a confounding variable in our models due to its 
low variability (Table 1). 

2.6. Statistical analyses 

Missing values of covariates ranged from 0.1 to 9.8 %. These missing 
values were imputed to mitigate attrition bias and enhance research 
validity (Sterne et al., 2009), utilizing the expectation–maximization 
algorithm (Amelia R package). We assumed that the variables were 
missing at random and the imputed values resembled original dataset 
distributions (Supplemental Material, Table S1, S2 and S3). As only 
participants with available exposure and outcome data were studied, 
inverse probability weighting was used to account for potential selection 
bias (Seaman & White, 2013). Parents of included participants were 
more likely to have higher education, higher social class, and be Span-
ish, as compared to parents of participants that were not included 
(Supplemental Material, Table S4, S5 and S6). We imputed missing 
values for all eligible subjects (N = 2764) and identified covariates 
associated with likelihood of participation, utilizing their inverse 
probabilities for calculating the weights. This approach ensured repre-
sentativeness of the initial cohort, addressing underrepresentation of 
characteristics of subjects who were lost to follow-up (Seaman & White, 
2013; Weuve et al., 2012). Imputation and inverse probability weighting 
were performed for each region and outcome separately. 

To explore the susceptible periods of exposure to NO2 on the studied 
outcomes we used distributed lag non-linear models (DLNM). These 
models depict exposure-outcome relationships across time, addressing 
limitations of analysing averaged exposures over prolonged periods 
(Gasparrini, 2014). We selected a linear shape for all exposure–response 
relationships after visually inspecting the association of each averaged 
exposure during the whole pregnancy and childhood period with each 
outcome. We employed a natural cubic B-spline with a lag-response 
intercept, assuming smooth variation in exposure-outcome association 
across lags, with a 4-week period lag. All children were assigned 9 4- 
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week prenatal lags since exposures during pregnancy were considered 
having the same length. For children born between 33 and 36 gesta-
tional weeks, the 9th 4-week lag included exposures averaged across 
fewer than 4 weeks; exposures beyond 36 weeks were disregarded. The 
childhood period comprised from birth until the age of 4, when we 
assessed K-CPT (i.e., attentional function test at 4 to 6 years), and from 
birth until the age of 6, when we assessed ANT and N-back (i.e., atten-
tional function and working memory tests at 6 to 8 years), corresponding 
to 52 4-week lags and 78 4-week lags, respectively. We considered both 
prenatal and childhood exposures as a continuous temporal frame, due 
to the high correlation between the periods. Since there is no a priori 
knowledge of the number and location of knots in the cross-basis matrix, 
we decided the number and location of knots by visual inspection. To do 
that, we conducted individual adjusted linear or negative binomial re-
gressions for each exposure lag and the continuous (i.e., HRT and HRT- 
SE for attentional function and d’ and HRT for working memory) or 
count outcomes (i.e., commissions and omissions for attentional func-
tion), respectively. We then plotted each of the beta coefficients along 
with their 95 % confidence intervals (CIs) for each lag. Three researchers 
(ACB, KLHAC, MG) assessed these plots independently, considering 
slope changes and the parsimony principle, reconciling knot placements 
through discussion (Martin & Hine, 2008). For outcomes of attentional 
function at ages 4 to 6 years and working memory at ages 6 to 8 years, no 
knots were placed; for attentional function at ages 6 to 8 years, a knot 
was placed at lag 51 (Supplemental material, Figure S3 and S4). After 
running the DLNMs, we identified susceptible periods to NO2 exposure 
of attentional function and working memory as consecutive periods 
where the 95 % CIs excluded the null. The DLNMs were conducted after 
pooling the data from all regions, adjusting for region and all other 
covariates listed above, and executed using the R package “dlnm”. 

Lastly, we explored potential sex-specific effects by stratifying all 
analyses based on the child’s biological sex. The p-values for all analyses 
were adjusted for multiple testing, considering 1 exposure, 7 attentional 
function indicators, and 4 working memory indicators. To estimate the 
effective number of tests and the independence among different out-
comes and exposure, we extracted eigenvalues from individual-level 

Table 1 
Characteristics of the study population for each outcome assessment.  

Variable Distribution at 
K-CPT (n ¼
1253) 

Distribution at 
ANT (n ¼
1476) 

Distribution at 
N-back (n ¼
1407) 

Child́s gender (female 
vs. male) 

50.8 49.9 48.5 

Maternal age at 
enrolment (years) 

30.9 (4.0) 31.1 (4.0) 31.1 (3.9) 

Paternal age at 
enrolment (years) 

32.9 (4.8) 33.2 (4.8) 33.1 (4.8) 

Maternal parity 
(nulliparous vs. 
multiparous) 

57.6 58.1 58.5 

Maternal educational level at enrolment 
Primary or lower 21.5 18.7 19.2 
Secondary 41.9 41.2 41.3 
Higher 36.6 40.1 39.5 
Paternal educational level at enrolment 
Primary or lower 35.1 31.4 32.1 
Secondary 43.4 45.0 44.3 
Higher 21.5 23.6 23.6 
Maternal IQ score 99.4 (15.0) 100.2 (14.7) 99.9 (14.7) 
Maternal social class during pregnancy 
Managers & 

Technicians 
23.8 25.8 25.7 

Skilled manual & non- 
manual 

27.0 26.8 26.4 

Semiskilled & unskilled 
& others 

49.2 47.4 47.9 

Paternal social class during pregnancy 
Managers & 

Technicians 
20.3 22.2 22.3 

Skilled manual & non- 
manual 

18.9 18.4 18.4 

Semiskilled & unskilled 
& others 

60.8 59.4 59.3 

Maternal country of 
birth (Spain vs. 
others) 

94.0 94.9 95.2 

Paternal country of 
birth (Spain vs. 
others) 

93.2 94.3 94.1 

Marital status (Parents 
living together vs. 
parents not living 
together) 

98.9 99.0 98.9 

Maternal pre- 
pregnancy BMI (kg/ 
m2) 

23.5 (4.2) 23.4 (4.1) 23.5 (4.1) 

Paternal BMI at 
enrolment (kg/m2) 

26.0 (3.5) 26.0 (3.4) 26.0 (3.4) 

Maternal smoking during pregnancy 
Never 46.2 47.7 47.6 
Stopped when 

pregnancy known 
23.0 23.3 23.2 

Continued 30.8 29.0 29.2 
Maternal second-hand 

smoke exposure 
during pregnancy 
(yes vs. no) 

29.8 27.2 28.0 

Maternal alcohol 
consumption during 
pregnancy (yes vs. 
no) 

12.3 11.4 11.6 

Maternal 
deseasonalized blood 
levels of vitamin D 
during pregnancy 
(ηg/mL) 

0.6 (10.9) 0.01 (10.7) 0.01 (10.7) 

Maternal total folic acid intake and supplementation during pregnancy 
High (>1000 μg/day) 36.9 39.5 38.8 
Medium (400–1000 

μg/day) 
49.9 46.6 46.8 

Low (<400 μg/day) 13.2 13.9 14.4  

Table 1 (continued ) 

Variable Distribution at 
K-CPT (n ¼
1253) 

Distribution at 
ANT (n ¼
1476) 

Distribution at 
N-back (n ¼
1407) 

Maternal consumption 
of lean (white) fish 
during pregnancy       

High 31.0 33.7 33.6 
Medium 34.9 34.1 34.3 
Low 34.1 32.2 32.1 
Maternal consumption large fatty (blue) fish during pregnancy 
High 34.6 34.9 35.0 
Medium 33.3 33.9 34.1 
Low 32.1 31.2 30.9 
Maternal consumption of fruit and vegetables during pregnancy 
High 29.6 33.5 33.3 
Medium 34.7 34.1 34.0 
Low 35.7 32.4 32.7 
Cooking stove 

appliances at home 
(electricity vs. 
others) 

55.8 59.9 60.3 

Heating with gas at 
home (yes vs. no) 

54.8 59.5 59.6 

Urbanicity of the living 
area (urban vs. 
semiurban/rural) 

82.3 80.6 81.2 

Residential 
surrounding 
greenness within 
300 m 

0.3 (0.1) 0.3 (0.1) 0.3 (0.1) 

Values are percentages for categorical variables and mean (standard deviation) 
for continuous variables. 
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phenotype data matrix using the meff function from the R package 
“poolr”. The effective test count was estimated at 9 out of 11 outcomes, 
following Galwey’s recommended approach (Galwey, 2009). This led to 
a new p-value threshold of 0.006 (=0.05/9). All statistical analyses were 
executed using R (version 4.3.0; R Development Core Team). 

3. Results 

3.1. Characteristics of the study population 

The characteristics of the included mother–child pairs are shown in 
Table 1. Approximately half of the children were female. Pregnant 
women were on average 31.0 years old at the time of recruitment, with 
an age range between 16 and 43 years old, 3 of them under 18 years old, 
and 4 between 18 and 20 years old. Fathers were on average 33.1 years 
old, with an age range between 17 and 64 years old, 1 of them under 18 
years old, and 3 between 18 and 20 years old. Maternal education varied 
from 20.7 % completing primary education or lower, 41.3 % secondary 
education, and 38 % higher degrees. Fathers’ educational distribution 
differed slightly with 33.3 % completing primary education or lower, 
44.4 % secondary education, and 22.2 % higher degrees. Most mothers 
(94.1 %) and fathers (93.3 %) were born in Spain, with the majority 
residing in urban areas (81.0 %). The distributions of each outcome are 
shown in Table 2. The attentional function outcomes had a low corre-
lation between the two different time points (Supplemental material, 
Figure S5). 

NO2 levels decreased from the conception to childhood period, as 
shown in Fig. 1. For example, the median NO2 concentrations were 27.6 
(interquartile range (IQR) 18.3–39.2) μg/m3 during the first 4 weeks of 
pregnancy, 24.7 (IQR 16.6–34.7) μg/m3 during the last 4 weeks of the 
4th year of life, and 21.0 (IQR 13.8–31.0) μg/m3 during the last 4 weeks 
of the 6th year of life (Fig. 1). The Pearson coefficients between NO2 
concentrations in the different time periods (4-week lags) for the preg-
nancy and childhood period were moderate to high (between 0.46 and 
0.88 for pregnancy and between 0.34 and 0.92 for childhood; Supple-
mental Material, Figure S6 and S7). 

3.2. Association between NO2 and attentional function 

We observed some periods of susceptibility to NO2 for attentional 

function at 4 to 6 years of age after correction for multiple testing 
(Fig. 2). We found that higher NO2 levels between 1.3 and 1.6 years of 
age were associated with higher HRT-SE (0.14 ms (95 % CI 0.05 to 0.22) 
per 10 μg/m3 increase in NO2) and between 1.5 and 2.2 years of age with 
more omission errors (1.02 (95 % CI 1.01 to 1.03) per 10 μg/m3 increase 
in NO2). After stratifying by sex and correcting for multiple testing, we 
observed similar periods of susceptibility to NO2 exposure for higher 
HRT-SE and more omission errors only in boys (Supplemental Material, 
Figure S8). 

We observed no periods of susceptibility to NO2 for attentional 
function at 6 to 8 years in the overall analyses (Fig. 2). However, we 
found a period of susceptibility to NO2 levels between 0.3 and 2.2 years 
for higher HRT-SE (10.61 ms (95 % CI 3.46 to 17.75) per 10 μg/m3 

increase in NO2) at 6 to 8 years only in boys, after correcting for multiple 
testing (Supplemental Material, Figure S8). 

3.3. Association between NO2 and working memory 

We observed no periods of susceptibility to NO2 exposure for 
working memory overall or stratifying by sex (Fig. 3 and Supplemental 
Material, Figure S9). 

4. Discussion 

In this study, we found a susceptible period of NO2 exposure between 
1.5 and 2 years of age for attentional function in 4- to 6-year-olds, and 
another between 0.5 and 2 years of age for attentional function in 6- to 
8-year-olds but only in boys. Exposure to NO2 during pregnancy and 
childhood was not associated with working memory in 6- to 8-year-olds. 

Attentional function is a critical factor in achieving proper devel-
opment of executive functions and the first 10 years of life play a crucial 
role in this development (Garon et al., 2008; Gui et al., 2020). The 
prefrontal cortex, one of the brain regions with the slowest rate of 
development, has been closely linked to executive functions (Garon 
et al., 2008). Since the prefrontal cortex is still in development during 
pregnancy and childhood, it might be especially susceptible to air 
pollution exposure during this period. Animal studies provided evidence 
that the brain reacts to traffic-related emissions with enhanced neuro-
inflammation, oxidative stress responses, and an impaired energy 
metabolism (Salvi et al., 2020; Xu et al., 2022). Different results have 
been published on the association between air pollution and attentional 
function in a large cohort of school-going children in Barcelona, Spain 
(Rivas et al., 2019; Sunyer et al., 2015). Sunyer et al. (2015) found that 
the development of inattentiveness over a 12-month period was reduced 
in children aged 7 to 10 years who were exposed to higher levels of 
traffic-related air pollutants at school, specifically elemental carbon and 
ultrafine particle number, with boys appearing more susceptible. Rivas 
et al. (2019) studied the susceptible periods of residential PM2,5 expo-
sure on attentional function at an age of 7 to 10 years old and identified a 
susceptible period around 6 to 7 years of age. Of note, they did not 
identify a susceptible period at a younger age as we did. This might be 
attributed to employment of year-long lags in their study as opposed to 
our 4-week lags, dissimilar knot placement, exposure to a different air 
pollutant, or a more extended period of exposure. Another study in the 
United States looked at susceptible periods of residential PM2.5 exposure 
only during pregnancy on attentional function in 6- to 7-year-olds and 
found a susceptible period in mid-to-late pregnancy but only in boys 
(Chiu et al., 2016). However, this study did not additionally consider 
exposures experienced in childhood, which would have led to a more 
comprehensive understanding of the exposure windows of susceptibility 
across the entire period of attentional function development in children. 

Neuroplasticity is the central nervous system’s essential dynamic 
biological potential to mature, alter physically and functionally in 
response to experience, and adapt following damage (Ismail et al., 
2017). This mechanism might contribute to attenuation of the associa-
tion between NO2 exposure and attentional function between the two 

Table 2 
Distribution of attentional function and working memory scores.  

Variable Distribution 

Attentional Function Scores at 4–6 years (K-CPT) n = 1253 
Child́s age at test (years) 5.0 (0.7) 
Hit reaction time (ms) 725.86 (135.13) 
Hit reaction time standard error (ms) 30.54 (13.96) 
Omission errors (number) 18 (9, 34) 
Commission errors (number) 21 (13, 29) 
Attentional Function Scores at 6–8 years (ANT) n = 1476 
Child́s age at test (years) 7.7 (0.6) 
Hit reaction time (ms) 936.99 (186.38) 
Hit reaction time standard error (ms) 301.96 (80.65) 
Omission errors (number) 2 (0, 5) 
Working Memory Scores at 6–8 years (N-back) n = 1407 
Child́s age at test (years) 7.6 (0.6) 
3-back numbers n = 1278 
d prime 1.35 (0.86) 
Hit reaction time (ms) 813.19 (258.88) 
3-back colours n = 1213 
d prime 1.20 (0.71) 
Hit reaction time (ms) 824.52 (262.02) 

ANT = Attention Network Test. K-CPT = Connors Kiddie Continuous Perfor-
mance Test. NO2 = Nitrogen Dioxide. 
Values are mean (standard deviation) for normally distributed continuous var-
iables and median (interquartile range) for non-normally distributed continuous 
variables. 
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ages (i.e., 4 to 6 years versus 6 to 8 years), possibly suggesting a delay in 
the maturation of attentional function (Pujol et al., 2016). The slower 
maturation of the male brain might account for the persisting associa-
tion in boys, potentially due to a reduced safeguarding effect of neuro-
plasticity, resulting in a prolonged adverse impact on attentional 
function (Laureys et al., 2021). However, the older age range (i.e., 7–10 
years) of participants in the study by Sunyer et al. (2015) suggests that 
the observed effect is less likely to be completely attenuated by age- 
related factors in our younger cohort. For future studies, a longitudi-
nal approach is essential to unravel the interplay of age and sex differ-
ences in the association between air pollution and attentional function, 
including exploration of associations among older age groups. 

Working memory is another important task of executive function 
that requires maintaining and manipulating information through time 
delays, especially in the presence of interruption (Gilbert & Burgess, 
2008). Working memory evolves in the same brain regions as attentional 
function, however, the rapid development happens later in childhood 
(Anderson, 2002). Lertxundi et al. (2019) examined the relationship 
between prenatal NO2 and PM2.5 exposure and working memory in 
children from the INMA Project aged 4 to 6 years, revealing an associ-
ation only in boys for both pollutants. Freire et al. (2010) found no cross- 
sectional association between NO2 exposure and working memory at the 
age of 4 years; however, they did not explore sex-stratification. Sunyer 
et al. (2015) also studied development of working memory over a 12- 
month period in children from 7 to 10 years and found a decrease in 
development in children exposed to higher levels of elemental carbon, 
NO2 and ultrafine particle number, with boys appearing more suscep-
tible than girls. Forns et al. (2017) extended the study of Sunyer et al. 
(2015) by affirming that the observed association remained over a 
longer period of 3.5 years. van Kempen et al. (2012) found an adverse 
association between NO2 exposure at school and working memory in 
children around 10 years old, but not for NO2 exposure at residency. 

Conversely, Gui et al. (2020) did find an association between residential 
air pollution exposure and working memory in their cross-sectional 
study with 5028 participants aged 6 to 12 years, however not for NO2 
but only for PM2.5 and PM10. Although the majority of previous studies 
assessed NO2 exposure as we did, results have not been consistent. 
However, they do underscore the necessity of investigating the influence 
of long-term air pollution exposure on working memory in older age 
groups, considering assessments of air pollution exposure both at resi-
dency and school. 

This study has several strengths. To begin with, it has a large sample 
size from a population-based multi-centre cohort and we adjusted for 
many socioeconomic and lifestyle variables known to be associated with 
NO2 exposure and with child brain development. Moreover, we use a 
standardized and validated method of back-extrapolation to assess NO2 
exposure at the individual level from pregnancy to 6 years of age in a 
fine time scale. Besides, we have a prospective assessment of the 
development of executive functions using standardized and validated 
neuropsychological tests at different ages (Forns et al., 2014). Further-
more, we used imputation and inverse probability weighting to mitigate 
potential biases and enhance the validity of our findings. Lastly, we used 
an advanced statistical method, DLNM, to estimate the association of 
NO2 exposure on attentional function and working memory from preg-
nancy to early childhood with unbiased estimates, to consider each 4- 
week period separately, and to identify periods of susceptibility 
without defining arbitrary periods a priori. Another benefit of DLNM is 
the cross-basis, which allows for the simultaneous examination of the 
lag-exposure-outcome link, hence avoiding the difficulty of numerous 
comparisons of an averaged exposure method with repeated 
measurements. 

However, our study also has a number of limitations. Firstly, there 
might be a nondifferential misclassification of exposure due to our 
sampling approach focusing on home addresses only. This excludes 

Fig. 1. Boxplot of NO2 levels during different periods of time Note. NO2 = Nitrogen Dioxide. Concentrations at different time windows that the participants (n = 1,703) 
are exposed to during pregnancy and childhood. The concentrations were estimated at home address for each 4 weeks (lag) from the temporally adjusted LUR model. 
Central line represents the median; lower and upper bound of the boxes correspond to the 25th and 75th percentile, respectively; bars outside the box represent the 
1.5 × interquartile range; and dots are outliers. 
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Fig. 2. Fully-adjusted associations between 4-week NO2 levels from conception until childhood and attentional function at 4–6 years of age and at 6–8 years of age. Note. ANT 
= Attention Network Test. β = beta coefficient for HRT and HRT-SE. 95 % CI = 95 % confidence interval. HRT = Hit reaction time (ms). HRT-SE = Hit reaction time 
standard error (ms). IRR = Incidence-rate ratio for commission and omission errors. K-CPT = Connors Kiddie Continuous Performance Test. NO₂ = Nitrogen dioxide. 
The associations are presented for n = 1253 (at 4–6 years) and n = 1476 participants (at 6–8 years). Models were adjusted for parental education level, parental social 
class, parental country of birth, maternal intelligence quotient, maternal pre-pregnancy body mass index, paternal body mass index, parental age at pregnancy, 
maternal smoking, second-hand smoke exposure and alcohol consumption during pregnancy, maternal folic acid and Vitamin D blood levels during pregnancy, 
maternal consumption of fish, fruit and vegetables during pregnancy, household gas appliances during pregnancy, urbanicity and surrounding green space of living 
area, child’s sex and age at the test, year and month of conception, and the region. Solid lines show the predicted difference in the outcomes associated with an 
increase of 10 µg/m3 of NO2. Grey colours indicate null 95 % CIs, light orange colours indicate significant positive 95 % CIs before multiple testing, and dark orange 
colours indicate significant positive 95 % CIs after multiple testing. 
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exposure at schools and other sites, potentially leading to an underes-
timation of the true association. This bias may arise from heightened 
traffic-related pollution near schools and increased outdoor activity 
during school hours, both of which can affect inhalation of pollutants 
and contribute to the observed underestimation. Also, since we only 
investigated exposure to NO2 and NO2 is a proxy for traffic-related air 
pollution, other traffic-related pollutants could confound our findings. 
Unfortunately, we could not adjust for other pollutants. Secondly, 
despite the fact that the DLNM with small time periods of 4 weeks is a 
more advanced methodology, there are still some methodological limi-
tations. For example, the DLNM requires selection of tuning parameters 
and there is no clear guideline on how to select these, while the DLNM is 
sensitive to the parameters used in the analyses (Wilson et al., 2017). 
However, we have intended to overcome this limitation by determining 
the knot position on a parsimonious principle. Thirdly, residual con-
founding is not completely ruled out. For example, road traffic noise 
(van Kempen et al., 2012) is a co-exposure that can be a possible 
confounder, however it was not available for most of the participants. 
Furthermore, by excluding extremely preterm births from the DLNM 
analyses, a potential risk of selection bias could persist. Lastly, 
comparing results from tests conducted at two different ages for atten-
tional function using distinct testing methodologies requires caution, as 
potential developmental variations and differences in test characteris-
tics could lead to misleading interpretations or inaccurate conclusions. 

The levels of NO2 across the entire time period in all regions reported 
in this study were above the 2021 World Health Organisation guidelines 
(10 μg/m3), however, the mean air pollution exposure was below the 

standards of the European Union (40 μg/m3) in every studied region, 
suggesting that air pollution can affect brain function at levels lower 
than current air quality standards (European Environment Agency 
(EEA)., 2022). Even a small effect at the individual level of relatively low 
exposure levels, as in Spain, can have major consequences at the pop-
ulation level, especially with a large number of people exposed to even 
higher NO2 levels. This makes it important to lower these emissions with 
extra focus on the most affected regions. 

5. Conclusion 

In conclusion, this study shows that higher exposure to NO2 was 
associated with worse attentional function in 4- to 6-year-olds with a 
heightened susceptibility observed during the second year of life. This 
association remained at an age of 6 to 8 years old only in boys, with a 
slightly larger susceptible period from birth until age 2. Furthermore, no 
association was found between higher NO2 exposure and working 
memory in children aged 6 to 8 years. These findings underscore the 
potential impact of increased traffic-related air pollution on the delay in 
attentional function development, highlighting the importance of 
continued research in exploring long-term effects of air pollution in 
older age groups. 
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