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dividuals with MASLD is 37.3%.

� There is no cross-sectional correlation between
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� Pancreatic fibro-inflammation, as measured on
MRI, correlates with parameters of glycemic
dysregulation.
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Metabolic dysfunction-associated steatotic liver disease
(MASLD) is the most common chronic liver disease world-
wide and 68% of people with type 2 diabetes have MASLD.
However, fat infiltration and inflammation in the pancreas
are understudied in individuals with MASLD. In this cross-
sectional MRI study, we found no relationship between fat
accumulation in the pancreas and liver in a cohort of pa-
tients with MASLD. However, our results show that inflam-
matory and fibrotic processes in the pancreas may be
interrelated to features of type 2 diabetes and to the severity
of liver disease in patients with MASLD. Overall, the results
suggest that pancreatic endocrine dysfunction in individuals
with MASLD may be more related to glucotoxicity than to
lipotoxicity.
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Background & Aims: Individuals with obesity may develop intrapancreatic fat deposition (IPFD) and fatty pancreas disease
(FPD). Whether this causes inflammation and fibrosis and leads to pancreatic dysfunction is less established than for liver
damage in metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, the interrelations of FPD and MASLD
are poorly understood. Therefore, we aimed to assess IPFD and fibro-inflammation in relation to pancreatic function and liver
disease severity in individuals with MASLD.
Methods: Seventy-six participants from the Amsterdam MASLD-MASH cohort (ANCHOR) study underwent liver biopsy and
multiparametric MRI of the liver and pancreas, consisting of proton-density fat fraction sequences, T1 mapping and intravoxel
incoherent motion diffusion-weighted imaging (IVIM-DWI).
Results: The prevalence of FPD was 37.3%. There was a clear correlation between pancreatic T1 relaxation time, which
indicates fibro-inflammation, and parameters of glycemic dysregulation, namely HbA1c (R = 0.59; p <0.001), fasting glucose
(R = 0.51; p <0.001) and the presence of type 2 diabetes (mean 802.0 ms vs. 733.6 ms; p <0.05). In contrast, there was no
relation between IPFD and hepatic fat content (R = 0.03; p = 0.80). Pancreatic IVIM diffusion (IVIM-D) was lower in advanced
liver fibrosis (p <0.05) and pancreatic perfusion (IVIM-f), reflecting vessel density, inversely correlated to histological MASLD
activity (p <0.05).
Conclusions: Consistent relations exist between pancreatic fibro-inflammation on MRI and endocrine function in individuals
with MASLD. However, despite shared dysmetabolic drivers, our study suggests IPFD is a separate pathophysiological process
from MASLD.
Impact and implications:Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver
disease worldwide and 68% of people with type 2 diabetes have MASLD. However, fat infiltration and inflammation in the
pancreas are understudied in individuals with MASLD. In this cross-sectional MRI study, we found no relationship between fat
accumulation in the pancreas and liver in a cohort of patients with MASLD. However, our results show that inflammatory and
fibrotic processes in the pancreas may be interrelated to features of type 2 diabetes and to the severity of liver disease in
patients with MASLD. Overall, the results suggest that pancreatic endocrine dysfunction in individuals with MASLD may be
more related to glucotoxicity than to lipotoxicity.
Clinical trial number: NTR7191 (Dutch Trial Register).
© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
Fatty pancreas disease (FPD) is characterized by excessive
intrapancreatic fat deposition (IPFD). This can occur within
pancreatic cells, both in endocrine and acinar cells (intra-lobular
fat), as well as through extracellular infiltration of adipocytes
(inter-lobular fat).1,2 FPD has also been referred to as pancreatic
steatosis, fatty pancreas, or NAFPD (non-alcoholic fatty pancreas
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disease).1,3 A meta-analysis of pancreatic fat content on MRI
found that IPFD of up to 6.2% can be considered normal, setting
this as the threshold for FPD in future studies.4 It is still unknown
whether FPD causes inflammation and fibrosis and ultimately
leads to pancreatic dysfunction or even malignancy, similar to
disease progression in metabolic dysfunction-associated stea-
totic liver disease (MASLD) and metabolic dysfunction-
associated steatohepatitis (MASH).5

MASLD and FPD have overlapping risk factors and dysmeta-
bolic drivers.3 MASLD, previously known as non-alcoholic fatty
liver disease (NAFLD), affects an estimated 30% of the global
population.6 It is considered the hepatic component of the
metabolic syndrome. In MASLD development, insulin resistance
plays a central role. In patients with type 2 diabetes, the preva-
lence of MASLD increases up to 68%,7 and individuals with
MASLD are at a twofold increased risk of incident type 2 diabetes
within 5 years.8

The relationship between FPD and glucose homeostasis is less
clear.9,10 Studies have shown higher IPFD in individuals with type
2 diabetes compared to healthy individuals,11 and conversely, an
increased prevalence of type 2 diabetes in patients with FPD.4

However, an inverse relationship between IPFD and beta-cell
function was only seen in patients with impaired glucose toler-
ance and not in healthy individuals.12 This finding led to the term
glucolipotoxicity, describing the hypothesis that damage due to
IPFD only occurs in a high glucose environment.9 A large
meta-analysis of studies reporting on the prevalence of FPD in
various metabolic disorders showed that neither BMI nor waist
circumference was associated with FPD.4

To date, conflicting data have been published on the rela-
tionship between MASLD and FPD.10 While several studies have
reported a positive association,13–15 there are also cohorts in
which no association was found.16,17 A study of 43 patients with
biopsy-proven MASLD illustrated that IPFD measured by MRI
correlated with hepatic steatosis grade on histology. However,
when hepatic fibrosis was present, pancreatic fat content was
lower.18 Della Corte et al. evaluated the presence of FPD in chil-
dren with MASLD using ultrasound and found that those with
FPD had more advanced stages of liver disease, i.e. higher
fibrosis, ballooning and NAFLD activity scores (NAS) on histo-
pathological evaluation.19 Similarly, results from a retrospective
cohort study of 104 adults with biopsy-proven MASLD show that
IPFD on ultrasound was predictive of advanced hepatic fibrosis.20

Studying the relationship between FPD and MASLD severity
using multiparametric MRI in a larger cohort will aid in clarifying
the interrelations between FPD and MASLD in the setting of
obesity and insulin resistance.

Quantitative MRI offers an extensive set of tools to assess both
the liver and the pancreas non-invasively.21,22 We recently
showed good performance of multiparametric MRI of the liver
compared to liver biopsy in patients with MASLD, and impor-
tantly, in distinguishing MASH from simple steatosis.21 MRI
proton-density fat fraction (PDFF) accurately reflects hepatic and
pancreatic steatosis.21–23 T1 mapping enables evaluation of the
MRI relaxation properties of a tissue and is a measure of fibro-
inflammatory disease activity.24 T1 relaxation time has been
shown to increase significantly with the severity of chronic
pancreatitis.24,25 Finally, intravoxel incoherent motion diffusion-
weighted imaging (IVIM-DWI) enables the measurement of
diffusion and micro-vascular properties of tissues. IVIM diffusion
(IVIM-D) values increase whenwater molecules can diffuse more
freely through tissue, for example in edema due to increased
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vascular permeability. IVIM-D values decrease when the diffu-
sion of water molecules is restricted by cellular elements, blood
or dense fibrosis.26 IVIM perfusion fraction (IVIM-f) has been
shown to correlate with vessel density in pancreatic ductal
adenocarcinoma specimens.27

The aim of our study was thus to perform a multiparametric
MRI assessment of the pancreas by PDFF, T1 mapping, and IVIM-
DWI, to investigate the relation between the pancreas and liver
in individuals with MASLD. We hypothesized that patients with
MASLD encounter disruptions in pancreatic function due to FPD
and pancreatic fibro-inflammation and that these pancreatic
processes interrelate with liver disease severity. Here, we eval-
uate the presence of FPD in individuals with histologically
characterized MASLD and correlate MRI parameters of the
pancreas to liver imaging and histology scores. Moreover, we
relate our pancreatic imaging findings to pancreatic endocrine
and exocrine function.

Patients and methods
Cohort
Patients were derived from the previously described ANCHOR
(Amsterdam MASLD-MASH cohort) study.21 This prospective
observational cohort study includes individuals with hepatic
steatosis detected by abdominal ultrasound or FibroScan,
elevated transaminase levels and a BMI >25 kg/m2. Individuals
with excessive alcohol use (women >14 units/week, men >21
units/week), with detectable causes of hepatic steatosis
other than MASLD, or with known bleeding disorders or anti-
coagulant use were excluded. Included individuals underwent
multiparametric MRI of the liver and pancreas, as well as an
ultrasound-guided liver biopsy. The ANCHOR study was
approved by the Medical Research Ethics Committee of the
Amsterdam UMC and is registered in the Dutch Trial Register
under number NTR7191. All participants provided written
informed consent and the study was conducted in compliance
with the principles of the Declaration of Helsinki.

Liver biopsies
Percutaneous ultrasound-guided liver biopsies were performed
within 2 weeks after the MRI scan under local anesthesia with a
17- or 18-gauge biopsy needle by a hepatologist or interventional
radiologist at the Amsterdam UMC, following local standard
procedure. Biopsies were stained with H&E and picrosirius red
and scored in tandem by two expert liver pathologists (M.D. and
J.V.) according to the SAF (steatosis, activity, and fibrosis) score.28

Using the SAF score, steatosis grade, inflammatory activity grade
(i.e. lobular inflammation + hepatocyte ballooning) and fibrosis
stage are scored individually.

MRI sequences
A clinical 3.0T MRI unit (Ingenia; Philips, Best, the Netherlands)
with a 16-channel phased-array anterior coil and a 10-channel
phase-arrayed posterior coil was used for multiparametric MRI.
Participants fasted overnight before scanning, and all data were
acquired in a single scanning session. Magnitude-based PDFF
was used to quantify hepatic steatosis and IPFD. PDFF was
determined using a multi-echo gradient echo sequence with six
echo times. The LiverMultiScan® protocol (Perspectum Ltd,
Oxford, UK), described elsewhere,29 was used for T1 mapping.
Four transverse slices positioned at the porta hepatis were
captured using a shMOLLI (shortened modified look-locker
2vol. 6 j 100998



inversion) to quantify liver and pancreas T1. An IVIM-DWI
sequence was used as a proxy for inflammation and fibrosis
and consisted of a free-breathing multi-slice diffusion-weighted
single-shot echo-planar imaging sequence with 18 unique
b-values. Details of the MRI acquisition parameters are given in
Table 1.

Image analysis
To analyze the PDFF of the liver, three regions of interest (ROIs)
were placed in three different slices, maximizing their size while
avoiding large vessels, bile ducts and liver edges. The mean
signal intensity per TE was then determined. Similarly, for PDFF
analysis of the pancreas, three ROIs of 100 mm2 were placed in
the head, body and tail regions, avoiding organ edges. Subse-
quently, a multi-echo and multifrequency water and fat signal
model enabled correction for T2* effects and was used to
calculate the PDFF of both organs.30 The mean PDFF values of all
three ROIs of each organ were averaged to establish the fat
percentage of the liver and pancreas.

T1 map reconstruction was performed using LiverMultiScan®

software.29 T1 was scanner referenced for field strength to obtain
srT1. Subsequently, the liver T1mapswere corrected for iron (cT1)
and the mean cT1 value of the liver (excluding large vessels) was
calculated. During the study, we extended the field of view to
include the pancreas, obtaining a subset of individuals inwhich T1
of the pancreas could also be evaluated. For this subset analysis,
three circular ROIs were placed in the head, body and tail of the
pancreas (one in each region) on single transverse T1 maps.31

For IVIM-DWI analyses, the diffusion (IVIM-D) and perfusion
fraction (IVIM-f) were calculated using an unsupervised physics-
informed deep neural network in Python using Pytorch, which
has been described previously.32,33 The whole pancreas was
delineated on the reconstructed DWI images (average over all b-
values). The mean IVIM-f and IVIM-D were reported.

Collection of blood and stool samples
Blood samples were collected on the morning of the MRI after
an overnight fast. All blood analyses except C-peptide and pro-
insulin were performed by the clinical chemistry library of the
Amsterdam UMC upon blood withdrawal. Separate blood tubes
Table 1. MRI acquisition parameters.

PDFF Live

Field of view (mm3) 448 × 320 × 180 440
Reconstruction voxel size (mm2) 2 × 2 1.15
Slice thickness (mm) 5 8
Slice gap (mm) 0 7 (f
Slices 36 5 fo
Parallel imaging SENSE factor 1.5 2
Repetition time (ms) 150 2.42
Echo time (ms) 1.15, 2.33, 3.51,

4.69, 5.86, 7.04
1.05

Flip angle (�) 10 35
Acquisition duration 18 s 60 s
b-values (sec/mm2) and
[number of averages]

— —

Respiratory compensation 1 breath-hold 5 b
bre

Fat saturation — —

cT1, corrected T1; IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging
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were processed for storage at -80 �C to be analyzed at a later
date. C-peptide was measured in stored heparinized plasma
using an immunoluminometric assay on an automated immu-
noanalyzer (Atellica IM, Siemens). Pro-insulin was measured in
stored EDTA plasma using the Human Total Proinsulin ELISA kit
by Millipore. Moreover, patients collected morning stool sam-
ples which were stored at -80 �C until the measurement of fecal
elastase levels by ELISA (BIOSERV Diagnostics). Patients were
categorized based on fecal elastase results into either normal
exocrine function (>−200 lg/g) or exocrine insufficiency (<200
lg/g).

Statistical analyses
Statistical analyses were conducted using R version 4.2.1.
Shapiro-Wilk tests were performed to check the normality of the
data. For continuous variables, either Pearson or Spearman cor-
relation tests were used to assess linear correlations, depending
on the normality of the data distribution. For categorical data, t
tests or Mann-Whitney U tests were used to compare two
groups, and ANOVA or Kruskall-Wallis tests were used to
compare multiple groups, depending on the normality of the
data distribution. A p value of <0.05 was considered statistically
significant.

We first checked whether outcomes of pancreatic imaging
(i.e. PDFF, T1 and IVIM) were influenced by age, BMI or type 2
diabetes status. If significant differences were seen in pancreatic
imaging between individuals with and without type 2 diabetes,
we further related the imaging outcome to HbA1c and fasting
glucose, insulin, pro-insulin to insulin ratio (PIR) and C-peptide
levels, as well as the C-peptide to insulin molar ratio.34 Next, we
related pancreatic imaging outcomes to liver imaging (i.e. PDFF
and cT1) as well as to liver histology scoring for steatosis,
inflammatory activity and fibrosis (F <−2 vs. F >−3).

Results
Participants
Seventy-six participants were included in the analyses and MRI
of the liver and pancreas was performed in all. The pancreas was
not fully captured on PDFF imaging in one participant. In a
rMultiScan IVIM-DWI

× 330 × 100 450 × 295 × 188
× 1.15 1.8 × 1.8

6
or liver) 1
r liver, 1 for pancreas 27

1.3
7000
46

90
for liver, 12 s for pancreas 8:10 min

0 [9], 1 [3], 2 [3], 5 [3], 10 [3], 20 [3],
30 [3], 40 [3], 50 [3], 75 [3],
100 [3], 150 [3], 200, 300, 400 [3],
500 [3], 600 [3], 700 [3]

reath-holds for liver, 1
ath-hold for pancreas

Free breathing

Gradient reversal during
slice selection + SPAIR

; PDFF, proton-density fat fraction.
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subgroup of 38, T1 mapping of the pancreas was also available.
Baseline characteristics are shown in Table 2. Notably, partici-
pants were relatively young (average age 47) and hyper-
insulinemic (median fasting insulin 121.5 pmol/L). The cohort
consisted of 31 female and 45 male participants. Besides signif-
icantly higher alkaline phosphatase levels in female participants,
there were no major differences in characteristics between the
sexes (Table S1). All patients had hepatic steatosis, and at least
one cardiometabolic criterium for MASLD (Table S2).
Descriptive statistics of pancreatic imaging
Pancreatic fat fraction
Pancreatic fat percentage, as measured by PDFF, ranged from 0.3
to 19.4% (median 4.6, IQR 3.3–8.4). When using the suggested
cut-off of 6.2%,4 28 out of 75 individuals (37.3%) had pancreatic
steatosis. The pancreatic fat fraction did not increase with age or
BMI (Fig. S1A), nor did it differ between participants with and
without type 2 diabetes (Fig. S1B). When comparing pancreatic
regions, the fat fractions descended slightly from head to body to
tail, but this difference was not significant (Fig. S1C).

Pancreatic T1
Pancreatic T1 relaxation time ranged from 603 to 1,133 ms
(median 758; IQR 707–815) and was not related to age or BMI
(Fig. S2).

Pancreatic T1 did not correlate with pancreatic fat fraction
(R = 0.16, p = 0.34). However, it was significantly higher in
participants with type 2 diabetes than in those without (mean
799.9 ms vs. 737.9 ms, respectively; p <0.05; Fig. 1A). Moreover,
pancreatic T1 correlated linearly to fasting glucose (R = 0.52,
Table 2. Baseline characteristics.

All participants (

Age 47.4
Sex (male/female) 45/31 (59.2%
BMI (kg/m2) 32.78 [29.47
Type 2 diabetes (%) 31
HbA1c (mmol/mol) 40.5 [36.
Fasting glucose (mmol/L) 6.1 [5
Fasting insulin (pmol/L) 121.5 [78.3
AST (U/L) 42 [
ALT (U/L) 62 [
GGT (U/L) 62 [
ALP (U/L)
Histology scoring of MASLD
Steatosis

S0 3
S1 23
S2 30
S3 20

Inflammatory activity
A0 4
A1 21
A2 36
A3 14
A4 1

Fibrosis
F0 3
F1 9
F2 39
F3 19
F4 6

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransfera
disease.
Hepatic steatosis, lobular inflammation and fibrosis are graded according to the SAF sco
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p <0.01; Fig. 1B) and HbA1c (R = 0.5, p <0.01; Fig. 1C). When
excluding outliers, defined as points at 1.5x IQR below quartile 1
and above quartile 3, results remained significant (fasting
glucose p <0.05; HbA1c p <0.05). There was no relation between
pancreatic T1 and fasting insulin levels (R = 0.12, p = 0.5) or PIR
(R = −0.02, p = 0.92). A trend towards an inverse correlation was
found between pancreatic T1 and C-peptide levels (R = −0.33,
p = 0.05). There was no correlation between pancreatic T1 and
the C-peptide to insulin molar ratio, as a measure of insulin
clearance (R = −0.065, p = 0.72).

Pancreatic IVIM-DWI
The range in IVIM-D values was 1.01–1.68x e−3 mm2/s (mean
1.31x e−3 mm2/s, SD 0.14; normal mean ranges between
1.02–1.94x e−3 mm2/s26). The range in IVIM-f values was
8.6–28.8% (median 13.3%, IQR 11.7–15.1%; normal mean 23.7%
SD525). Neither IVIM-D nor IVIM-f was significantly influenced
by age, BMI or type 2 diabetes status.
Pancreatic imaging in relation to liver imaging
Pancreatic fat fraction
Pancreatic PDFF was not correlated to liver PDFF (Spearman’s
Rho, R = 0.02, p = 0.90) (Fig. 2).

Pancreatic T1
There was a trend towards decreasing pancreatic T1 relaxation
time with an increase in liver PDFF values, though this was not
statistically significant (R = −0.28, p = 0.09). Hepatic cT1 values, as
a surrogate marker for fibro-inflammation in the liver, did not
correlate with pancreatic T1 (R = −0.08, p = 0.65).
n = 76) Pancreatic T1 subgroup (n = 38)

(13.6) 48.6 (13.2)
/40.8%) 17/21 (44.7%/55.3%)
, 36.07] 31.27 (4.23)
(40.8) 16 (42.1)

0, 53.0] 40.0 [36.0, 47.3]
.5, 7.8] 6.0 [5.4, 7.6]
, 175.8] 114.5 [73.0, 160.5]
35, 57] 41 [35, 57]
48, 91] 62 [47, 103]
38, 92] 67 [37, 93]
86 (31) 89 (33)

(3.9%) 2 (5.3%)
(30.3%) 10 (26.3%)
(39.5)% 17 (44.7%)
(26.3%) 9 (23.7%)

(5.3%) 2 (5.3%)
(27.6%) 10 (26.3%)
(47.4%) 17 (44.7%)
(18.4%) 9 (23.7%)
(1.3%) 0 (0.0%)

(3.9%) 0 (0.0%)
(11.8%) 7 (18.4%)
(51.3%) 18 (47.4%)
(25.0%) 10 (26.3%)
(7.9%) 3 (7.9%)

se; GGT, gamma-glutamyltransferase; MASLD, metabolic dysfunction-associated liver

ring system.28 Data are presented as mean (SD), median [IQR], or count (percentage).
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Fig. 1. The T1 relaxation time of the pancreas is higher in individuals with
impaired glucose control. (A) Type 2 diabetes. Level of significance: p = 0.03
(t-test). (B) Fasting glucose levels. Level of significance: p = 0.0012 (Spearman’s
rho). (C) HbA1c. Level of significance: p = 0.0023 (Spearman’s rho).
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Fig. 2. Fat content of the pancreas is not related to the fat content of the
liver. Both pancreatic and liver fat content are displayed as assessed by PDFF.
Level of significance: p = 0.9 (Spearman’s rho). Dashed line represents the FPD
cut-off of 6.2%. FPD, fatty pancreas disease; PDFF, proton-density fat fraction.
Pancreatic IVIM-DWI
Pancreatic IVIM-D slightly decreased with increasing liver PDFF
(R = −0.24, p = 0.04). There was no correlation between pancre-
atic IVIM-D and cT1 of the liver. Pancreatic IVIM-f values did not
correlate with either liver PDFF or liver cT1.
JHEP Reports 2024
Pancreatic imaging in relation to liver histology
Pancreatic fat fraction
Pancreatic PDFF did not differ between participants with
increasing liver steatosis grades (Fig. 3A), nor was it different
across liver SAF inflammatory activity grades as a measure of
steatohepatitis (Fig. 3B). Moreover, pancreatic PDFF did not differ
between participants with or without advanced hepatic fibrosis
(F >−3) (Fig. 3C).

Pancreatic T1
Pancreatic T1 relaxation time did not differ between participants
with increasing liver steatosis grades (ANOVA, p = 0.73),
increasing SAF inflammatory activity grades (ANOVA, p = 1.00),
or between participants with/without advanced liver fibrosis (F
>−3) (t-test, p = 0.33).

Pancreatic IVIM-DWI
IVIM-D was not related to liver steatosis grades (ANOVA, p = 0.10)
or SAF inflammatory activity grades (ANOVA, p = 0.17). However,
when comparing participants on fibrosis severity, we identified
significantly lower IVIM-D values in those with advanced fibrosis
(Fig. 4).

IVIM-f was not related to liver steatosis grades (Kruskal-
Wallis, p = 0.56), SAF inflammatory activity grades (Kruskal-
Wallis, p = 0.11), or hepatic fibrosis stages (Kruskal-Wallis,
p = 0.73).

Pancreatic MRI parameters are unrelated to exocrine function
When evaluating whether pancreatic MRI outcomes were
related to exocrine function, our findings showed that pancreatic
PDFF did not differ between individuals with exocrine insuffi-
ciency and those with normal fecal elastase levels (Mann-
Whitney U test, p = 0.95). Similarly, neither pancreatic T1 (t-test,
p = 0.74), IVIM-D (t-test, p = 0.39) or IVIM-f (Mann-Whitney U
test, p = 0.31) were different between individuals with exocrine
insufficiency and those with normal fecal elastase levels.
5vol. 6 j 100998
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Fig. 3. Relations between pancreatic fat content and liver histology scores.
(A) Pancreatic fat content is unrelated to liver steatosis grade. Level of signif-
icance: p = 0.82 (Kruskall-Wallis test). (B) Pancreatic fat content does not differ
between SAF inflammatory activity grades. Level of significance: p = 0.95
(Kruskall-Wallis test). (C) Pancreatic fat content is unrelated to hepatic fibrosis
stage. Level of significance: p = 0.23 (Mann-Whitney U test). Dashed line
represents the FPD cut-off of 6.2%. FPD, fatty pancreas disease.

Research article
Discussion
This study finds no support for a relation between IPFD and
hepatic steatosis in individuals with MASLD. Instead, we un-
covered other significant findings. Firstly, we observed an asso-
ciation between pancreatic T1 relaxation time on MRI, a marker
JHEP Reports 2024
of inflammation and fibrosis,25 and glycemic dysregulation. Our
cohort consisted of individuals with MASLD, of whom 40% had
type 2 diabetes mellitus and 88% exhibited insulin resistance
(HOMA-IR >2.0). This cohort represents a group of relatively
young, hyperinsulinemic patients with MASLD developing
hepatic fibrosis who have not (yet) reached a state of severe
pancreatic beta-cell failure and insulinopenia. Additionally, we
identified a relationship between pancreatic IVIM-D (as a proxy
of pancreatic collagen fraction) and hepatic fibrosis. The results
from this study support the notion that pancreatic fibro-
inflammation in individuals with MASLD may be more related
to glucotoxicity than to lipotoxicity, a key process in MASLD.

The prevalence of FPD in this cohort was 37.3%. Wang et al.
reported a larger proportion of 67% in a population with
MASLD35 and Uygun reported 51%.36 However, both these
studies used ultrasound for the diagnosis of FPD, which is likely
less accurate than MRI. Also, they did not use a cut-off for normal
IPFD, which may have led to overdiagnosis. In a large community
cohort of 685 healthy volunteers, Wong et al. found an FPD
prevalence of 16.1% (95% CI 13.3–18.8%) in the general population
using MRI.37

IPFD was not related to hepatic steatosis as assessed by MRI
and liver histology. This finding aligns with some previous
works.38,39 However, other previously conducted studies have
suggested that fat accumulation in the pancreas does
have negative consequences on liver disease severity in
MASLD.15,18,19,40 There are several potential explanations to
account for the differences with our findings. For instance, some
of these studies used ultrasound to diagnose FPD,19 which is
unable to distinguish between IPFD and peripancreatic fat tissue.
The studies that did use MRI-PDFF consisted of smaller cohorts
than our study.18,40 Moreover, the association between FPD and
MASLD in these studies may have been mediated by obesity, as
the association disappeared in several studies when correcting
for BMI15 or visceral fat volume.40 In our cohort, consisting of
individuals with overweight or obesity only, we did not see this
mediation. Alternatively, it is possible that the timing of intra-
pancreatic and intrahepatic fat deposition differs, which could
also explain the lack of correlation between the two in this study.
Still, our results align with a study that evaluated the reduction
6vol. 6 j 100998



in fat content of the liver and pancreas after bariatric surgery,
which showed that the reduction of fat in both of these tissues
was unrelated.41 Together, this suggests that hepatic and
pancreatic fat are likely separately occurring entities rather than
related processes.

In contrast to several previously conducted studies, we did
not find a negative association between pancreatic fat content
and glucose regulation.4,12,42 Again, this may be explained by the
differences in methods, sample sizes and cohort characteristics.
Notably, we found that pancreatic T1 relaxation time correlated
with markers of glycemic control: pancreatic T1 relaxation time
was significantly higher in individuals with type 2 diabetes and
correlated positively with fasting glucose and HbA1c values. In
the liver, T1 mapping is used to assess the extent of hepatic
fibrosis and inflammation. Higher T1 relaxation time is indicative
of increased extracellular fluid content, a characteristic of fibrosis
and inflammation.43 Furthermore, studies have shown that iron-
corrected T1 (cT1) can distinguish between isolated steatosis and
MASH.44 In chronic pancreatitis, pancreatic T1 increases pro-
gressively with worsening stages.24 Our results thus indicate the
presence of inflammatory processes in the pancreas of in-
dividuals with impaired glucose homeostasis. Although we did
not observe a relationship between pancreatic T1 and PIR, the
trend towards an inverse correlation with C-peptide suggests
reduced beta-cell function in individuals with MASLD and
pancreatic fibro-inflammation. Since we found no such correla-
tion between pancreatic T1 and fasting insulin levels, we inves-
tigated whether suppressed fasting insulin clearance was already
occurring in this group. However, pancreatic T1 and the
C-peptide to insulin molar ratio (as a proxy for insulin clearance)
were not correlated. Of note, pancreatic T1 has previously been
proposed as a potential diagnostic marker for impaired glucose
tolerance based on its strong correlation with HbA1c.45 Our
findings align with previous reports showing no association
between pancreatic fat and beta-cell function.42,46 They sug-
gested that other factors besides pancreatic fat may contribute to
further decline once diabetes has manifested. The results from
our study provide evidence that pancreatic fibro-inflammation
may indeed be one of those influencing factors.

With regard to IVIM-DWI imaging, the median pancreatic
IVIM-f of 13.3% in our cohort was lower than has been reported
in healthy controls (around 24%).25,47 It has been shown that
IVIM-f decreases significantly in auto-immune pancreatitis to
around 10%.47,48 Thus, the low IVIM-f in this cohort also
JHEP Reports 2024
suggests inflammatory processes in the pancreas of individuals
with MASLD. As noted in the introduction, IVIM-f has been
correlated with vessel density. Infiltration of inflammatory cells
and an increase in pancreatic fibrosis, as seen in auto-immune
pancreatitis, could lead to reduced vessel density and thus
explain reduced perfusion fractions.48 Regarding pancreatic
IVIM-D, the observed lower values in individuals with advanced
liver fibrosis indicate a reduction in pancreatic diffusion, sug-
gesting the presence of pancreatic fibrosis in individuals with
advanced fibrotic stages of MASLD.25 Together, these IVIM-DWI
findings suggest that indeed other pancreatic processes besides
IPFD may occur that interrelate to liver disease in individuals
with MASLD.

This work has several strengths. First, the use of a multi-
parametric MRI scanning protocol in addition to tandem-read
liver biopsies evaluated by two pathologists, meant that our
cohort of individuals with MASLD were well characterized. Also,
the participants included represent a wide range of the MASLD
severity spectrum, with mild to severe steatosis and fibrosis
scores. For the assessments of IPFD, ROIs were placed in three
parts of the pancreas to ensure representativeness.

This study also has some limitations. For pancreatic T1 ana-
lyses, results should be interpreted as exploratory due to the
limited size of the available subgroup. Also, it should be noted that
the MRI methods, especially the T1 and IVIM-DWI sequences, are
relatively new. No histologic confirmation in pancreatic tissue is
available, as pancreatic biopsies are not performed. However,
these imaging methods provide new opportunities to evaluate
inter-organ disease processes, as this work demonstrates. Further
studies should focus on the pathophysiological bases of our ob-
servations: what causes the increased T1 and altered IVIM-DWI
properties of the pancreas? Which pancreatic cell type underlies
these changes? Do these alterations occur before aggravation of
MASLD severity or as a result of it?

In conclusion, our cross-sectional study supports the notion
that in obesity and MASLD, the occurrence of lipid accumula-
tion in the liver and pancreas are not closely related, potentially
indicating two distinct processes during disease development
in this patient group. The correlations between prolonged
pancreatic T1 relaxation time, as a measure for pancreatic
inflammation and fibrosis, and parameters of glycemic dysre-
gulation suggest that glucotoxicity may be a relevant process in
the pancreas of individuals with MASLD, potentially more so
than lipotoxicity.
Abbreviations
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