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A B S T R A C T   

Dealing with social rejection is challenging, especially during childhood when behavioral and neural responses to 
social rejection are still developing. In the current longitudinal study, we used a Bayesian multilevel growth 
curve model to describe individual differences in the development of behavioral and neural responses to social 
rejection in a large sample (n > 500). We found a peak in aggression following negative feedback (compared to 
neutral feedback) during late childhood, as well as individual differences during this developmental phase, 
possibly suggesting a sensitive window for dealing with social rejection across late childhood. Moreover, we 
found evidence for individual differences in the linear development of neural responses to social rejection in our 
three brain regions of interest: The anterior insula, the medial prefrontal cortex, and the dorsolateral prefrontal 
cortex. In addition to providing insights in the individual trajectories of dealing with social rejection during 
childhood, this study also makes a meaningful methodological contribution: Our statistical analysis strategy (and 
online supplementary information) can be used as an example on how to take into account the many com
plexities of developmental neuroimaging datasets, while still enabling researchers to answer interesting ques
tions about individual-level relationships.   

1. Introduction 

During the transition from childhood to emerging adolescence 
(approximately between the ages of 7- to 14-years-old) peer relations 
and long-lasting friendships become more salient. Dealing with social 
rejection, that is, regulating one’s emotions and behaviors in social sit
uations, in particular after receiving negative peer feedback, is an 
important prerequisite for developing and maintaining such relation
ships. A broad range of literature has shown that receiving negative 
social feedback can result in reactive aggressive behavior (Dodge et al., 
2003; Leary et al., 2006; Nesdale and Lambert, 2007), and that the 
regulation thereof is related to neural activation (Achterberg et al., 
2016; Chester et al., 2014; Riva et al., 2015). 

These behavioral and neural responses to social rejection develop 
across childhood and adolescence (Achterberg et al., 2020; Dobbelaar 

et al., 2023). However, existing research into development of behavioral 
aggression has focused largely on group-based averages, obscuring 
meaningful individual variation across children in development (Ches
ter, 2019). To move towards a more nuanced understanding of behav
ioral aggression and neurocognitive changes, developmental 
neuroimaging studies need to characterize individual differences as a 
variable of interest, as argued by Foulkes and Blakemore (2018) and 
Telzer et al. (2018), amongst others. By addressing individual variability 
in adolescent development, researchers acknowledge the fact that ado
lescents, and their brains, develop in meaningfully different ways. This 
is particularly important when studying behavioral and neural responses 
to social interactions, as adolescents substantially vary in the quantity 
and quality of friendships they have, affecting both their behavioral and 
neural responses to social interactions (Lamblin et al., 2017; Van Har
melen et al., 2017). Some researchers have even proposed that 
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adolescent development is shaped by brain-based individual differences 
in sensitivity to social contexts, and that individual differences in 
neurobiology might determine how sensitive an adolescent is to the 
social context (Schriber and Guyer, 2016). A focus on individual dif
ferences in behavioral and neural development also allows for investi
gating whether such differences are useful predictors for future mental 
health and well-being (Copeland et al., 2013; Foulkes and Blakemore, 
2018; Van Harmelen et al., 2017). Well-being, defined as someone’s 
appraisal and evaluation of their life (Diener and Ryan, 2009), is a 
multi-dimensional construct including different facets, such as having 
impact and purpose, dealing with stress and worry, relationships, 
self-confidence, and feeling appreciated (Green et al., 2023). Previously, 
aggression following rejection has been associated with behavioral and 
peer problems, and a negative spiral of even more peer rejection (Card 
and Little, 2006; Evans et al., 2021; Lansford et al., 2010), highlighting 
the important links between aggression regulation and well-being. 
However, whether individual differences in developmental trajectories 
are predictive for future well-being is currently unknown. 

The current preregistered study investigates individual differences in 
developmental trajectories of dealing with social rejection (the prereg
istration is published as Achterberg et al., 2022). Our focus is on 
behavioral (aggressive) responses, and neural responses to negative 
social feedback, specifically in three brain regions that have previously 
been related to the processing of social feedback, namely the anterior 
insula (AI), the medial prefrontal cortex (MPFC), and the dorsolateral 
prefrontal cortex (DLPFC). To understand the underlying brain mecha
nisms, we additionally examine how developmental trajectories of 
aggression regulation following negative social feedback relate to each 
other, and to social well-being in early adolescence. To address indi
vidual variability in developmental trajectories, we analyze longitudinal 
behavioral and fMRI data (three waves, measured during childhood and 
emerging adolescence) in a multilevel modeling framework. 

1.1. Behavioral and neural responses to social rejection 

Regulating behavioral responses following social rejection, oper
ationalized here as aggression regulation following negative social 
feedback, is essential for children to develop in order to establish and 
maintain relationships with peers. A recently introduced experimental 
method for measuring this, which is also used in this study, is the Social 
Network Aggression Task (SNAT; Achterberg et al., 2016; Achterberg 
et al., 2018). Using this method, it has been demonstrated that negative 
social feedback, compared to neutral or positive feedback, can lead to 
aggression in 7- to 9-year-old children (Achterberg et al., 2018; Ach
terberg et al., 2017; Dobbelaar et al., 2022), in 9- to 11-year-old children 
(Achterberg et al., 2020), in typically developing young adults (Ach
terberg et al., 2016; Van de Groep, et al., 2021), and in young adults with 
a history of antisocial behavior (Van de Groep, et al., 2022). By 
extending the SNAT with fMRI measurements, researchers have inves
tigated relations between social feedback processing and neural (brain) 
responses, particularly in the AI, MPFC, and DLPFC brain regions. These 
brain regions are central to several neurodevelopmental models, such as 
the Social Information Processing Network (SIPN; Nelson et al., 2016; 
Nelson et al., 2005). This model proposes that social information is 
processed through communication between three neural systems: A 
detection node, an affective node (including striatal regions and the 
anterior insula), and a cognitive regulatory node (including the lateral 
prefrontal cortex). All three nodes show developmental changes 
throughout adolescence, and have been related to social information 
processing within the SNAT design. 

It has been shown that both positive and negative social feedback 
(compared to neutral feedback) in the SNAT result in increased neural 
activation in the Anterior Cingulate Cortex (ACC) gyrus and bilateral AI 
(Achterberg et al., 2016; Achterberg et al., 2018; Achterberg et al., 2020; 
Dobbelaar et al., 2022; Van de Groep, et al., 2021). These findings fit 
with the literature suggesting that the ACC and AI signal for social 

salience in general (Cheng et al., 2019; Dalgleish et al., 2017; Somerville 
et al., 2006). Moreover, the social salience networks reported in adults 
(Achterberg et al., 2016; Van de Groep, et al., 2021), middle childhood 
(Achterberg et al., 2018; Dobbelaar et al., 2022) and late childhood 
(Achterberg et al., 2020) show remarkable resemblances, indicating that 
on average this mechanism is already developed in middle childhood. 
More importantly, variation in AI activation during negative social 
feedback has been related to variation in aggression regulation. That is, 
Achterberg et al. (2020) previously reported that children with 
increased activation in the AI during negative social feedback showed 
more aggression. Interestingly, Chester et al. (2014) found a similar 
association, but only in adults with low executive control (and not in 
adults with high executive control). Possibly, the association between AI 
activation and behavioral aggression is stronger in childhood than 
adolescence, as executive control functions increase across develop
ment. The current study includes longitudinal measures across child
hood and emerging adolescence, such that we can test brain-behavior 
associations of development in AI activation during social rejection. 

Second, the MPFC has been shown to play an important role in social 
cognition and behavior (Adolphs, 2009; Blakemore, 2008), and is spe
cifically implicated when thinking about others (Apps et al., 2016; Lee 
and Seo, 2016). Receiving negative social feedback may leave the chil
dren wondering what the other might have thought about them (Gal
lagher and Frith, 2003). Moreover, neurodevelopmental models 
highlight the MPFC as an important region for the integration of per
spectives related to oneself and others (Crone et al., 2020; Crone and 
Fuligni, 2020), and for sensitivity to social evaluation (Somerville and 
Casey, 2010), two processes that are especially salient in adolescence. 
Interestingly, when conducting whole brain analyses, previous studies 
often failed to find significant neural activation during negative social 
feedback (Gunther Moor et al., 2010; Guyer et al., 2012) in adolescence. 
However, studies with a larger sample, and increased statistical power, 
reported strong activation in the MPFC during social rejection in 
childhood (Achterberg et al., 2018; Achterberg et al., 2020). As social 
cognition and behavior are increasingly important during adolescence, 
activation in this region might show strong development—and strong 
individual differences in development—during the transition from 
childhood to adolescence. Developmental differences of the MPFC were 
recently related to prosocial development in this age period (Van der 
Meulen et al., 2023), suggesting that individual differences in the 
development of the MPFC may relate to behavioral development. Pre
vious studies did not reveal associations between aggression regulation 
following negative social feedback and MPFC activation. However these 
studies were often underpowered, examined group differences, and/or 
used aggregated behavioral scores (Chester, 2019). 

Third, a brain-behavior association that has been consistently found 
using the SNAT is the negative association between DLPFC activation 
during negative social feedback and reactive aggression. That is, 
consistent with prior experimental studies, increased activation in the 
DLPFC during social rejection was followed by decreased aggression in 
adults, suggesting that these individuals were more successful at regu
lating their behavioral aggression (Achterberg et al., 2016; Riva et al., 
2015). Region of interest analyses of the DLPFC in 7- to 9-year-olds 
provided some indications of an aggression regulation network, but 
this was not strong enough to be depicted using whole brain-behavior 
analyses (Achterberg et al., 2018). When examining these same chil
dren two years later—now during late childhood—there was a signifi
cant association between brain and behavior. 

Similar to adults, increased neural activation in the DLPFC was 
related to decreased behavioral aggression following negative social 
feedback (Achterberg et al., 2020). Importantly, the children who dis
played the largest developmental increases in DLPFC activity across 
childhood also displayed the largest changes in behavioral aggression. 
These results suggest that, in addition to being an important region for 
cool (nonemotional) cognitive control (Crone and Steinbeis, 2017; Luna 
et al., 2004; Luna et al., 2010) the DLPFC is also important in controlling 
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hot emotional control (Welsh and Peterson, 2014; Zelazo and Carlson, 
2012). The current study expands this knowledge by examining func
tional DLPFC development across a broader age range, including 
emerging adolescence, and by including both linear and nonlinear 
development. 

1.2. Study aims and outline 

The aim of this study is threefold. First, we describe developmental 
trajectories of neural and behavioral (aggressive) responses to social 
rejection, allowing for individual differences herein. That is, we separately 
describe the individual developmental trajectories of (a) behavioral 
aggressive responses following social rejection, (b) neural responses in 
the AI during social rejection, (c) neural responses in the MPFC during 
social rejection, and (d) neural responses in the DLPFC during social 
rejection. We focus specifically on the AI, MPFC, and DLPFC brain re
gions, as these have previously been related to the processing of social 
rejection. Second, we examine associations between the developmental 
trajectories of behavioral and neural responses. Third, we test whether 
individual differences in developmental trajectories of brain and 
behavior across childhood (7- to 14-year-olds) are predictive for social 
well-being in (early) adolescence (12- to 15-year-olds). 

The paper is organized as follows. In Section 2, we describe our study 
sample; the measurement instruments that were used; and the statistical 
analyses, including how missing data, and data nonindependence due to 
family overlap were controlled for. For readability, the use of the 
Bayesian multilevel framework for our analyses is discussed only in 
general terms, and (technical) details, elaborate explanations, and R 
code are provided in the online supplementary materials at https://jer 
oendmulder.github.io/social-emotion-regulation. Numerical results, 
organized by study aim, are presented in Section 3. We end with dis
cussion and conclusions in Section 4. 

2. Methods 

2.1. Participants and procedure 

Participants in this study took part in the longitudinal twin study of 
the Leiden Consortium on Individual Development (L-CID; Crone et al., 
2020). The procedures were approved by the Dutch Central Committee 
for Human Research (CCMO) and written informed consent was ob
tained from both parents. Invitations to participate were sent to families 
with same-sex twins born between 2006 and 2009, within a two-hour 
radius around the city of Leiden, the Netherlands. Participants were 
fluent in Dutch and were excluded when they had visual or physical 
impairments that could disable them from performing the behavioral 
tasks. The data were collected during annual visits between 2016 and 
2021. 

Annual visits were either a lab visit (waves 1, 3 and 5), in which 
families were invited to participate in an fMRI session; or home visits 
(waves 2, 4 and 6), in which families performed behavioral tasks and 
completed questionnaires at home (without neuroimaging measures). 
For the current study, data from the Middle Childhood Cohort collected 
at the lab visits during waves 1, 3, and 5, and the social well-being 
questionnaire at wave 6 were used.4 For details regarding the L-CID 

study and procedure, see Crone et al. (2020). 
At wave 1 (first fMRI visit, September 2015 to August 2016), 512 

children were included (7.02–9.68 years old, M = 7.94), with 55% being 
monozygotic. The majority of the sample (91%) was Caucasian and had 
normal IQ (M = 103.58, SD = 11.76), as measured using two subsets of 
the Wechsler Intelligence Scale for Children, third edition (for details, 
see Achterberg et al., 2018). Socioeconomic status (based on parental 
education) was high for 45% of the sample, middle for 46%, and low for 
9% of the sample (Crone et al., 2020). 489 children completed the fMRI 
scan at wave 1. At wave 3 (second fMRI visit, September 2017 to August 
2018, 8.98–11.67 years old, M = 9.98), 456 participants were included, 
of whom 406 completed the fMRI scan. Wave 5 (third fMRI visit, 
September 2019 to April 2021, 11.15–14.11 years old, M = 12.38) 
included 336 participants, of whom 236 completed the fMRI scan. At 
wave 6 (June 2021 to October 2021, 11.98–15.10 years old, M = 13.34), 
294 children filled in the digital social well-being questionnaires. 
Further details about the sample characteristics can be found in Table 1. 

2.2. Measurements 

There are three outcomes of interest that were measured for this 
study: (a) Behavioral aggression following social feedback, measured 
simultaneously with the fMRI sessions at waves 1, 3, and 5; (b) neural 
responses in the AI, MPFC, and DLPFC during social feedback, measured 
at waves 1, 3, and 5; and (c) social well-being, measured at wave 6. 

2.2.1. Behavioral aggression following social feedback 
Behavioral aggression following social feedback was measured using 

the SNAT, which was programmed in Eprime, version 2.0.10.356 (see 
also Achterberg et al., 2016; Achterberg et al., 2018; Achterberg et al., 
2020; Achterberg et al., 2017). One to four weeks prior to the fMRI 
session, participants filled in a personal profile at home, which was 
handed in at least one week before the actual fMRI session. The profile 
page consisted of questions such as: “What is your favorite color?”, 
“What is your favorite food?”, and “What is your biggest wish?”. Par
ticipants were informed that their profiles were reviewed by other, 
unfamiliar, peers. During the SNAT the participants were presented with 
pictures and feedback to their personal profile from those unfamiliar 
peers. Unbeknownst to the participants, others did not judge the profile, 
and the photos were created by morphing two peers of an existing data 
base (matching the participants’ age range) into a new, nonexistent 
peer. Every trial consisted of feedback from a new unfamiliar peer. This 
feedback could either be positive (visualized by a green thumb up), 
negative (red thumb down), or neutral (grey circle; see Fig. 1, the social 
feedback event). Peer pictures were randomly coupled to feedback, 
ensuring equal gender proportions for each type of feedback. 

Following each peer feedback, the participants were instructed to 

Table 1 
Overview of participant demographics, age ranges, and exclusions per mea
surement wave of the Leiden Consortium on Individual Development.   

Wave 1 Wave 3 Wave 5 Wave 6 

N 512 456 336 294 
Mean age (years) 7.94 9.98 12.38 13.34 
Range age (years) 7.02–9.68 8.97–11.67 11.15–14.11 11.98–15.10 
Female (percentage) 51% 52% 53% 54% 
Right-handed 

(percentage) 
87% 87% 85% 87% 

n
MRI completed
a 485 408 236 - 
MRI exclusions:     

nanomalous findings 4 0 0 - 
n
excessive head motion 89 38 13 - 
n
data export/processing 

error 

9 5 1 - 

n
MRI inclusion 383 365 222 - 

a Not all participants in the sample completed an MRI scans due to anxiety, MRI 
contra indications (e.g., braces), no parental consent, or technical problems. 

4 Note that there is some overlap in the sample used for these studies. Ach
terberg et al. (2018) examined the first waves of the L-CID middle childhood 
cohort (MCC). Dobbelaar et al. (2022) examined the first wave of the L-CID 
MCC and replicated findings in the fifth wave of the L-CID early childhood 
cohort (ECC). Dobbelaar et al. (2023) examined the first, third, and fifth wave 
of the L-CID MCC sample. Achterberg et al. (2020) examined neural responses 
to rejection in the first and third wave of the L-CID MCC sample; the current 
study extends this work by additionally analyzing the fifth wave of L-CID MCC 
sample. 
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send a loud noise blast to this peer (see Fig. 1, the noiseblast event). The 
longer they pressed the button, the more intense the noise would be, 
which was visually represented by a volume bar. To keep task demands 
as similar as possible between the conditions, participants were 
instructed to always press the button, but they could determine the in
tensity and duration of the noise blast. Participants were instructed to 
deliver the noise blast by pressing one of the buttons on the button box 
attached to their legs, with their right index finger. As soon as the 
participant started the button press, the volume bar started to fill up 
with a newly colored block appearing every 350 ms. After releasing the 
button, or at maximum intensity (after 3500 ms), the volume bar 
stopped increasing and stayed on the screen for the remainder of the 
5000 ms. The duration of the button press (in ms) to each negative, 
neutral, or positive trial was recorded and used as measurement of 
behavioral aggression in the statistical analyses (see Section 2.3.1). 
Participants were aware that the peers were not actually receiving the 
noise blast, but were instructed to respond as if the other peer would 
receive the noise blast. Although previous experimental tasks have 
included actual perceived aggression (e.g., using electric shocks; Gian
cola and Parrott, 2008; for a meta-analyses see Quarmley et al., 2022), 
we specifically instructed the children to imagine they could retaliate in 
order to reduce deception, and studies suggest that imagined play also 
leads to aggression (Konijn et al., 2007). 

The SNAT consisted of sixty trials (twenty per condition). An over
view of trial order of the SNAT including jitter times is available at htt 
ps://osf.io/ycgqe/. Each trial started with a fixation screen (500 ms), 
followed by the social feedback (2500 ms). After another jittered fixa
tion screen (3000–5000 ms), the noise screen with the volume bar 
appeared, which was presented for a total of 5000 ms. Before the start of 
the next trial, another jittered fixation cross was presented (0–11550 ms; 
Fig. 1). The order of trials was semirandomized to ensure that no con
dition was presented more than three times in a row. The optimal jitter 
timing and order of events were calculated with Optseq 2 (Dale, 1999). 
For each wave, the same version of the task was used. In the third fMRI 
wave we selected different photos of peers, such that they matched the 
age range of participants. 

For the current study, we specifically focused on noise blast duration 
following negative social feedback, compared to neutral social feedback. 

2.2.2. Neural responses during social feedback 
MRI scans were acquired with a Philips Ingenia 3.0 Tesla MR scan

ner. A standard whole-head coil was used, with foam inserts added to 
minimize head motion. A screen was placed behind the MRI scanner, 
such that participants could view the screen displaying the stimuli 

through a mirror on the head coil. T2*-weighted echo planar imaging 
(EPI) was used to collect the fMRI scans. The first two volumes were 
discarded to allow for equilibration of T1 saturation effects (field of view 
= 220 × 220 × 111.65 mm, TR = 2.2 s, TE = 30 ms, FA = 80◦, 
sequential acquisition, 37 slices, voxel size = 2.75 × 2.75 × 2.75 mm). A 
high-resolution 3D T1 scan was collected as anatomical reference (field 
of view = 224 × 177 × 168 mm, TR = 9.72 ms, TE = 4.95 ms, FA = 8◦, 
140 slices, voxel size = 0.875 × 0.875 × 0.875 mm). 

fMRI data were analyzed in SPM12 (Wellcome Department of 
Cognitive Neurology, London). Preprocessing included slice timing 
correction and correction for rigid body motion. Images were normal
ized to T1 templates (based on MNI-305 stereotaxic space; Cocosco 
et al., 1997) using 12-parameter affine transform mapping and 
nonlinear transformation with cosine basis functions. Volumes of each 
participant were resampled to 3 × 3 × 3 mm voxels and were spatially 
smoothed using a 6 mm full-width -at-half-maximum isotropic Gaussian 
kernel. Data of participants with at least two blocks of fMRI data with 
less than 3 mm movement in every direction were included in the ana
lyses (Table 1 includes the number of MRI exclusions based on anoma
lous findings, excessive head motion, or data export/processing errors 
per wave). Individual participants’ data at each wave were analyzed 
using a general linear model in SPM12. The onset of feedback delivery 
was modeled as a zero duration event with positive, neutral and negative 
feedback added as separate regressors. To model the start of noise blast, 
the hemodynamic response function (HRF) was modeled for the length 
of the noise blast duration. Noise blasts following positive, neutral, and 
negative feedback were modeled as separate regressors (Achterberg 
et al., 2018). This study focuses specifically on neural responses during 
the social feedback event. Longitudinal trajectories of the noise blast 
event are described in Dobbelaar et al. (2023). Trials on which partici
pants did not respond in time were marked invalid and excluded from 
further analyses. Six motion regressors were added as covariates of no 
interest. Least-squares parameter estimates of height of the best fitting 
canonical HRF for each condition were used in pairwise contrasts. The 
focus of this study was on the contrast negative versus neutral feedback. 

Based on previous findings in an adult sample (N = 30, 18–30 years 
old) by Achterberg et al. (2016), the AI, MPFC, and right DLPFC were 
selected as regions of interest (ROI, see Fig. 2). Specifically, we selected 
the bilateral AI region (414 voxels) based on the left and right insular 
cortex clusters of the conjunction contrast (see Table S3 of Achterberg 
et al., 2016, contrast conjunction of “positive > neutral” and “negative >
neutral”, Cluster L Insular Cortex and R Insular Cortex). The MPFC re
gion (379 voxels) was extracted from the contrast “negative > neutral” 
feedback (see Table S2 of Achterberg et al., 2016, Cluster L Frontal 

Fig. 1. Social Network Aggression Task. After the participants viewed positive, neutral or negative social feedback on their personal profile, participants got the 
opportunity to blast a loud noise towards the peer, which was taken as a proxy for behavioral aggression following social feedback. 

J.D. Mulder et al.                                                                                                                                                                                                                               

https://osf.io/ycgqe/
https://osf.io/ycgqe/


Developmental Cognitive Neuroscience 66 (2024) 101365

5

Pole). The right DLPFC region (1144 voxels) was extracted from the 
whole brain-behavior regression analyses (see Table S4 of Achterberg 
et al., 2016, contrast “negative > neutral feedback” with noise blast 
duration difference score as negative regressor, Cluster R Middle Frontal 
Gyrus). Parameter estimates were extracted using the MarsBar toolbox 
(Brett et al., 2002) for the contrast “negative feedback > neutral feed
back”, which was used as a measure of neural activity during social 
rejection. These fMRI brain data analyses resulted in individual- and 
wave-specific contrast scores per ROI, representing the mean difference 
in brain activity between the negative and neutral social feedback 
conditions. 

2.2.3. Social well-being questionnaire 
The social well-being questionnaire was filled in by participants at 

wave 6 and consisted of 35 items. A complete overview of the ques
tionnaire including all items and response categories is available at htt 
ps://osf.io/fseq8/. It was constructed from five subscales: Ten items 
from the Adolescent Wellbeing Paradigm (AWP; Green et al., 2023), ten 
items from the World Health Organization Quality of Life Scale 
(WHOQoL; Vahedi, 2010), and three subscales (each five items) from 
the Harter’s Self-Perception Profile for Adolescents (SPPA; Harter, 1988; 
Wichstraum, 1995), specifically the subscales Social Competence (SC), 
Close Friendships (CF) and Global Self-worth (GS). All items were 
answered on a four-point Likert scale, with low scores indicating low 
social well-being and high scores indicating high social well-being. In
structions in each of the subscale manuals were followed for the 
handling of missing data and scoring of subscale scores, resulting in 
simple mean scores per subscale. 

2.3. Statistical analyses 

In this section, the statistical analyses are described in general terms. 
For Aim 1—describing development in behavioral and neural responses 
to social rejection, and individual differences herein—brain and 
behavioral data were analyzed with growth curve models in a Bayesian 
multilevel modeling framework. For Aims 2 and 3—investigating the 
relationships between individual development in behavioral responses, 
individual development in neural responses, and later social well- 
being—a structural equation modeling (SEM) approach was used. 
Technical details on these analyses (e.g., model equations, the fitting 
procedure, assessment of convergence, and model fit), R code, and a 
rationale for the modeling decisions that were made, can be found in this 
study’s online supplementary materials. 

2.3.1. Growth curve models in a Bayesian multilevel framework (Aim 1) 
To describe developmental trajectories of (aggressive) behavioral 

and brain responses, growth curve models were fitted for each outcome 
in a Bayesian multilevel framework. The multilevel framework was used 
to allow for individual differences in the development of brain and 
behavioral responses, and to more easily accommodate the individual 
variation in age at each measurement wave (i.e., there is substantial 
variability in participants’ age at each measurement occasion, see Sec
tion 2.1). The Bayesian framework was used because it is more flexible 
in accommodating some characteristics of the data, such as dropout of 
participants across time, censoring of the behavioral response data at 
3500 (ms), and potential nonnormality. The models were fitted using the 
package brms (version 2.18.0; Bürkner, 2017) in R (version 4.2.2; R Core 
Team, 2022). Analysis of the behavioral response data is discussed first. 
The data have a four-level structure, with the sixty repeated trials nested 
within three measurement waves, nested within individuals, nested 
within families. Using a multilevel model, we can estimate individual 
behavioral responses following social rejection at the trial level (level 1), 
model the development in these responses across a participant’s age at 
the wave level (level 2), describe individual differences within families 
in this development at the individual level (level 3), and account for 
twin-dependence in the measurements at the family level (level 4). It is 
important to note that because our data is twin data, individual differ
ences here are a combination of differences between individuals within a 
given family/twin-pair (level 3) and differences between such fami
lies/twin-pairs (level 4). For the current study, this differentiation is not 
of substantive interest, and is only made to control for the noninde
pendence of observations in our statistical analyses. Intercept-only 
models were run first to assess the proportion of observed variance 
that can be explained by each of the levels, as expressed in an 
intraclass-correlation coefficient (ICC; Gelman and Hill, 2007). 

From a multilevel model we can extract various components relevant 
for Aim 1. The model’s fixed effect (FE) parameters capture average 
change, that is, averaging across individuals within families (level 3) 
and across families (level 4), does an individual’s behavioral response 
following social rejection change as the individual’s age increases? 
Because behavioral change across time is hardly ever linear, we include 
FE parameters for both linear and quadratic changes across time. In 
total, three FE parameters from the model are of interest: An intercept, 
which captures the expected behavioral response to negative feedback 
(compared to the neutral condition) at the mean age (approximately 

Fig. 2. Regions of interest (ROIs) for the anterior insula (AI), the medial prefrontal cortex (MPFC), and the right dorsolateral prefrontal cortex (DLPFC). ROIs are 
openly accessible through https://osf.io/byn7r/files/ (in.png,.nii, and.mat files). 
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nine years and nine months),5 an expected linear slope in behavioral 
response at mean age, and an expected quadratic slope in behavioral 
response at mean age. From hereon we jointly refer to the intercept and 
slopes as growth components. These results are presented in Table 2, and 
discussed in the results Section. 

The multilevel model contains random effect (RE) terms for the 
growth components at the individual level and the family level. The 
inclusion of these terms in the model implies that the estimated devel
opment (as captured by the growth components) can vary from 
individual-to-individual within a family (i.e., through the RE terms at 
level 3), and between families (i.e., through the RE terms at level 4). 
Standard deviations of the RE terms are then measures of across 
adolescent (but within family) and between-family variability in the 
development of behavioral and neural responses, respectively. By 
extracting RE terms for each individual and family, we can create 
individual-specific growth components. These components serve as 
input for the second-part of the data analysis (see Section 2.3.2). 

The analysis procedure of the neural responses was largely similar to 
the analysis procedure for the behavioral responses: For each ROI, 
growth curve models were fitted in a Bayesian multilevel framework, 
and FEs (averaged across individuals and families) and REs (both indi
vidual- and family-specific) of the growth components were extracted 
herefrom. There was one notable exception. As described in Section 
2.2.2, preprocessing of the fMRI data resulted in contrast score averages 
across trials rather than trial-specific scores. Hence, for the fMRI data, 
the neural responses during social rejection (compared to the neutral 
condition) do not have to be estimated anymore as part of the multilevel 
model. 

Therefore, for the fMRI data, a three-level multilevel model was used 
in which the trial level was omitted. 

The Bayesian framework was used to handle multiple complicating 
factors of the data. First, it accommodated censoring in the behavioral 
data (at 3500 ms) by integrating censored values out. Second, to prevent 
unnecessary loss of data, missing data for the outcomes were imputed as 
part of the model fitting procedure under the assumption of missing at 
random. Third, because the data showed increased kurtosis, a Student t 
distribution was used for the outcome to increase model fit (compared to 
assuming a 

Gausian-distributed outcome). Ultimately, a Bayesian fitting pro
cedure does not result in a single point estimate of the model parame
ters, but rather in a distribution of likely values for each parameter (i.e., 
the posterior distribution). We specified the Bayesian fitting procedure 
such that it resulted in a thousand sets of plausible values for individual- 
specific growth components for each outcome. These data sets were used 
as input for the structural equation model for investigating Aims 2 and 3. 

2.3.2. Structural equation model (Aims 2 and 3) 
Structural equation modeling was used to investigate the associa

tions between the individual-specific growth components of the 
behavioral and neural responses (Aim 2), and between later social well- 
being (Aim 3). First, a one-factor confirmatory factor analysis was per
formed on the five social well-being subscale means. If the one-factor 
model for social well-being showed good model fit, we would use the 
growth components to predict a common social well-being factor. If the 
one-factor model showed bad model fit, the growth components would 
predict each of the social well-being subscales separately. 

Second, a multivariate regression model was specified with a latent 
social well-being factor (or the subscales separately) as the outcome(s), 
and the estimated growth components from the Bayesian multilevel 
model as predictors. In this model, the predictors were allowed to covary 
freely with each other such that associations between development in 
behavioral responses and development in neural activation could be 
estimated (Aim 2). The regression coefficients represent the relationship 
between development in behavioral and neural responses to social 
rejection and social well-being (subscales) in adolescence (Aim 3). The 
models were fitted using the R package lavaan (version 0.6.16; Rosseel, 
2012).6 

As explained in Section 2.3.1, a thousand sets of plausible values for 
the growth components were extracted from the Bayesian multilevel 
model. Hence, the multivariate regression model was fitted a thousand 
times, once for each set of plausible values. This was done using the R 
package semTools (version 0.5.6; Jorgensen et al., 2022). Parameter 
estimates of the thousand fitted SEM models were averaged to create a 
single point estimate of the associations amongst the growth compo
nents, and their relation with later social well-being (either a single 
common social well-being factor, or its five separate subscales). Stan
dard errors for these parameters were pooled following the rules by 
Rubin (1987). 

3. Results 

In this section we only highlight model results that are directly 
related to this study’s Aims. The full set of numerical results can be 
found in the online supplementary materials. 

3.1. Individual differences in development of neural and behavioral 
responses (Aim 1) 

For our first aim, Bayesian multilevel growth curve models were 
fitted to the behavioral and neural data. Table 2 contains the ICCs for the 
behavioral and neural outcomes across the grouping levels. For the 
behavioral data, approximately 29% of the observed variance can be 
explained by variation across measurement waves; which we attempt to 
explain as a function of participants’ age in the growth curve models. 
Only small amounts of variance can be explained by the individual- and 
family-levels for both the behavioral and neural outcomes. Nevertheless, 
Bayesian hypothesis tests indicate that the posterior probability of the 
ICCs being greater than zero exceeds 95% for all outcomes, and there
fore we decided to control for individual- and family-dependencies in 

Table 2 
Point estimates and 95% credible intervals for intraclass-correlations for 
behavioral and neural responses across wave-, individual-, and family levels. 
The asterisk * denotes that the posterior probability of the estimate being greater 
than zero exceeds 95%.   

Wavea Individual Family 

Aggression 
(noise) 

0.29 [0.27–0.31] 
* 

0.03 [0.01–0.06]* 0.03 [0.01–0.05]* 

AI - 0.01 [0.00–0.03] 
*b 

0.01 [0.00–0.02] 
*b 

MPFC - 0.02 [0.00–0.07] 
*b 

0.04 [0.00–0.09] 
*b 

DLPFC - 0.01 [0.00–0.05] 
*b 

0.01 [0.00–0.03] 
*b 

a Neural responses were not analyzed on a trial-by-trial basis as part of the 
multilevel hence. Hence, the wave-level is the “lowest” level in the neural data, 
and the grouping structure only exists as the individual- and family-levels. 
b Due to rounding, these credible intervals contain zero. However, results show 
that the posterior probability of the estimate being greater than zero exceeds 
95%. 

5 Because the variable time was grand mean centered before use in the 
multilevel model, the growth components represent development at the mean 
age of participants. This was done to prevent issues with multicollinearity of the 
linear and quadratic growth components in the model. 

6 In contrast to the preregistration, we did not use the software package 
Mplus. This decision was made for convenience as R packages are freely and 
openly available. 
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the data (i.e., through inclusion of an individual- and family-level in the 
multilevel models). 

Table 3 contains the 95% credible intervals for the FEs of the growth 
components, and standard deviations of the REs (at both the individual- 
and family-level) of the growth components. Results for the FEs are also 
visualized in Fig. 3, which shows the model-predicted development 
across adolescence for behavioral aggressive response following nega
tive versus neutral social feedback (Fig. 3a), and the neural responses 
during negative versus neutral social feedback in the AI (Fig. 3b), MPFC 
(Fig. 3c), and DLPFC (Fig. 3d). 

For behavioral aggression, results show that there is 95% certainty 
that the expected behavioral response at the mean age (approximately 
nine years and nine months) lies between 1.31 and 1.49 seconds. The 
REs imply that there is evidence of differences between individuals 
(within families) herein—with the standard deviation of the RE at the 
individual level estimated to be between 0.03 and 0.42—as well as 
differences between families—with the standard deviations of the REs at 
the family level estimated to be between 0.15 and 0.43. Linear devel
opment of behavioral aggression at the mean age is estimated to lie 
between − 0.05 and 0.02, with the standard deviation of the RE esti
mated to lie between 0.00 and 0.11 for the individual level, and between 
0.01 and 0.16 at the family level. This implies that there is no, to little 
evidence of differences between individuals and families in linear 
development, respectively. Quadratic development at the mean age is 
estimated to be slightly negative, lying between − 0.06 and − 0.03. This 
implies that expected development herein follows an inverted-U shape, 
with behavioral aggression following negative feedback peaking in late 
childhood, and decreasing thereafter. There is no evidence of between- 
individual or between-family differences herein. 

For neural responses in the AI, the fixed effects show that there is 
95% certainty that expected response at the mean age lies between 0.42 
and 1.03. The random effects imply that there is evidence of between- 
individual (within-families), and between-family differences herein. 
Linear development of AI response at the mean age is estimated to lie 
between − 0.29 and − 0.02, with results indicating some evidence of 
differences between individuals and between families herein. Quadratic 

development at the mean age is estimated to lie between − 0.01 and 
0.13, implying that there is no evidence of a quadratic trend in AI 
development across adolescence. Additionally, there is no evidence of 
differences between individuals or between families herein. Thus, in 
general we found evidence for increased AI activity during social 
rejection, and a linear decrease herein (but no quadratic development). 
Furthermore, results also show individual differences in linear 
development. 

For neural responses in the MPFC, the results for the fixed effects 
show that there is 95% certainty that expected response at mean age lies 
between 0.52 and 1.20. The random effects imply that there are sig
nificant differences between individuals (within families) herein, as well 
as significant between-family differences. Linear development of MPFC 
at mean age is estimated to lie between − 0.17 and 0.10, with only 
marginal evidence of differences between individuals in linear devel
opment, and no evidence of differences between families. Quadratic 
development at mean age is estimated to lie between − 0.01 and 0.13. 
Results show no evidence of differences between individuals herein. 
Thus, in general we found evidence for increased MPFC activity during 
social rejection, but no overall (linear or quadratic) development 
herein. However, results do show individual differences in linear 
development (i.e., for some individuals there is a positive linear devel
opment, and for some a negative). 

Finally, for neural responses in the DLPFC, results for the fixed effects 
show that there is 95% certainty that expected response at mean age lies 
between − 0.65 and − 0.09. The random effects provide only marginal 
evidence that are between individual-, and between family differences 
families differences herein. Linear development at mean age is estimated 
to lie between − 0.14 and 0.11, with again only marginal evidence of 
between individual and between family differences. The results show no 
evidence for a significant quadratic trend on average for the develop
ment of DLPFC responses, and do not suggest differences between in
dividuals or between families. Thus, in general we found evidence for 
decreased DLPFC activity during social rejection, but no overall (linear 
or quadratic) development herein. However, results do show individual 
differences in linear development. 

3.2. Associations between growth components of behavioral and neural 
responses (Aim 2) 

For Aims 2 and 3, a single multivariate regression model was fitted in 
which the growth components predicted later social well-being (of in
terest for Aim 3), and the predictors freely covaried with each other (of 
interest for Aim 2). In total, 66 covariances between the individual-level 
growth components of neural and behavioral responses to social feed
back were estimated. Of these, two covariances were significant at the α 
<.05 level. The covariance between the expected AI response at mean 
age (intercept) and the linear development in AI response at mean age 
(linear slope) was estimated to be − 0.123, SE = 0.054, t(978.689) =
− 2.280, p = .023. This implies that individuals with a higher AI response 
at mean age tend to have a steeper linear decrease in AI response. 
Furthermore, the covariance between the expected MPFC response at 
mean age (intercept) and the quadratic slope of MPFC at mean age was 
estimated to be − 0.111, SE = 0.051, t(1012.368) = − 2.194, p = .028. 
This implies that individuals with a higher expected MPFC at mean age 
also show a less curvilinear (i.e., more linear) development. So overall, 
two significant associations of the estimated individual trajectories of AI 
and MPFC were found. However, the hypothesized covariances between 
behavioral and neural responses to social feedback did not reach 
significance. 

3.3. Prediction of social well-being subscales (Aim 3) 

The exact specification of social well-being in the multivariate 
regression model was determined based on how well the social well- 
being subscales could be represented as a unidimensional construct. 

Table 3 
95% credible intervals for the fixed effects (FEs) and the standard deviations of 
the random effects (REs) of the growth components. REs exist at both the 
individual-level (i.e., within families) and the family-level (i.e., between fam
ilies). Results are shown for development in behavioral aggression, and neural 
responses in the anterior insula, media prefrontal cortex, and dorsolateral pre
frontal cortex. The asterisk * denotes credible intervals not containing zero.   

FE SD(RE) individual- 
level 

SD(RE) family- 
level 

Aggression 
(noise)    
Intercept [1.31, 1.49]* [0.03, 0.42]* [0.15, 0.43]* 
Linear slope [-0.05, 0.02] [0.00, 0.11] [0.01, 0.16]* 
Quadratic 
slope 
AI 

[-0.06, 
− 0.03]* 

[0.00, 0.03] [0.00, 0.05] 

Intercept [0.42, 1.03]* [0.02, 1.01]* [0.01, 0.81]* 
Linear slope [-0.29, 

− 0.02]* 
[0.03, 0.66]* [0.01, 0.35]* 

Quadratic 
slope 
MPFC 

[-0.01, 0.13] [0.00, 0.17] [0.00, 0.14] 

Intercept [0.52, 1.20]* [0.03, 1.37]* [0.13, 1.62]* 
Linear slope [-0.17, 0.10] [0.01, 0.56]* [0.00, 0.31] 
Quadratic 
slope 
DLPFC 

[-0.01, 0.13] [0.00, 0.23] [0.00, 0.27] 

Intercept [-0.65, 
− 0.09]* 

[0.02, 0.97]* [0.01, 0.84]* 

Linear slope [-0.14, 0.11] [0.02, 0.53]* [0.01, 0.43]* 
Quadratic 
slope 

[-0.02, 0.11] [0.00, 0.17] [0.00, 0.16]  
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To this end, a one-factor confirmatory factor analysis model was fitted to 
the five subscale measures. Estimates of the factor loadings λ, unique 
subscale variances θ, and the common social well-being factor variance 

ψ are reported in Table 4. A unidimensional structure for the social well- 
being subscales showed substantial misfit to the data, χ2(5) = 49.269, p 
<.001, CFI = .922, T LI = .844, RMSEA = 0.178. Therefore, subscales 
were included as separate outcomes in the multivariate regression 
model rather than a common social well-being factor. Such a model, in 
which the exogenous predictors freely covary amongst each other, and 
in which all outcome residuals freely covary amongst each other, is 
saturated, implying perfect fit. 

In this model, none of the growth components significantly predicted 
any of the social well-being subscales. Hence, we did not find the hy
pothesized significant covariances between individual developmental 
trajectories of behavioral and neural responses to social feedback across 
childhood and adolescence, and the social well-being subscales 
measured in early adolescence. 

4. Discussion 

The regulation of negative emotions during social interaction is an 
essential quality for developing and maintaining social relations, and 
there are many individual differences in how children respond to social 
rejection. Although prior literature has linked social development to 
changes in behavioral (aggressive) responses and neural activation, 
previous literature has mostly focused on group-based aggregates, 
limiting our knowledge on individual differences in development 
(Chester, 2019). Complementing existing research, this preregistered 

Fig. 3. Model-predicted development in behavioral and neural responses to negative versus neutral social feedback. The bold black line represents the predicted 
(based on the fixed effects) average development across adolescence. The gray lines represent uncertainty around this prediction, based on draws from the posterior 
distribution for the fixed effects. The vertical dotted (red) line represents the mean age of approximately 9 years and 9 months. 

Table 4 
Parameter estimates of the measurement model of social well-being. The factor 
loading of the first indicator was set to one for scaling. AWP = ten items from the 
Adolescent Wellbeing Paradigm; WHO = ten items from the World Health Or
ganization Quality of Life Scale; SC = Social Competence subscale from Harter’s 
Self-Perception Profile for Adolescents; CF = Close Friendships subscale of 
Harter’s Self-Perception Profile for Adolescents; GS = Global Self-Worth sub
scale of Harter’s Self-Perception Profile for Adolescents.  

Parameter Est. SE 95% CI 

Factor loadings:     
λ
AWP  1 - - 
λ
WHO  0.996 0.057 [0.884, 1.108] 
λ
SC  0.766 0.096 [0.578, 0.954] 
λ
CF  0.628 0.092 [0.448, 0.808] 
λ
GS 

Unique variances:  
1.161 0.099 [0.967, 1.355] 

θ
AWP  0.051 0.007 [0.037, 0.065] 
θ
WHO  0.019 0.006 [0.007, 0.031] 
θ
SC  0.299 0.026 [0.248, 0.350] 
θ
CF  0.281 0.024 [0.233, 0.328] 
θ
GS 

Common variance:  
0.275 0.025 [0.226, 0.324] 

ψ  0.141 0.017 [0.108, 0.174]  
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study focuses on the development of behavioral aggression and neural 
responses in the AI, MPFC, and DLPFC during social rejection, and places 
individual differences in such development front and center. The 
renewed focus on individual variability endorses the fact that adoles
cents’ behavioral and neural responses to social interaction develops in 
meaningfully different ways (Foulkes and Blakemore, 2018; Telzer et al., 
2018), and allows for investigating if such individual differences are 
predictive of, for example, future health outcomes (Copeland et al., 
2013; Foulkes and Blakemore, 2018; Van Harmelen et al., 2017). In this 
study, we made use of data of L-CID (Crone et al., 2020), which is a 
longitudinal (experimental) data set containing neural (fMRI) and 
behavioral measurements following social interaction (for more infor
mation, see https://www.developmentmatters.nl/). To describe linear 
and quadratic development of behavioral and neural responses, as well 
as individual differences herein (Aim 1), we fitted Bayesian multilevel 
growth curve models. Results from the multilevel models served as input 
for a structural equation model, in which we simultaneously investi
gated intercept-slope associations among brain and behavioral devel
opment (Aim 2), and whether or not individual behavioral and neural 
development could predict social well-being (Aim 3). 

The main findings of this study are threefold: First, average behav
ioral development was found to be nonlinear (quadratic), with a peak in 
behavioral response during late childhood. Individual differences were 
found primarily in the intercept (expected behavioral response at mean 
age) and to a lesser degree in the linear slope. Secondly, in line with our 
expectations, we found individual differences in the linear development 
of neural responses during social rejection. Third, we did not find 
associations between the estimated individual trajectories of brain and 
behavioral response, nor were these estimated individual trajectories 
predictive for future self-reported social well-being. Below, we discuss 
the theoretical and methodological implications of these main findings 
further. 

4.1. Late childhood as sensitive window for social development 

We found that behavioral response following social rejection (as 
measured by aggression following negative versus neutral feedback) 
peaks during late childhood. The REs in the multilevel models described 
general linear and quadratic development at the mean age of approxi
mately nine years and nine months. Based on the estimated standard 
deviations of the REs, we found evidence for individual differences in 
the intercept (i.e., expected behavioral response at mean age). Note that 
here, individual differences are a combination of both differences 
within- families at the individual level, and between-families at the 
family level. Furthermore, there was some evidence for individual dif
ferences in linear slope between families, but these effects were less 
pronounced. This suggests that children may differ in their response to 
rejection in late childhood, but that the developmental trajectories (i.e., 
a peak in aggression in late childhood) are relatively similar between 
children. Although most prior developmental studies have focused on 
adolescent specific peaks in social behavior (cf. Brechwald and Prin
stein, 2011; Casey et al., 2010; Somerville and Casey, 2010; Steinberg, 
2008; Steinberg and Morris, 2001), our results suggest that late child
hood is also an important period for social development, specifically for 
dealing with social rejection. Prior work on reactive aggression also 
reported a peak in late childhood (Cui et al., 2016), with decreases in 
aggression towards adolescence (Fite et al., 2008). This peak in 
aggression in late childhood may be explained by delayed development 
of inhibition of aggression following negative feedback, compared to 
inhibition of aggression following neutral feedback (Dobbelaar et al., 
2023). However, although social rejection is a challenging experience 
for all children, there are pronounced differences in how children deal 
with such rejection. While some socially rejected children suffer from 
widespread and persistent impairments in mental health (i.e., internal
izing and externalizing problems; Ladd, 2006; Prinstein and Aikins, 
2004; Prinstein and La Greca, 2004), other children seem more resilient 

in dealing with social rejection (Ioannidis et al., 2020; Van Harmelen 
et al., 2021). Until now there was little insight on where in the devel
opmental process these individual differences emerge. Our findings add 
to the existing literature by providing evidence for individual differences 
during late childhood. Possibly, the peak in aggression following nega
tive feedback during late childhood, and individual differences herein, 
suggests an undiscovered sensitive period in development. This sensitive 
window might provide a window of opportunity for interventions that 
foster social development in youth. 

4.2. Individual differences in the linear development of neural responses 
during social rejection 

With regards to overall development of neural responses, the results 
provide evidence of a negative linear development in the AI. This im
plies that, in general, the AI response during social rejection is expected 
to decrease between ages nine and ten, leveling off again in emerging 
adolescence. Additionally, in line with earlier empirical and theoretical 
studies, we report evidence for individual differences in linear devel
opment of all ROIs (Bottenhorn et al., 2023; Foulkes and Blakemore, 
2018). Furthermore, neural sensitivity to social feedback may be shaped 
by social experiences (Rudolph et al., 2021), that can substantially differ 
between individuals. However, very few studies have investigated brain 
development across childhood. The main reason for this is that scanning 
children is more challenging than scanning adolescents or adults (Ach
terberg and Van der Meulen, 2019; O’Shaughnessy et al., 2008). 
Nevertheless, our findings indicate that there is evidence of individual 
differences in brain development during childhood, and highlight that 
future studies should also include participants below the age of twelve. 
Notably, we did not find evidence of quadratic trends in the develop
mental trajectories, nor in general, nor at an individual level. Prior 
studies have suggested nonlinear development across puberty and 
adolescence and our results add to this literature by showing that 
functional brain development across childhood seems mostly linear 
(Gracia-Tabuenca et al., 2021; Vijayakumar et al., 2019). 

4.3. Testing brain-behavior associations: Methodological considerations 

We did not find evidence for associations between the estimated 
growth components of behavioral and neural responses themselves (Aim 
2), nor were we able to predict future social well-being from the indi
vidual growth components (Aim 3). That is, our analyses did not provide 
any evidence that individual differences in development are meaning
fully related to each other, or to future social well-being. This stands in 
contrast to previous studies based on (parts of) the same data (cf. Ach
terberg et al., 2016; Achterberg et al., 2020; Dobbelaar et al., 2022; 
Dobbelaar et al., 2023; Van de Groep, et al., 2021). For example, it was 
found that behavioral aggression regulation across time was associated 
with DLPFC activation across time (Achterberg et al., 2020). 

There are a couple of potential explanations for this seeming 
discrepancy. First, this research project is ambitious in its scope, and 
utilized a complex study design (e.g., longitudinal twin data, in which 
individuals inevitably drop out, and in the presence of censoring). Our 
specific setup therefore requires a large number of individuals and 
repeated measures in order to achieve adequate statistical power. While 
this study is amongst the first in the literature to attempt to collect 
repeated MRI data in children at this scale, the sample size might still be 
too small to detect the many, and arguably small neural relationships 
that are targeted here (Marek et al., 2022). Second, the statistical ana
lyses in this study deviate in some important ways from previous studies 
into this topic. The deviations concern the handling of missing data, 
censoring in the data, and individually-varying times of observations of 
participants. Such methodological and statistical differences between 
studies can lead to differences in results, and consequently differences in 
conclusions that are drawn. This underlines the importance of making 
informed decisions about the methodological and statistical choices that 
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researchers have a priori, and recording these in a preregistration, or 
even better, a registered report, with the inclusion of extensive peer 
reviewing. It is also important to engage in team science, with inter
disciplinary collaborations on research projects to get different per
spectives on the subject-matter and analysis strategy (Fair et al., 2021). 

4.4. Limitations and future directions 

This is the first study to describe individual developmental trajec
tories of behavioral and neural responses to social rejection using a 
Bayesian multilevel modeling framework. Our statistical analysis strat
egy makes a meaningful methodological contribution by showing how 
to take into account the many complexities of developmental neuro
imaging datasets, whilst still being able to acknowledge and describe 
individual variation in development. Despite these strengths, there are 
several limitations that may have contributed to the null results of this 
specific study, and which should be taken into account for future 
research. 

First, the aggression measure of the SNAT reflects hypothetical 
aggression or frustration, as participants were aware that the peers did 
not actually receive the noise blast. This decision was based on previous 
studies using a similar design (Konijn et al., 2007), but future studies 
may separate real aggression (that occurs naturally, in daily life) from 
hypothetical aggression to test the neural differences in these two types 
of aggression. 

Second, some of the prior studies using the SNAT paradigm relied on 
the same sample: Achterberg et al. (2018), Achterberg et al. (2020), 
Dobbelaar et al. (2022), Dobbelaar et al. (2023), and the current study 
all rely on the L-CID Middle Childhood Cohort (MCC) sample. Although 
the study aims and research questions investigated in each of these 
studies are distinct, and findings were based on (a combination) of 
different measurement waves, future studies should aim to examine 
behavioral and neural responses to social rejection using the SNAT in 
various different samples. Currently the SNAT is already being adapted 
and included in several international and interdisciplinary collabora
tions. An important and interesting future direction is to examine 
overlapping and distinct results of the SNAT using meta-analytical 
techniques. 

Third, while the multilevel model for behavioral outcomes contained 
a trial-level in which behavioral response following social rejection was 
estimated, for neural outcomes, such a trial-level was omitted: Neural 
responses (contrasts) were computed in the preprocessing step of the 
MRI data and then included as observed variables in the multilevel 
models for neural outcomes. The disadvantage of this two-step proced
ure is that the uncertainty of estimating neural responses in the pre
processing step is not carried over to the multilevel model. 
Consequently, credible intervals for parameters from the multilevel 
model might be (slightly) too narrow. Future studies are recommended 
to setup their preprocessing pipeline for MRI data in such a way that 
trial-level MRI measurements can be analyzed, thereby more accurately 
incorporating the fact that neural responses during social feedback are 
estimates rather than observed values. 

Fourth, a potential explanation for our lack of significant relations 
between the individual level growth-components and later social- 
wellbeing might be the time interval between the well-being measure
ments, and the age to which the growth components relate. These 
growth components capture linear and quadratic growth at 9 years and 9 
months, and it is possible that three and a halve years (the approximate 
average number of years between 9 years and 9 months, and the average 
age at which social wellbeing was measured) is too long (or short) a time 
window for there to be relationships between neural and behavioral 
response development, and future well-being. There is little to no 
literature to guide the optimal selection of a time lag between the age at 
which we capture development, and the age at which we measure well- 
being. For the design of future studies, theories of social feedback pro
cessing need to be extended in order to make informed decisions about 

how to best investigate this. 
Finally, a next step would be to investigate what drives the individual 

differences in the development of social rejection responses. A potential 
source of such individual differences is puberty, as studies have shown 
that the timing of pubertal onset varies substantially, and is influenced 
by both genetic and environmental factors (Zhu et al., 2018). Therefore, 
the inclusion of pubertal measures (both self-reported as well as hor
monal data from saliva and/or hair) as potential drivers of individual 
differences in analyses regarding behavior development and brain 
maturation is an interesting avenue for future research. 

4.5. Conclusion 

Dealing with social rejection, or negative peer feedback, can be 
challenging, specifically for children as their social and emotional 
regulation skills are still developing. Prior research has focused largely 
on group-based averages of this development, obscuring meaningful 
individual variation in development. Here, we employed a Bayesian 
multilevel modeling framework to describe individual differences in the 
development of behavioral and neural responses to negative social 
feedback. We found a peak in behavioral reactivity to social rejection 
across late childhood, as well as individual differences during this 
developmental phase. Moreover, we report evidence for individual dif
ferences in the linear development of neural responses during social 
rejection in our three brain regions of interest: the AI, MPFC and DLPFC. 
Our follow-up analyses did not provide evidence for associations be
tween individual trajectories of brain and behavior, or later social well- 
being. In addition to providing insights in the individual trajectories of 
behavioral and neural responses to social rejection during childhood, 
this study also makes a meaningful methodological contribution. That is, 
our statistical analysis strategy can be used as an example of how to take 
into account the many complexities of developmental neuroimaging 
datasets, while still enabling researchers to answer interesting questions 
about individual-level relationships. 
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