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Abstract
Objectives: To systematically evaluate the performance of COVID-19 prognostic models and scores for mortality risk in older popu-
lations across three health-care settings: hospitals, primary care, and nursing homes.

Study Design and Setting: This retrospective external validation study included 14,092 older individuals of �70 years of age with a
clinical or polymerase chain reaction-confirmed COVID-19 diagnosis from March 2020 to December 2020. The six validation cohorts
include three hospital-based (CliniCo, COVID-OLD, COVID-PREDICT), two primary care-based (Julius General Practitioners
Network/Academisch network huisartsgeneeskunde/Network of Academic general Practitioners, PHARMO), and one nursing home cohort
(YSIS) in the Netherlands. Based on a living systematic review of COVID-19 prediction models using Prediction model Risk Of Bias
ASsessment Tool for quality and risk of bias assessment and considering predictor availability in validation cohorts, we selected six prog-
nostic models predicting mortality risk in adults with COVID-19 infection (GAL-COVID-19 mortality, 4C Mortality Score, National Early
Warning Score 2-extended model, Xie model, Wang clinical model, and CURB65 score). All six prognostic models were validated in the
hospital cohorts and the GAL-COVID-19 mortality model was validated in all three healthcare settings. The primary outcome was in-hos-
pital mortality for hospitals and 28-day mortality for primary care and nursing home settings. Model performance was evaluated in each
validation cohort separately in terms of discrimination, calibration, and decision curves. An intercept update was performed in models indi-
cating miscalibration followed by predictive performance re-evaluation.

Main Outcome Measure: In-hospital mortality for hospitals and 28-day mortality for primary care and nursing home setting.
Results: All six prognostic models performed poorly and showed miscalibration in the older population cohorts. In the hospital settings,

model performance ranged from calibration-in-the-large �1.45 to 7.46, calibration slopes 0.24e0.81, and C-statistic 0.55e0.71 with 4C
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Mortality Score performing as the most discriminative and well-calibrated model. Performance across health-care settings was similar for
the GAL-COVID-19 model, with a calibration-in-the-large in the range of �2.35 to �0.15 indicating overestimation, calibration slopes of
0.24e0.81 indicating signs of overfitting, and C-statistic of 0.55e0.71.

Conclusion: Our results show that most prognostic models for predicting mortality risk performed poorly in the older population with
COVID-19, in each health-care setting: hospital, primary care, and nursing home settings. Insights into factors influencing predictive model
performance in the older population are needed for pandemic preparedness and reliable prognostication of health-related outcomes in this
demographic. � 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Keywords: COVID-19; COVID-19-Related mortality; External validation; Older population; Prognostic models; clinical prediction models
1. Introduction

The COVID-19 pandemic has had a significant impact
on the social, economic, and health-care sectors with an
estimated death toll of over 6.9 million lives globally (till
December 2023) [1]. The older population faced the high-
est risk of severe COVID-19 disease leading to hospitaliza-
tion, mortality, and morbidity [2]. In the Netherlands, 89%
of all deaths caused by COVID-19 disease occurred in the
older population (70 years or older) even though they make
up only 14% of the total population (till December 2022)
[3]. Similar trends in mortality were reported in other parts
of the world like the United States [4], Europe [5], and low-
emiddle-income countries (eg, India, Mexico, Pakistan,
Philippines, and South Africa) [6].

In response to the COVID-19 pandemic, a large number
of predictive tools were developed. Among these tools are
clinical prognostic models, which aim to provide insight
into COVID-19 patient risks for severe outcomes for both
physicians and patients [7]. For the valid application of
these prognostic models, an external validation initially
developed in the general population, especially in a high-
risk older population, is crucial.

A living systematic review assessing the quality of
COVID-19 prediction models found most of these models
of poor quality and high risk of bias [8]. Although some
models appraised at low risk of bias have been externally
validated in the general population [9e13], validation in
an older population (including an age-based subgroup anal-
ysis during model development) has so far not been done.
Extensive assessment including validation studies is needed
to evaluate their quality, accuracy, and implementation
feasibility for future infectious diseases, especially in this
high-risk population. Validation of prognostic models in
an older population with COVID-19 infection gives insight
into the role and relevance of the included predictors like
age, and comorbidities.

In this comprehensive external validation study, we as-
sessed the predictive performance of six COVID-19 prog-
nostic models for mortality risk in a population of
�70 years of age presenting with COVID-19, across
various settings that is, hospital, primary care, and nursing
homes.
2. Methods

The protocol for this study is publicly available [14]. We
note that the protocol mentioned the validation of eight
models, but Sepsis-related organ Failure assessment
(SOFA) [15] and Acute Physiology and Chronic Health
Evaluation-II score [16] could not be validated due to the
unavailability of data on predictors included in these two
models, which are predictors that are typically measured
in an intensive care setting and are not recorded in the hos-
pital cohorts included in this study (Supplementary file 1).
We adhered to the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosisre-
porting guidelines [17] (Supplementary file 14).

2.1. Selection of COVID-19 prognostic models

Prediction models were systematically reviewed using
Prediction model Risk Of Bias ASsessment Tool (a quality
or risk of bias assessment tool) [18,19] in the fourth and
final update of the living systematic review of diagnostic
and prognostic prediction models for COVID-19 [8]. Using
these findings, we identified all prognostic models that pre-
dict the risk of mortality in individuals with COVID-19
infection that were rated at uncertain or low risk of bias.
Fifteen candidate models met this criterion of which seven
prognostic models (Pandemic Respiratory Infection Emer-
gency System Triage [20], Clinical frailty scale, Urea,
Consolidation, Age, FiO2, Sex, Respiratory rate [12],
CUCA-SF [12], Acute Physiology and Chronic Health
Evaluation-II [16], SOFA score [15], and QCOVID [21]
for males and females) were not included for validation
because data on certain predictors were unavailable in the
six cohorts of older individuals. Two prognostic scores
(Quick Sequential Organ Failure Assessment [22] and Na-
tional Early Warning Score [NEWS] [23] were excluded
because they express risk of mortality qualitatively rather
than quantitatively using a formal probability or risk esti-
mation [14] (Supplementary file 1).

This resulted in a selection of six prognostic models be-
ing externally validated in our older population cohorts
across the three settings. Of these six models, five were
COVID-19especific (GAL COVID-19 mortality model
[24], 4C Mortality Score [25], NEWS2-extended model
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What is new?

Key findings
� External validation of existing COVID-19 models

in older populations in hospital, primary care,
and nursing home setting demonstrated poor prog-
nostic performance.

� Overall, the 4C Mortality Score performed as the
most discriminative and moderately calibrated
prognostic model to predict in-hospital mortality.

What this adds to what was known?
� External validation of existing COVID-19 models

in older populations across various health-care set-
tings demonstrated poor prognostic performance.

What is the implication and what should change
now?
� Most prognostic models demonstrated poor perfor-

mance. Approaches for optimally developing accu-
rate prediction models in the older population need
to be further investigated.

� During prediction model development, modeling
of the functional form of age as a predictor (eg,
linear or nonlinear) requires extra consideration
so that predictions are available to an older popula-
tion as well.

[26], Xie model [27], Wang clinical model [28]). One prog-
nostic sore (CURB65 [29]) existed before the COVID-19
pandemic and is used for the prediction of in-hospital mor-
tality risk after admission for respiratory infections or
sepsis (Table 1).

2.2. Validation cohorts

Data were collected from six cohorts (three hospital co-
horts, two primary care cohorts, and one nursing home
cohort) representing older individuals (� 70 years of age)
presenting with COVID-19 infection in the Netherlands.
COVID-19 infection was defined as clinical diagnosis
(when reverse transcription polymerase chain reaction
testing was not yet available) or reverse transcription poly-
merase chain reaction confirmed COVID-19. The moment
of inclusion was at first presentation with COVID-19 infec-
tion in the respective health-care settings from March 2020
to December 2021. Details on participant inclusion in each
cohort are described in Supplementary files 2 to 7.

2.3. Outcome

The original outcome of all six prediction models was
mortality with varied prediction horizons (Table 1). The

A. Zahra et al. / Journal of Clini
outcome of our validation study was defined as in-
hospital mortality in hospital cohorts and 28-day mortality
in the primary care and nursing home cohorts.

2.4. Predictors

Prognostic models for validation included predictors
such as demographics, comorbidities, and laboratory pa-
rameters. Predictor measurement definitions and timing of
the measurement for the six prognostic models were ex-
tracted and matched, as closely as possible, to the original
predictor measurement procedures outlined in the original
publications (Supplementary files 2 to 7).

2.5. Statistical analysis

We externally validated the six selected COVID-19
prognostic models in six cohorts of older patients with
COVID-19 from March 2020 to December 2020 to assess
their predictive performance when transported from a gen-
eral adult population to a specific older population. The
GAL-COVID-19 model could be assessed across the three
health-care settings (originally derived in a primary care
setting) [30]. The 4C Mortality Score, NEWS2þ model,
Xie model, Wang clinical model, and confusion, urea,
respiratory rate, blood pressure, age above or below 65
score were developed in hospitalized populations and vali-
dated in the same health-care setting. Evaluation and
assessment of the predictive performance were performed
in each cohort separately. All statistical analyses were per-
formed in R Statistical Software version 4.2.2 [31].

2.5.1. Descriptives
To assess similarities and differences between the deri-

vation and validation study populations, descriptives of
the validation population cohorts were compared to de-
scriptives of the model development studies [32].

2.5.2. Missing data
Missing data was described to determine possible rea-

sons for and patterns of missingness [33]. There were no
missing data in primary care settings as the absence of a co-
morbidity record in electronic health records was inter-
preted as its absence. Predictor data in the nursing home
cohort were missing for only four individuals in 2020,
hence a complete case analysis was performed. Multiple
imputation by chained equations using the Full Conditional
Specification or Joint Modeling [34] was used to handle
missing data in hospital cohorts in all available data at once
(ie, in year 2020 and 2021 if available). All variables and
outcomes in all six prognostic models were included in
the imputation model to ensure compatibility. Based on
the level of missingness, a total of 50 imputed datasets
(with 50 iterations) were generated for CliniCo and
COVID-PREDICT cohorts and 70 imputations were used
for the COVID-OLD cohort for all relevant variables



Table 1. Overview of validated prognostic models

Model name
Derivation
country

Pre-existing or COVID-
19especific

Derivation health-
care setting

Derivation
population

Age
Median (IQR)

Intended moment
of use

Predicted
outcome Predictors Model type

GAL-COVID-19-
mortality
model

Spain COVID-19especific
model

Primary care Adults (�18 yr)
with confirmed
COVID-19
diagnosis

58.0 (20.0)a First
presentation
with COVID-19
infection at
general
practitioner

Mortality (no
prediction
horizon
reported)

� Age
� Sex
� Lymphoma/leukemia
� Liver disease
� Dementia
� Ischemic heart disease
� Chronic obstructive pul-
monary disease

� Diabetes mellitus
� Chronic kidney disease

Prediction model

4C-Mortality
Score

United
Kingdom

COVID-19especific
model

Hospital Adults (�18 yr)
with confirmed
COVID-19
diagnosis

73.0 (59.0e83.0)At hospital
admission for
COVID-19
infection

In-hospital
mortality

� Age
� Sex
� Respiratory rate
� Peripheral oxygen satura-
tion on room air

� Glasgow Coma Scale
� Urea
� C-reactive protein
� Number of comorbidities
(counted as chronic car-
diac disease, chronic
respiratory disease
(excluding asthma),
chronic renal disease,
liver disease, dementia,
chronic neurological con-
ditions, connective tissue
disease, diabetes melli-
tus, HIV or AIDS, malig-
nancy, obesity

Points-based score
(Model equation
available)

NEWS2þ model United
Kingdom

Pre-existing risk
stratification score
updated for COVID-
19 patients

Hospital Adults (�18 yr)
admitted to
hospital with a
confirmed
COVID-19
diagnosis

71.5 (57.1e82.6)� At hospital
admission for
non-
nosocomial
patients (ie,
community
acquired
COVID
infection)

� At the date of
symptom onset
for nosocomial
patients. If the
date of onset

ICU admission or
death within
14 days of
admission

� Age
� Peripheral oxygen
saturation

� Heart rate
� Systolic blood pressure
� Body temperature
� Alertness
� Supplemental oxygen
flow rate

� Urea
� C-reactive protein
� Estimated glomerular
filtration rate

� Neutrophil count

Prediction model

(Continued )
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Table 1. Continued

Model name
Derivation
country

Pre-existing or COVID-
19especific

Derivation health-
care setting

Derivation
population

Age
Median (IQR)

Intended moment
of use

Predicted
outcome Predictors Model type

was unavai-
lable the date
of positive
SARS-CoV-2
RT-PCR minus
4 days was
used instead

� Neutrophil/lymphocyte
ratio

Xie model China COVID-19especific
model

Hospital Adults (�18 yr)
admitted to
hospital with a
confirmed
COVID-19
diagnosis

65.0 (54.0e73.0)At hospital
admission for
COVID-19
infection

In-hospital
mortality

� Age
� Lactate dehydrogenase
� Lymphocyte count
� Oxygen saturation

Prediction model

Wang clinical
model

China COVID-19especific
model

Hospital Adults (�18 yr)
admitted to
hospital with a
confirmed
COVID-19
diagnosis.
Pregnant
women were
excluded

47.3 (15.0)a At hospital
admission for
COVID-19
infection

In-hospital
mortality

� Age
� History of hypertension
� History of coronary heart
disease

Prediction model

CURB-65 United
Kingdom,
New
Zealand, The
Netherlands

Pre-existing risk
stratification score

Hospital Patients with
community-
acquired
pneumonia

64.1 (NR) For triage at the
emergency
department

Mortality
(30 days)

� Age
� Alertness (new
confusion)

� Urea
� Respiratory rate
� Systolic blood pressure
� Diastolic blood pressure

Points-based score

Abbreviations: IQR, interquartile range; ICU, intensive care unit; RT-PCR, reverse transcription polymerase chain reaction; NR; not reported; CURB-65, confusion, urea, respiratory rate, blood
pressure, age above or below 65; NEWS, National Early Warning Score.

a Age given as mean (standard deviation).
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[35]. Individuals with a missing outcome were excluded af-
ter imputation [36].

2.5.3. Assessment of predictive performance
Each prognostic model was applied in accordance with

the descriptions provided by the original authors. Predictive
performance was evaluated in terms of discrimination (the
model’s ability to distinguish individuals who died after
presentation with COVID-19 diagnosis from those who
did not) [37] and calibration (the agreement between pre-
dicted and observed mortality risks) in each cohort [38].
Discrimination was assessed by quantifying the area under
the receiver operating characteristic curve that is, the C-sta-
tistic [39], and where applicable pooled over imputed data-
sets on a log scale using Rubin’s rules [35].

Calibration was assessed by visualizing calibration of
expected vs. observed risk using locally estimated
scatterplot smoothing-smoothed plots, where applicable
on stacked imputed data sets [38]. The 4C Mortality model,
GAL-COVID-19 mortality model, NEWS2þ model, Xie
model, and Wang clinical model are model equations. For
these models, calibration was assessed in terms of the
calibration-in-the-large coefficient and calibration slope
[38]. The coefficients were again pooled over imputed data-
sets on a log scale using Rubin’s rules where applicable
[35].

2.5.4. Decision curve analysis
Decision curve analyses were performed to quantify the

pooled net benefit (across all imputed datasets) achieved by
each model for predicting the originally intended endpoint
across a range of risk thresholds ranging from zero to one
[40].

2.5.5. Updating
Prediction models showing miscalibration were adjusted

using an intercept update from March 2020 to December
2021. The recalibrated model was reassessed from the
period of March 2020 to December 2020.

2.5.6. Additional analyses
Two additional analyses were performed in all the set-

tings except the CliniCo hospital cohort (unavailability of
data for the year 2021) to assess the change in the predic-
tive performance of the six COVID-19 prognostic models
over time. The external validation was performed using
data from March 2020 to December 2021 and January
2021 to December 2021. Additionally, predictive perfor-
mance in estimating the 90-day mortality risk was evalu-
ated in primary care and nursing home cohorts.

2.6. Patient and public involvement

The COVID-19 Outcomes in Older People consortium is
a national collaboration in the Netherlands between re-
searchers, health-care professionals, and a seniors advisory
board with members of the public. The seniors advisory
board was involved in the research consortium from the
moment of grant writing onwards to discuss preferred
research topics and study designs. The ongoing discussions
take place at regular consortia meetings.
3. Results

3.1. Description of the study cohorts

The study comprised of six validation cohorts with a to-
tal of 14,092 older participants presenting with COVID-19
infection from March to December 2020 in the primary
analysis. This included 6,203 participants from the hospital
settings, 6,171 from general practices, and 1,718 from the
nursing home settings. The median age ranged from 77 to
79 years in the hospital cohorts, from 77 to 78 years in
the primary care cohorts, and nursing home participants
had a median age of 89 years. The mortality fraction ranged
from 41% (YSIS nursing home cohort) to 3% (PHARMO
primary care cohort). Participant characteristics are pre-
sented in Table 2 (hospital cohorts) and Table 3 (primary
care and nursing home cohorts) and in Supplementary
files 2 to 7 per cohort.

3.2. Comparison between development and validation
population

The median age in the validation cohorts was often high-
er than in the derivation cohorts, except for the develop-
ment population of the 4C Mortality Score and NEWS2þ
model, where the median age (O70 years) was comparable
(Supplementary files 2 to 4). The incidence of mortality and
comorbidities was generally higher in the validation cohorts
compared to the derivation cohorts.

3.3. Missing data in study cohorts

In the hospital cohorts, missingness in predictor values
ranged from 0% to 26% in CliniCo, 0% to 64% in
COVID-OLD, and 0% to 45% in COVID-PREDICT
(Supplementary files 2 to 7). Multiple imputation was per-
formed as planned. In the CliniCo cohort, the outcome mor-
tality was not recorded in 36 participants who were
excluded from the analysis (after multiple imputation)
[36]. In the nursing home cohort, 35 participants were
excluded from the analysis due to missing values for mor-
tality outcome (n 5 31) and absence of a value for all co-
morbidities (n 5 4).

3.4. Predictive performance

Overall, most models displayed poor calibration across
the settings with a systematic overestimation of the average
mortality risk (calibration-in-the-large coefficient less than
zero) and exhibited extremes in the distribution of esti-
mated risks compared to observed risks (calibration slope



Table 2. Characteristics of the older population in the imputed hospital validation cohorts in the year 2020

Demographics CliniCo COVID-PREDICT COVID-OLD

Total participants 591 3,115 2,497

Mortality (%) 239 (40) 723 (23) 833 (34)

Age (yr), median (IQR) 77 (73e82) 78 (74e84) 79 (74e84)

Male, n (%) 384 (65) 1,842 (59) 1,518 (61)

Comorbidities

Chronic cardiac disease, n (%) 444 (75) 1,174 (38) -

Chronic kidney disease, n (%) 83 (14) 479 (16) 1,074 (43)

Chronic liver disease, n (%) 13 (2) 21 (!1) 35 (1)

Chronic neurological disease, n (%) 103 (17) 530 (17) -

Chronic pulmonary disease, n (%) 161 (27) - -

Malignancy, n (%) 138 (23) 306 (10) 459 (18)

History of diabetes, n (%) 156 (26) 976 (31) 794 (32)

History of dementia, n (%) 30 (5) 232 (7) 222 (9)

Clinical frailty scale, n (%)

Nonfrail 247 (42) 1,336 (43) 1,101 (44)

Prefrail 217 (37) 978 (31) 677 (27)

Frail 127 (21) 795 (26) 719 (29)

Disease severity indicators

Immunocompromised, n (%) 127 (21) 120 (4) -

Temperature ( �C), median (IQR) 37.0 (37.0e38.5) 37.5 (36.7e38.0) 37.7 (37.0e38.5)

Respiratory rate (breaths/min), median (IQR) 24 (19e27) 22 (18e26) 21 (18e26)

Oxygen saturation (%), median (IQR) 94 (92e96) 95 (92e97) 93 (89e96)

Lymphocytes (109/L), median (IQR) 0.8 (0.6e1.1) 0.9 (0.6e1.3) 0.9 (0.6e1.3)

Creatinine (micromole/L), median (IQR) 92 (70e122) 92 (72e122) 94 (75e130)

Lactic acid dehydrogenase (U/L), median (IQR) 359 (278e457) 308 (244e399) 315 (238e422)

C-reactive protein (mg/L), median (IQR) 92 (47e150) 72 (28e130) 75 (37e133)

Abbreviation: IQR; interquartile range.
‘‘-’’ indicating variables not recorded in the hospital cohorts.

Table 3. Characteristics of the older population in the primary care and nursing home cohorts in the year 2020 (No imputation performed)

Demographics

Primary care setting Nursing home setting

JGPN/ANH/AHA PHARMO YSIS

All participants 1,444 4,727 1,718

Mortality (%) 212 (9) 163 (3) 699 (41)

Age (yr), median (IQR) 78 (73e83) 77 (73e82) 89 (84e94)

Male, n (%) 657 (46) 2,154 (46) 588 (34)

Comorbidities

Chronic kidney disease, n (%) 340 (24) 906 (19) 326 (19)

Chronic liver disease, n (%) 32 (2) 95 (2) 10 (!1)

History of diabetes, n (%) 509 (35) 1,256 (27) 321 (19)

History of dementia, n (%) 93 (6) 399 (8) 1,249 (73)

Frailty index, median (IQR) 0.3 (0.22e0.38) 0.1 (0.08e0.2) -

Lymphoma/leukemia, n (%) 31 (2) 85 (2) 7 (!1)

Ischemic heart disease, n (%) 382 (27) 1,000 (21) 269 (16)

Chronic obstructive pulmonary disease,
n (%)

203 (14) 552 (12) 243 (14)

Abbreviations: IQR; interquartile range; JGPN, Julius General Practitioners Network; ANH, Academisch network huisartsgeneeskunde; AHA,
Network of Academic general Practitioners.

‘‘-’’ indicating variables not recorded in the nursing home cohort.
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less than one). Fig. 1 summarizes the predictive perfor-
mance of the prognostic models in the validation cohorts
in the year 2020. The 4C Mortality Score showed the best
predictive performance in comparison to other prognostic
models in hospital settings (calibration-in-the-large:
�0.78 to 0.03, calibration slopes: 0.82e1.15, and C-statis-
tic: 0.66e0.74) (Figs. 1 and 2).

3.4.1. Calibration
Calibration-in-the-large varied across models and set-

tings. Most models overestimated the overall risk of mor-
tality (calibration-in-the-large coefficient less than zero)
except the NEWS2þ and GAL COVID-19 models (in
hospital settings). The calibration-in-the-large coefficient
of the NEWS2þ model indicated extreme underestima-
tion of the average mortality risk (7.04, 95% confidence
interval: 6.62e7.45).

A low calibration slope estimate was observed in most
validation cohorts implying a trend of too extreme pre-
dicted risks compared to observed risks (too low for low-
outcome risks and too high for high-outcome risks)
(Fig. 1). This is suggestive of model overfitting. Smooth
calibration curves showed poor calibration indicating that
the predicted probabilities did not align effectively with
the observed probabilities of mortality in the validation
population. This is shown in Fig. 3 for the GAL COVID-
19 model and in Supplementary files 2 to 7 for all models.

3.4.2. Discrimination
The discrimination varied from poor to moderate across

the hospital cohorts, where the C-statistic ranges were:
Wang model (0.57e0.60), GAL mortality model
(0.57e0.61), confusion, urea, respiratory rate, blood
pressure, age above or below 65 (0.60e0.65), Xie model
(0.64e0.66) and 4C Mortality Score (0.66e0.74). In pri-
mary care cohorts, the GAL COVID-19 mortality model
displayed moderate discriminative ability with a C-statis-
tic ranging from 0.70 to 0.71, while the C-statistic was
0.55 in the nursing home cohort, indicating poor discrim-
inatory ability.

3.4.3. Decision curve analysis
Decision curve analysis showed that most models per-

formed worse than the treat-all strategy, especially across
a lower (clinically relevant) threshold range (0e20%)
(Supplementary file 8).

3.5. Additional analyses

3.5.1. Performance in January 2021 to December 2021
and March 2020 to December 2021

The additional analysis in which the models were vali-
dated in data from January 2021 to December 2021 was
performed with a total of 9,574 participants (1,956 partici-
pants from the hospital settings, 6,531 from general prac-
tices, and 1,087 from the nursing home settings). 4C
Mortality Score remained the most discriminative model
while prognostic performance did not improve in all co-
horts and models persistently showed miscalibration and
low discrimination (Supplementary Files 9 and 10).

3.5.2. Performance with 90-day mortality in primary
care settings

Additional analysis with 90-day mortality as the
outcome in the primary care and nursing home setting
showed that the predictive performance of the GAL-
COVID-19 model remained poor (Supplementary File 11).

3.6. Model updating

The model intercept was updated as planned but predic-
tive performance was not restored in most models (except
the GAL COVID-19 model in Julius General Practitioners
Network/Academisch network huisartsgeneeskunde/
Network of Academic general Practitioners and PHARMO
cohort) as indicated by updated smooth calibration curves
(see Supplementary File 12).
4. Discussion

In our comprehensive external validation study assessing
the predictive performance of six existing COVID-19 prog-
nostic models in older patients with COVID-19, all prog-
nostic models performed poorly irrespective of the health-
care settings, particularly in terms of calibration. The 4C
Mortality Score appeared as the most discriminative (C-sta-
tistic in hospital cohorts: 0.66e0.74) and moderately cali-
brated (calibration slopes: 0.82e1.15, calibration-in-the-
large: �0.78 to 0.03) for predicting in-hospital mortality af-
ter COVID-19 infection among the validated models.

A decrease in prognostic performance at external valida-
tion in the older population was expected, due to differ-
ences in the incidence of baseline mortality risk and
predictors between the development and validation popula-
tions [41], as well as homogeneity in ranges of important
predictors such as age and comorbidities within the valida-
tion population. Similarly, additional analysis in the year
2021 showed a further deterioration in the performance of
all models that can be attributed to newer (less severe)
COVID-19 variants, targeted vaccination in older popula-
tions, and changes in treatment protocols.

One other explanation for the suboptimal performance
of the validated prognostic models can be the modeling de-
cisions made regarding the functional form of the predictor
age. The prognostic models evaluated in this study predom-
inantly modeled age using a linear term only, rather than a
more flexible functional form such as a quadratic term or
splines. This is reflected in a large proportion of estimated
in-hospital or 28-day mortality risks having (unrealistic)
extreme values close to 100% (Figs. 2 and 3). These obser-
vations highlight the significance of including suitable



Fig. 1. Predictive performance of the prognostic models in the year 2020 (‘‘*’’ 4C Mortality model used for calculating Calibration-in-the-large and
Calibration slope.
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Fig. 2. Performance of 4C mortality score in hospital cohorts in validation cohorts in 2020 (Calibration is shown using locally weighted smoothing
(locally estimated scatterplot smoothing) across stacked.
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functional forms of predictors like age during prediction
model development, particularly those designed for prog-
nostication in an older population [42].

In the NEWS2þ model, the presence of multicollinear-
ity among predictors (urea, glomerular filtration rate,
neutrophil count, and neutrophil-lymphocyte ratio)
impacted predictor effects (coefficients and variances),
potentially contributed to miscalibration as the differences
in levels of collinearity between the development and
Fig. 3. Predictive performance of the GAL COVID-19 mortality model in all v
validation dataset can influence the predictive performance
[42,43].

COVID-19 prognostic models (like Xie model [27],
Wang model [28], and 4C Mortality Score [25] that previ-
ously performed well in certain population-wide external
validation studies [10,13] displayed a reduction in predic-
tive accuracy when validated in an older population in the
current study. In the hospital cohorts, the 4C Mortality
Score demonstrated higher discrimination and calibration
alidation cohorts in 2020 (Calibration is shown using locally weighted.
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among the other validated models in year 2020 (under
similar conditions of model development) and 2021 (after
vaccinations were introduced). Systematic reviews of
COVID-19 prognostic models [8,44] and external valida-
tion studies in other countries like the United States
[45], Canada [46], Europe [10,47,48], and (older adults)
in Italy [49] have also found 4C Mortality Score as a
promising tool for predicting mortality risk in COVID-
19 patients. One possible reason for the 4C Mortality
Score’s better performance relative to other models is its
robust development, which involved a large population,
half of whom were represented by older individuals
[25]. Therefore, of all the COVID-19 models, the 4C Mor-
tality Score has the most potential to be considered for im-
plementation in clinical settings after further targeted
(temporal) validation [50] and model updating [51].

A limitation of the current study is that it could not
validate all the low-risk-of-bias COVID-19 prognostic
models identified in the living systematic review [8] and
only one model could be validated in all three settings.
This limitation was encountered because predictor infor-
mation, primarily related to intensive care, was often un-
available in the validation cohorts, especially primary
care and nursing home settings. This limitation also high-
lights the clinical relevance of including widely available
clinical tests as predictors when developing prognostic
models intended for clinical use in different health-care
settings, given the variation in predictor availability across
settings.

Another limitation of the study is related to the underre-
porting of certain predictors and outcome mortality. In the
nursing home cohort, comorbidities were identified using
free text searches in the medical history of electronic health
records, potentially underestimating disease prevalence
when comorbidities were not documented. This comorbid-
ity underreporting may create nondifferential misclassifica-
tion of comorbidities that potentially impairs calibration.
Additionally, mortality may have been underreported in
the PHARMO cohort. The mortality fraction was lower
compared to the Julius General Practitioners Network/Aca-
demisch network huisartsgeneeskunde/Network of Aca-
demic general Practitioners primary care cohort. This
underreporting might have affected predictive performance
in the PHARMO cohort.
5. Conclusion

External validation of existing COVID-19 models in
older populations across various health-care settings
demonstrated poor prognostic performance. In the future,
researchers could direct their efforts toward determining
the optimal approach for developing prognostic models
intended for clinical use in the older population. The cur-
rent study has highlighted the importance of appropri-
ately incorporating age during model development to
generate reliable predictions, particularly for the older
population. It is currently unclear whether the develop-
ment of prognostic models should prioritize more gener-
alizable models (applicable to a broader range of
infectious diseases or age groups) or whether future prog-
nostic models should be exclusively developed within the
older population. Future studies should further explore if
a shift toward age-dependent factors can improve prog-
nostication in the older population. This can be done by
including geriatrics-focused indicators and predictors,
such as multimorbidity [52] and frailty [53,54], in future
prognostic models.
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