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Fairness and bias correction 
in machine learning for depression 
prediction across four study 
populations
Vien Ngoc Dang 1*, Anna Cascarano 1, Rosa H. Mulder 2,3, Charlotte Cecil 2,4,5, 
Maria A. Zuluaga 6, Jerónimo Hernández‑González 7 & Karim Lekadir 1,8

A significant level of stigma and inequality exists in mental healthcare, especially in under-served 
populations. Inequalities are reflected in the data collected for scientific purposes. When not properly 
accounted for, machine learning (ML) models learned from data can reinforce these structural 
inequalities or biases. Here, we present a systematic study of bias in ML models designed to predict 
depression in four different case studies covering different countries and populations. We find that 
standard ML approaches regularly present biased behaviors. We also show that mitigation techniques, 
both standard and our own post-hoc method, can be effective in reducing the level of unfair bias. 
There is no one best ML model for depression prediction that provides equality of outcomes. This 
emphasizes the importance of analyzing fairness during model selection and transparent reporting 
about the impact of debiasing interventions. Finally, we also identify positive habits and open 
challenges that practitioners could follow to enhance fairness in their models.

Keywords  Machine learning for depression prediction, Algorithmic fairness, Bias mitigation, Novel post-hoc 
method, Psychiatric healthcare equity

Depression is a leading cause of disability worldwide, a major risk factor for the global burden of disease, and 
can even lead to suicide1,2. Taking into account that the global prevalence of depression increased by 25% dur-
ing the COVID-19 outbreak3, being able to identify those individuals at risk would be of great value in order 
to enable the application of personalized preventive measures. To this end, it is necessary to characterize the 
factors leading up to the development of depression. Research to date points to the importance of both genetic 
and environmental factors (along with their interactions) in the etiology of depression4,5. Furthermore, environ-
mental factors have been shown to co-occur, exerting cumulative effects on depression risk. The totality of these 
environmental influences is often referred to as the exposome and includes environmental and lifestyle factors, 
as well as traumatic life events6. Exposome data does not only provide an alternative picture, it is also relatively 
inexpensive and easy to acquire, typically through questionnaires7. Motivated by the successful application of 
machine learning (ML) in different contexts in the domain of medicine, there has been a spike in the use of ML 
for the detection, diagnosis, and treatment of depression8–10. Specifically, supervised ML methods are commonly 
used to learn predictive models from historical data, which are then applied to predict the possible development 
of the illness in new cases and patients.

There have been historical concerns about the fairness of automatic decision making systems11 and, with 
the growing adoption of machine learning in health care applications, these concerns have also extended to 
ML models’ potential unfair bias8. It has been shown12 that ML models can amplify unfair behaviors masked 
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in past practice, that is, in the data used for model learning. The term “algorithmic bias” refers to differences 
in the predictive power of models when applied to different subgroups of the population. Such differences are 
particularly worrying when the subgroups are determined according to some protected attribute, such as ethnic-
ity, sex, or age. The subgroups that are unfairly impacted or benefited by the bias of the ML model are known as 
the unprivileged and the privileged groups, respectively. Although this undesirable behavior of ML models is 
nowadays well known, assessing the bias of ML models (and trying to mitigate it) is not a common practice in 
healthcare applications. Chen et al.8 examine an ML algorithm on psychiatric notes to predict 30-day psychiatric 
readmission regarding sex, ethnicity, and insurance type without addressing algorithmic bias. Park et al.9 reduce 
bias for clinical prediction models of postpartum depression only associated with one protected attribute - bina-
rized ethnicity (Black/White individuals). In mental health, several unintentional discriminative behaviors have 
been detected, which could potentially be reproduced by ML models if they are reflected in the training data. 
Specifically, a lack of representation of the patient subgroups has been reported; for example, some ethnic groups 
do not use mental health services as much as others due to cultural stigma surrounding mental illness13,14. Prior 
research shows that the prevalence or incidence of depression differs across sex subgroups; women are about 
twice as likely as men to develop depression during their lifetime15. In addition, manifest discrepancies in relevant 
factors such as lifestyle or dietary habits between subgroups have also been reported16. These, and possibly other 
factors, can be rooted in the data which is used to learn ML models for depression prediction.

In this paper, we present a systematic analysis of algorithmic bias in ML models designed to predict the pres-
ence or absence of depression from environmental and lifestyle data, using four public datasets: LONGSCAN17, 
FUUS18, NHANES19, and the UK Biobank (UKB)20. We study unfair bias on protected attributes including 
demographic factors (sex, ethnicity, nationality), socioeconomic status (age, income, academic qualifications), 
and co-morbidities (cardiovascular disease (CVD), diabetes), and evaluate the interplay of model accuracy and 
fairness. For this study, protected attributes were agreed based on standard choices in the related literature21. 
We analyze the ability of different bias mitigation techniques to reduce the discrimination level of the models 
learned for our four case studies. The mitigation effect is measured as the performance difference, in terms of 
fairness metrics, before and after performing bias mitigation. We have found unfair biases in the behavior of 
the models learned with standard ML techniques regarding several protected attributes in all the case studies. 
We also found, however, that mitigation techniques are effective in reducing discrimination levels. Our results 
suggest that bias monitoring is pertinent in the evaluation of ML-based predictive models in mental health and 
current mitigation techniques provide a powerful toolset to mitigate unfair algorithmic bias.

Methods
In this section, we introduce our case studies and perform an initial descriptive analysis of the available data 
(“Datasets”). We describe the type of predictive models tested and the five strategies we considered to mitigate 
bias (“Bias mitigation approaches”). We also explain both standard ML and fairness evaluation metrics used in 
our experiments (“Results”).

Datasets
This study uses four public datasets: LONGSCAN, FUUS, NHANES, and UK Biobank. We select these data-
sets to cover a spectrum of sizes, from small to large, and to showcase diverse methodologies for diagnosing 
depression. We aim to assess potential biases across different scales and diagnostic methods. These differences 
allow us to investigate how the size of the dataset (both in terms of the number of samples and input variables) 
influences bias in both plain ML models and those combined with debiasing techniques. All the participants 
and/or their carers provided written informed consent in LONGSCAN, NHANES, and UKB studies. This was 
not required in the case of FUUS according to the laws that regulate “non-interventional clinical research” in 
France18. While LONGSCAN and FUUS are datasets of late adolescents, the subjects in the NHANES and UKB 
datasets are primarily between the ages of 40 and 80. Supplementary Table S1 describes the protected attributes 
considered for each dataset, as they differ between datasets. The LONGSCAN, FUUS, NHANES, and UKB 
datasets have relatively equal proportions of male and female subjects. A higher prevalence of depression in 
women versus men is evident in the LONGSCAN, NHANES, and UKB datasets. No sex effect is found among 
college freshmen in the FUUS dataset, which is consistent with previous studies22–24. The distribution of other 
protected attributes is highly skewed.

Participants and features
Participants in LONGSCAN were from five regions in the United States (the South, East, Midwest, Northwest, 
and Southwest), with different selection criteria, representing varying levels of risk or exposure to maltreatment 
during the period spanning from 1991 to 2012. The LONGSCAN interview and questionnaire data were col-
lected when target children were 4, 6, 8, 12, 14, 16, and 18 years of age. Out of 1,354 total participants, we kept 
the 67.3% of children who completed an interview at 18 years-old which included depression outcomes. This left 
us with 911 samples for our study. Among these 911 individuals, there were 363 cases with depression at the age 
of 18, and 548 controls. The study design is depicted in Supplementary Fig. S1: data from three different stages 
(early childhood, late childhood, teen) were collected to predict depression at the age of 18. Up to 23 descrip-
tive variables were considered, grouped as demographic variables, lifestyles variables, and adverse exposures 
variables, both time-invariant and repeatedly measured along these stages (see Supplementary Table S2). Data 
is available under request; its use for this study was approved by the National Data Archive on Child Abuse 
and Neglect (NDACAN). Participants in FUUS were undergraduate students who underwent a compulsory 
medical visit at the university medical service in Nice (France) between September 2012 and June 2013. Among 
the 4184 total participants, there are 528 cases with depression and 3656 controls. A total of 62 biomedical 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7848  | https://doi.org/10.1038/s41598-024-58427-7

www.nature.com/scientificreports/

and demographic features were used, including binary, ordinal and continuous variables (see Supplementary 
Table S3). Participants in NHANES provided data between 2005 and 2018 and were selected by random sam-
pling of the American population. Among the 36,259 total participants, there were 3168 cases with depression 
and 33,091 controls. A total of 86 features were used in our study, including demographic data, socioeconomic 
status, medical history, lifestyle characteristics, and prescription medications. However, to prevent label leakage, 
we specifically excluded participants’ feelings and expressions, specific lifestyle characteristics such as physical 
activity, diet, and sleep habits, as well as depression-specific medications from the set of descriptive features (see 
Supplementary Table S4). FUUS and NHANES datasets are publicly available. Participants in UKB were enrolled 
from 22 United Kingdom’s centers from 2006 to 2010. Among the 461,033 participants who did not initially 
have depression, 18,112 cases (3.93%) developed depression. Up to 143 descriptive variables were considered, 
including demographic data, socioeconomic status, medical history, lifestyle characteristics, early life factors, 
and traumatic events (see Supplementary Table S5). Data is available under request; its use for this study was 
approved by UKB, under the project title “Association between Early-Life-Stress and Psycho-Cardio-Metabolic 
Multi-Morbidity: The EarlyCause H2020 Project” (application number 65769).

Building the ground truth: depression outcome
We acquired ground truth label information –whether a participant has depression or not– using dataset-specific 
information. In LONGSCAN, depression was assessed using a self-reported questionnaire at age 18, which 
includes a specific question regarding having depression or not. In NHANES, the Patient Health Question-
naire-9 (PHQ-9) was used. This screening questionnaire consists of 9 items (scored 0–3) and has a specificity 
and sensitivity of 88% for major depressive disorder (MDD) at a threshold score of 10 or more25. Therefore, we 
chose the threshold at PHQ-9 score 10. In FUUS, the depression outcome was evaluated in a two-stage process. 
If the result of an initial four-item screening questionnaire indicated possible presence of MDD (at least two of 
the four symptoms present), the participants were assessed by a medical provider for the full Diagnostic and 
Statistical Manual of Mental Disorders Fourth Edition (DSM IV) criteria10. In UKB, the depression outcome 
was defined as an occurrence of a depressive episode (ICD10 code F32 and F33) after the date of assessment, 
which was drawn from hospital inpatient diagnoses or self-reported conditions. Note that this label information 
might be noisy due to the use of questionnaires. Addressing noisy labels, which could have a relative impact on 
the results of this study, is a complex challenge in ML problems that falls beyond the scope of our work. In the 
rest of the paper, we use the presence and absence of depression as the positive and negative class, respectively.

Model evaluation
Two popular types of ML models were learned from the data presented above: (i) logistic regression (LR)26, a 
linear classifier, and (ii) extreme gradient boosting (XGB)27, a boosting ensemble method. In this paper, we do 
not focus on the algorithmic aspects of the ML methods considered, but rather on their clinical application and 
the fairness assessment of their predictions. We use k-fold cross validation ( k = 5 for UKB, k = 10 for the rest) for 
performance evaluation and nested cross-validation for hyper-parameters tuning (see Supplementary Table S6).

Performance metrics
To assess predictive performance, we considered two standard ML performance metrics, namely, the area under 
the receiver operating characteristic curve (AUC-ROC), which measures the area under the curve formed by 
points of true positive rates versus false positive rates across all the possible thresholds, and the balanced accu-
racy (BAcc), which is the arithmetic mean of sensitivity and specificity. BAcc is particularly appropriate for 
class-unbalanced datasets, which is the case of our four study populations. It ensures equitable representation 
in performance assessment, that is, it ranks algorithms according to their ability to accurately detect positive 
and negative examples. In this way, it aligns with the objective of the task, which is the prediction of presence/
absence of a mental health issue. When discussing the fairness-accuracy trade-off, we report on empirical accu-
racy measured by BAcc because, in practice, classification is performed at a fixed threshold9, making it a more 
pertinent measure in such scenarios. Complete experimental results in terms of AUC-ROC are provided in the 
Supplementary material.

Fairness metrics
There are different concepts of fairness: group fairness, individual fairness, or a combination of both29. In this 
study, we focus on group fairness, meaning that the model should perform similarly for all subgroups accord-
ing to a certain statistical metric. Firstly, we consider the equal opportunity criterion, which states that a binary 
classifier is fair if its true-positive rates (TPR) are equal across groups. The Equal Opportunity Difference (EOD) 
metric, defined as the maximum difference in the TPR between any two subgroups defined by the protected 
attribute (i.e., a value of 0 indicates complete fairness), meets the aforementioned criterion. EOD is an attainable 
and practical fairness metric which mandates equal TPRs across the demographic subgroups. Let D = (X,Y ,C) 
be the dataset, with the protected variable X , regular descriptive variables Y  , and the binary class variable C . 
Predictions provided by an ML model are denoted Ĉ . Let us define �C as the set of class labels. In this study, 
we only consider binary classification task, i.e., |�C | = 2 , namely C = {0, 1} . Let us also define �X as the set of 
possible values of variable X . For example, for the protected attribute “sex”, �X = {male, female} . A subgroup 
of the population is formally defined as all the samples in dataset D with the same value x ∈ �X assigned to the 
protected attribute X . We define the TPR of a specific subgroup x ∈ �X as

TPRx(Ĉ) := EY [Ĉ|C = 1,X = x]
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and then, EOD can be described as:

This study is contextualized in a project focused on developing efficient screening and risk prediction tools 
for depression in primary care settings. At this point, underdiagnosis has more severe implications than misdi-
agnosis. When a misdiagnosis occurs, patients still receive clinical care, and clinicians can draw upon additional 
symptoms and data sources to correct the error. On the other hand, underdiagnosis may lead to individuals not 
receiving the necessary treatment and support, exacerbating their mental health condition. Our clinicians sup-
port the idea that the focus on fairness should be on ensuring that individuals at risk of depression are equally 
identified across groups, so they are fairly provided with the necessary care and support. This objective aligns 
with the use of equal opportunity criterion, which is also considered by previous studies in ML for mental 
health9,30. In the absence of an expert-informed opinion, the equalized odds criterion31 serves as an alternative 
fairness objective which offers a stricter standard than the equal opportunity criterion. It asserts that a classifier 
achieves fairness when both its TPR and FPR are consistent across groups. Exact equality, TPRx0(Ĉ) = TPRx1(Ĉ) 
and FPRx0(Ĉ) = FPRx1(Ĉ) , for all x0, x1 ∈ �X , is often hard to force in practice. Alternatively, in this paper, we 
measure equalized odds criterion by means of the Average Odds Difference (AOD) metric, which assesses the 
average discrepancy between the TPR and FPR across subgroups. Formally, if the FPR of a specific subgroup 
x ∈ �X is defined as:

then, AOD can be described as:

Complete experimental results based on group-specific FPRs and AOD are provided in the Supplementary 
material.

Bias mitigation approaches
Many techniques have been proposed over the last few years to address algorithmic fairness32. However, there is 
a significant shortfall in addressing fairness and bias concerns when ML is applied to the field of psychiatry. Only 
a handful of studies have adopted methods to counteract bias. For instance, reweighing (RW) bias-mitigation 
technique33 was used to minimize bias when forecasting future benzodiazepine administrations30. Likewise, oth-
ers applied Suppression (SUP)34 and RW approaches to reduce bias in the prediction of postpartum depression9. 
In healthcare and other fields, the Disparate Impact Remover (DIR) method35 has shown its ability to effectively 
mitigate bias while maintaining a satisfactory level of predictive performance. Furthermore, the Calibrated 
Equalized Odds Post-processing (CPP) method36 was proposed in the healthcare context to predict whether 
an individual will have a heart condition. Among all the available bias-mitigation techniques, we consider four 
standard methods in this study: SUP, RW, DIR, and CPP. Moreover, we propose a novel post-hoc disparity miti-
gation named Population Sensitivity-Guided Threshold Adjustment (PSTA).

Suppression (SUP)
Protected attributes are directly removed from the training dataset under the assumption that access to this 
information is the main cause of bias. First, the protected attribute is removed from the dataset. Then, a new ML 
model is learned from this new version of the dataset.

Reweighing (RW)
This method weighs the samples in each (group, label) combination differently to make the protected attribute 
and outcome statistically independent of each other before model learning. The weight of a sample is directly 
proportional to the frequency of its label in the whole population and inversely proportional to the frequency of 
its label in its subgroup. The model is learned from this new training dataset with weighted samples.

Disparate impact remover (DIR)
Given a dataset D = (X,Y ,C) , with protected attribute X, remaining attributes Y, and class variable or outcome 
C, this repair process attempts to remove bias in the remaining features Y. New values are assigned to all the 
cases and variables in Y. The new values ensure that all the groups follow the same distribution over every vari-
able, making adjustments based on percentiles and quantile functions. The predictive model is learned from 
the new training dataset. In the three previous bias-mitigation techniques, we act on the training data. Once a 
newly prepared version of the training dataset is obtained, an ML model is learned from it, with the effectiveness 
of bias mitigation evaluated based on this model’s outputs. The following two techniques perform differently. 
The model is learned from the original data. Then, the outputs of the model are modified under certain criteria 
to reduce disparities. The success of the mitigation approach is then evaluated using these modified outputs.

Calibrated equalized odds post‑processing (CPP)
The method calibrates the predicted probability so that the false-positive rate or the false-negative rate of privi-
leged and unprivileged groups are, on average, equal. It modifies the score outputs of the model for the different 
subgroups so that the output labels meet an equalized odds objective. In our clinical application, we focus on 

EOD = min
x∈�X

TPRx − max
x∈�X

TPRx

FPRx(Ĉ) := EY [Ĉ|C = 0,X = x]

AOD =
1

2

[

min
x∈�X

(FPRx + TPRx)− max
x∈�X

(FPRx + TPRx)

]
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identifying individuals at risk of depression, and the goal is equitable outcomes; therefore, we consider recall 
more important than precision, which leads us to set a cost-constraint objective: the equal false-negative rates 
between the subgroups.

Population sensitivity‑guided threshold adjustment (PSTA)
This approach is our own bias mitigation technique, and it is inspired by the observation that when there are 
prevalence rate discrepancies between groups in the training dataset ML models usually primarily associate the 
positive class with the characteristics of the subgroup of highest prevalence. Supplementary Fig. S2a,b illustrate 
the predicted probability distributions generated by an ML model with data from UKB with different prevalences 
for females and males suffering from depression. For both positive and negative samples, the Mann-Whitney U 
test37 indicates significant differences between male and female predicted probabilities (positive: U = 21316361.0, 
p < 0.001; negative: U = 1297359183.0, p < 0.001). The difference arises from the prevalence rate discrepancies 
in the training dataset, leading the model to inherently assign lower probabilities of suffering from depression 
to individuals from the male subgroup, which has a lower prevalence rate. Applying the default single deci-
sion threshold at 0.5 for both groups results in a lower TPR and a higher FPR for the male group, exacerbating 
outcome disparities. This example model would benefit from a tailored threshold adaptation that considers 
the disparities in the distribution of probabilities between different subgroups, ultimately improving both fair-
ness and accuracy. The use of threshold adaptation to address bias and unfairness in ML models is not entirely 
new, as evidenced in previous works, such as38,39. However, the procedure for obtaining the optimal threshold 
differentiates our proposal from existing approaches. Our method is guided by the fairness criterion, Equal 
Opportunity, which is applicable to categorical protected features within a binary classification framework, i.e., 
it is not limited to binary protected features only. The main objective is to enhance sensitivity for unprivileged 
groups while maintaining an acceptable FPR, which refers to a level that is not significantly higher than the 
overall population’s FPR, ensuring a balance between minimizing incorrect positive predictions and effectively 
detecting true positive cases. It determines subgroup-specific thresholds for unprivileged groups to ensure that 
their sensitivity aligns with that of the overall population on training data, encompassing the sensitivity of all 
subgroups. For the remaining groups, the standard threshold at 0.5 is employed. This conventional 0.5 thresh-
old can be adjusted as a hyperparameter to better suit specific context requirements. The whole procedure is 
detailed in Algorithm 1. To illustrate the type of correction that PSTA enforces, Supplementary Fig. S2c shows 
that, after learning the optimal threshold with PSTA on the training set for the unprivileged group (male, in this 
case), the FPR of the unprivileged group reaches an acceptable value in the test set. The PSTA method focuses 
on enhancing performance for the most disadvantaged groups to achieve fairness. This approach contrasts with 
other methods like CPP which, aiming for uniform FN and FP error rates across subgroups, adjusts predicted 
probabilities for all the groups.

In this study, we use three different pre-processing mitigation techniques (SUP, RW, and DIR), which operate 
over training data, and two different post-processing mitigation techniques (CPP and PSTA), which operate over 
the model’s predictions. See a graphical description of how they operate in Supplementary Fig. S3. Generally, 
pre-processing and post-processing techniques are model-agnostic. There exists a third type of bias mitigation 
technique, called in-processing methods, which operate during classifier construction, leading to a significant 
reliance on the specific type of model in use. Given our study’s focus on broadly applicable and adaptable mitiga-
tion techniques, we concentrated on pre- and post-processing methods, as their adaptability aligns better with our 
research objective. An in-depth comparison of bias mitigation techniques is beyond the scope of this study. Our 
aim is to demonstrate that, with a diverse toolkit, ML practitioners can expect to build a model with increased 
fairness without a significant loss of predictive performance. In this study, we focus on bias mitigation concern-
ing a single protected attribute. However, we study the unintended consequences of mitigating bias for a given 
protected attribute on fairness regarding the untreated protected attributes and provide preliminary results in 
the Supplementary material. Future work will require intersectional fairness, that is, addressing bias regarding 
several protected attributes at the same time, as individuals may belong to multiple unprivileged groups. Note 
that not all the techniques may be able to deal with several protected attributes at once (an effective workaround 
is defining subgroups as the Cartesian product of the values of the different protected attributes); and even the 
fairness metrics need to be adapted for intersectional analysis.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7848  | https://doi.org/10.1038/s41598-024-58427-7

www.nature.com/scientificreports/

Algorithm 1.   Population Sensitivity-Guided Threshold Adjustment (PSTA).

Results
In this section, we study the behavior of the different ML models before and after bias mitigation techniques are 
applied. Firstly, ML models are learned from data and their predictive performance and unfair bias are quantified 
(“Initial model performance and bias assessment”). Secondly, bias mitigation techniques are applied to these 
models and to assess their efficiency, we evaluate the interplay between predictive performance and fairness in 
the adapted models (“Model performance after bias mitigation”). We perform this analysis on four datasets for 
the prediction of depression: LONGSCAN, FUUS, NHANES, and UKB.

Initial model performance and bias assessment
For the sake of simplicity, in this manuscript we only report results with LR models. Results with XGB models, 
qualitatively similar to those of LR, are available in the Supplement. Regarding predictive performance, LR 
models achieve lower prediction accuracy with LONGSCAN and FUUS datasets, with BAcc of 0.621 (95% CI 
0.577–0.664) and 0.615 (95% CI 0.598–0.632), respectively. The predictive performance of LR models is con-
siderably better with NHANES and UKB datasets, with BAcc of 0.719 (95% CI 0.711–0.727) and 0.729 (95% CI 
0.725–0.734), respectively. Aligned with these results, AUC-ROC measurements are available in Supplementary 
Table S9. These results support that the predictive ability of ML models increases with the amount of training 
data, as NHANES and UKB are larger. Figure 1 displays the TPR of the base and debiased LR models by dataset, 
protected attribute and subgroup, providing a comprehensive comparison of fairness performance before and 
after the application of bias mitigation techniques. In each plot, the horizontal shift or difference in performance 
for different subgroups reveals the bias. In each frame, the upper plot shows results before applying a bias miti-
gation technique, and the lower plot shows results after mitigation. Similar figures for FPR measurements are 
available in the Supplementary material. We use Tukey’s range test28 for pairwise comparisons across multiple 
groups to assess statistical significance in true positive rates and false positive rates among these groups, and to 
map the 95% confidence intervals. Let us analyze the bias assessment by (type of) protected attribute: demo-
graphic factors, socioeconomic status, and co-morbidities.

Protected attributes: demographic factors (sex, ethnicity, nationality)
There are consistent sex differences across datasets, as shown in the top row of Fig. 1, with higher TPRs for female 
subjects. The differences in TPRs between sexes are only statistically significant at the 95% confidence level for the 
LONGSCAN, NHANES, and UKB datasets. Note that there are no sex differences in rates of depression among 
subjects in the FUUS dataset (see Supplementary Table S1). Interestingly, the mean difference between sexes 
in the UKB and NHANES datasets (0.1121, 0.167, p < 0.001 ) is less than in the LONGSCAN dataset (0.4103, 
p < 0.001 ). Sex, the top importance feature in LR and XGB for the LONGSCAN dataset, has a much lower rank 
in the feature importance ranking for the NHANES and UKB datasets (see the ‘feature importance rankings’ 
in the Supplement), which means depression outcome is less sensitive to sex bias in the NHANES and UKB 
datasets with a large sample size and features compared to the LONGSCAN dataset. We highlight the benefit 
obtained from considering a larger number of risk factors in the predictive model and adequate sample size to 
reduce bias. This evidence is in line with12, where enhanced data collection is pointed out as a means of lessening 
discrimination without sacrificing accuracy. The second row of Fig. 1 shows differences in TPRs between racial 
groups, which were not statistically significant, with black subjects and “other/multiracial” subjects having the 
lowest true-positive rates for LONGSCAN and NHANES datasets, respectively; except for the case between black 
subjects and white subjects in the LONGSCAN dataset, their TPRs have non-overlapping confidence intervals, 
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indicating a significant difference. Interestingly, the UKB subjects in the “do not know/prefer not to answer” 
(‘Missing’) group have the lowest TPR, compared with others. As shown in Fig. 1, TPRs for nationality have non-
overlapping confidence intervals. Specifically, foreign subjects have a higher rate than French subjects. We note 
that foreigners have a higher observed depression rate in the training set. Supplementary Fig. S5 displays similar 
patterns regarding FPR, although the differences between racial groups in the UKB dataset are more limited.

Protected attributes: socioeconomic status (age, income, academic qualifications)
We find that the TPRs do not differ much across age groups with many overlapping intervals. However, subjects 
under 20 years of age have the lowest TPR. This may be partially due to the fact that small subset sizes (see Sup-
plementary Table S1) may not reflect accurate depression rates amongst the subpopulation of adolescents and 

Figure 1.   Comparative analysis of group-specific TPRs for LR classifiers: baseline and bias mitigation 
outcomes. Each plot represents a Dataset-Protected attribute pair, with paired rows displaying base classifiers 
and debiased classifiers, reporting the best results among the tested bias mitigation algorithms. Points represent 
mean TRP and error bars indicate 95% confidence intervals over k-fold cross validation. Note that the base 
classifiers show regularly biased behaviors due to a lack of representation, varying rates of depression across 
groups, unequal distribution of features between groups, or a combination of any of these characteristics in the 
four different study populations.
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young adults, whose symptoms of depression and other mental illnesses have increased significantly over the 
past decades40. Differences in TPRs in the NHANES dataset are also observed between qualification groups. As 
seen in Fig. 1, subjects in the “Level 5” group have the lowest TPR, compared with others in both the NHANES 
and UKB datasets. Subjects in the “Level 0” (Refused/Don’t know/Missing) group in the NHANES dataset are 
also on the unprivileged side. As shown in Fig. 1, TPRs for income have non-overlapping confidence intervals. 
Specifically, low-income subjects have a much higher rate than high-income subjects. We note that low-income 
subjects have a higher baseline observed event rate. Supplementary Fig. S5 displays similar patterns regarding 
FPR, although the differences between age groups in the NHANES dataset are more limited.

Protected attributes: comorbidities (CVD, diabetes)
As shown in Fig. 1, TPRs for CVD and diabetes all have non-overlapping confidence intervals. Specifically, 
individuals experiencing CVD/diabetes have a much higher rate than subjects without CVD/diabetes. These 
inequitable outcomes support that CVD and diabetes should be considered as important comorbidities of depres-
sion. Similar behaviors are observed regarding FPR in Supplementary Fig. S5.

Model performance after bias mitigation
To assess bias mitigation, we analyze changes in fairness metrics between the previously discussed base models 
and the new classifiers obtained after bias mitigation. Moreover, given the clinical application, most people would 
not find it fair to reduce discriminatory outcomes if it identifies fewer actual positives overall. There exists an 
open discussion in the related literature41,42 regarding the actual existence of the so-called fairness-accuracy 
trade-off when bias mitigation is implemented, meaning that predictive performance is reduced if one tries to 
make the model fairer. A trade-off of accuracy for fairness is often undesirable in healthcare. Thus, we have two 
objectives: increasing accuracy and decreasing discrimination. We report the results using 2D points combining 
two metrics: (i) a fairness metric, measured by EOD and (ii) a standard ML performance metric, measured by 
BAcc, on the test set, to determine whether our models for depression prediction are experiencing a fairness-
accuracy trade-off. A model can be considered as fair if EOD is between − 0.1 and 0.1, its ideal value is 0 and 
for BAcc, the larger the better. Figure 2 presents, for each dataset and protected attribute, the 2D points in the 

Figure 2.   Fairness-accuracy performance in terms of EOD vs. BAcc of the base model and the new classifiers 
after applying five bias mitigation algorithms to LR classifiers. Points represent mean BAcc-TRP and error bars 
indicate the standard deviation over k-fold cross validation. Each plot shows the results per subgroup for a 
Dataset-Protected attribute pair.
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fairness-accuracy space achieved by each bias mitigation technique. The limited BAcc variation together with 
larger EOD variations observed in the assessment of different techniques in some subplots (e.g., CPP or PSTA 
applied to UKB-Ethnicity) can be explained by the relatively small sample size of the subgroups (see Supplemen-
tary Table S1). BAcc is less sensitive to even larger changes in group-specific TRPs when one or more subgroups 
are small. The base model, without bias mitigation, is also shown (gray point and cross). Absolute and relative 
changes in performance and fairness metrics behind these plots are provided in detail in Supplementary Table S7. 
The implemented bias methods help to improve fairness, for all protected attribute perspectives. This is a desir-
able mitigation result. Note that while Fig. 2 summarizes the overall impact of bias mitigation techniques, Fig. 1 
showcases group-specific TPRs for LR classifiers before and after applying the best-performing bias-mitigation 
techniques for each protected attribute, uncovering the fine-grained performance enhancements leading to fair-
ness improvement. This allows for a detailed evaluation of their effectiveness across different study populations. 
It is noteworthy that in general debiasing through RW, DIR, and PSTA substantially improves fairness without 
compromising model accuracy. SUP only partially achieves fairness between groups. This method removes the 
protected attribute from the training dataset, as they are considered biased features. This result suggests that bias 
is not only contained in those features but elsewhere. DIR not only excludes these attributes but also adjusts non-
protected features that are highly correlated to them. In any case, this repair tool is a good baseline to investigate 
whether this bias comes from non-protected features. On the other hand, the CPP technique preserves precision 
when calibrating recall, which results in BAcc reduction, according to most of the protected attributes, except for 
the diabetes attribute. In this study, the PSTA method is considered as an alternative to post-processing methods 
like CPP that, aiming for group fairness, may inadvertently compromise performance for all subgroups. We 
compare the five considered mitigation techniques across a total of 32 scenarios (all the combinations of model, 
dataset and protected attribute in this study), using the weighted harmonic mean of predictive performance and 
fairness metrics (BAcc and EOD, resp.) to assess the dual fairness-accuracy objective:

with β = 0.5 , indicating a preference for performance over fairness. This is particularly pertinent in healthcare, 
where compromising accuracy for fairness can have ethical implications, making widespread fairness adjust-
ments less justifiable if they lead to reduced detection of health outcomes. In this comparison, SUP does not 
outperform other methods in any case, CPP is superior in 1 case (3.125%), DIR in 1 case (3.125%), RW in 12 
cases (37.5%), and PSTA in 18 cases (56.25%). In comparison with CPP, the other post-processing technique used 
in this study, PSTA seems to stand out. A future study of PSTA should find (empirical) evidence that character-
izes the scenarios where this technique performs competitively in comparison with other post-processing bias 
mitigation techniques. Furthermore, it is important to highlight that, when applying bias-mitigation methods 
to the LONGSCAN dataset with the “sex” protected attribute, a significant decrease in BAcc is observed across 
all methods. This observation serves as evidence that the model may struggle to effectively learn the underlying 
structure of the data due to the relatively small dataset. Consequently, this emphasizes the need to have sufficient 
samples and relevant predictors when utilizing ML algorithms for risk prediction tasks in order to develop both 
fair and accurate models. Note that TPRs for the best mitigation technique (RW) regarding the “income” pro-
tected attribute on models learned from the NHANES dataset still have non-overlapping confidence intervals, 
although the mean difference between groups was considerably reduced from 0.2485 (p < 0.001 ) to 0.0929 (p 
< 0.001 ). Additionally, results according to group-specific FPR (see Supplementary Figs. S5 and S6) and AOD 
metrics (see Supplementary Table S7), demonstrate a consistency with the findings based on EOD, reinforcing 
the validity of our debiasing approach across different fairness measures.

Our analysis on the impact of bias mitigation on untreated protected attributes analysis (see Supplementary 
Table S12) shows that there is not a uniform trend toward worsening fairness on untreated attributes when the 
debiasing method mitigates bias for a single protected attribute, although this undesirable behavior happens 
frequently and deserves attention. SUP seems more inclined to worsening, while post-processing methods (CPP 
and PSTA) are more robust, as evidenced by both EOD and AOD metrics. Our analysis also suggests that when 
fairness is enhanced for one attribute, it may inversely affect another if the attributes are negatively correlated. 
More details about this analysis are provided in the Supplementary material (see Supplementary Figs. S8–S10).

Discussion
ML algorithms have achieved state-of-the-art performance in many clinical tasks. However, when applying them 
in these life-or-death-stakes applications, it must be understood that they can induce biases against unprivileged 
subgroups and precautionary actions need to be taken in different deployment stages43. Here, we leverage our 
empirical study on four datasets to analyze the need of bias mitigation techniques, as well as their effectiveness, 
when using ML models to predict mental health issues such as depression.

Bias found when following the standard ML approach
Our results indicate that models learned following the standard ML approach show regularly unfair biased 
behaviors (see Fig.  1). We find that, for the classification problem, unequal distribution of classes between groups 
in the training dataset can lead the predictive model to learn that one group has a higher probability of being 
part of one class or another. (Evidence of this behavior can be observed in Supplementary Table S1). Therefore, 
ML models trained on the unbalanced dataset of a trial population, even if the sample in clinical trials is repre-
sentative of the patient population, provide potential inequitable outcomes if deployed without fairness analysis. 

� =
(1+ β2) · BAcc · (1− |EOD|)

β2 · BAcc+ (1− |EOD|)
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This evidence encourages ML healthcare practitioners not only to report the model performance on the overall 
population regardless of the subject membership to subpopulations but also to audit and address algorithmic bias.

Bias can be mitigated
Our results show that the bias mitigation techniques improve fairness compared to the no-intervention base 
models. All the techniques considered enhance results in terms of the difference in TPRs, in differing proportions. 
However, the techniques exhibit differences regarding the effect on the accuracy of the classifiers. Those learned 
in combination with the RW, DIR, and PSTA mitigation techniques tend to preserve predictive performance, 
whereas other techniques (SUP, CPP) usually compromise the level of accuracy (see Fig. 2). Our findings point 
out that the RW technique combined with the use of a larger number of risk factors diminishes the impact of the 
protected attributes (and other possible proxy attributes) on the outcome of the model, which leads to reduced 
algorithmic bias in NHANES and UKB datasets. This solution is appropriate in our case study as it performs well 
when it is integrated into predictive model learning while preserving the distribution and values of the original 
training data, unlike DIR and SUP. In addition, we find that our proposed post-hoc disparity mitigation method 
(PSTA) tends to mitigate bias while preserving predictive performance. In this method, the distinct treatment 
of subpopulations aims to address subgroup-specific disparities. Conventional one-size-fits-all methods might 
inadvertently accentuate biases, especially for underrepresented groups. Therefore, our approach ensures fair-
ness by recognizing and addressing these unique subgroup challenges. However, as other post-doc technical 
solutions for imposing fairness, it might be difficult to obtain the optimal threshold for subgroups with small 
populations underrepresented in the training set. The choice of the method must depend on the specific domain 
of application and desired outcomes. In the larger effort to create a fair system overall, methods like RW and DIR 
not only increase the TPR for the unprivileged groups but also reduce the privileged group’s FPR, resulting in 
fewer false positives. In contrast, PSTA increases the TPR of the unprivileged groups, accepting a higher FPR to 
reduce the TPR gap without intervening in the privileged groups. In primary care settings, where early detection 
and prevention are key, PSTA may be more appropriate, as it ensures that more people are identified for further 
evaluation and potential intervention, maximizing the overall benefit. Conversely, in secondary care settings 
focused on diagnosing and treating specific conditions, techniques such as RW and DIR may be more suitable, 
as they balance TPR and FPR across demographic groups, ensuring effective and fair resource allocation. We 
also highlight the importance of prioritizing adequate data collection before employing any debiasing technique 
to improve fairness in predictive models. By doing so, we aim to encourage communities to open health data, 
further contributing to the development of more equitable ML solutions. When mitigating bias against one 
protected attribute, further investigations are required to fully understand the potential inadvertent introduction 
or exacerbation of bias in other, untreated attributes. When required, future studies will have to address fairness 
in several protected attributes at once.

Fairness‑accuracy, a real trade‑off?
In fairness literature, the existence of a trade-off between fairness and accuracy is a common assumption; that is, 
that fairness cannot be improved without sacrificing predictive performance33. A few studies also have pointed 
out that this trade-off may necessitate the application of more complex methods44,45. Based on our empirical 
observations, we find that the fairness-accuracy trade-off for the datasets examined in this paper can be lessened 
if a set of bias mitigation techniques is considered, and not just one. Standard techniques RW, DIR, and CPP, 
or our proposed method PSTA can reduce bias while preserving predictive performance for specific (dataset, 
protected attribute) pairs. This was particularly evident for the modest-sized to large datasets (FUUS, NHANES, 
UKB), though the dynamics shifted a bit for the smaller dataset (LONGSCAN). Thus, this trade-off is not con-
sistently observed in our case studies in depression prediction without requiring complex ML methods. In line 
with46, this evidence encourages the ML community to intentionally propose frameworks that maximize both 
predictive performance enhancement and bias reduction, aiming to lessen the trade-off. There is probably no 
golden ticket, as there is no single best ML model for all prediction problems providing equality of outcomes 
naturally. ML practitioners need to figure out which combination in terms of type of classifier and bias mitiga-
tion algorithm is appropriate for the case at hand so that it produces the best results in terms of both accuracy 
and fairness.

In conclusion, we conducted an empirical study on four exposome datasets to show the ability of bias mitiga-
tion techniques to increase fairness of machine learning models obtained to predict depression from environ-
mental and lifestyle data. In addition, our main effort in this work has been directed toward providing empirical 
evidence to encourage clinical decision-makers to carefully evaluate a proposed framework in terms of both its 
accuracy and fairness prior to deployment. Experimental results support the idea that it is possible to improve 
algorithmic fairness regarding a single protected attribute without sacrificing predictive performance. We con-
sider that our promising results could enable a wider use of ML techniques in mental healthcare. This should 
inevitably go hand-in-hand with the assessment of possible biases in the models and the appropriate mitigation 
techniques if required. In the future, we expect to simultaneously examine the effects of having multiple pro-
tected attributes, such as ethnicity, sex, socio-economic status, geographical location, or comorbidities (type 1 
and type 2 diabetes, or cardiovascular disease), as well as broadening to include protective factors data, such as 
intelligence, temperament, cognitive appraisal, and support from a significant person, all of which may coun-
teract the negative effects of risk factors for depression, along with environmental and lifestyle data. In addition, 
we aim to integrate genetic and biological data, which are robust risk factors for depression, into our research.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7848  | https://doi.org/10.1038/s41598-024-58427-7

www.nature.com/scientificreports/

Data availability
Code for data processing and analysis is available at https://​github.​com/​ngoc-​vien-​dang/​FairML-​Depre​ssion. 
Detailed dataset sources and accessibility conditions are also provided in the repository’s README.
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