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Abstract
Background: The noninflammatory immunoglobulin G4 (IgG4) is linked to tolerance 
and is unique to humans. Although poorly understood, prolonged antigenic stimula-
tion and IL- 4- signaling along the T helper 2- axis may be instrumental in IgG4 class 
switching. Recently, repeated SARS- CoV- 2 mRNA vaccination has been linked to IgG4 
skewing. Although widely used immunosuppressive drugs have been shown to only 
moderately affect humoral responses to SARS- CoV- 2 mRNA vaccination, the effect 
on IgG4 switching has not been investigated.
Methods: Here we study the impact of such immunosuppressive drugs, includ-
ing the IL- 4 receptor- blocking antibody dupilumab, on IgG4 skewing upon repeated 
SARS- CoV- 2 mRNA vaccination. Receptor- binding domain (RBD) specific antibody 
responses were longitudinally measured in 600 individuals, including patients with 
immune- mediated inflammatory diseases treated with a TNF inhibitor (TNFi) and/
or methotrexate (MTX), dupilumab, and healthy/untreated controls, after repeated 
mRNA vaccination.
Results: We observed a substantial increase in the proportion of RBD- specific IgG4 an-
tibodies (median 21%) in healthy/untreated controls after third vaccination. This IgG4 
skewing was profoundly reduced in dupilumab- treated patients (<1%). Unexpectedly, 
an equally strong suppression of IgG4 skewing was observed in TNFi- treated patients 
(<1%), whereas MTX caused a modest reduction (7%). RBD- specific total IgG levels 
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1  |  INTRODUC TION

Immunoglobulin G4 (IgG4) is a peculiar antibody subclass exclusively 
found in humans. It has a distinct noninflammatory character, with low 
affinity to most FcγRs and C1q, and therefore a limited potential for 
antibody dependent cellular cytotoxicity (ADCC) and complement- 
mediated effector functions.1,2 IgG4 is also uniquely able to undergo 

Fab- arm exchange, resulting in a bispecific antibody that is function-
ally monovalent and unable to form large immune complexes, reducing 
its inflammatory potential even more.3–6 However, IgG4 is generally 
associated with high levels of somatic hypermutation (SHM) and high 
affinity antigen binding, contributing to efficient neutralization. Due 
to this combination of weak effector functions yet high neutraliza-
tion capacity, IgG4 has been referred to as a blocking antibody. As 

were hardly affected by these immunosuppressive drugs. Minimal skewing was ob-
served, when primary vaccination was adenoviral vector- based.
Conclusions: Our results imply a critical role for IL- 4/IL- 13 as well as TNF in vivo IgG4 
class switching. These novel findings advance our understanding of IgG4 class switch 
dynamics, and may benefit humoral tolerance induction strategies, treatment of IgG4 
pathologies and mRNA vaccine optimization.

K E Y W O R D S
dupilumab, IgG4 class switching, mRNA vaccination, TNFi, tolerance

G R A P H I C A L  A B S T R A C T
• This study assessed total IgG and IgG4 anti- RBD responses after SARS- CoV- 2 mRNA vaccination in a longitudinal cohort comprising 

healthy controls (HC), disease controls (DC), patients treated with methotrexate (MTX), TNF inhibitors (TNFis), the combination thereof 
and dupilumab.

• We found significant IgG4 skewing in HC and DC after repeated vaccination, and to a lesser extent in patients treated with MTX.
• IgG4 skewing was virtually absent in patients treated with dupilumab or TNFis, illustrating major roles for IL- 4/IL- 13 and TNF in the 

overall process of class switching to IgG4.
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    |  3VALK et al.

such, IgG4 plays a diverse role in various pathological settings. In the 
context of specific immunotherapy, IgG4 may contribute to tolerance 
by inhibiting allergen- specific IgE. On the other hand, tumor- specific 
IgG4 has been implicated in immune evasion in melanoma,7 whereas 
in autoimmunity, IgG4 autoantibodies can be pathogenic solely on the 
basis of blocking their target, as is the case for anti- desmoglein anti-
bodies in pemphigus vulgaris.8–11

A crucial question is what is driving the switch towards nonin-
flammatory IgG4. Although key drivers of IgG4 class switching re-
main to be elucidated, prolonged antigenic stimulation and signaling 
along the T helper 2 (Th2) axis have been shown to play a role.12–14 
Class switching to IgG4 has recently been described during re-
peated SARS- CoV- 2 mRNA vaccination, resulting in a substantial 
portion of the anti- spike antibody response to consist of the IgG4 
subclass.15–17 The robust germinal centers with long lasting spike 
antigen found after repeated SARS- CoV- 2 mRNA vaccination could 
potentially contribute to IgG4 skewing, although the exact driv-
ers are still unclear.18,19 While IgG4 class switching is a relatively 
uncommon event upon vaccination, there are other examples of 
vaccine- induced antigen- specific IgG4 induction. The nature of the 
primary antigen challenge appears crucial in these cases. For in-
stance, during HIV vaccination trials IgG4 switching was exclusively 
seen in response to bivalent recombinant protein- based vaccines 
(VAX003/VAX004 trails), but not after viral vector- based primary 
immunization.20,21 Furthermore, in case of pertussis vaccination, 
the acellular vaccine induced a stronger IgG4 switch in comparison 
to a whole cell vaccine variant.22,23 On the other hand, repeated 
tetanus toxoid immunization to produce hyperimmune anti- tetanus 
serum results in an IgG1- dominated response,24 illustrating that 
repeated vaccination in itself does not necessarily induce IgG4 
class switching. Mechanistically, IgG4 switching has been associ-
ated with Th2 responses in vivo, and IL- 4 has been identified in vitro 
cultures as an important cytokine for IgG switching in general and 
IgG4 in particular.25–31 Other cytokines that have been associated 
with (selective) IgG4 induction include IL- 10 and IL- 13, but details as 
to their involvement remain unclear.2

A potential concern with vaccinations is the response in patients 
treated with immunosuppressive medications. These drugs target 
different elements of the immune system and may interfere with 
vaccination strategies to activate the immune system. We and oth-
ers have previously shown that the impact thereof varies greatly. 
Widely used drugs, such as methotrexate (MTX) and TNF inhibitors 
(TNFis) appear to have an overall limited impact on the humoral re-
sponse to SARS- CoV- 2 mRNA vaccines, yet show slightly diminished 
antibody titers.32–35 Whether or not such immunosuppressive drugs 
may further enhance or prevent switching to the noninflammatory 
IgG4 isotype is unknown.

In this study, we investigated the impact of several widely used 
immunosuppressive drugs on IgG4 switching of the anti- spike anti-
body response upon repeated mRNA vaccination in a large cohort 
of individuals, including patients treated with the IL- 4R blocking an-
tibody dupilumab, as well as TNFi, MTX, or a combination of TNFi 
and MTX. Studying the dynamics of a de novo IgG4 response upon 

specific therapeutic inhibition of certain cytokines may provide valu-
able in vivo mechanistic insight in IgG4 class switching, which is not 
possible in laboratory animals, since these lack an IgG4 equivalent.

2  |  MATERIAL S AND METHODS

2.1  |  Study design

This study, part of the previously described Target- 2- B! Immunity 
against SARS- CoV- 2 vaccination cohort32 included immune me-
diated inflammatory disease (IMID) patients treated with MTX, 
TNFi, the combination thereof, or dupilumab. Patients had no 
history of oncological or hematological disorders. Control groups 
consisting of IMID patients that were not treated with systemic 
immunosuppressants (disease controls, DC) and healthy controls 
(HC). Participants received two homologous doses of BNT162b2, 
mRNA- 1273 or ChAdOx1 nCoV- 19, followed by a booster dose of 
BNT162b2 or mRNA- 1273. Serum samples were collected 28 days 
after each vaccination and before the first and third vaccination by 
at- home fingerprick, as described previously.32 Participants who 
experienced a SARS- CoV- 2 infection prior to or during the initial 
two- dose vaccination regimen, monitored as previously described 
using anti- RBD and anti- N serology (see below) and positive PCR 
results reported to the research team,32 were excluded from this 
sub- study. Breakthrough infections were found in a total of 17 par-
ticipants: two HC, three DC, one patient treated with MTX, one 
patient treated with dupilumab, eight patients treated with TNFi 
(of whom three received ChAdOx1 nCoV- 19 for their initial vac-
cinations) and two patients treated with MTX and TNFi (Figures S2 
and S4). This study was approved by the medical ethical committee 
of the Amsterdam UMC (2020.194; trial registry NL74974.018.20 
and EudraCT 2021- 001102- 30). All participants provided written 
informed consent.

2.2  |  Anti- RBD and - N total antibody ELISAs

To monitor (breakthrough) infections in the cohort through qualita-
tive detection of total antibodies (pan- isotype) directed against the 
receptor binding domain (RBD) of the spike (S) protein and the nucle-
ocapsid (N) protein of SARS- CoV- 2 (Wuhan- Hu- 1) in serum samples, 
we performed previously described in- house developed bridging 
enzyme- linked immunosorbent assays (ELISAs).36 Anti- RBD was 
tested in samples taken before vaccination and anti- N in samples 
from all subsequent time points.

2.3  |  Anti- RBD IgG ELISAs

To quantify total IgG directed against the RBD of SARS- CoV- 2 
(Wuhan- Hu- 1) in serum samples, we performed a previously 
described in- house developed direct ELISA.36,37 In short, this 
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assay was calibrated using a pooled plasma standard obtained 
from convalescent healthy donors in May 2020, which was set 
at 100 arbitrary units (AU)/mL. The lower limit of quantification 
for samples tested at 1:1200 dilution was 1 AU/mL, with a > 99% 
specificity cutoff determined at 4 AU/mL.37 This format was fur-
ther adapted into an IgG4- specific ELISA. 96- well half- area mi-
croplates (Corning) with a working volume of 50 μL were coated 
overnight at 4°C with 1 μg/mL RBD in phosphate buffered sa-
line (PBS; Fresenius Kabi). Plates were washed five times with 
PBS + 0.02% v/v Tween- 20 (Merck, Germany) using an ELx405 
ELISA washer (Biotek Instruments). Serum samples were di-
luted 1:200 in PBS + 0.1% v/v Tween- 20 + 2 g/L gelatin (Merck, 
Germany; PTG), added to the wells and incubated for 1 h at RT. 
After washing, 0.5 μg/mL anti- human IgG4- HRP (MH164- 4- HRP, 
Sanquin) in PTG was added and incubated for 30 min at RT. After 
one more washing step, 1- step Ultra TMB substrate (Thermo 
Scientific) diluted with milli- Q water in a ratio of 3:1 was added 
to wells. Reactions were stopped after approximately 7 min with 
an additional 50 μL 0.2 M H2SO4 and optical density (OD) was 
measured at 450 and 540 nm with a Synergy 2 microplate reader 
(BioTek Instruments). As a calibrator, the previously described 
COVA1- 18 anti- RBD clone38 was engineered with a human 
IgG4 heavy chain, analogously as described previously for IgG1 
and IgG3.37 The calibrator was twofold serially diluted starting 
from 0.025 μg/mL with a PTG blank. When tested in this man-
ner in the total IgG assay, the IgG4 monoclonal demonstrated 
good linearity of dilution and parallelism with the 2020 pooled 
plasma standard starting from 0.25 AU/mL (1:400; Figure S1A). 
We thus calculated that 1 AU of 2020 pooled plasma produced 
similar IgG detection signal to 0.11 μg of IgG4 monoclonal, and 
IgG4 measurements could be expressed in AU/mL equivalent for 
comparison to total IgG measurements. Lastly, we determined a 
lower limit of quantification of 0.1 AU/mL (approx. 11 ng/mL) for 
samples tested at 1:200 dilution and a >99% specificity cutoff of 
0.3 AU/mL (approx. 33 ng/mL) using a panel of negative pre- 2020 
samples (Figure S1B). The anti- RBD IgG4 assay is more sensi-
tive in comparison to anti- RBD total IgG, due to the lower back-
ground signals in line with the generally much lower total IgG4 
levels in sera compared to total IgG.

2.4  |  Statistical analysis

Ratios of anti- RBD IgG4 titers divided by anti- RBD total IgG 
after third vaccination (V3) were analyzed using the Kruskal–
Wallis test and the Conover–Iman post hoc multiple comparisons 
test with Benjamini–Hochberg (FDR) correction. A lower limit of 
0.005 was imputed for ratio values, as lower ratios only resulted 
from IgG4 titer values below seroconversion cutoff. Analysis and 
visualization was performed using R version 4.1.239 with pack-
ages “tidyverse” version 1.3.1,40 “conover. test” version 1.1.5, 
“scales” version 1.2.1, “ggpubr” version 0.4.0 and “patchwork” 
version 1.1.2.

3  |  RESULTS

3.1  |  Participant characteristics

Samples from 600 participants of the ongoing Target- 2- B! Immunity 
against SARS- CoV- 2 vaccination cohort were retrieved for this study 
(for epidemiologic and demographic characteristics see Table 1). 
The mean age of participants was 53.0 years (SD 14.2) and 62.0% 
were female. Vaccinations were given between February 2021 and 
May 2022; the median interval between first and second doses was 
36 days (IQR 35–42) and 190 days (IQR 176–200) between second 
and third. Participants were sampled 28 days after each vaccination, 
and just prior to the third vaccination.

3.2  |  Differential induction of anti- RBD IgG4

A robust anti- RBD total IgG response was observed at 28 days after 
the first and second mRNA vaccination dose. Antibody levels had de-
clined by about an order of magnitude just prior to the third vaccina-
tion, and returned to post- second levels 28 days after the third dose 
in all groups (Figure 1A). Anti- RBD IgG4 levels were very low after 
the first and second mRNA vaccination dose (Figure 1B,C). However, 
in HC and DC, the IgG4 antibody response was greatly boosted by 
the third mRNA vaccination dose (Figure 1B,C), yielding a sharp in-
crease in the proportion of RBD- specific IgG4 (median 21.7% (IQR 
6.6%–46.0%) and 14.1% (IQR 2.2%–73.2%), respectively; Figure 2). 
Conversely, IgG4 levels remained very low in patients treated with 
dupilumab compared to HC and DC, with a median proportion of 
less than 1%. TNFi treatment similarly reduced the induction of 
RBD- specific IgG4, both as single agent, as well as in combination 
with MTX. Patients treated with MTX monotherapy exhibited a 
modestly reduced induction of IgG4 skewing after the third dose 
with a median proportion of 6.8% (IQR 0.8%–34.2%). Total IgG and 
IgG4 responses of individual participants are shown in Figure S2. We 
found no significant correlation between the relative contribution of 
IgG4 to total IgG after third vaccination and participant age or differ-
ent combinations of BNT162b2 and mRNA- 1273 (data not shown). 
Breakthrough infections after second vaccination had no consistent 
impact on IgG4 induction. In contrast, induction of IgG4 was virtu-
ally absent in all individuals initially vaccinated with two doses of 
ChAdOx1 nCoV- 19, regardless of immunosuppressive treatment or 
breakthrough infection (Figures S3 and S4). Taken together, we ob-
serve a profound suppression of repeated mRNA vaccination- driven 
RBD- specific IgG4 induction by both the IL- 4R blocking antibody 
dupilumab and TNFi, while initial viral vector- based vaccination did 
not induce a relevant IgG4 response.

4  |  DISCUSSION

Here we longitudinally analyzed IgG4 RBD- specific antibody re-
sponses in a large cohort consisting of 600 participants overall. In 
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    |  5VALK et al.

TA B L E  1  Demographic and clinical characteristics of study participants.

Overall 
(N = 600)

Healthy 
controls 
(N = 107)

Disease 
controls 
(N = 50)

Patients on MTX 
(N = 125)

Patients on 
DUP (N = 61)

Patients on 
TNFi (N = 193)

Patients on 
MTX + TNFi 
(N = 64)

Age (years), mean (SD) 53.0 (14.2) 51.0 (10.3) 54.1 (13.8) 59.6 (12.2) 45.6 (13.7) 49.8 (15.2) 58.8 (13.8)

Sex

Female 372 (62.0%) 69 (64.5%) 28 (56.0%) 93 (74.4%) 30 (49.2%) 108 (56.0%) 44 (68.8%)

Male 228 (38.0%) 38 (35.5%) 22 (44.0%) 32 (25.6%) 31 (50.8%) 85 (44.0%) 20 (31.3%)

Initial vaccines

BNT162b2 
(Pfizer- BioNTech)

348 (58.0%) 47 (43.9%) 22 (44.0%) 63 (50.4%) 57 (93.4%) 119 (61.7%) 40 (62.5%)

mRNA- 1273 (Moderna) 178 (29.7%) 58 (54.2%) 16 (32.0%) 38 (30.4%) 3 (4.9%) 48 (24.9%) 15 (23.4%)

ChAdOx1 nCoV- 19 
(AstraZeneca)

66 (11.0%) 2 (1.9%) 10 (20.0%) 23 (18.4%) 1 (1.6%) 22 (11.4%) 8 (12.5%)

Booster vaccine

BNT162b2 
(Pfizer- BioNTech)

143 (23.8%) 33 (30.8%) 8 (16.0%) 23 (18.4%) 17 (27.9%) 48 (24.9%) 14 (21.9%)

mRNA- 1273 (Moderna) 235 (39.2%) 37 (34.6%) 10 (20.0%) 77 (61.6%) 12 (19.7%) 73 (37.8%) 26 (40.6%)

Unspecified mRNA 135 (22.5%) 22 (20.6%) 21 (42.0%) 14 (11.2%) 19 (31.1%) 48 (24.9%) 11 (17.2%)

None 87 (14.5%) 15 (14.0%) 11 (22.0%) 11 (8.8%) 13 (21.3%) 24 (12.4%) 13 (20.3%)

Vaccination interval (days), median (IQR)

V1–V2 36 (35–42) 37 (35–42) 39 (35–42) 36.0 (35.0–42.0) 35 (35–36) 36 (35–42) 36.0 (35.0–42.0)

V2–V3 190 (176–200) 190 (181–197) 192 (182–205) 186 (118–198) 194 (180–200) 190 (175–199) 193 (187–204)

Rheumatic disorders

Rheumatoid arthritis 139 (23.2%) – 1 (2.0%) 69 (55.2%) – 26 (13.5%) 43 (67.2%)

Spondylarthritis 68 (11.3%) – – 13 (10.4%) – 42 (21.8%) 13 (20.3%)

Systemic lupus 
erythematosus

4 (0.7%) – – 4 (3.2%) – – –

Vasculitisa 4 (0.7%) – 3 (6.0%) 1 (0.8%) – – –

Other 
rheumatologicalb

4 (0.7%) – 1 (2.0%) 2 (1.6%) – 1 (0.5%) –

Gastro- intestinal disorders

Crohn's disease 105 (17.5%) – 5 (10.0%) 1 (0.8%) – 95 (49.2%) 4 (6.3%)

Ulcerative colitis 62 (10.3%) – 34 (68.0%) – – 28 (14.5%) –

Other 
gastro- intestinalc

2 (0.3%) – 1 (2.0%) – 1 (1.6%) – –

Neurological disorders

Inflammatory 
neuropathies and 
myopathiesd

5 (0.8%) – 1 (2.0%) 4 (3.2%) – – –

Other neurologicale 3 (0.5%) – 2 (4.0%) 1 (0.8%) – – –

Dermatological disorders

Atopic dermatitis 61 (10.2%) – – 3 (2.4%) 58 (95.1%) – –

Other dermatologicalf 36 (6.0%) – 2 (4.0%) 27 (21.6%) 2 (3.3%) 1 (0.5%) 4 (6.3%)

Note: Data are presented as n (%) unless noted otherwise.
aIncluding small- vessel, medium- vessel, and large- vessel vasculitis and other forms of vasculitis except giant cell arteritis.
bIncluding Sjögren's syndrome, polymyalgia rheumatica, and juvenile arthritis.
cTwo patients with autoimmune hepatitis.
dIncluding chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and inflammatory myositis.
eIncluding myasthenia gravis and multiple sclerosis.
fIncluding psoriasis, vitiligo and others.
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accordance with previous findings, we report an increase in RBD- 
specific IgG4 after a third SARS- CoV- 2 mRNA vaccination, which 
was virtually absent after primary adenoviral vector- based vaccina-
tion. This IgG4 skewing was profoundly reduced in patients treated 
with the IL- 4R- blocking antibody dupilumab, as well as with several 
widely used TNFi. Given the role of Th2 responses in IgG4 switch-
ing it may not be wholly unexpected that blockade of IL- 4 signal-
ing impairs IgG4 induction, although to the best of our knowledge 
this is the first actual in vivo demonstration thereof. On the other 
hand, the inferred role for TNF signaling as indicated by our results is 
surprising. These novel findings advance our understanding of IgG4 
class switch dynamics, and may benefit humoral tolerance induc-
tion strategies, treatment of IgG4 pathologies, and mRNA vaccine 
optimization.

Dupilumab blocks the IL- 4/IL- 13 receptor and is used to treat 
atopic dermatitis. These cytokines are typical for the Th2 axis that 
has been associated with IgG4 switching.25–31 Nevertheless, we 
are not aware of previous studies demonstrating inhibition of de 
novo IgG4 skewing by dupilumab. T follicular helper (Tfh) cells are a 
major source of IL- 4 and persistent Tfh cells have been found after 
repeated SARS- CoV- 2 mRNA vaccination, which could potentially 
facilitate IgG4 class switching.41 The suppressed RBD- specific 

IgG4 titer after third vaccination in the dupilumab- treated group 
indicates a pivotal role of IL- 4 signaling in IgG4 switching, and 
may present an opportunity for therapeutic intervention in un-
desired IgG4 responses. Furthermore, these findings may support 
the rationale behind the consideration of dupilumab as a poten-
tial treatment for IgG4- related disease (IgG4- RD), a group of 
immune- mediated fibrotic diseases that affect several organs and 
are characterized by high serum IgG4 levels plus increased tissue 
infiltrating IgG4+ plasma cells.10 The role that had been attributed 
to IL- 4 together with Th2 cells in IgG4 class switching has led to 
several case studies treating IgG4- RD patients with dupilumab. 
However, controversial outcomes in these studies have fueled an 
ongoing discussion on whether dupilumab treatment is beneficial 
in IgG4- RD or not.42 Furthermore, dupilumab did not inhibit the 
increase of the specific IgG4 response when used as an adjuvant 
during allergen- specific immunotherapy.43 It may therefore be 
possible that IL- 4R blockade primarily affects (de novo) IgG4 class 
switching, but not expansion of established IgG4- switched B cell 
populations. In the context of vaccination, one study reports that 
correlates of vaccine- induced immunity were not observed for tet-
anus toxoid vaccination.44 However, IgG4 skewing is very limited 
for tetanus toxoid vaccination even upon repeated boosting.24

F I G U R E  1  Longitudinal RBD- specific total IgG and IgG4 antibody response in healthy controls (HC), disease controls (DC) and treatment 
groups after mRNA vaccination. Serum samples were collected 28 days after first, second, and third vaccination (V1, V2, and V3) and 
immediately prior to third (preV3). Anti- RBD titers were assessed by direct ELISA and calculated in arbitrary units (AU) derived from pooled 
convalescent healthy donor plasma standards collected in early 2020 (total IgG), which was set at 100 AU/mL, or a monoclonal standard 
(IgG4) expressed in equivalent AU/mL. (A, B) Box plots showing RBD- specific total IgG (A) and IgG4 (B). Central lines in box plots indicate 
the median, with hinges indicating 25th and 75th percentiles. Dashed lines represent seropositivity cutoffs, 4 AU/mL for total IgG and 
0.3 AU/mL for IgG4, determined as the AU value where >99% of pre- pandemic samples were considered negative. (C) Scatter plots showing 
RBD- specific total IgG and IgG4, as in (A) and (B), respectively. Dashed diagonal lines indicate 1:1 titer ratio.
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The pro- inflammatory cytokine TNF is the key driver of inflam-
mation in many chronic inflammation settings and is secreted by var-
ious cell types, including macrophages, T cells, B cells, and NK cells.45 
Inhibition of TNF by a variety of TNFi suppressed the development 
of RBD- specific IgG4 after third mRNA vaccination. Total IgG anti- 
RBD levels were comparable to those of healthy and untreated DC, 
indicating a specific block in IgG4 switching in these patients. Since 
B cells do not express receptor for TNFR1, the observed impact of 
blocking TNF on IgG4 skewing implies an indirect effect via other 
immune cells. Interestingly, several TNFi (adalimumab in partic-
ular) have been extensively studied in light of anti- drug antibody 
development, a typical IgG4- skewed response. In these responses, 
adalimumab treatment has been shown to induce potent neutraliz-
ing anti- drug antibodies that shift towards IgG4.46 It is somewhat 
paradoxical that substantial IgG4 skewing of these anti- adalimumab 
antibodies is observed under TNF blockade, while IgG4 skewing of 
the mRNA vaccination- induced immune response is markedly re-
duced. Notably, total serum IgG4 levels are not affected by adalim-
umab treatment in general.25 The magnitude of IgG4 switching may 

be dependent on a delicate balance between multiple pathways, 
whereby the nature of the antigen itself might be a key factor in di-
recting this balance. The possibility for multiple signaling routes con-
tributing to IgG4 switching, to various extents, might be reflected in 
the observation that a subset of individuals still demonstrated sub-
stantial IgG4 skewing despite blocking of either IL- 4/IL- 13 or TNF. 
However, a complete understanding of the mechanistic drivers re-
sponsible for IgG4 switching is still lacking.

The extent to which IgG4 class switching will affect immune pro-
tection to SARS- CoV- 2 remains unclear, yet most likely depends on the 
different modes of action of antibodies during SARS- CoV- 2 infection 
and vaccination. One mechanism of protection involves neutralization 
of the pathogen by interfering with the interaction of the spike pro-
tein to ACE2. In general, neutralizing antibody titers induced by SARS- 
CoV- 2 infection or mRNA vaccination correlate well with protection 
from infection,47–49 and IgG4 was found to have good neutralizing ca-
pacity.15 Effector functions mediated by the Fc tail of IgG have also been 
suggested to contribute to protection via complement- dependent or 
FcγR- dependent viral clearance.50,51 On the other hand, Fc- mediated 

F I G U R E  2  Ratio of RBD- specific IgG4 over RBD- specific total IgG in healthy controls (HC), disease controls (DC) and treatment groups 
after third mRNA vaccination. Box plots showing ratios computed as RBD- specific IgG4 / RBD- specific total IgG in post- third vaccination 
samples (V3). In all box plots, central lines indicate the median, with hinges indicating 25th and 75th percentiles. Whiskers indicate the 
furthest data points up to 1.5 * IQR beyond hinges. Comparisons were made using Conover–Iman post hoc multiple comparisons with 
Benjamini–Hochberg correction following a significant Kruskal–Wallis test. ****, p < .0001; ***, p < .001; **, p < .01; *, p < .05; ns, not 
significant.
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effector functions might also contribute to excessive inflammation, 
leading to a more severe disease course. High levels of proinflamma-
tory afucosylated antibodies were for instance found in patients ad-
mitted to the intensive care unit (ICU) following SARS- CoV- 2 infection, 
suggesting a potential pathogenic role for the latter.52,53 Whether or 
not the weak potential of IgG4 to induce Fc effector functions is ad-
vantageous in this context remains to be determined.54 More broadly, 
even if the balance between direct neutralization (which IgG4 is highly 
capable of) opposed to effector function- mediated protection (which 
IgG4 is poor at) is such that for SARS- CoV- 2 the IgG4 skewing does not 
significantly alter immune protection, this might work out differently 
for other viruses, and proper understanding of IgG4 skewing induced 
by mRNA vaccines as well as possible interventions to avoid this are 
relevant to explore further.

Overall we have demonstrated significantly reduced IgG4 class 
switching by dupilumab as well as TNFi upon repeated mRNA vac-
cination for SARS- CoV- 2. In other words, this study provides in vivo 
evidence for both TNF as well as IL- 4 and/or IL- 13 being instrumental 
in IgG4 class switching.
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