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Significance

Algorithms incorporate biases in 
the human decisions that 
comprise their training data, 
which can amplify and codify 
discrimination. We examine 
whether algorithmic biases can 
be used to reveal and help 
correct undetected biases of the 
human decision-makers on 
which algorithms are trained. We 
show that people see more of 
their biases in the decisions of 
algorithms than in their own 
decisions. Because algorithms 
reveal more of their biases, 
people are also more likely to 
correct their biases when 
decisions are attributed to an 
algorithm than to themselves. 
Recognizing bias is a crucial first 
step for people and organizations 
motivated to reduce their biases. 
Our findings illustrate how to use 
algorithms as mirrors to reveal 
and debias human 
decision-making.
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Algorithmic bias occurs when algorithms incorporate biases in the human decisions on 
which they are trained. We find that people see more of their biases (e.g., age, gender, 
race) in the decisions of algorithms than in their own decisions. Research participants 
saw more bias in the decisions of algorithms trained on their decisions than in their own 
decisions, even when those decisions were the same and participants were incentivized 
to reveal their true beliefs. By contrast, participants saw as much bias in the decisions 
of algorithms trained on their decisions as in the decisions of other participants and 
algorithms trained on the decisions of other participants. Cognitive psychological pro-
cesses and motivated reasoning help explain why people see more of their biases in 
algorithms. Research participants most susceptible to bias blind spot were most likely 
to see more bias in algorithms than self. Participants were also more likely to perceive 
algorithms than themselves to have been influenced by irrelevant biasing attributes (e.g., 
race) but not by relevant attributes (e.g., user reviews). Because participants saw more 
of their biases in algorithms than themselves, they were more likely to make debiasing 
corrections to decisions attributed to an algorithm than to themselves. Our findings 
show that bias is more readily perceived in algorithms than in self and suggest how to 
use algorithms to reveal and correct biased human decisions.

algorithm | algorithmic bias | bias blind spot | debiasing

Algorithms learn and incorporate biases in the human decisions on which they are trained 
(1–5). Algorithmic bias amplifies and codifies discrimination due to the scale with which 
algorithms are used in applications from deciding who is hired (1, 6) to who receives 
healthcare or bail (2, 7). Algorithmic biases also make human biases transparent that had 
been opaque when human decisions were unspecified or unaggregated (8, 9). When 
Amazon trained an algorithm on its past human hiring decisions, for example, the hiring 
algorithm revealed a gender bias that had previously escaped notice (10). We examine 
whether algorithmic biases can be used to help human decision makers recognize and 
correct for their biases.

People have access to the output of their intuitive decisions but lack access to the asso­
ciative processes by which those decisions were made (11, 12). Because people assess bias 
in their decision-making by introspectively examining their decision-making processes, 
bias in the self often goes unrecognized. By contrast, people more readily detect biases in 
the decisions of others because others are judged by their decisions rather than their 
decision-making processes. The phenomenon that people more readily perceive bias in 
the decisions of others than in their own decisions is the bias blind spot (13–16).

We theorize that similar psychological processes lead people to perceive more of their 
biases in the decisions of algorithms than in their decisions. We propose that people are 
more able and motivated (17) to see their biases in algorithms because, like other people, 
the decision-making process of algorithms is opaque (18–20) and people perceive decisions 
made by algorithms like decisions made by other people (21, 22). People should thus use 
the same criteria to evaluate bias in algorithms as they use to evaluate bias in other people 
and be less threatened by and dismissive of bias in the decisions of algorithms than self, 
even when algorithms are trained on their decisions (23, 24). In nine preregistered exper­
iments (N = 6,175), we find evidence that people perceive more of their biases (e.g., 
irrelevant effects of age, attractiveness, gender, and race on interpersonal judgments) in 
the decisions of algorithms than in their decisions. The revelatory effect of algorithms 
holds when research participants are given incentives that encourage them to reveal their 
true beliefs and discourage strategic self-presentation. We find that people are as likely to 
see biases in algorithms trained on their decisions as biases in the decisions of other people 
and algorithms trained on the decisions of other people. Furthermore, we show this rev­
elatory effect of algorithms is driven by cognitive and motivated processes. It is larger for 
people more prone to the bias blind spot and larger when people are motivated to appear 
unprejudiced. Finally, we find that because people see more of their biases in algorithms, 
people are more likely to correct their biased decisions when those decisions are attributed 
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to an algorithm than to themselves. Our findings show how to 
use algorithms to reveal and correct bias in human decision-making 
and provide evidence that the psychological processes used to 
perceive algorithms are scaffolded on the processes used to perceive 
other people.

Paradigm

We used a similar paradigm to test our hypotheses in all experi­
ments (see SI Appendix for additional details). All participants 
rated a set of targets (i.e., Airbnb listings or rideshare drivers) that 
varied randomly on relevant attributes (e.g., ratings, number of 
reviews) and varied systematically on a potentially biasing irrele­
vant attribute (i.e., age, attractiveness, gender, race). In the first 
part of the experiment, participants sequentially rated each target 
on analog sliders (e.g., likelihood of renting, perceived driving 
ability) in one of two phases (A and B), with targets presented 
randomly without replacement.

In all experiments, we included two experimental conditions 
in which we showed participants a summary of their target ratings 
from phase B. In the “self ” condition, we truthfully attributed 
those target ratings to the participant (e.g., “your ratings”). In the 
“self-trained algorithm” condition, we deceptively attributed those 
target ratings to an algorithm trained on other target ratings made 
by the participant (e.g., “predicted by an algorithm trained on 
your data from phase A”). In experiments 1 and 2, we added two 
“real self-trained algorithm” conditions in which we truthfully 
showed participants predicted phase B target ratings from a real 
algorithm trained on their phase A target ratings. In experiments 
3 and 4, we added two conditions in which we presented partic­
ipants with a summary of their target ratings from phase B, but 
we attributed their ratings to other participants in the experiment 
(“others” condition) or to an algorithm trained on the phase A 
target ratings of other participants in the experiment (“other-trained 
algorithm” condition).

All participants were then told about a research finding that 
explained how the irrelevant attribute might bias target ratings 
(e.g., age, attractiveness, gender, race) and participants reported 
the extent to which they perceived that “you [the algorithm/other 
participants]” showed the biasing tendency on a seven-point Likert 
scale with endpoints 1 (not at all) and 7 (very much). This absolute 
judgment of perceived bias was adapted from bias blind spot 
research (13, 15), but avoids a potential confound in comparative 
judgments of perceived bias between self and other (25). Perceived 
bias was positively correlated with the actual bias exhibited by 
individual participants in all nine experiments [rrange = 0.17 to 
0.38; raverage = 0.28 (95% CI = 0.24, 0.31)]; these correlations are 
high relative to correlations reported in bias blind spot papers 
comparing perceived and actual bias (e.g., rrange = −0.25 to 0.14) 
(15). See SI Appendix, Fig. S17.

In all experiments, we predicted that participants would perceive 
the biasing influence of the irrelevant attribute to be greater in the 
“self-trained algorithm” than “self” condition. Replicating previous 
research on the bias blind spot, we also expected perceived bias to 
be greater in the “others” condition than “self” condition.

People See More of Their Biases in Algorithms

Experiments 1 and 2. In experiments 1 and 2, we tested whether 
people see more of their racial and age biases when those biases 
are reflected in the decisions of algorithms than in their own 
decisions. In a one-factor between-subjects design, we randomly 
assigned participants to one of four conditions: self, self-trained 
algorithm, first real self-trained algorithm, and second real self-
trained algorithm. In experiment 1 (N = 801, Prolific Academic), 

participants evaluated Airbnb listings varying (randomly) on star 
ratings and (systematically) on whether the hosts had distinctively 
African American or White names (26). Participants in self, self-
trained algorithm, and first real self-trained algorithm conditions 
evaluated the renting likelihood of 10 Airbnb listings in phase 
A and 6 Airbnb listings in phase B. To eliminate the possible 
influence of suspicion, participants in the second real self-trained 
algorithm condition only evaluated the 10 Airbnb listings in phase 
A. Participants in the self and self-trained algorithm conditions 
next saw a summary judgment of their ratings in phase B that 
was attributed to self or algorithm, respectively. In the real self-
trained algorithm conditions, the summary ratings for phase B 
that were shown to participants were predicted by a participant-
level regression model trained on their phase A ratings using two 
regression coefficients. One coefficient was star rating (five-point 
scale). The other coefficient was race associated with hosts (African 
American or White). After viewing phase B summary ratings, all 
participants rated the perceived influence of racial bias on those 
ratings. To validate the real self-trained algorithm, we estimated 
a mixed effect regression comparing its predicted phase B ratings 
with all ratings made by participants who completed phase B, 
which revealed a strong average correlation (β = 0.75, t = 44.90,  
P < 0.001). In experiment 2 (N = 800, Prolific Academic), 
participants evaluated Uber drivers varying (randomly) on star 
ratings and (systematically) on whether the driver was young or old. 
The design was identical to experiment 1. This time, participants 
evaluated driving skills of different drivers in phase A and phase B. 
In the real self-trained algorithm conditions, the summary ratings 
for phase B were predicted by a participant-level regression model 
trained on participants’ phase A ratings using star rating and age 
of the drivers (young or old) as coefficients. After viewing phase B 
summary ratings, all participants rated the perceived influence of 
age bias on those ratings. To validate the real self-trained algorithm, 
we estimated a mixed effect regression comparing its predicted phase 
B ratings with all ratings made by participants who completed phase 
B, which revealed a strong average correlation (β = 0.92, t = 80.56, 
P < 0.001). In both experiments, we only used deception in the 
self-trained algorithm conditions.

In experiment 1, we regressed the perceived influence of racial 
bias on three dummies for the algorithm conditions, with the self 
condition as the reference category, while controlling for actual 
racial bias. As preregistered, participants perceived more racial bias 
(β = 0.89, t = 5.60, P < 0.001) when their ratings were attributed 
to an algorithm (self-trained algorithm: M = 3.20, SE = 0.12) than 
to themselves (self: M = 2.29, SE = 0.11; Fig. 1A). Participants also 
perceived more racial bias in the ratings of real algorithms trained 
on their ratings than in their ratings for both the first (M = 3.42, 
SE = 0.13, β = 1.10, t = 6.73, P < 0.001) and second real self-trained 
algorithm conditions (M = 3.47, SE = 0.14, β = 1.18, t = 7.14,  
P < 0.001). By contrast, there was no difference in the perceived 
racial bias in ratings made by participants that were attributed to 
an algorithm (self-trained algorithm) and ratings predicted by real 
self-trained algorithms (respectively, P = 0.21, P = 0.08), or between 
the real self-trained algorithm conditions (P = 0.62). Additional 
results and robustness checks are reported in SI Appendix, 
Tables S10–S13.

In experiment 2, we regressed the perceived influence of age 
bias on three dummies for the algorithm conditions, with the self 
condition as the reference category, while controlling for actual 
age bias. As preregistered, participants perceived more age bias  
(β = 1.05, t = 6.61, P < 0.001) when their ratings were attributed 
to an algorithm (self-trained algorithm: M = 3.88, SE = 0.11) than 
to themselves (self: M = 2.83, SE = 0.11; Fig. 1B). Participants 
also perceived more age bias in the ratings of real algorithms D
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trained on their ratings than in their ratings for both the first (M 
= 3.67, SE = 0.12, β = 0.82, t = 5.15, P < 0.001) and second real 
self-trained algorithm conditions (M = 3.82, SE = 0.12, β = 0.92, 
t = 5.79, P < 0.001). By contrast, there was no difference in the 
perceived age bias in ratings made by participants that were attrib­
uted to an algorithm (self-trained algorithm) and ratings predicted 
by real self-trained algorithms (respectively, P = 0.16, P = 0.43), 
or between the real self-trained algorithm conditions (P = 0.53). 
Additional results and robustness checks are reported in 
SI Appendix, Tables S10–S13. Since perceived bias was similar 
between the self-trained algorithm and the real self-trained algo­
rithm conditions in experiments 1 and 2, we used self-trained 
algorithm conditions in subsequent experiments so that the sum­
mary ratings of participants and algorithms were the same.

People See as Much of Their Biases in 
Algorithms as in Other People

Experiments 3 and 4. In experiments 3 and 4, we used a 2 (self, 
others) × 2 (participant, algorithm) between-subjects design. This 
design replicated our focal finding and tested if we would replicate 
the bias blind spot—people seeing more bias in the decisions of 
others than in their decisions. We recruited unique nationally 
representative online samples of US residents for each experiment 
from Prolific Academic. In experiment 3 (N = 797), each parti­
cipant rated 18 Uber drivers (males and females) on driving skill 
in two phases of nine ratings (A and B). In experiment 4 (N = 
775), each participant evaluated 18 Airbnb listings whose hosts 
had distinctively African American (9) or White (9) names, similar 
to experiment 1 (26). After rating all targets, participants saw a 
summary of target ratings in phase B. Then, participants rated the 
influence of gender or racial bias on those ratings (experiments 3 
and 4, respectively).

In experiment 3, regressing the perceived influence of gender bias 
on self (0 for others, 1 for self), algorithm (0 for participant, 1 for 
algorithm), and their interaction while controlling for actual gender 
bias revealed the preregistered significant interaction (β = 0.85,  
t = 3.47, P < 0.001; Fig. 2A). Participants perceived more gender bias  
(β = 0.59, t = 3.40, P < 0.001) when driver ratings were attributed to 
an algorithm trained on their ratings (self-trained algorithm:  
M = 3.16, SE = 0.12) than to themselves (self: M = 2.62, SE = 0.12). 

By contrast, there was no difference in perceived bias (β = −0.26, 
t = −1.52, P = 0.13) whether driver ratings were attributed to an 
algorithm trained on other participants (other-trained algorithm: M 
= 3.43, SE = 0.13) or other participants (others: M = 3.64, SE = 0.13). 
Consistent with classic bias blind spot findings, participants perceived 
more gender bias when driver ratings were attributed to other partic­
ipants than to themselves (others vs. self, β = −1.09, t = −6.34, P < 
0.001). Additional results and robustness checks are reported in 
SI Appendix, Tables S10–S13.

In experiment 4, regressing the perceived influence of racial bias 
on the same predictors revealed the preregistered significant inter­
action (β = 0.82, t = 3.55, P < 0.001). Participants perceived more 
racial bias (β = 1.08, t = 6.62, P < 0.001; Fig. 2B) when listing 
ratings were attributed to an algorithm trained on their ratings 
(self-trained algorithm: M = 3.63, SE = 0.13) than to themselves 
(self: M = 2.47, SE = 0.12). By contrast, there was no difference in 
perceived bias (β = 0.26, t = 1.61, P = 0.109) whether listing ratings 
were attributed to an algorithm trained on other participants 
(other-trained algorithm: M = 3.89, SE = 0.12) or to other partic­
ipants (others: M = 3.62, SE = 0.11). Consistent with classic bias 
blind spot findings, participants perceived more racial bias when 
listing ratings were attributed to other participants than to them­
selves (β = 1.12, t = 6.85, P < 0.001). Additional results and robust­
ness checks are reported in SI Appendix, Tables S10–S13.

Why People See More of Their Biases in 
Algorithms

We tested whether cognitive and motivated drivers explain why 
people more readily perceive their biases in the decisions of algo­
rithms than in their decisions in experiments 5 and 6.

Experiment 5. In experiment 5, we tested whether the revelatory 
effect of algorithms is moderated by individual differences in the bias 
blind spot, which is due to differences in the cognitive processes used 
to assess bias for self and others. People see less bias in their decisions 
than the decisions of others because they tend to introspectively 
look for biases in the process they used to make decisions (e.g., “I 
didn’t think about gender when inviting speakers”). By contrast, 
because people lack introspective access to the decision processes 
of other people, they look for biases in the decisions made by other 
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experimental condition. The dot represents the mean, and the error bars represent the 95% CI. Experiment 1 is presented in panel A (N = 801), and Experiment 
2 is presented in panel B (N = 800).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
E

R
A

SM
U

S 
U

N
IV

E
R

SI
T

Y
, U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 (

B
IB

)"
 o

n 
A

pr
il 

11
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

14
5.

5.
17

6.
4.

http://www.pnas.org/lookup/doi/10.1073/pnas.2317602121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2317602121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2317602121#supplementary-materials


4 of 8   https://doi.org/10.1073/pnas.2317602121� pnas.org

people (e.g., “All of their speakers are men”; ref. 15). People perceive 
decisions made by algorithms to be even more opaque (a “black box”) 
than decisions made by other people (18, 19). Thus, differences in 
the tendency to exhibit the bias blind spot should moderate the 
perception of more bias in the decisions of algorithms than self. 
Participants (N = 396, Prolific Academic) were randomly assigned 
between-subjects to a self or self-trained algorithm condition and 
completed the same ratings and bias assessments as in experiment 
3. All participants then completed a scale measuring susceptibility 
to the bias blind spot (15). We regressed perceived gender bias 
on condition (0 for self, 1 for self-trained algorithm), bias blind 
spot scale score, and their interaction while controlling for actual 
gender bias. The preregistered significant interaction (β = 0.29, t 
= 2.12, P = 0.03) revealed that susceptibility to bias blind spot 
increased the propensity to see more gender bias in ratings attributed 
to algorithm than to self. A floodlight analysis (27) revealed this 
difference was significant when bias blind spot scores were above 
1.71 (SI Appendix, Fig. S18). Given proximity of this threshold to 
the mean (MBBS = 1.74, SE = 0.06), we present dichotomized scores 
in Fig. 3A. See SI Appendix, Tables S10–S13 for additional results 
and robustness checks.

Experiment 6. We tested for the influence of motivated reasoning 
by examining whether algorithms selectively reveal the influence 
of biasing attributes in experiment 6. People are motivated to 
be unprejudiced for intrinsic and extrinsic reasons (28). If 
algorithms are perceived like other people, however, people 
should be less threatened by and dismissive of bias in decisions 
attributed to algorithms than self (23, 24). In a 2 (self, self-
trained algorithm) × 2 (racial bias, star rating) between-subjects 
design, we manipulated whether participants (N = 803, Prolific 
Academic) reported the perceived influence of an attribute 
that would evoke a high or low motivation to respond without 
prejudice (28). Participants evaluated the likelihood of renting 
18 Airbnb listings as in experiment 4. Half then reported the 
perceived influence of racial bias on target ratings made by self 
or self-trained algorithm (high motivation). Half were told that 
guests on the Airbnb platform are less likely to rent apartments 
from lower rated hosts than higher rated hosts and reported 
the perceived influence of star ratings on target ratings made 
by self or algorithm (low motivation). We regressed perceived 
influence on self-trained algorithm (0 for self, 1 for self-trained 
algorithm), racial bias (0 for star rating, 1 for racial bias), and 
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their interaction. The preregistered significant interaction 
revealed that algorithms selectively remove the bias blind spot 
(β = 1.55, t = 7.21, P < 0.001; Fig. 3B). Participants perceived 
more racial bias in ratings attributed to algorithms (β = 1.39,  
t = 9.17, P < 0.001; M = 3.74, SE = 0.13) than to themselves 
(M = 2.34, SE = 0.11). By contrast, participants perceived 
star ratings to have similarly influenced ratings attributed to 
algorithms (β = −0.16, t = −1.04, P = 0.297; M = 4.99, SE = 
0.09) and to themselves (M = 5.14, SE = 0.11). See SI Appendix, 
Table S10–S13 for additional results and robustness checks.

People Are More Likely to Correct Their Biases 
in Algorithms

Experiment 7. We examined whether attributing decisions to 
algorithms makes people more willing to correct decisions in 
experiment 7. Participants (N = 400, Prolific Academic) were 
assigned to a 2 (self, self-trained algorithm; between-subjects) × 2 
(precorrection, postcorrection; within-subjects) mixed design. All 
participants evaluated 18 Uber drivers in two phases that we varied 
systematically in facial attractiveness. Participants then reported the 
perceived biasing influence of attractiveness on driver ratings attributed 
to themselves or an algorithm trained on their ratings. Last, we allowed 
participants to correct driver ratings from phase B attributed to self or 
algorithm if they believed those ratings were biased. We computed 
a correction score, the average absolute difference in driver ratings 
before and after the opportunity for correction. As preregistered, 
participants corrected more when driver ratings were attributed to 
algorithms (β = 1.75, t = 3.28, P = 0.001; M = 3.77, SE = 0.46) than 
to themselves (M = 2.02, SE = 0.28). A similar difference in correction 
is observed when excluding outliers (β = 0.97, t = 4.03, P < 0.001; 
Fig. 4). Exploratory mediation analyses revealed that higher perceived 
influence of attractiveness bias predicted increased correction, which 
reduced actual attractiveness bias (SI Appendix, Figs. S20 and S21). 
See SI Appendix, Table S10–S13 for additional results and robustness 
checks.

Robustness Checks

Generalization across Heterogeneity in Actual Bias. We calculated 
a measure of actual bias in individual participant evaluations in 
all experiments (e.g., the average difference in evaluations of male 

and female Uber drivers). Descriptive analyses show that the 
distribution of actual bias exhibited by individual participants was 
heterogenous (SI Appendix, Fig. S16 and Table S9) and normally 
distributed around zero, except in experiment 7 and supplemental 
experiments where average bias was significantly greater than zero 
(all P’s ≤ 0.002). About half of the participants in each sample 
exhibited bias in the direction as it was described to participants 
(e.g., favoring Whites to African Americans, favoring younger 
people, favoring males to females, favoring more attractive people). 
Importantly, variation in actual bias exhibited by individual 
participants did not moderate their propensity to perceive more 
of their bias in the decisions of algorithms than self in experiments  
1 to 7 (SI Appendix, Table S12, Panel A). As an additional robustness 
check, among the participants who exhibited bias in the direction 
as it was described (e.g., favoring Whites to African Americans, 
males to females, more attractive people), the conditional effect 
of algorithm (vs. self ) on perceived influence was significant in all 
experiments (SI Appendix, Table S12, Panel B).

Generalization across Race and Gender. The race and gender of 
participants did not moderate the propensity to see more bias in 
algorithms than self in any experiment. In addition, self-identified 
race and gender did not consistently predict actual bias across 
experiments (SI Appendix, Table S13). Black participants were less 
likely to exhibit a bias favoring Whites to African Americans in 
experiment 4, for instance, but were no less likely in experiment 6.

Reflection of True Beliefs. In supplementary experiment A, half of 
participants were given a financial incentive (29) that encouraged 
them to reveal their true beliefs and discouraged strategic responding 
(30). In a 2 (self, real self-trained algorithm) × 2 (incentive, control) 
between-subjects design, participants (N = 800, Prolific Academic) 
evaluated the trustworthiness of attractive and unattractive Uber 
drivers. This experiment was modeled on experiments 1 and 2, 
using the second real self-trained algorithm condition in which 
participants only evaluated 10 drivers in phase A. To validate the 
real self-trained algorithm, we estimated a mixed effect regression 
comparing its predicted phase B ratings with all ratings made by 
participants who completed phase B, which revealed a strong 
average correlation (β = 0.86, t = 54.76, P < 0.001).

We regressed perceived influence on algorithm (−½ for self, ½ 
for real self-trained algorithm), incentive (−½ for control, ½ for 
incentive), and their interaction, while controlling for actual 
attractiveness bias (mean centered). There was a marginally signif­
icant main effect of incentive (β = 0.21, t = 1.79, P = 0.07) such 
that participants perceived more attractiveness bias in the incentive 
than control conditions. Exploratory analyses revealed that the 
increase in perceived attractiveness bias from control to incentive 
was marginally significant in the self condition (β = 0.31, t = 1.85, 
P = 0.07) but not significant in the real self-trained algorithm 
condition (β = 0.11, t = 0.68, P = 0.50; see SI Appendix, Fig. S22A). 
The interaction of algorithm and incentive was not significant  
(β = −0.20, t = −0.83, P = 0.41). Incentives may have increased 
perceived bias in self but did not moderate the propensity to see 
more bias in algorithms or the magnitude of the difference between 
self and algorithms. As predicted, participants perceived more 
attractiveness bias in ratings attributed to algorithms than to them­
selves (β = 0.91, t = 7.61, P < 0.001) both in control (M = 4.19, 
SE = 0.12 vs. M = 3.20, SE = 0.13; β = 1.01, t = 5.97, P < 0.001) 
and incentive conditions (M = 4.38, SE = 0.12 vs. M = 3.45, SE 
= 0.14; β = 0.81, t = 4.78, P < 0.001). See SI Appendix, Tables S10–
S13 for additional results and robustness checks.

In supplementary experiment B, we tested whether incentivized 
ratings reflect true beliefs, not confusion about incentives, by using 
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Fig. 4.   People are more likely to correct their biases in algorithms (Experiment 
7). ***P < 0.001. The violin plots represent the shape of the distribution of 
perceived influence by experimental condition. The dot represents the mean, 
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additional figures without outlier exclusions, see SI Appendix, Fig. S19.D
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a simpler incentive offered to all participants and including a 
comprehension check. The check revealed that 76% of the par­
ticipants understood the incentive. We regressed the perceived 
influence of attractiveness bias on ratings made by self or a real 
self-trained algorithm (0 for self, 1 for real self-trained algorithm), 
while controlling for actual attractiveness bias (mean centered). 
Participants perceived more attractiveness bias in ratings made by 
the algorithm than self whether we included all participants in the 
analysis (M = 4.20 SE = 0.11 vs. M = 3.55, SE = 0.11; β = 0.63,  
t = 4.35, P < 0.001) or, as preregistered, only included participants 
who passed the comprehension check (M = 4.22, SE = 0.12 vs.  
M = 3.54, SE = 0.13; β = 0.63, t = 3.77, P < 0.001; see SI Appendix, 
Fig. S22B). In summary, participants appear to truly perceive more 
bias in decisions made by algorithms than themselves. See SI Appendix, 
Tables S10–S13 for additional results and robustness checks.

Discussion

Algorithms incorporate biases in the human decisions that com­
prise their training data, which can amplify and codify discrimi­
nation (1–5, 10). Our findings suggest auditing algorithms for 
bias can be beneficial not only for reducing algorithmic bias, but 
also for revealing biases in the human decisions on which they are 
trained. We find algorithms to be exempt from the bias blind spot 
that selectively inhibits people from recognizing and correcting 
their biased and prejudiced decision-making. In nine experiments, 
participants saw more of their biases in algorithms trained on their 
decisions than in their decisions (average d = 0.51; see SI Appendix, 
Fig. S15). For people and organizations motivated to reduce bias, 
recognizing bias is a crucial first step (31–34). Our findings present 
initial evidence that algorithms can serve as mirrors that reveal 
and debias human decision-making.

Materials and Methods

The present research involved no more than minimal risks, and all study par-
ticipants were 18 y of age or older. All experiments were approved for use with 
human participants by the Institutional Review Board on the Charles River Campus 
at Boston University (protocol 3632E) or Institutional Review Board at Erasmus 
University (ETH2324-0356); informed consent was obtained for all participants. 
All manipulations and measures are reported. Experiments were conducted on the 
Qualtrics survey platform. Condition assignments were random in all our experi-
ments, with randomization administered by Qualtrics. Preregistrations, surveys, 
raw data and reproducible R code are available on the Open Science Framework 
at https://osf.io/yvjt3/?view_only=6d6abf4759ea4bab9588d70c7b77c0d0.

Following a general rule of thumb, we sought to obtain a minimum of 
200 participants per experimental condition. For each study, we requested the 
preregistered sample size on the online platform (i.e., N = 800 or N = 600 or N 
= 400). The final sample was determined by the actual number of participants 
who signed up for each online study, which was slightly higher or lower than 
the preregistered sample size. We preregistered N=800 for experiments 1, 2, 3, 
4, and 6 and supplementary experiment A. The number of complete responses 
was respectively N = 801 (N = 801 total sample, that is 0% dropout), N = 800 
(N = 800 total sample, that is 0% dropout), 797 (N = 813 total sample, that 
is 2.0% dropout), 775 (N = 775 total sample, that is 0% dropout), 803 (N = 
803 total sample, that is 0% dropout), 800 (N = 804 total sample, that is 0.5% 
dropout). We preregistered N = 400 for experiments 5 and 7. The number of 
complete responses was respectively N = 396 (N = 396 total sample, that is 
0% dropout), 400 (N = 400 total sample, that is 0% dropout). We preregistered 
N = 600 for supplementary experiment B. The number of complete responses 
was respectively N = 603 (N = 603 total sample, that is 0% dropout), The 
representative sampling for experiment 3 and 4 were performed by Prolific 
by matching the sample to the US population distribution by age, gender, 
and ethnicity. Balanced sample (i.e., even distributions of male and female 
participants) and a ≥98% approval rate were panel-related conditioning factors 
used in the other experiments.

Experiment 1. We recruited an online sample of 801 US residents (Mage = 35.9 
y, 48% female) from Prolific Academic. Participants were randomly assigned to 
one of the four conditions: self, self-trained algorithm, first real self-trained 
algorithm, and second real self-trained algorithm. Participants imagined they 
were looking for a one-bedroom apartment to rent for a weekend. We presented 
information about apartments with a description of the apartment and the name 
of the host, using distinctively African American and distinctively White names 
(26). The information about each listing also included two diagnostic attributes 
(i.e., star rating and number of reviews), with randomly generated values for each 
participant. The diagnostic attributes are typically provided on platforms such as 
Airbnb. Under the apartment description, we kept the number of reviews constant 
for each apartment (i.e., 100 more), but for each apartment, we generated a set 
of 10 randomly generated numbers for star rating between 3.9 and 5. In other 
words, the star rating of an apartment varied randomly across participants. The 
full list of stimuli is available in SI Appendix.

Participants in self, self-trained algorithm, and first real self-trained algorithm 
conditions reported their likelihood of renting 10 apartments in phase A and 6 
apartments in phase B. Participants in second real self-trained algorithm condition 
only reported their likelihood of renting 10 apartments in phase A. Participants 
rated their likelihood to rent each apartment with a 100-point analog slider scale 
with endpoints 0 (not at all likely) to 100 (very much likely). Importantly, we hid 
the slider values to participants. While they had a sense of low and high likeli-
hoods, participants were unable to know their exact driving evaluation values. 
After evaluating the apartments, participants in the self condition moved directly 
to the dependent variable page, while participants from the algorithm conditions 
read additional information about an algorithm that an algorithm was said to use 
“your own” evaluation data from phase A to predict the evaluation from phase B. 
The algorithm information is presented in SI Appendix, Fig. S1.

On the dependent variable page, we presented participants with a summary 
table including six apartments from phase B, with African American and White 
host names grouped separately. Importantly, while participants in self and 
self-trained algorithm conditions were presented with their own ratings from 
phase B, participants in the real self-trained algorithm conditions viewed the 
summary evaluations for phase B predicted by an individual-level regression 
model on the 10 observations from phase A with two independent variables (a 
dummy for African American or White name, and a continuous predictor for the 
star rating) and with renting likelihood as dependent variable. In the first real 
self-trained algorithm condition, participants completed evaluations in phase B. 
In the second real self-trained algorithm condition, participants did not complete 
phase B. Below the summary evaluation table, we presented participants with 
a short statement about research on racial bias “Research suggests that guests 
on the Airbnb platform are less likely to rent apartments from hosts with dis-
tinctly African American names than with distinctively White names.” Finally, we 
measured our dependent variable of perceived influence with a single item: 
“to what extent do you believe that you (the algorithm) showed this tendency” 
on a seven-point Likert scale with 1 as not at all and 7 as very much, adapted 
from prior research on the bias blind spot (13, 15). Example evaluation pages 
are presented in SI Appendix, Figs. S8 and S9. Last, all participants reported age, 
gender, and ethnicity.

Experiment 2. We recruited an online sample of 800 US residents (Mage = 38.6 y, 
49% female) from Prolific Academic. Participants were randomly assigned to one 
of the four conditions: self, self-trained algorithm, first real self-trained algorithm, 
and second real self-trained algorithm. Participants imagined they would use a 
ride-sharing service and evaluated different drivers. We presented information 
about drivers, which involved a photo from Chicago Face Database (35) and the 
two diagnostic attributes (i.e., star rating and number of reviews) identical to 
experiment 1. To create a young and an old version of each photo, we edited these 
photos with an AI tool (https://ailab.wondershare.com/tools/aging-filter.html). 
The design was similar to experiment 1, in which participants in self, self-trained 
algorithm, and first real self-trained algorithm conditions rated perceived driving 
skill of 10 drivers in phase A and six drivers in phase B. Participants in second real 
self-trained algorithm condition only rated perceived driving skill of 10 drivers 
in phase A. Participants rated drivers’ driving skill with a 100-point analog slider 
scale with endpoints 0 (not at all skilled) to 100 (highly skilled). After evaluating 
the drivers, participants in the self condition moved directly to the dependent 
variable page, while participants from the algorithm conditions read additional D
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information about an algorithm that an algorithm was said to use “your own” 
evaluation data from phase A to predict the evaluation from phase B, similar to 
experiment 1. The algorithm information is presented in SI Appendix, Fig. S2.

On the dependent variable page, we presented participants with a summary 
table including six drivers from phase B, with young and old drivers grouped sep-
arately. Participants in self and self-trained algorithm conditions were presented 
with their own ratings from phase B, whereas participants in the real algorithm 
conditions viewed the summary evaluations for phase B predicted by an individual-
level regression model on the 10 observations from phase A with two independent 
variables (a dummy for young or old driver, and a continuous predictor for the star 
rating) and with perceived driving skill as dependent variable. Below the summary 
evaluation table, we presented participants with a short statement about research 
on age bias “Research on age biases suggests that people show a tendency to asso-
ciate younger people with more driving skill than older people.” We asked them to 
examine their driving skill evaluations from Phase B (the driving skill evaluations 
from Phase B predicted by an algorithm trained on their evaluations) for this age 
bias and measured perceived influence with the same scale as in experiment 1. 
Example evaluation pages are presented in SI Appendix, Figs. S10 and S11. Last, 
all participants reported age, gender, and ethnicity.

Experiment 3. We recruited a nationally representative online sample of 797 US 
residents (Mage = 45.78 y, 49% female) from Prolific Academic. Participants were 
randomly assigned to one of the four conditions in a 2 (self, others) × 2 (partici-
pant, algorithm) between-subjects design. Participants imagined they would use 
a ride-sharing service and evaluated different drivers. Then, we presented them 
information about 18 drivers (nine female and nine male) in two phases (i.e., 
phase A and phase B). The driver information presented involved a photo from 
Chicago Face Database (35) and four diagnostic attributes (i.e., number of trips, 
star rating, experience in platform and brand of the car). We chose the diagnostic 
attributes because they are typically provided on ridesharing platforms such as 
Uber. Under each photograph, we assigned each participant to a random selection 
of attribute values. In other words, the same driver had different attribute values 
across participants, similar to experiments 1 and 2. Every attribute included 10 
different values. The 10 values were randomly generated numbers between 1,000 
and 3,000 for the number of trips; randomly generated numbers between 4.00 
and 5.00 for star rating; the experience in the platform ranged from 8 mo to 3.5 
y; 10 car brands were selected from a list providing most popular cars commonly 
used by Uber drivers. The full list of stimuli is available in SI Appendix.

Participants rated every driver on perceived driving skill with a 100-point 
slider scale from 0 (not at all skilled) to 100 (very much skilled). After evaluating 
the 18 drivers in phases A and B, participants in the self and others conditions 
moved directly to the dependent variable page, while participants from the 
self-trained and other-trained algorithm conditions read additional information 
about an algorithm. In the self-trained algorithm condition, the algorithm was 
said to use “your own” evaluation data from phase A to predict the evaluation 
from phase B. In the other-trained algorithm condition, the algorithm was said 
to use evaluation data from phase A from “other participants of this study” to 
predict the evaluation from phase B. The algorithm information is presented in 
SI Appendix, Fig. S3.

On the dependent variable page, we presented participants with a summary 
table including the actual driving evaluation values for the nine drivers from 
phase B, ranked from highest to lowest. Participants in all conditions viewed 
their own driving evaluations from phase B, however, we provided different attri-
butions across conditions. Participants in the self condition were informed that 
the table summarized their own evaluations. Participants in the others condition 
were informed that the table summarized the evaluations from other partici-
pants of the study. Participants in the self-trained algorithm conditions were 
informed that the table summarized the predicted evaluations by the algorithm 
trained on their own data. Participants in the other-trained algorithm conditions 
were informed that the table summarized the predicted evaluations by the algo-
rithm trained on other participants’ data. Below the summary evaluation table, 
we presented participants with a short statement about research on gender bias 
“Research on gender biases suggests that people show a tendency to associate 
men with higher driving skills than women.” Finally, we measured perceived 
influence with the same scale as in previous studies. Example evaluation pages 
are presented in SI Appendix, Figs. S12 and S13. Last, all participants reported 
age, gender, and ethnicity.

Experiment 4. We recruited a nationally representative online sample of 775 
US residents (Mage = 45.19 y, 50% female) from Prolific Academic. Participants 
were randomly assigned to one of the four conditions in a 2 (self, others) × 2 (par-
ticipant, algorithm) between-subjects design. Participants imagined they were 
looking for a one-bedroom apartment to rent for a weekend and evaluated the 
renting likelihood of apartments similar to experiments 1 and 2. We presented 
information about 18 apartments in two phases (i.e., phase A and phase B). In 
this experiment, we presented information about apartments that included a 
description of each listing and the name of its host, using distinctively African 
American and distinctively White names (26). The information about each list-
ing also included four diagnostic attributes for each apartment (i.e., number of 
reviews, cleanliness star rating, communication star rating, and location star rat-
ing), with randomly generated values for each participant, similar to experiment 
1. The list of attributes is presented in SI Appendix. The algorithm presentation 
and summary evaluation table were similar to experiment 3. Last, we informed 
participants about research on racial bias and measured its perceived influence 
with the same scale as in previous studies. Finally, participants reported age, 
gender, and ethnicity.

Experiment 5. We recruited an online sample of 396 US residents (Mage = 36.6 
y, 47% female) from Prolific Academic. Participants were randomly assigned to 
either a self or a self-trained algorithm condition in a between-subjects design. 
Participants were assigned to the same tasks as presented in experiment 3. Next, 
participants responded to the 14-item Bias Blind Spot Scale (15), which measures 
individual differences in susceptibility to the bias blind spot. We calculated a bias 
blind spot score for each participant by subtracting the perceived susceptibility 
to bias of self from the perceived susceptibility to bias of average American for 
each bias and then averaging these differences (MBBS = 1.73, SE = 0.06). Last, 
participants reported age, gender, and ethnicity.

Experiment 6. We recruited an online sample of 803 US residents (Mage = 36.9 
y, 48% female) from Prolific Academic. Participants were randomly assigned to 
one of the four conditions in a 2 (self, self-trained algorithm) × 2 (racial bias, 
star rating) between-subjects design. The design was identical to experiment 4, 
in which participants evaluated the likelihood of renting of 18 apartments. In 
the racial bias condition, participants read “Research suggests that guests on the 
Airbnb platform are less likely to rent apartments from hosts with distinctly African 
American names than with distinctively White names.” In the star rating condition, 
participants read “Research suggests that guests on the Airbnb platform are less 
likely to rent apartments from lower rated hosts than higher rated hosts.” Perceived 
influence was measured with the same scale used in previous experiments. Last, 
participants reported age, gender, and ethnicity.

Experiment 7. We recruited an online sample of 400 US residents (Mage = 
37.2 y, 50% female) from Prolific Academic. Participants were assigned to a 2 
(self, self-trained algorithm) × 2 (precorrection, postcorrection) mixed design; 
the first factor was manipulated between-subjects and the second factor was 
manipulated within-subjects. Participants were assigned to the same tasks as 
presented in experiment 3. Differently, they rated every driver on trustworthiness 
with a 100-point analog slider scale from 0 (not at all trustworthy) to 100 (very 
much trustworthy).

The algorithm presentation and summary evaluation table were similar 
to experiment 3. We informed participants about research on attractiveness 
biases “Research on attractiveness biases suggests that people show a tendency 
to believe attractive people are more trustworthy than unattractive people.” 
Then, we measured its perceived influence with the same scale as in other 
experiments. After, participants in the self condition were informed that they 
could change their evaluations from phase B, if they believed their evaluations 
were subject to an attractiveness bias. Participants in the self-trained algorithm 
condition were informed that they could change the algorithm’s evaluations 
from phase B, if they believed its evaluations were subject to an attractiveness 
bias. After reading this information, participants rated each driver from phase B 
again, while we provided the original rating of the driver from phase B and the 
average rating for all drivers from phase B on the page. Also, the slider scale had 
a start position at their own evaluations from phase B. An example evaluation 
page is presented in SI Appendix, Fig.  S14. Last, participants reported age, 
gender, and ethnicity.D
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Supplementary Experiment A. We recruited an online sample of 800 US res-
idents from Prolific Academic (Mage = 37.72 y, 49% female). Participants were 
assigned to a 2 (self, real self-trained algorithm) × 2 (incentive, control) between-
subjects design. Participants made the same ratings as in experiment 7, except 
that participants in the self conditions evaluated the trustworthiness of 10 drivers 
in phase A and 6 drivers in phase B. Participants in the real self-trained algorithm 
conditions only evaluated the trustworthiness of 10 drivers in phase A.

The algorithm presentation and summary evaluation table were similar to 
those of experiments 1 and 2; six attractive and unattractive drivers from phase B 
were grouped separately. Participants in self conditions were presented with their 
own ratings from phase B. Participants in the real self-trained algorithm conditions 
viewed the summary evaluations for phase B predicted by an individual-level 
regression model on the 10 observations from phase A with two independent 
variables (a dummy for attractive or unattractive driver, and a continuous predictor 
for the star rating) and with trustworthiness as dependent variable. We informed 
participants about research on attractiveness biases, “Research on attractiveness 
biases suggests that people show a tendency to believe attractive people are more 
trustworthy than unattractive people.” Then we measured its perceived influence 
with the same scale as in other experiments. Prior to reporting the perceived 
biasing influence of attractiveness on ratings, participants in incentive conditions 
read “After this survey is concluded, we are going to run another study in which 
we show participants summary trust evaluations that vary in attractiveness bias. If, 
for trust evaluations with the same degree of bias as in the summary evaluations 
above, your perceived tendency rating matches their average rating, we will give 
you a $1 bonus.” Last, participants reported age, gender, and ethnicity.

Supplementary Experiment B. We requested an online sample of 600 
US residents from Prolific Academic; 603 completed the experiment (Mage 
= 36.12 y, 47% female). The design of the experiment was identical to that 
of supplementary experiment A with three exceptions. First, all participants 
were incentivized; participants were randomly assigned to incentivized self or 
real self-trained algorithm conditions. Second, we used a simpler incentive, 
“After you finish this study, we will show another participant the same trust 
evaluations. If your perceived tendency rating is the same number as their 
perceived tendency rating, we will give you a $1 bonus”. Third, we included a 
one-item comprehension check, “Your perceived tendency rating was [PIPED 
TEXT]. What will the other participant’s perceived tendency rating need to be 
for you to receive the $1 bonus?”. Participants responded on a seven-point 
scale with values from 1 to 7. Correct responses were coded as 1 and incorrect 
responses as 0.

Data, Materials, and Software Availability. Raw data and R code data have 
been deposited in Open Science Framework (https://osf.io/yvjt3/?view_only=​6d6ab-
f4759ea4bab9588d70c7b77c0d0) (36).
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